

Instructions for use

Title Data compression by volume prototypes for streaming data

Author(s) Tabata, Kenji; Sato, Maiko; Kudo, Mineichi

Citation Pattern Recognition, 43(9), 3162-3176
https://doi.org/10.1016/j.patcog.2010.03.012

Issue Date 2010-09

Doc URL http://hdl.handle.net/2115/43802

Type article (author version)

File Information PR43-9_3162-3176.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Data Compression by Volume Prototypes for

Streaming Data

Kenji Tabata, Maiko Sato, Mineichi Kudo ∗

Division of Computer Science

Graduate School of Information Science and Technology

Hokkaido University, Sapporo 060-0814, JAPAN

Abstract

In these years, we often deal with an enormous amount of data in a large variety of
pattern recognition tasks. Such data require a huge amount of memory space and
computation time for processing. One of the approaches to cope with these problems
is using prototypes. We propose volume prototypes as an extension of traditional
point prototypes. A volume prototype is defined as a geometric configuration that
represents some data points inside. A volume prototype is akin to a data point in the
usage rather than a component of a mixture model. We show a one-pass algorithm
to have such prototypes for data stream, along with an application for classification.
An oblivion mechanism is also incorporated to adapt concept drift.

Key words: volume prototypes, one-pass algorithm, streaming data, concept drift

1 Introduction

In these years, we often deal with an enormous amount of data or a data
stream in a large variety of pattern recognition tasks. Such data require a
huge amount of memory space and computation time for processing. So we
need compression techniques in which many data are represented by a small
subset of them. Such representative data are referred to as prototypes.

In this paper, we propose volume prototypes for this goal and show an algo-
rithm that runs in a linear order of data size. A volume prototype is defined
as a geometric configuration that represents some data points in the inside of

∗ Corresponding author. Tel:+81-11-706-6852, Fax:+81-11-706-7393
Email address: mine@main.ist.hokudai.ac.jp (Mineichi Kudo).

Preprint submitted to Elsevier 21 July 2010

itself. A volume prototype has a specific region which enables data condensa-
tion based on the local data distributions (Fig.1). Moreover, they are available
as a replacement of point prototypes. We may consider several geometric con-
figurations as candidates; for example, a hyper-sphere, a hyper-ellipsoid, a
hyper-rectangle, and so on. Maybe the only one necessary condition is the
convexitivity. In this paper, we deal with a hyper-ellipsoid prototype such
as Fig.1(b). Concretely speaking, a hyper-ellipsoid prototype has a center µ,
a covariance matrix Σ, a Mahalanobis radius r and the number n of inside
samples. Such a prototype is denoted by p = (µ, Σ, r, n).

2 Related works

Prototype generation/selection has been widely studied in the literature. The
condensed nearest neighbor [1] and the reduced nearest neighbor [2] are typical
in the nearest neighbor searching and classification. In this paper, we concen-
trate on prototype approaches for a massive data or a data stream. Especially
we focus on one-pass algorithms, because they are significantly effective for
streaming data that can be accessed only once.

Such approaches for massive data are divided into four groups: prototype
selection, density estimation by mixture models, clustering and classification.
We will review them in this order.

In the literature [3–6], there have been some studies of prototype selection
for a huge dataset. A synergy effect of combining the editing and condens-
ing nearest neighbor techniques on a massive data is discussed in [3]. Mitra
et al. proposed an algorithm for data condensation using SVMs [4]. In that
algorithm, only a subset of data points crucial for classification is chosen.
The problem of large memory requirement for training SVMs is resolved by
adopting an active incremental learning algorithm. Kim and Oommen also
gave a prototype reduction scheme (PRS) for a huge dataset [5]. In the al-
gorithm, a dataset is divided into some blocks recursively, and each block
size is suppressed to be small. Then any traditional PRS can be employed to
process each block. Recently, Beringer and Hüllermeier [6] have proposed edit-
ing strategies for nearest neighbor classification. They developed an algorithm
that can adapt to changes of the underlying data stream (concept drift/shift).
All these methods are one-pass algorithms and provide some point prototypes.

Density estimation algorithms for a huge dataset are also found in the liter-
ature [7–10]. Zhang et al. extended a kernel method to achieve a fast density
estimation for very large databases [7]. Arandjelović and Cipolla realized a
real-time density estimation by incremental learning of GMM [8]. The incre-
mental EM algorithm [9] attempts to reduce the computational cost needed

2

by EM algorithm. This is made by adopting partial E-steps. It divides a whole
dataset into some blocks and performs a partial E-step on each block in a cyclic
way. The lazy EM algorithm [10] takes the same strategy with the incremen-
tal EM algorithm. However, it performs a partial E-step only on a significant
subset of data.

Clustering methods for a huge dataset are also seen in the literature [11–
16]. Charikar et al. proposed a one-pass clustering algorithm in a streaming
model [11]. It produces a constant factor approximation of the solution of
the k-median problem in storage space O(k poly log n) for size n data. An
application of k-median approach is seen in clustering and classification of
protein sequences [12]. Bradley et al. showed an efficient clustering method for
large databases [13]. Their method is based on classifying regions into three
kinds of regions: the regions that must be maintained as they are, the regions
that are compressive, and the regions that are discardable. This algorithm
requires at most one scan of the database. The algorithm BIRCH [14] by
Zhang et al. achieves an efficient clustering for a huge dataset by constructing
a CF-tree that is a hierarchical summary of clusters. Data is scanned only once
to construct a CF-tree. The algorithm FEKM [15] by Goswami et al. produces
almost the same clusters as the original k-means algorithm. Their algorithm
is basically one-pass, and obtains clusters close to the correct clusters of the
k-means with a few number of additional scans. A similar idea is seen in [16].

Domingos and Hulten proposed a general framework that allows any learning
algorithm to deal with a huge dataset, and showed applications to k-means
clustering [17] and EM algorithm [18]. For classification, they also provide a
very fast decision tree (VFDT) algorithm for data streams [19].

Some classification methods have been proposed for a huge dataset [20,21].
The algorithm SEA [20] proposed by Street and Kim classifies a sample by
a majority vote of some classifiers. The component classifiers are constructed
from some blocks of a data stream. Aggarwal et al. showed a classification
model which is not only one-pass but also adaptable to concept drift [21].

The volume prototype approach is related to all of above four groups of stud-
ies, especially it is strongly related to clustering and mixture models (Table 1).
However, there are clear differences from them. A major difference is that vol-
ume prototype approach is at a lower level than clustering or mixture models.
That is, volume prototypes are regarded as one of intermediate expressions,
more close to data, between data points and components as seen in cluster-
ing or mixture models. Indeed, volume prototypes are able to be used for
clustering or for mixture modelling, instead of data points.

The name volume prototype is not new. Kaymak and Setnes [22] have al-
ready used the terminology, but their volume prototypes are clusters with a

3

boundary. This direction has been studied as cluster volumes or the volume
of clusters [23,24]. On the contrary, our volume prototypes are closer to data
themselves in number and in size as will be shown. Typically, the number of
volume prototypes is more than the number of clusters and/or the number of
components of mixture models and the sizes are smaller than clusters and/or
components.

The difference from clustering comes from the fact that volume prototypes
overlap each other. In clustering, usually clusters do not overlap each other,
although some methods allow partitions with overlapping [25,26]. In addition,
a set of volume prototypes does not always include every data point. This
nature would be useful for efficient and robust compression. The latter means
that some data points are removed as outliers.

The difference from mixture models is that a volume prototype has a clear
boundary unlike a component of a mixture. It means that we can count the
number of data points inside a volume prototype. Once a mixture model was
constructed and then all the data points were discarded, we cannot know
where data points were anymore. In contrast, in volume prototypes, we loose
the concrete positions of data points, but can know its rough region. In mixture
models, it is often difficult to determine the number of components appropri-
ately, especially in streaming data. On the other hand, in volume prototype
approaches, we do not need to be so careful the number of prototypes. It usu-
ally suffices to have a sufficient number of volume prototypes, because they
converge to dense parts, modes, of the underlying distribution, as will be seen.
In general, a larger number of prototypes are found compared to the number
of components in a mixture model even if model selection is applied to the
mixture model. This is mainly because the goals are different.

Comparing point prototypes and volume prototypes, it is difficult to judge
which is better. The main difference comes from the fact that the former rep-
resents data points globally as a set, while the latter represents a variety of
local data points. In other words, a point prototype keeps the first degree
of statistics locally, while a volume prototype keeps the first and second de-
grees of statistics locally. The difference affects the compression rate. If the
second degree of statistics reflects the local distribution faithfully, the volume
prototypes would realize a higher compression rate, with a small number of
prototypes, than that of point prototypes. Such an example is seen in the
case that the underlying distribution consists of a small number of Gaussian
modes.

For the goal of data compression, there are other types of methodology. Learn-
ing Vector Quantization (LVQ) [27] is widely used for data compression. It is
close to clustering and the goal is to find some centers to which every sam-
ple is assigned to. Very recently, Lughofer [28] extended a vector quantization

4

technique for incremental clustering in which a quite similar technique to ours
has been proposed in terms of (axis-parallel) ellipsoidal clusters. However,
their clusters are close to traditional clusters and thus each cluster is larger
than a volume prototype. One-class classification is another type of methodol-
ogy [29,30]. It aims at finding only a (target) class distribution and is applied
mainly to outlier or novelty detection. It is also useful to avoid unnecessary
retraining of classifiers for when samples being regarded as outliers are ob-
tained. However, one-class classification is not always appropriate for general
purpose such as clustering and data compression.

3 Basic idea

In this paper, we assume that we have an almost infinite number of data, that
is, a data stream. First, we show the basic strategy of updating the current
prototypes.

(1) We deal with the samples one by one in the presented order and bring
up the prototypes gradually.

(2) Only when a sample falls into the acceptance region (Fig.2) of a prototype,
we update the prototype using the sample. One sample can be used for
updating more than one prototype.

Here, the acceptance region is determined according to the statistics of data
included in the prototype. We only use the samples within the acceptance
region for updating. A volume prototype grows or reduces in the middle of
the updating process. We expect that each prototype converges to a certain
final prototype if the underlying data generation mechanism is stable.

The algorithm consists of two steps. The first step is the ”mode estimation”
step (shortly, ME step) and the second step is the ”convergence” step (shortly,
C step). The learning scheme is illustrated in Fig.3. In this scheme, the first
ME step requires multiple scans over the first N samples, but the second C
step requires only one-time scan for the remaining samples. As a result, this
algorithm is regarded as a one-pass algorithm.

4 Algorithm

In this section, we show the concrete algorithm VP to generate volume proto-
types. The algorithm is shown in Fig. 4.

The outline is as follows. With multiple scans over the first N samples in

5

different orders, we obtain M initial prototypes. Then choose L′ seed prototypes
using a set covering criterion (ME Step). We bring up those seed prototypes
by updating them using the samples fell in their acceptance regions (C Step).
When we want to have final prototypes, we carry out prototype selection using
the same set covering criterion again to have L final prototypes.

4.1 Details

Dataset: We consider a data stream

x1, x2, . . . , xN , xN+1, . . .

of D-dimensional vectors.
Prototype: Let p = (µ, Σ, r, n) be a prototype. Here, µ is the prototype

center, Σ is the covariance matrix, r is the Mahalanobis radius and n is
the number of samples included in the prototype. Here, r is a significant
parameter that affects the behavior of the prototype growth. For a random
vector X generated according to a normal distribution N(x|µ, Σ), it is
known that the Mahalanobis (squared) distance (X−µ)′Σ−1(X−µ) obeys
χ2

D. Therefore, r2 is set to χ2
D(θ) (100 × θ % point of chi-squared statistics

with D degrees of freedom). Here, θ reflects to what degree we require each
prototype to cover a local area. If we take θ = 0.9, we expect that 90% of
surrounding points are covered.

Included sample set: Let Sp be the set of data points included in the pro-
totype p, which is specified by

Sp = {x|(x − µ)′Σ−1(x − µ) ≤ r2}.

Then n = |Sp|. Unfortunately we cannot count the exact number n because
the acceptance region moves in the middle of process. Therefore we approx-
imate n by the number of samples used for updating the prototype. That
is, when a prototype is updated, we increment the value of n by one.

Acceptance region: We specify the acceptance region Ap of prototype p =
(µ, Σ, r, n), by the acceptance Mahalanobis radius R as

Ap = {x|(x − µ)′Σ−1(x − µ) ≤ R2}. (1)

Here, R(≥ r) is determined from r and n by

R = r +

√

χ2
D(0.95)

n
. (2)

Here, 0.95 means to take the 95% confidence region of the sample mean in
Mahalanobis radius. It is noted that R approaches to r as n goes to infinity.

Updating procedure: When a sample x falls into the acceptance region of

6

prototype pt−1 at tth update, pt−1 is updated to pt by

nt = nt−1 + 1, (3)

µt =
(nt − 1)µt−1 + x

nt

, (4)

Σt =
(nt − 1)Σt + xx′ + (nt − 1)µt−1µ

′
t−1 − ntµtµ

′
t

nt

. (5)

In addition, radius R of the acceptance region is also updated by (2).
Initialization of ME step: We initialize the center µ0 and the covariance

matrix Σ0 by
µ0 = x1, (6)

and
Σ0 = λ2I. (7)

Here,

λ2 =
1

DN

N
∑

i=1

min
j 6=i,j={1,2,...,N}

‖xi − xj‖
2

(‖xi − xj‖ is the Euclidean distance between xi and xj) and I is the unit
matrix. In addition, we set the initial value of n0 to

n0 = D + 1. (8)

Seed prototype selection: After obtaining M initial prototypes, we select
some of them by a set-covering criterion. In a greedy manner, we select
the largest prototype in the number of samples first, then the prototype
covering largest the samples that are not covered by the first prototype, and
so on. This procedure is repeated until no prototype is found to increase
the covering ratio. As a result, we have L′ seed prototypes.

C step: In this step, we just bring up L′ seed prototypes obtained in ME step
with the remaining samples (Fig.3). Update is carried out by (3)–(5) using
samples falling into their acceptance regions (1).

Choice of final prototypes: When one wants to have a set of volume pro-
totypes, we choose some prototypes from the currently held L′ prototypes.
This is also made in a greedy manner in which selection is terminated when
all Nv (latest) samples are covered or no improvement is found in covering.
As a result, we obtain L final prototypes.

5 An example

We applied the proposed VP algorithm to a huge synthetic dataset to obtain
volume prototypes. The dataset Moon comes from a 2-dimensional 2-class
(ω1 and ω2) problem (Fig.5) which is used in [31]. Among 100 000 (=50 000

7

× 2 classes) points, the first 1 000 (500 per class) samples were used in ME
step and the remaining 99 000 samples in C step. The algorithm was applied
class by class.

The results in the individual steps are shown in Fig.5(a)-(c). With M = 50, we
obtained 50 initial prototypes in each class, and then 70 (37 for ω1 and 33 for
ω2) seed prototypes after prototype selection. To obtain the final prototypes,
49,500 samples in each class were used for updating the prototypes. After
selection, we had 34 (18 for ω1 and 16 for ω2) final prototypes. Another example
with 107 samples is shown in Fig.5(d).

In Fig.5, the decision boundaries of a locally-quadratic classifier, that will be
given later, are shown in some cases. In the last stage, 100 000 samples were
represented by 34 final prototypes. That is, 200000(= 100000× 2) real values
are reduced to 272(= 34 × 8) real values. The reduction rate is 0.14%. In
Fig.5(d), 32 volume prototypes were obtained at reduction rate 0.0013%.

In Fig. 6, we can see how volume prototypes change for different values of θ.
We have more but smaller volume prototypes for a smaller value of θ, while
less but larger volume prototypes for a larger value of θ.

From Fig. 5(c),(d) and Fig. 6, we notice that

(1) the set of final prototypes approximates the distribution from inside when
θ ≤ 0.9.

(2) each prototype is located on the ridge of the distribution.

6 Behavior analysis

Here, let us make clear the behavior of volume prototypes, especially where
they move to, how fast they move and whether they shrink or not, as the
number t of updatings increases.

The behavior of a volume prototype is very complicated. The center µt−1

and covariance matrix Σt−1 are updated to µt and Σt through (3) – (5). The
factors µt−1, Σt−1, r, nt−1 affect the updating as well as X t generated from
the underlying distribution f . Here let us derive the typical behavior under
some strong but generally acceptable assumptions.

8

6.1 Movement of prototype centers

First, let us analyze the direction and speed of movement of a volume pro-
totype center. Let a prototype after tth updating be pt = (µt, Σt, rθ, nt). For
simplicity, we assume that Σt = Σ0 and R2 = r2

θ = χ2
D(θ) for t = 1, 2, . . . Here,

nt = n0 + t. Then, the acceptance region Apt
of pt is given by

Apt
= {x | (x − µt)

′Σ−1
0 (x − µt) ≤ r2

θ}.

With a sample X t+1 ∈ Apt
, the center µt is updated to µt+1 by

µt+1 =
n0 + t

n0 + t + 1
µt +

1

n0 + t + 1
X t+1

= µt +
X t+1 − µt

n0 + t + 1
= µt +

∆X t+1

n0 + t + 1
.

Then the expected updated center is given by

EXt+1∈Apt
µt+1 = µt +

EXt+1∆X t+1

n0 + t + 1
.

If Σ0 is small enough to allow f to be linearly approximated in Apt
(Fig. 7)

as f(x) = f(µt) + ∇f(µt)
′(x − µt), we can have

EXt+1∆X t+1 =
r2
θ

D + 2
Σ0

∇f(µt)

f(µt)
,

(for the proof, see Fukunaga [31](pp.534–535)). Therefore, we have

EXt+1∈Apt
µt+1 = µt +

1

n0 + t + 1

r2
θ

D + 2
Σ0

∇f(µt)

f(µt)
. (9)

From Eq. (9), we see that 1) the direction of displacement is Σ0∇f(µt), 2) the

speed Eµt+1 −µt is proportional to
r2
θ

D+2
and

∇f(µ
t
)

f(µ
t
)

, therefore, 3) the speed is

low when ∇f(µt) is small or f(µt) is large depending on the previous position
µt, and 4) the speed reduces at ratio 1/(n0 + t+1) for the increase of t, hence,
the accumulated amount is approximately log t. Note that r2

θ/(D+2) does not
decrease linearly to 1/D because rθ depends on both D and θ. Indeed, this
value changes in a little strange way as shown in Fig. 8 (θ = 0.9). In θ = 0.9,
up to around D = 8, the value increases, hence the movement speed of the
center increases, but, after D = 8, the value decreases toward one, hence the
speed decreases, as the dimensionality D increases.

We can obtain more intuition when Σ0 = αΣ∗ with a constant α (< 1), where
Σ∗ is the covariance matrix of the underlying normal distribution f(x) =

9

N(x; µ∗, Σ∗). Then, for Eq. (9), we have a simpler equation:

EXt+1µt+1 =µt +
1

n0 + t + 1

r2
θ

D + 2
Σ0

∇f(µt)

f(µt)

=µt +
1

n0 + t + 1

αr2
θ

D + 2
Σ∗Σ

−1
∗ (µ∗ − µt) (for Gaussian f)

=µt +
1

n0 + t + 1

αr2
θ

D + 2
(µ∗ − µt)

Therefore, the expected µt+1 is the point between the global mean µ∗ and

µt at ratio 1
n0+t+1

αr2
θ

D+2
: (1− 1

n0+t+1

αr2
θ

D+2
) and climbs up to the steepest ascend

direction.

Experiment 1

Data : N(0, ID), D = 2, 4, 8, 16, 32, 64
Sample size: Out of 105 samples, the first N = 103 samples were used in

ME step.
The number of prototypes: M = L = 10 (No prototype selection)
Radius: r2 = rθ

2 = χ2
D(θ), θ = 0.85, 0.90, 0.95

Procedure: Just after ME step, we have p0 = (µ0, Σ0, r, n0), where n0 de-
pends on the prototype.

Results: The top row of Fig. 9. Here, the horizontal axis is the logarithm of
the number of samples.

From Fig. 9 (the top row), we can confirm that the speed is linear to log t

within a range in which
∇f(µ

t
)

f(µ
t
)

is almost the same. The speed (the slope)

increases up to D = 8 and then decreases for larger D. As θ increases, thus rθ

does so, they converge more quickly. These observations show the validity of
our analysis.

As a result, the centers of volume prototypes move at speed of the reciprocal
of the number of samples and converge to one of local peaks of the underlying
distribution, and they will stay there (because ∇f is close to zero) or approach
to a higher place (dense part) very slowly.

6.2 Convergence of covariance matrix

Next, let us analyze whether volume prototypes vanish or not with a suffi-
ciently large number of samples.

For simplify, let us assume that f(x) = N(x; 0, Σ∗) and a prototype pt =

10

(0, Σt, rθ, nt) has already converged to the origin in the center. In addition, we
assume that Σt = αtΣ∗, that is, the configuration is the same as Σ∗ and only
the scale is different by αt.

Then the behavior of Σt is identical to that of αt. Let Y 2 = X ′Σ−1
∗ X. Then Y 2

obeys χ2
D and EY 2 = D. Then, the acceptance region Apt

= {x|x′Σ−1
t x ≤ r2

θ}
is rewritten by Apt

= {x|x′Σ−1
∗ x ≤ αtr

2
θ}. With f(y2) = χ2

D(y2), we have

EX∈Apt
Y 2 =

∫ αtr
2
θ

0
y2f(y2)dy2/

∫ αtr
2
θ

0
f(y2)dy2

=
2γ

(

D
2

+ 1, αtr
2
θ

)

γ
(

D
2
, αtr

2
θ

) , (10)

where γ(·, ·) is the incomplete gamma function defined by γ(a, x) =
∫ x
0 e−tta−1dt.

Note that EX∈Apt
Y 2 → D as r2

θ → ∞.

From Eq. (10) and the fact that EX∈Apt
Y 2 = tr

(

Σ−1
∗ EX∈Apt

XX ′
)

, we have

EX∈Apt
XX ′ =

2γ
(

D
2

+ 1, αtr
2
θ

)

Dγ
(

D
2
, αtr

2
θ

) Σ∗. (11)

On the other hand, the covariance Σt is updated to Σt+1 by X t+1 as

Σt+1 =
n0 + t

n0 + t + 1
Σt +

1

n0 + t + 1
X t+1X

′
t+1.

By taking the expectation over X t+1 ∈ Apt
, from (11), we have

αt+1Σ∗ = E
Xt+1∈Apt

Σt+1 =Σt +
EX t+1X

′
t+1 − Σt

n0 + t + 1

=αtΣ∗ +

2γ(D
2

+1,αtr
2
θ)

Dγ(D
2

,αtr
2
θ)

− αt

n0 + t + 1
Σ∗.

That is,

αt+1 = αt +

2γ(D
2

+1,αtr
2
θ)

Dγ(D
2

,αtr
2
θ)

− αt

n0 + t + 1
,

11

αt+1D =
(

1 −
1

n0 + t + 1

)

αtD +
1

n0 + t + 1

2γ
(

D
2

+ 1, αtr
2
)

γ
(

D
2

+ 1, αtr2
) . (12)

At time t, Σt and At correspond to αtD and αtr
2
θ , respectively (Fig. 10 and

Fig. 11). Note that r2
θ > D for large θ, say θ = 0.9. Then the contribution

by X t+1 corresponds to 2γ
(

D
2

+ 1, αtr
2
)

/γ
(

D
2
, αtr

2
θ

)

. Thus a pair (αtD, αtr
2
θ)

produces 2γ
(

D
2

+ 1, αtr
2
)

/γ
(

D
2
, αtr

2
θ

)

(Fig. 11).

When αt > 1, since 2γ
(

D
2

+ 1, αr2
θ

)

/γ
(

D
2
, αr2

θ

)

< D < αtD < αtr
2
θ , we

have αt+1D < αtD from (12). On the other hand, when αt is smaller than

α∗ defined below, we have αtD < 2γ
(

D
2

+ 1, αtr
2
θ

)

/γ
(

D
2
, αtr

2
θ

)

< αtr
2
θ , then

αt+1D > αtD. The latter situation is illustrated in Fig. 11.

To find the convergence value α∗, it suffices to solve the equation

αD =
2γ

(

D
2

+ 1, αr2
θ

)

γ
(

D
2
, αr2

θ

) .

Let us denote α∗ = α∗(D, θ) by making clear the dependency. Several values
of α∗(D, θ) are shown in Table. 2. Here r2

θ = χ2
D(θ). As a result, the covariance

matrix Σt approaches to α∗(D, θ)Σ∗ as t → ∞. In Table. 2, α∗(D, θ) = 0 for
D = 2 and θ < 0.86. However, when Σt becomes small, the probability that
a sample falls in the acceptance region of the prototype becomes small too,
hence, the number t of updatings decreases. As a result, such a small prototype
survives for a long time. It should be noted that the volume ratio is α∗(D, θ)D,
so that, even when α∗(D, θ) is close to one, it produces a large reduction in
volume for large dimensionality D.

We conducted the same experiment as Experiment 1. The result is shown
in Fig. 9. In Fig. 9 (the bottom row), we plotted the value of trΣt/D as an
estimate of αt because trID = D. From Fig. 9, we can see that αt approaches
to the theoretical equilibrium value α∗(D, θ).

In total, we can say that volume prototypes converge to local peaks at a
speed proportional to the reciprocal of the number of samples and then the
covariance matrices converge to α∗(D, θ) times the local covariance matrices.

12

7 Robustness and validity

The robustness of volume prototypes can be described in several ways. As for
a single volume prototype, we cannot expect robustness both in the position
(the mean) and in the configuration (the covariance matrix). This is because,
each volume prototype strongly depends on the initial position that is deter-
mined by a random sample. Indeed, volume prototypes are substitutions of
samples generated randomly. After obtaining many samples to grow, a volume
prototype reaches at a local top of a hill. In this respect, some volume pro-
totypes may reach at almost the same place if they start from a surrounding
region of the point. In other words, as long as a sufficient number of sam-
ples were given, the final volume prototypes do not strongly depend on the
initial prototypes. Indeed, in comparison between Fig. 5(c) with 105 samples
and Fig. 5(d) with 107 samples, we see that the degree of affection of initial
prototypes is smaller in the latter. Therefore, the number of initial prototypes
is more crucial than individual positions of initial prototypes.

Robustness is found in a set of volume prototypes. A set of volume prototypes
gives an inner approximation of the underlying distribution so that the set
is robust against the outliers. This is a remarkable characteristic of volume
prototypes. Such a characteristic is not seen in mixture models or in cluster-
ing. In other words, a set of volume prototypes approximates well the inner
part of the underlying distribution, but looses the outer configuration. Such
a characteristic would be useful to find the modes. Given a sufficient number
of samples, some volume prototypes converge to one of the modes. Then we
could find every mode by combining close prototypes into one.

8 Usage of volume prototypes for classification

When we use volume prototypes for designing classifiers, there are several
ways:

(1) Use only the centers of volume prototypes as point prototypes. (Weighted
point prototype strategy)

(2) Use the centers and covariances of volume prototypes. (Locally-quadratic
strategy)

(3) Generate a necessary number of samples on the basis of volume proto-
types. (Bootstrap strategy)

In the first strategy, we use only the centers with weights each of which is
calculated from the number of samples included in the corresponding volume
prototype. Then we can use a weighted nearest neighbor that is a popular tech-

13

nique and has been used up to now with several modifications (for example,
see [32]).

In the second strategy, we use the second degree of statistics, that is, covari-
ance Σ, of a volume prototype in addition to the center µ. A distance-weighted
k-nearest neighbor [33] is also popular, in which the Euclidean distances of a
query point and its k nearest neighbors are considered in addition to the ma-
jority class of them. Then it is natural to introduce the Mahalanobis distance
using µ and Σ instead of the Euclidean distance.

In the last strategy, we consider a bootstrap data generator to generate a
necessary number of samples for designing classifiers. Unlike above two strate-
gies, such an approach is applicable to a wide range of classifiers. We can do
it by sampling from the distribution modeled by the set of volume prototypes
as a (detailed) mixture model. Unlike a likelihood-based mixture model, we
do not need to determine the number of components nor to be careful about
irregularly small components.

In the following, we describe the latter two strategies in detail.

8.1 Locally-quadratic classifier

In the second strategy, we propose a natural extension of a quadratic classi-
fier. The classifier that we propose is illustrated in Fig.12 with some typical
classifiers. This locally-quadratic classifier is regarded as an intermediate one
between the mixture Bayes classifier and the nearest neighbor classifier. That
is, this classifier is expected to provide an optimal complexity between the
mixture models and the nearest neighbor classifier.

When each of class-conditional probability densities is given as a mixture
model, we classify a class-unknown sample x to a class c∗ by the rule

c∗ = arg max
c

Kc
∑

k=1

P (c)P (k|c)f(x|θc,k),

where Kc is the number of components of class c, f(x|θc,k) is the component
density of the kth component of class c, P (c) is the prior probability of class
c, and P (k|c) is the prior probability of the kth component of class c. The
main problem of mixture models is that it is difficult to determine the number
of components Kc and the parameters θc,k appropriately, especially in a huge
dataset.

To exploit volume prototypes p = (µ, Σ, n) for classification, we consider a
normal density function f(x|θ) = N(x|µ, Σ) for each of them. Then, we can

14

regard each volume prototype as a component of a mixture model, but volume
prototypes are closer to data points. So, instead of above rule, we use

c∗ = arg max
c

max
k

P (c)P (k|c)f(x|θc,k),

where f(x|θc,k) is calculated by the kth volume prototype of class c. This rule
is a nearest neighbor rule using a probabilistic distance between x and the
kth prototype of class c. On the other hand, this rule can be also seen as a
quadratic classifier between prototypes of different two classes closest to the
sample. In these senses, the classifier is between the nearest neighbor classifier
and the quadratic classifier using global statistics. In practice, we build this
rule with estimated P (c)’s and prototypes p(µc,k, Σc,k, nc,k)’s by

f(x|θc,k) = N(x|µc,k, Σc,k),

and

P (c) =
Oc

O
, P (k|c) =

nc,k

Nv

(Nv =
Lc
∑

k=1

nc,k).

Here, O is the total number of samples obtained so far, Oc is the number of
samples of class c among O samples, and Nv is the number of last samples
in each class that were kept in VP algorithm. Here, nc,k is modified to satisfy
∑

k nc,k = Nv by taking into account the degree of overlapping among volume
prototypes. The value of k runs from one to Lc (the number of final prototypes
in class c).

8.2 Bootstrap strategy

Here, we describe the third strategy. Regarding each volume prototype as
a component of a mixture model, we generate samples according to P (c),
P (k|c) and N(x|µc,k, Σc,k) of kth prototype of class c, in this order. That is,
the empirical distribution

∑

c

∑

k|c

P (c)P (k|c)N(x|µc,k, Σc,k)

is used for generating synthetic samples. Based on the latest Nv samples, we
estimate these statistics and generate N ′ samples from this model. The gener-
ated samples seem to be close to the latest samples, but they are distributed
according to the volume prototypes learned from all previous samples. As a re-
sult, they reflect as a whole the knowledge obtained from all previous samples.
In general, the number of volume prototypes is more than that of components
in a usual mixture model, so that the degree of approximation of the underly-
ing distribution is expected to be higher than that of a mixture model. We call
this strategy VP-P (transform from volume prototypes to point prototypes).

15

9 Experiments

9.1 Prototype generation

In this experiment, we used four kinds of 2-dimensional datasets:

(1) Circle: Two clusters. One cluster is concentrated on the origin and it is
surrounded by the other cluster at a distance.

(2) 4-Cross: Four Gaussians that perpendicularly cross at four corners.
(3) 5-Gaussian: Five Gaussians. Some of them are closely located.
(4) 3-Gaussian with noise: Three Gaussians with noise at mixture ratio

1%, 10% and 25%. The noise is generated according to the uniform dis-
tribution and is mixed at random.

In each dataset, 100 000 samples were generated according to a specified dis-
tribution. We found volume prototypes by VP algorithm with M = 100,
N = Nv = 1000 and θ = 0.85, 0.90, 0.95.

The found volume prototypes are shown in Fig. 13. We can see that the volume
prototypes approximate the underlying distribution from inside and they are
on the ridge. For θ = 0.85, the specified number M of initial prototypes is
clearly less than needed.

The robustness against noise is confirmed from Fig. 14. Up to 10% in noise
ratio, the volume prototypes are stably converged into the three modes. In
25%, some volume prototypes exist ouside of the modes. Note that they are
located away from the modes. This means that the other seed prototypes were
all converged to the nodes, but they were not attracted because they were
regarded as the samples from the uniform distribution. One might discard
them by considering the density, that is, the ratio of the number of samples
to the volume. It is also noted that the covariance matrices of the volume
prototypes become larger according to the increase of noise.

9.2 Classification of two-dimensional synthetic data

We have compared volume prototypes with point prototypes in Moon. For
generation of point prototypes, we used “very fast k-means clustering” (VFKM) [17].
We have used 105 samples (5 × 104 in each class) and obtained volume pro-
totypes with N = 500, M = 50, θ = 0.9. Then, using bootstrap strategy
(VP-P), we generated 100 synthetic samples from the obtained volume pro-
totypes. VFKM was applied to the same data set with K = 100 so that 100
cluster centers were obtained. In both methods, the process was carried class

16

by class.

The result is shown in Fig. 15. It is clear that VFKM finds spread and well-
organized cluster centers and that VP-P generates many data in the dense
area. In the sense of approximation, VFKM may be better than VP-P, but
the samples generated by VP-P is robust against outliers. It is noted that
some cluster centers obtained by VFKM are found inside the opposite class.
Thus, for distribution modeling and/or for classification, VP-P may be better
than VFKM. Indeed, when we used the generated samples by VP-P and those
by VKFM, as the training samples, the recognition rates for another testing
data of 200 000 points were 98.24% and 97.93%, respectively, by 1-NN method.
When we use only centers of volume prototypes, we had 93.23%. By the locally-
quadratic classifier with selected volume prototypes, we attained 98.21%.

Since VFKM needs more than linear time in the number of samples, VP with
linear time is faster than it. We have confirmed it in a larger set of samples.
With 107 samples (Fig. 5(d)), VFKM needed about 100 000 seconds in the
same setting, while VP needed 320 seconds. Note that generation of points
using volume prototypes is carried out by the same short time as in the above
experiments.

9.3 Classification of high-dimensional real data

Next, to confirm the validity of VP algorithm for high-dimensional datasets,
we used a multi-featured dataset of 10 handwritten numerals represented in
terms of four different feature sets with D = 47, 64, 76, 240 [34]. In each class,
the number of prototypes was set to M = 10, the first N = 20 samples
were used for ME step and the remaining 180 samples were used for C step.
Algorithm VP was invoked class by class. The radius was r2 = χ2

D(θ) with
θ = 0.9. The latest sample number was Nv = 180 because no more sample
was available. To estimate the classification rate of classifier, we used 10-fold
cross validation.

The result is shown in Table 3 and Fig. 16. For comparison, the recognition
rates by SVM with a RBF kernel and by VFDT (Very Fast Decision Tree) [19],
in which the default parameter values were used, are also shown.

From Fig. 16, we see that 1) 10 prototypes are closely located but they repre-
sent well the spread of the class distribution (Fig. 16(a), (c)), 2) the sizes are a
little smaller than that of the covariance matrix of all the samples of the class
(two classes are chosen for visual interpretability in Fig. 16(b), (d)). Note that
the prototype sizes look larger than their real sizes when they are projected
on a 2–dimensional space, because the volume increases exponentially in di-
mensionality. As a whole, volume prototypes well represent the configuration

17

of dataset. The recognition rates of the locally-quadratic classifier are compa-
rable to those of SVM and are better than those of VFDT. This means that
the volume prototypes preserve the characteristics of the original data.

10 Adaptation to Population/Concept Drift

One of important properties expected for any algorithm that finds prototypes
for streaming data is that it can adapt to the change of underlying distribution
over time. It seems happen in many cases that the underlying distribution
moves when much time passes. So, we expect that our algorithm can adapt to
such a population/concept drift .

It is natural to introduce an oblivion coefficient α ≥ 0 so as to lessen the
importance of a sample obtained one time-step before at ratio e−α. It is equiv-
alent to assume, at current time t, a probability distribution on {1, 2, . . . , t}
:

{e−α(t−1)/β(t), e−α(t−2)/β(t), . . . , 1/β(t)},

where β(t) =
∑t

i=1 e−α(t−i). It is clear that

β(t) =
1 − e−αt

1 − e−α
→







t (α → 0)

1 (α → ∞)
and β(t) →

1

1 − e−α
as t → ∞ for fixed α > 0.

That is, α = 0 means “no forgetting,” and α = ∞ means “no memory” and
uses only one (current) sample essentially. An intermediate value of α means
that new samples are more important than old samples and the essential
number β(t) of samples is finite in the limit.

Let us assume that a volume prototype have included n samples at time
s1, s2, . . . , sn and the current time is t. Let βt =

∑n
i=1 e−α(t−si) and βF

t = β(t).
Then some statistics of this volume prototype are defined as

pt =βt/β
F
t (Probability of the volume prototype) (13)

µt =
1

βt

n
∑

i=1

e−α(t−si)xsi
(Mean) (14)

Σt =
1

βt

n
∑

i=1

e−α(t−si)(xsi
− µt)(xsi

− µt)
′ (Covariance) (15)

It should be noted that pt can be seen as the degree of importance and it
decreases as time t increases as long as n does not increase (no more sample
is included in it).

Fortunately, we can derive the update procedure of above statistics. We show

18

this in two cases: at time t, (A) the case that sample x is added to the volume
prototype as the nth sample for it and (B) the case that x is not added but
n samples were already included. For case (A), we have

βt = e−αβt−1 + 1, (16)

µt =
(βt − 1)µt−1 + x

βt

, (17)

Σt =
(βt − 1)Σt−1 + xx′ + (βt − 1)µt−1µ

′
t−1 − βtµtµ

′
t

βt

. (18)

For case (B), we keep the mean and covariance as µt = µt−1 and Σt = Σt−1

and update only βt by
βt = e−αβt−1. (19)

We also use the initialize value

β0 = β(n0) =
1 − e−αn0

1 − e−α
. (20)

It is clear that equations (16)–(18) are identical with the original equations
(3)–(5) when α = 0, that is, the “remember forever” situation.

The covering criterion is also defined naturally. It suffices to replace the num-
ber n included in a volume prototype with the weighted sum βt of samples
included so far.

When the underlying distribution moves gradually with time, we need usually
to add new prototypes and to delete old prototypes. However, in our algorithm,
we do not need to do these explicitly. This is because volume prototypes can
trace the moving distribution as long as the speed is not so high. In addition,
if a prototype has included no sample after a certain time, then its probability
pt = βt/β

F
t decreases to zero as time goes. That is, old volume prototypes will

be forgotten in nature.

Eventually, we do not have to do both in principle. The only concern is how to
determine the value of oblivion coefficient α. It depends on how fast the dis-
tribution moves and to what degree we consider the latest samples important.
Nevertheless, it could be possible to tune the value by examining how many
latest samples have not been covered by the keeping volume prototypes.

In the case that we want to forcibly remove volume prototypes, we can remove
volume prototypes that have a small value of pt. However, instead of removal,
it is more natural to select important prototypes by a selection procedure
when we need to use the prototypes for some applications. Even if we leave all
volume prototypes, for example, in a classification scheme, a volume prototype
with a small value of pt does not affect much to the construction of classifiers.

19

We conducted an experiment with a synthetic two-dimensional data. Figure 17
shows that the volume prototypes trace to the moving distribution. A single
Gaussian moves and changes its covariance as time goes. In Figure 17, 50 seed
volume prototypes grow and trace the change of the distribution and some of
them are forgotten because of no recent sample included in them.

11 Discussion

In the proposed VP algorithm, it is a little questionable about how to deter-
mine the radius parameter θ of the acceptance region. From Fig. 6 and Fig. 13,
we see that there is no big difference in different values of θ. In Fig. 13, in
the case of θ = 0.85, the specified number M = 100 of initial prototypes was
smaller than needed. On the contrary, with θ = 0.95, volume prototypes seem
to be a little larger than desired. From these observations, we recommend
θ = 0.9 for D = 2. The balance of θ and M for high-dimensional datasets is
necessary to be studied in the next phase.

Although many one-pass algorithms have been proposed for clustering and
mixture models, but most of them need higher cost than VP algorithm in each
round of updating. Indeed, although we do not describe the algorithms here,
we have confirmed that EM algorithm using volume prototypes is fairly faster
than incremental EM algorithm [9] and k-means using volume prototypes
is comparable to SKM (scalable k-means) [16]. These results will be shown
in another paper with the algorithms. One advantage of volume prototype
approaches is that classification, clustering and mixture modelling can be made
separately from the same set of volume prototypes, after processing a massive
data.

Difference between volume prototypes and point prototypes is summarized
as follows. 1) A set of volume prototypes gives a higher-compressed repre-
sentation of data compared with a set of point prototypes in case that the
underlying distribution is of a small number of modes, but the latter is ad-
vantageous to the former for finding a uniform representation of those data,
2) a set of volume prototypes gives an inner approximation of distribution
and thus is robust against outliers, while a set of point prototypes gives an
entire approximation and is affected by outliers, 3) the number of point pro-
totypes is not so easy to be determined, but the number of volume prototypes
is semi-automatically determined, and 4) the calculation cost of VP algorithm
is cheaper than that of many clustering and vector quantization algorithms
for data streams, mainly because no iteration procedure is included in VP
algorithm.

It is noted that the calculation of Mahalanobis distance in VP algorithm re-

20

quires a matrix inversion in each round but we can exploit a sequential up-
dating formula of the inverse matrix with only one inversion operation at the
beginning (For example, see Appendix C in [35]).

12 Conclusion

In this paper, we have proposed volume prototypes for data compression.
Volume prototypes are more informative than point prototypes because the
former holds the second degree of statistics in addition to the first degree
of statistics. We proposed a one-pass algorithm to have such prototypes and
showed a locally-quadratic classifier using them. Volume prototypes give an
inner approximation of the underlying distribution. Therefore, a set of volume
prototypes are robust against outliers.

We have discussed the differences between this approach using the volume pro-
totypes and the other approaches including point prototypes, mixture models
and clustering. As a result, it was confirmed that such a volume-prototype
approach is promising in data compression for a massive dataset or a data
stream because of its high compression ability, the robustness and its wide
applicability for classification and clustering.

For adapting to a gradual change in distribution (concept drift), we also have
shown another version of the algorithm, in which volume prototypes with
an oblivion coefficient trace the moving distribution as long as the amount of
change is not so large. We need to improve the algorithm to cope with a sudden
change in distribution (concept shift). Automatic adaptation to the speed of
drift is also important. We are planning to write another paper for discussing
on this isssue. In the paper, we will also consider some ways to realize semi-
supervised learning [36] by volume prototypes, in which a limited number of
labeled samples will be effectively used for labelling volume prototypes instead
of all the remaining samples.

Acknowledgment

The authors would like to thank the anonymous reviewers for their critical
comments to improve the quality of this paper.

21

References

[1] P.E. Hart (1968), The condensed nearest neighbor rule, IEEE Trans.
Information Theory, IT-14(3):515–516.

[2] G.W. Gates (1972), The reduced nearest neighbor rule, IEEE Trans.
Information Theory, IT-18(3):431–433.

[3] B.V. Dasarathy, J.S. Sánchez and S. Townsend (2000), Nearest Neighbour
Editing and Condensing Tools – Synergy Exploitation. Pattern Analysis and
Applications, 3(1):19–30.

[4] P. Mitra, C. A. Murthy, Sankar K. P (2000) Data Condensation in Large
Databases by Incremental Learning with Support Vector Machines. Proceedings
of the 15th International Conference on Pattern Recognition :708–711.

[5] S-W. Kim, B. J. Oommen (2004) Enhancing Prototype Reduction Schemes with
Recursion: A Method Applicable for “Large” Data Sets. IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics 34(3):1384–1397.

[6] J. Beringer and E. Hüllermeier (2007): Efficient instance-based learning on data
streams. Intelligent Data Analysis 11(6), 627–650.

[7] T. Zhang, R. Ramakrishnan, M. Livny (1999) Fast Density Estimation Using
CF-kernel for Very Large Databases. Proceedings of the 5th International
Conference on Knowledge Discovery and Data Mining :312–316.

[8] O.Arandjelović, R. Cipolla (2005) Incremental Learning of Temporally-
Coherent Gaussian Mixture Models. Proceedings of British Machine Vision
Conference.

[9] R. M. Neal, G. E. Hinton (1998) A view of the EM algorithm that justifies
incremental, sparse, and other variants. Learning in Graphical Models :355–
371.

[10] B. Thiesson, C. Meek, D. Heckerman (2001) Accelerating EM for Large
Databases. Machine Learning 45:279–299.

[11] M. Charikar, L. O’Callaghan, R. Panigrahy (2003) Better Streaming Algorithms
for Clustering Problems. Proceedings of the 35th Annual ACM Symposium on
the Theory of Computing :30–39.

[12] P.A. Vijaya, M.N. Murty and D.K. Subramanian (2006), Efficient median based
clustering and classification techniques for protein sequences. Pattern Analysis
and Applications, 9(2-3):243–255.

[13] P. S. Bradley, U. Fayyad, C. Reina (1998) Scaling Clustering Algorithms to
Large Databases. Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining :9–15.

[14] T. Zhang, R. Ramakrishnan, M. Livny (1996) BIRCH: An Efficient Data
Clustering Method for Very Large Databases. Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Databases Systems.

22

[15] A. Goswami, R. Jin, G. Agrawal (2004) Fast and Exact Out-of-Core K-Means
Clustering. Proceedings of the 4th IEEE International Conference on Data
Mining:83–90.

[16] F. Farnstrom, J. Lewis and C. Elkan(2000) Scalability for Clustering Algorithms
Revisited, ACM SIGKDD Explorations, 2(1):51–57.

[17] P. Domingos, G. Hulten (2001) A General Method for Scaling Up Machine
Learning Algorithms and its Application to Clustering. Proceedings of the 18th
International Conference on Machine Learning :106–113.

[18] P. Domingos, G. Hulten (2002) Learning from Infinite Data in Finite Time.
Advances in Neural Information Processing Systems 14 :673–680.

[19] G. Hulten and P. Domingos (2003) A toolkit for mining high-speed time-
changing data streams. http://www.cs.washington.edu/dm/vfml.

[20] W. N. Street, Y. Kim (2001) A Streaming Ensemble Algorithm(SEA) for
Large-Scale Classification. The ACM International Conference on Knowledge
Discovery and Data Mining.

[21] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu (2004) On
Demand Classification of Data Streams. Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining :503–508.

[22] U. Kaymak and M. Setnes (2002), Fuzzy clustering with volume prototypes and
adaptive cluster merging. IEEE Transactions on Fuzzy Systems, 10(6):705–712.

[23] X.L.Xie and G. Beni (1991), A validity measure for fuzzy clustering, IEEE
Transactions on Pattern Anal. Machine Intell., 13:841–847.

[24] A. Keller and F. Klawonn (1999), Clustering with volume adaptation for rule
learning, Proceedings of 7th Cong. Intelligent Techniques Soft Computing,
Aachen.

[25] J. Bezdek, R. Hathaway (1988) Recent convergence results for the fuzzy c-means
clustering algorithms. Journal of Classification 5(2):237–247.

[26] S. Nascimento, B. Mirkin, F. Moura-Pires (2000) A Fuzzy Clustering Model
of Data and Fuzzy c-Means. The 9th IEEE International Conference on Fuzzy
Systems, :302–307.

[27] T. Kohonen (1989): Self-Organization and Associative Memory (3rd ed.),
Springer, Berlin.

[28] E. Lughofer (2008): Extensions of Vector Quantization for Incremental
Clustering. Pattern Recognition 41(3), 995–1011.

[29] D. M. J. Tax and R. P. W. Duin (2004): Support Vector Data Description,
Machine Learning, 54(1), 45–66.

[30] B. Schölkopf, et al. (2001): Estimating the Support of a High Dimensional
Distribution. Nural Computation, 13(7), 1443–1471.

23

[31] K. Fukunaga (1990), Introduction to statistical pattern recognition (2nd
edition), Academic Press.

[32] S. Cost and S. Salzberg (1993): A Weihted Nearest Neighbor Algorithm for
Learning with Symbolic Features. Machine Learning 10, 57–78.

[33] S. A. Dudani (1976): The distance-weighted k-nearest-neighbor rule. IEEE
Trans. Syst. Man Cybern., 6, 325–327.

[34] Asuncion, A., Newman, D.: UCI machine learning repository (2007)

[35] C. M. Bishop (2006), Pattern Recognition and Machine Learning, Springer.

[36] Xiaojin Zhu (2006), Semi-Supervised Learning Literature Survey. Technical
report, Computer Science Department University of Wisconsin, Madison.

24

(a) (b)

Fig. 1. An example of (a) point prototypes (•) and (b) volume prototypes (ellipsoids)
for the same samples.

Fig. 2. An example of the acceptance region for prototype updating. Only samples
falling into the acceptance region are used for updating.

• • • • • • •
x1 x2 · · · xN xN+1 · · ·

� -� -
Mode estimation step

(Many iterations)

Convergence step

(One-pass)

Fig. 3. Learning scheme

25

Inputs:(Unlimited samples) x1, x2, . . . , xN , . . .
N is the number of samples for ME Step.
M is the number of initial prototypes.
Nv is the number of latest samples to be kept.
θ is the value to determine the acceptance radius r = χ2

D(θ).
Outputs: L(≤ M) volume prototypes.

Procedure for obtaining volume prototypes
ME step:

Repeat M times the following for the first N samples.
1. Choose a random permutation σ to reorder

the samples to xσ1 , xσ2 , . . . , xσN
.

2. Initialize a prototype by (6)–(8).
3. Use xσ2 , . . . , xσN

in order to update the initial prototype by (3)–(5)
(using only the samples in the acceptance region (1).

Select greedily some prototypes in a set covering criterion.
(We have L′(≤ M ≤ N !) seed prototypes at this stage.)

C step:
For each sample xi(i = N + 1, N + 2, . . .) do the following.

1. Update the seed prototypes in which xi falls by (3)–(5).
2. Keep the latest Nv samples xi−Nv+1, xi−Nv+2, . . . , xi.

Exploit time:
From L′ prototypes, select greedily L(≤ L′) prototypes until no improvement

is found for covering Nv samples.
Count the number of samples falling in each prototype in Nv samples.

Here a sample is divided by k when k prototypes share it.

Fig. 4. Volume Prototype Algorithm (VP)

26

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+ +

+

+

++

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

(a) Initial prototypes with 1000
samples

(b) Selected seed prototypes

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

(c) Selected prototypes (105 samples) (d) Selected prototypes (107 samples)

Fig. 5. Generation process of volume prototypes (N = 500,M = 50, θ = 0.9 in
each class). The solid lines show the boundaries of prototypes and the dotted lines
show their acceptance regions. (a) 100 (50/class) initial prototypes with a set of first
1, 000(= 500/class × 2 class) samples. (b) 70 (37 and 33 for two classes) seed pro-
totypes after prototype selection with the decision boundary by a locally-quadratic
classifier. (c) 34 (18 and 16 for two classes) volume prototypes (after prototype se-
lection) generated 100,000 samples (50,000/class) with the decision boundary. (d)
selected volume prototypes with another set of 107 samples (5 × 106/class)

27

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) θ = 0.8 (b) θ = 0.85

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(c) θ = 0.95

Fig. 6. Final volume prototypes (N = 500,M = 50 in each class). Only selected
final prototypes with 105 samples are shown.

28

Fig. 7. Movement of a prototype center

0 20 40 60 80 100

0.
9

1.
0

1.
1

1.
2

1.
3

Dimension D

χ2 D
(0

.9
)

(D
+

2)

Fig. 8. χ2
D(0.9)/(D + 2) vs. dimensions

29

θ = 0.85 θ = 0.90 θ = 0.95

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples

1 D||µ
−

µ* ||2

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples
1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples
1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples

1 Dtr
Σ

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples
1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

Samples
1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5

1e+02 5e+02 5e+03 5e+04

0.
0

0.
5

1.
0

1.
5 d= 2

d= 4
d= 8
d= 16
d= 32
d= 64

Fig. 9. The behavior of prototypes for f(x) = N(x;0, ID). The distance ‖µt‖
2/D

(the top row) and trΣt/D (the bottom row) are plotted for increasing number of
sample in log-scale in D = 2, 4, 8, 16, 32, 64. From left to right, θ = 0.85, 0.90, 0.95.

Fig. 10. Acceptance region of prototype pt.

30

Fig. 11. Update scheme of covariance matrix.

Quadratic Mixture Bayes Locally-quadratic Nearest neighbor

Fig. 12. Comparison of classifiers (locally-quadratic classifier is the proposed one).
From left to right, they become more complex in terms of the number of components.

31

Dataset Radius parameter θ (r = χ2
D(θ))

0.85 0.90 0.95

Circle

++

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

4-Cross

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

5-Gaussian
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ ++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

++ +

+

+
+

+++

+ +

+

+

Fig. 13. Volume prototypes in three datasets with 105 samples. In each dataset, 100
initial volume prototypes are generated and some of lastly generated volume proto-
types are selected in a set-cover criterion (M = 100,N = 1000, θ = 0.85, 0.90, 0.95).

Dataset Noise ratio

1% 10% 25%

3-Gaussian

Fig. 14. Volume prototypes in noise environment. In 105 samples, noise was mixed
randomly at ratio of 1%, 10% and 25%. The parameters of VP algorithm are
M = 100, N = 1000, θ = 0.90.

32

(a) Volume prototypes (b) Centers of volume prototypes

(c) VP-P (d) VFKM

Fig. 15. Comparison between VFKM and VP-P. In (c) 100 synthetic data are gener-
ated from volume prototypes by VP-P and; in (d) 100 cluster centers were obtained
by VFKM. Small dots are latest 1000 samples in each class.

33

(a) mfeat-zer (10 classes) (b) mfeat-zer (2 classes)

(c) mfeat-pix (10 classes) (d) mfeat-pix (2 classes)

Fig. 16. Volume prototypes in each dataset (10 classes). The number of volume
prototypes is 10 in each class. The radius is r2 = χ2

D(0.9). The groups of various
marks are the centers of prototypes and the group of ellipsoids with a same color
is the volume prototypes of the class. The covariance matrix of data points is also
shown as a black bold ellipsoid in (b) and (d) for chosen two classes.

34

t = 1000 t = 4000

t = 7000 t = 10000

Fig. 17. Volume prototypes with an oblivion coefficient α. The underlying distri-
bution is a single Gaussian in which the mean moves and the covariance changes
gradually as time goes. The probability (importance) of a prototype is shown by
the grey level of the corresponding ellipsoid (white: low and black: high). The num-
ber of prototypes is 50. The used parameter values are α = 0.001, N = 1000,
Ntotal = 10000, r = 0.9. Thus β(Ntotal) ≃ 1000. No selection of prototypes is per-
formed.

35

Table 1
Some differences among volume prototypes, clustering and mixture models.

Volume prototypes Clustering Mixture models

Goal
To condense (large)
data appropriately

To analyze relative
locations and distri-
butions of clusters

To estimate mecha-
nisms of data gener-
ation

Definition
Local prototypes
with a volume

Partition of data
without overlapping

Sum of component
distributions to esti-
mate original distri-
butions

Example

Table 2
Equilibrium value α∗ of α = 2γ

(

D
2 + 1,

αr2
θ

2

)

/Dγ
(

D
2 ,

αr2
θ

2

)

.

θ D

2 4 8 16 32 64

0.85 0.000 a 0.367 0.628 0.769 0.850 0.901

0.90 0.346 0.634 0.781 0.862 0.911 0.940

0.95 0.715 0.835 0.899 0.936 0.958 0.972

a For θ < 0.86 and D = 2, the value becomes zero.

Table 3
Recognition rates of the locally-quadratic classifier using volume prototypes gen-
erated by VP (θ = 0.90), the support vector machine with a RBF kernel, and
VFDT in each feature set of “mfeat” dataset. The figures in parentheses show the
dimensionality.

Classifier Recognition rate (%)

mfeat-zer mfeat-kar mfeat-fou mfeat-pix

(47) (64) (76) (240)

Locally-Quad. 83.5 82.5 97.3 97.9

SVM with RBF 80.9 82.0 97.5 97.9

VFDT — a 82.5 76.7 88.8

a Appopriate result was not obtained.

36

