
Pattern Recognition ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m

Pleas
Reco
journal homepage: www.elsevier.com/locate/pr
Virtual illumination grid for correction of uncontrolled illumination
in facial images
B.J. Boom �, L.J. Spreeuwers, R.N.J. Veldhuis

University of Twente, EEMSC, Signals & Systems, P.O. Box 217, 7500 AE, Enschede, The Netherlands
a r t i c l e i n f o

Keywords:

Virtual illumination grid

Face recognition

Model-based face illumination correction
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.07.022

esponding author. Tel.: +31 534892897; fax:

ail address: b.j.boom@ewi.utwente.nl (B.J. Boo

e cite this article as: B.J. Boom, et al.,
gnition (2010), doi:10.1016/j.patcog
a b s t r a c t

Face recognition under uncontrolled illumination conditions is still considered an unsolved problem. In

order to correct for these illumination conditions, we propose a virtual illumination grid (VIG) approach

to model the unknown illumination conditions. Furthermore, we use coupled subspace models of both

the facial surface and albedo to estimate the face shape. In order to obtain a representation of the face

under frontal illumination, we relight the estimated face shape. We show that the frontal illuminated

facial images achieve better performance in face recognition. We have performed the challenging

Experiment 4 of the FRGCv2 database, which compares uncontrolled probe images to controlled gallery

images. Our illumination correction method results in considerably better recognition rates for a

number of well-known face recognition methods. By fusing our global illumination correction method

with a local illumination correction method, further improvements are achieved.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major problems of face recognition in uncontrolled
conditions is the variation caused by illumination. Our contribu-
tion is an illumination correction method that is capable of
handling multiple light sources. The purpose is to correct for
multiple light sources in a single facial image. Correcting for
illumination effects in images taken under uncontrolled illumina-
tion conditions is more challenging than the standard experi-
ments for face illumination, which address removing illumination
from facial images recorded in laboratory conditions (Yale B
database, CMU-PIE database), illuminated with a single light
source. In order to correct for uncontrolled illumination condi-
tions, we try to reconstruct the illumination conditions. The
requirements of the fontal illuminated facial image are that it
removes the illumination variations without introducing artifacts,
while preserving the identity information for recognition. The
illumination correction method is used as an independent
preprocessing method. The advantage is that the generated
frontal illuminated facial image can be the input of various face
recognition methods and allows us to use a single gallery image in
face recognition.

Several methods have been proposed to correct for illumina-
tion variations in facial images. We will categorize them based on
two criteria. The first criterion is the complexity of the reflectance
model. We discriminate between reflectance models that use a
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weak assumption about illumination, the Lambertian reflectance
model, a reflectance function based on the Lambertian assump-
tion (for example Spherical Harmonics) and advanced reflectance
models (Phong, Torrance-Sparrow). The second criterion is the
complexity of the face model. There are methods, which use no
model of the face, other methods make models of the appearance,
some use an implicit model of the 3D surface and texture, while
other methods have applied an explicit model of the 3D surface
and texture. In Fig. 1, we categorize illumination correction
methods based on these criteria and divide them into four groups.

The first group (bottom-left oval of Fig. 1) contains methods
that do not need a face model and do not assume an explicit
reflectance model. These methods usually perform preprocessing
based on the local regions, for example Histogram Equalization
[1] or (Simplified) Local Binary Patterns [2,3]. Other methods like
Gross et al. [4] and Tan et al. [5] use the local region around the
pixel to perform illumination correction based on some properties
of the reflectance. The Self Quotient Image [6] uses the local
region for correction based on the Lambertian reflectance model
without the need of a model of the face.

There are also methods which learn the behaviour of
reflectance and so become invariant for illumination in the face.
These methods use only the appearance learned for a bootstrap
database with different labeled illumination conditions. Note that
they do not assume a reflectance model (center-left oval of Fig. 1).
Tensorfaces [7] can be trained to handle multiple variations like
expression, illumination and pose using multidimensional
subspace models. This is extended in [8] with a model which
also include 3D shape parameters, but the illumination is still
modelled using subspace models. In [9], a subspace model is used
r correction of uncontrolled illumination in facial images, Pattern
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Fig. 1. The categorization (in face and reflectance models) of the illumination correction methods separating four major groups based on two criteria.
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to compute Intrinsic Images, separating the image in reflectance
and illuminance. Subspace models that learn the behaviour of the
reflectance on faces also allow correction for this reflectance.
However, these methods usually depend heavily on a bootstrap
database with varying illumination conditions. This makes it
difficult to predict whether these methods are robust to unseen
conditions, which is mostly the case with uncontrolled conditions.

In face illumination correction, many correction methods use
both assumptions on the illumination reflectance as well as
implicitly taking into account the 3D surface and texture, usually
by estimation of surface normals and albedo (center-right oval of
Fig. 1). An example is the Quotient Image [10] which estimates
illumination using the Lambertian reflectance model. This method
computes a quotient image based on the assumption that faces
have a similar surface. An estimate of the surface is then obtained
from a bootstrap set of faces. In [11], an illumination cone can be
determined from three images illuminated with independent
light sources. Sim et al. [12] proposed a method based on the
Lambertian reflectance model which corrects for illumination in a
single facial image. This method uses a large bootstrap database
containing many illumination variations in order to correct for
these conditions. Spherical Harmonics are proposed in both
[13,14] which give an approximation of a 9D linear subspace
under all possible Lambertian illuminations. Zhang et al. [15,16]
proposed a method to obtain the Spherical Harmonics for a single
image illuminated under unknown illumination by using a
bootstrap database to model shadows and reflections. In [17],
a configuration of nine points of light (9PL) is determined to
construct a linear subspace for face recognition. In face recogni-
tion, nine gallery images illuminated or rendered under
predefined conditions are necessary to perform face recognition,
which requires specialized data acquisition of the gallery images.
Zhou et al. [18,19] span a linear subspace using object-specific
albedo-shape matrices. They find an illumination free identity
vector by optimizing both identity vector and illumination
conditions to best resemble the input image. This gives them an
illumination free identity vector instead of an estimate of the 3D
Please cite this article as: B.J. Boom, et al., Virtual illumination grid fo
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surface and albedo, from which we render the frontal illuminated
facial image. Because Zhou et al.’s method is the closest to ours,
we have chosen to point out other differences with Zhou et al.’s
method throughout the text.

The last group in Fig. 1 (top-right oval) differs from other
methods because it uses 3D face models. The 3D morphable models
[20] are among the first to use the 3D information of faces, where
PCA models are used for both the 3D shape and texture. Using the
Phong reflectance model for illumination, a parameter optimization
method is used to render a facial image which is close to the input
image. In [21], Smith et al. propose a statistical model for normal
maps to accurately estimate the surface and in [22] the same
authors use a subspace model of the depth map as a geometrical
constraint. In [23], we use a shape model in combination with the
Lambertian reflectance model to correct for illumination of a single
light source. In [24], we have improved this method by modelling
both ambient and diffuse illumination and estimated the depth
maps. We observe that most illumination correction methods have
difficulties in modelling multiple light sources, especially when they
cause some reflectance in shadow areas.

This paper is organized as follows: In Section 2, we describe
the illumination correction method that is able to deal with
multiple light sources. We first introduce the necessary reflec-
tance and face models which then allows us to calculate a
reconstruction of the face shape iteratively. In Section 3, we
describe experiments and the results and fuse our global
illumination correction with a local illumination correction
method. We will discuss the results obtained with our method
in Section 4 and finally provide conclusions in Section 5.
2. Method

2.1. Reflectance model

In order to correct for the illumination in a single facial image,
we use a reflectance model for the behaviour of illumination.
r correction of uncontrolled illumination in facial images, Pattern
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Because of our focus on uncontrolled illumination conditions, we
assume that faces are illuminated by multiple light sources. We
use the Lambertian reflectance model, which gives a good
approximation of the reflectance behaviour on the surface of
faces [11]. The image intensity bAR at a certain position p¼{x,y}
in the image can be described by the following equation:

bðpÞ ¼ rðpÞ
X

l

maxð0,nðpÞT slilÞ ð1Þ

where the face shape hðpÞ ¼ rðpÞnðpÞT consists of the surface
normals nAR3, the albedo of the surface given by rAR and the
max operation allows us to model attached shadows. A normal-
ized vector sAR3 defines the direction of the illumination. The
intensity of the light is given by iAR. Instead of finding multiple
light directions in a continuous domain, we use L discrete
directions, assuming that a light source in continuous direction
can be created using multiple light sources in discrete directions.
The Lambertian reflectance model in Eq. (1) in this form cannot
model cast shadows on the face surface. There are two kinds of
shadows on faces. The first kind is called ‘‘attached shadows’’. In
this case, the Lambertian reflectance model does not hold because
the normal is not directly facing the light source. This results in a
negative image intensity, which can be easily detected and
corrected by replacing the negative value by zero. The second
kind of shadow is due to the geometry of the face that blocks the
light source, these are called ‘‘cast shadows’’. These shadows are
harder to calculate because we need to perform ray tracing.
Shadows can be seen as hard binary decisions. This definition
holds with the exception of areas, which contain the transition
between light and shadow areas. We propose to model shadows
in the Lambertian reflectance model using a weight el(p), which is
linked to the light direction. This weight is in fact the expectation
elA ½0,1� that a shadow occurs at position p given a certain light
direction l:

b̂ðpÞ ¼ rðpÞnðpÞT
X

l

slilelðpÞ ð2Þ

The illumination conditions for a certain position p can then be
described by vðpÞ ¼

P
lslilelðpÞ. In case of an attached shadow,

el¼0, thus making the max operation in Eq. (1) unnecessary. This
user-independent expectation can be used as weight, giving
smooth values in the areas which contain the transition between
light and shadow, while we have a hard binary decision in area
that certainly contain shadows. This expectation is determined
from a training set of multiple surfaces, where we calculate for a
single surface a binary decision that a shadow occurs at position p
gives a light direction l using a ray tracer. The expectation is
obtained by taking the mean over all the binary values. We
determine the expectation at all positions p and for all L light
directions in the grid. Apart from the expectation, we also
determine the variations s2

l ðpÞ at every position, which we use
for the albedo estimate, described in Section 2.7.

The goal of our correction method is to find the illumination
conditions v(p) and the face shape h(p) that best explain our input
image b(p). This method minimizes the distance between the
input image b(p) and an estimate based on the models b̂ðpÞ, in our
case obtained from Eq. (2). Note that multiple combinations of
light conditions and face shapes can result in the same image
based on Eq. (2). For this reason, it is necessary to use domain
specific knowledge to constrain the shape from shading problem.
This domain specific knowledge is enforced using subspace
models of the face shape (Section 2.2). The subspace models also
allow us to estimate the face shape (surface and albedo). By
obtaining the face shape, we can easily compute facial images
under frontal illumination by replacing the v(p) for vfrontal(p).
Please cite this article as: B.J. Boom, et al., Virtual illumination grid fo
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Of course, it is also possible for us to illuminate the face with
other illumination conditions using our virtual illumination grid.

2.2. Face shape and albedo models

The reflectance of the light depends on the object that is
illuminated. Faces are difficult to model, but multiple techniques
have been proposed in literature to achieve this. Zhou et al. [19]
use a linear subspace of object-specific albedo-shape matrices as
illumination free term containing both albedo and surface
normals. In VIG, we have chosen to split the illumination free
terms in order to create two separate linear subspaces. This has
the advantage of allowing us to perform an estimate of the surface
(Section 2.6). For the subspace models, we use a vectorized
representation of albedo q and surface z (depth map of the face),
instead of a notation for every position p in an image. From a set
of surfaces {zm}m¼1

M , we obtain the mean surface z and a
covariance matrix Sz. This allows us to compute a subspace by
solving the eigenvalue problem, obtaining the eigenvalues Lz and
the eigenvectors Fz ¼ ½/1, . . . ,/N�

T of the covariance matrix Sz:

ẑ ¼ zþFzuz ð3Þ

Given that we are able to obtain the variations of the surface uz,
we can estimate a surface ẑ using Eq. (3). A similar PCA model is
obtained for the albedo. In order to take into account the
correlation between depth maps and albedo, which is probably
present, we combine both PCA models, creating the following
concatenated vector:

yt ¼
Wzuz

uq

 !
ð4Þ

where Wz is a diagonal weighting matrix, allowing difference in
weight between depth maps and albedo. This method of
combining both PCA models is similar to the approach used in
the Active Appearance Model [25]. Because albedo and depth
maps cannot be compared directly, we measure the effects in
appearance of changing uz and uc using the RMS error. This gives
us a relative weight between albedo and depth maps changes. We
apply PCA to the vector yt, giving us a model which contains both
depth maps and albedo:

yt ¼Ftut ð5Þ

In this case, Ft ¼ ½/1, . . . ,/K �
T are the eigenvectors and yt is

already zero mean allowing us to control the depth map and
shape in the following way:

ẑ ¼ zþFzW�1
z Ftzut ð6Þ

q̂ ¼ qþFqFtqut ð7Þ

where

Ft ¼
Ftz

Ftq

 !
ð8Þ

Several papers already have used separate PCA models for texture
and shape in order to correct for illumination [20]. However, they
usually do not take into account the correlation between the
depth map and the albedo. Using this correlation has the
advantage of prohibiting improbable combinations of depth maps
and albedo to explain appearances in images.

2.3. Illumination correction method

Given a single image, we want to estimate the face shape and
the illumination conditions, using both the Lambertian reflec-
tance model (Eq. (2)) and the PCA models of surface and albedo
r correction of uncontrolled illumination in facial images, Pattern
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(Eqs. (6) and (7)). Of course, we can perform an exhaustive search,
as in the 3D morphable models where optimized code can
perform such an operation with 4.5 min [26]. Instead, we chose an
iterative scheme, to first estimate the illumination conditions and
then find the model parameters of the depth map and surface.
Using the found depth map and albedo, we can then improve the
accuracy of the illumination conditions, which in turn improves
the depth map and albedo. We repeat these steps several times
(average of 5 iterations). Because the most time consuming
computations are linear, this method can be computed much
faster than the 3D morphable model. The pseudo-code of our
correction method is given below:
�

P
R

Repeat
3 Estimate illumination conditions (Section 2.4)
3 Estimate crude face shape (Section 2.5)
3 Estimate the surface parameters (Section 2.6)
3 Estimate the albedo parameters (Section 2.7)
lea
eco
�

Until convergence (based on evaluation of the obtained
illumination conditions, surface and albedo (Section 2.8))

�
 Refinement of the albedo (Section 2.9)

We will discuss the different components in the following
sections.

2.4. Estimation of the illumination conditions

Given the image, we want to estimate the illumination
conditions in the image. Because we assume a grid of discrete
light directions, we have to determine the intensity of the light for
every point in the grid in order to calculate the global illumination
conditions. To obtain the illumination conditions, we use an
estimate of the face shape ~hðpÞ. In the first iteration, we use the
mean face shape hðpÞ to obtain the light intensities, while in the
next iterations, we use the estimated face shape from the previous
iteration. The light intensities are calculated as follows:

i¼ arg min
i

X
p

XL

l ¼ 0

~hðpÞT slilelðpÞ�bðpÞ

�����
�����

2

where ilZ0 ð9Þ

This can be solved using a constrained linear least square
solver where the light intensity cannot be negative. Because
Eq. (9) is an overcomplete system, even using a relatively poor
estimate of the face shape ~h, still gives acceptable results. The
accuracy of the illumination conditions depends also on the
configuration of the light sources in the grid. We have experi-
mented with two grids by varying the azimuth and elevation
angles by 101 or 201 from �801 to 801. We have observed that the
results of both grids are very similar, while the computations with
a grid of 101 take much longer. For this reason, we decide to use
the grid of 201 for all experiments. In [17], a configuration of nine
points of light (9PL) at predefined locations is used to obtain an
illumination free representations. In VIG, however, we want to
obtain a reconstruction of the surface and the albedo, for which
the large illumination grid is necessary to accurately model cast
shadows. With the 9PL methods, accurate modelling of cast
shadows is not possible, which will result in artifacts in the
reconstruction.

2.5. Estimation of the crude face shape

Given the image and the illumination conditions, the goal is to
obtain the face shape. A crude estimate of the face shape is
necessary in order to improve the face shape using the linear
se cite this article as: B.J. Boom, et al., Virtual illumination grid fo
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subspace models. To obtain the crude estimate, we use the
following two assumptions. The first assumption is that the
Lambertian reflectance model (Eq. (11)) holds. The second
assumption is that the face shape should be similar to the mean
face shape. This can be measured by taking a distance between
the face shape h(p) and the mean face shape hðpÞ. In our case, we
have taken the Mahalanobis distance between two vectors, where
ShðpÞ is the covariance matrix of the face shape at location p obtain
from a training set:

ĥðpÞ ¼ arg min
hðpÞ
ðhðpÞ�hðpÞÞTS�1

hðpÞðhðpÞ�hðpÞÞ ð10Þ

where bðpÞ ¼ hðpÞT vðpÞ ð11Þ

We can minimize the Mahalanobis distance (Eq. (10)) with the
Lambertian reflectance model (Eq. (11)) as a constraint using
Lagrange multipliers. This gives us a crude estimate of face shape
ĥ, which we will improve in the following sections.

2.6. Estimation of the surface

Given an estimate of the face shape ĥðpÞ, we further improve
this estimate by applying geometrical constrains. By calculating a
depth map from the crudely estimated face shape, we can
automatically enforce the geometrical constrains. The PCA model
allows us to introduce domain specific information, which
ensures convergence of this shape from shading problem. In the
method of Zhou et al. [19], integrability and symmetry constrains
are used in generalized photometric stereo to recover the shape
and albedo, using multiple face images under different illumina-
tion conditions. For Zhou et al. to become invariant to illumina-
tion in a single image, no geometrical constraints are used, while
our method allows us to estimate the surface and thus enforce the
integrability constraints even for a single image. We know that
the gradient of the surface in x and y direction is equal to
rxzðpÞ ¼ hxðpÞ=hzðpÞ ¼ hxzðpÞ and ryzðpÞ ¼ hyðpÞ=hxðpÞ ¼ hyzðpÞ.
Instead of calculating the depth map directly, we estimate the
variations uz, using the following equation:

uz ¼ arg min
uz

JrxzþrxFuz�ĥxzJ
2

þJryzþryFuz�ĥyzJ
2

ð12Þ

A similar procedure to obtain the face surface is performed in
[22] to find the variations from the surface model. This can be
solved using a linear least square solver. The final depth map can
be computed using Eq. (3). In our case, we combine the depth map
and albedo models, to calculate the final depth map taking into
account the correlation between the albedo, see Section 2.2. A
practical problem in calculating the depth maps is that vectors
which are almost perpendicular to the viewer direction some-
times cause large spikes. In order to deal with this problem, we
remove these locations. In this case, we are still able to calculate
the variations of the surface because PCA can also be applied on
an incomplete set of locations.

2.7. Estimation of the albedo

In the previous section, we estimate the illumination condi-
tions and the surface from which we can obtain the surface
normals n(p). The only remaining unknown in Eq. (2) is the
albedo q. To calculate the albedo, we can solve Eq. (2) for every
pixel value, but we observe that there are sometimes erroneous
effects in the albedo caused by the user independent shadow
model el(p), because the shadow mapping is not precise. To
overcome this problem, we use Bayes theorem which allows us to
r correction of uncontrolled illumination in facial images, Pattern
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calculate a MAP estimate for the albedo. The MAP estimate of the
albedo at a certain location is defined as follows:

PðrðpÞjbðpÞÞ ¼ PðbðpÞjrðpÞÞPðrðpÞÞ
PðbðpÞÞ

ð13Þ

In order to obtain the albedo term, we can maximize the following
equation:

rnoshadowðpÞ ¼ argmax
rðpÞ

PðbðpÞjrðpÞÞPðrðpÞÞ ð14Þ

¼ argmax
rðpÞ
N rðpÞ� bðpÞ

mrðpÞ
,srðpÞ

� �
�N ðmrðpÞ,srðpÞÞ

ð15Þ

In Eq. (15), we define a mean reflection term mrðpÞ ¼P
lnðpÞ

T slilelðpÞ and the variations of the reflection term
s2

r ðpÞ ¼
P

lnðpÞ
T slils2

l ðpÞ (see Section 2.1 for s2
l ) and assume that

the shadow maps are Gaussian distributed. Using the training set
from which we calculate the PCA models, we can also easily
determine the mean albedo mrðpÞ and standard deviation of the
albedo srðpÞ at certain locations necessary in Eq. (15). By taking
the derivative of the log probabilities, we find a shadow free
albedo term rnoshadowðpÞ. From this shadow free albedo qnoshadow,
we computed the variations uq using a linear least square solver
giving us all the subspace model parameters, see Section 2.2.

2.8. Evaluation of the obtained illumination conditions, surface and

albedo

In Sections 2.6 and 2.7, we compute both the variations of the
surface and albedo. With these variations, we can determine the
variation of the combined models, see Eq. (5) and give the
estimates for the surface and albedo using Eqs. (6) and (7). Given
the estimated albedo and surface, together with the illumination
conditions found in Section 2.4, we can reconstruct an image b̂
which should be similar to the original image. This can be
measured using the sum of the square differences between the
pixel values. It is also interesting to monitor the variations from
the PCA model, which shows if overfitting occurs at certain light
directions. For this reason, we use an evaluation measure, which
is similar to the measure used in [20]:

E¼
1

sb
Jb�b̂J2

þ
XK

k ¼ 1

u2
t ðkÞ

ltðkÞ
ð16Þ

In this case, sb controls the relative weight of the distance
between the original and reconstructed image, which is the most
important factor to minimize, lt are the eigenvalues of the depth
map and albedo model, see Eq. (5). This evaluation measure
allows us to determine when the iterative estimation procedure
convergence.

2.9. Refinement of the albedo

The albedo rnoshadowðpÞ, calculated from the MAP estimate and
subspace model, misses details (Section 2.7). To recover these
details, we perform two steps. In the first step, we determine the
albedo using the original facial image to recover the details
removed by the subspace models. In the second step, we filter the
recovered albedo by using the correlation between the different
positions in the images to remove spikes.

The first step is to recover the details in albedo based on the
image, where we use the following equation:

rdetailsðpÞ ¼
bðpÞ

mrðpÞ
ð17Þ

In Eq. (17), we assume that both the surface normals and
illumination conditions are correctly estimated.
Please cite this article as: B.J. Boom, et al., Virtual illumination grid fo
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In the second step, we remove erroneous effects in the albedo
caused by using a user-independent shadow model, which usually
results in spike in areas containing the transition between shadow
and light. To suppress the spikes, we learn the relationship
between albedo at neighboring locations using correlation. Based
on the correlation between neighboring locations, we filter the
albedo removing spikes if the correlation between locations
expects a different albedo value. If the albedo is similar to the
expected albedo value it will hardly change. The correlation
between locations is learned using a training set. To explain the
filter, we use a different notation, where the location p will be
replaced by the subscript x and y:

r̂x,yþ1
x,y ¼ rx,yþr

sx,y

sx,yþ1
ðrx,yþ1�rx,yþ1Þ ð18Þ

Using statistics, we can predict the value r̂x,yþ1
x,y at location

(x,y) using the value at location (x,y+1) given the correlation r

between both positions and the means r and standard deviations
s of the albedo determined from a training set. We perform a
similar prediction from all the locations ((x,y+1) (x,y�1), (x+1,y)
and (x�1,y)), which surround (x,y). In order to compute the final
albedo map, we use all surrounding locations in the following
equation:

rfinal
x,y þl½ðr

final
x,y �r̂

x,yþ1
x,y Þþðrfinal

x,y �r̂
x,y�1
x,y Þ

þðrfinal
x,y �r̂

xþ1,y
x,y Þþðrfinal

x,y �r̂
x�1,y
x,y Þ� ¼ r

details
x,y ð19Þ

The final albedo rfinal
x,y is estimated by taking into account the

correlation between surrounding location with a weight factor of
l¼ 0:2 and as an initial estimate we use rdetails

x,y . To solve Eq. (19)
for an entire grid of albedos, we use a multigrid method for
boundary value problems (Simultaneous Over-Relaxation)
described in [27]. This allows us to determine the final albedo
rfinal

x,y . Using this method, we are able to remove the spikes, but at
the same time, we preserve the details in the final albedo rfinal

x,y .
3. Experiments

3.1. Training VIG

In order to create the PCA models, it is necessary to obtain a
dataset from which we can calculate both the depth maps and the
albedo. One of the important limitations of this method can be the
3D database used for training. This database has to be sufficient in
order to obtain a model which can be used to reconstruct a probe
image. We have experimented with two publicly available
databases, namely the 3D FRGC training set (Spring 2003 range
images) [28] and the 3D Bosphorus Face Database [29]. Both
databases contain facial images together with their range images,
which give us for each pixel a 3D coordinate. We register the
facial images to a common coordinate system, using the land-
marks provided by the databases. From the range maps provided
with the images, we calculate both depth maps and the surface
normals, where we use some simple spike removal and hole filling
methods to obtain smooth depth maps. Because the illumination
in the images is controlled, it is possible to estimate the
illumination conditions from both the surface normals and the
appearance in the image. This also allows us to compute
the albedo. A disadvantage of the 3D FRGC training set is that
the images are overexposed, this makes the albedo estimation less
accurate.

In our earlier work, we used the 3D FRGC training set to create
our face model. The 3D FRGC training set contains individuals that
are also present in Experiment 4 of the FRGCv2 database. A
disadvantage of this set, however, is that all faces have a neutral
r correction of uncontrolled illumination in facial images, Pattern
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Fig. 2. VIG is able to illuminate faces under different light conditions, the first row

contains the recorded images which VIG has to render given the input images on

the first columns. The rest of the rows contain the rendered images given the input

image.

Table 1
The face recognition results of the PCA-LDA likelihood ratio on the CMU-PIE

database in recognition rates.

Uncorrected Zhang et al. Gross et al. Tan et al. VIG

72.2% 74.5% 86.8% 88.1% 90.8%
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expression. The 3D Bosphorus Face Database contains all kinds of
expressions and other variations and this database has no
overlapping individuals with Experiment 4. Still the results that
are achieved by training using 3D Bosphorus Face Database are
better, mostly because of the presence of expressions. For this
reason, we use the 3D Bosphorus Face Database to obtain the PCA
models of the depth map and albedo. We have observed that a
better training set has a large effect on the face recognition
results. Important is that this database contains all kinds of
variations (expression, race differences), but at the same time is
taken under controlled conditions, like illumination, registration
and pose.

3.2. Experimental setup

In order to test the performance of illumination correction
methods, we use both the CMU-PIE [30] and the FRGCv2 [28]
databases. Most methods for illumination correction are evalu-
ated using databases recorded in a laboratory, with images
illuminated using a single light source on a predetermined grid.
The CMU-PIE database is such a database, which allows us to
compare VIG with other methods under different predetermined
illumination conditions. A problem of these kinds of databases is
that bootstrap data from the same predetermined light sources
are often used, which positively biases the results. In this
research, we chose to also evaluate the methods on images taken
under uncontrolled conditions. For this reason, we have
performed FRGCv2 Experiment 4, where a single gallery image
taken under controlled illumination conditions is compared with
a probe image taken under uncontrolled illumination conditions.
This matches the real-life problem that all illumination correction
methods aim to solve. Although one of the biggest challenges is to
remove the illumination variations from these images, there are
more challenges in face recognition, see [31], that are not
addressed in this paper. Examples of problems other than
illumination are (small) pose variations, expressions, occlusions
due to caps and glasses, which all have negative effects on the
final recognition results.

In order to compare our illumination correction method, we
have used the PCA-LDA likelihood ratio classifier described in [32]
and the kernel correlation filter (KCF) together with the normal-
ized cosine distance [33] for face recognition. The latter method
already achieves good performance on the FRGCv2 database, see
[33], together with the illumination correction method of Gross
et al. [4]. In literature, several illumination correction methods
that use local regions show promising results on the FRGCv2
database. For this reason, we use Gross et al. [4] and Tan et al. [5]
for comparison. One of the best methods that uses the entire
image for illumination corrections is the method of Zhang et al. in
[15], which uses the Spherical Harmonics representation. For
comparison, we have developed our own implementation of this
method. This method is trained on the same database as is used to
train our illumination correction methods.

3.3. Face recognition results on CMU-PIE database

We performed a simple experiment on the CMU-PIE [30]
database in order to compare our illumination correction method
with other methods. In this experiment, the difficult images of
CMU-PIE illuminated without ambient light are used. In Fig. 2, we
show that our method is able to render the face images with
different illumination conditions, although this becomes difficult,
if almost half of the face contains shadow (third row of Fig. 2). For
the face recognition experiments, the images are corrected to
frontal illumination in order to make them comparable. We used
Please cite this article as: B.J. Boom, et al., Virtual illumination grid fo
Recognition (2010), doi:10.1016/j.patcog.2010.07.022
20% of the 68 subjects for training and used the frontal
illuminated images as gallery images. We repeat this
experiment 20 times, randomly assigning subjects to the
training and test set. In Table 1, we show the results in face
recognition. The illumination correction methods easily improve
the recognition results because it mostly contains illumination
variations. We observe that VIG performs better than the other
illumination correction methods on this face database.
3.4. Face recognition results on FRGCv2 database

In Experiment 4 of the FRGCv2 database, three sets of images
are defined: a training set, a target set and a query set. All the
images of these sets are corrected using all illumination correc-
tion methods. The output of the different illumination correction
methods is shown in Fig. 3, where the uncorrected images are in
the first row and the corrected images with the methods of,
respectively, Gross et al., Zhang et al. and VIG are in the second,
third and fourth row. Fig. 3 shows that the illumination correction
methods are also used on images taken under controlled
conditions (the first two columns), where VIG seems to only
change the overall light intensity of the image. The other four
images are taken under uncontrolled conditions, which include
sometimes difficult illumination conditions as can be seen in the
fourth image. We observe that VIG is able to remove most of the
cast shadows caused by the nose, especially visible in the fourth
image. Furthermore, it is able to correct for the dark areas (right
side) in the fourth image. We can, however, not correct for the
cast shadows on the cheeks caused by the glasses in the fifth
r correction of uncontrolled illumination in facial images, Pattern
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image, because our model does not include glasses nor the
reflections they cause.

In order to evaluate the effects of the illumination corrections
methods on the face recognition, we setup the following
experiment. After the illumination correction on all images, the
face recognition methods are trained using the corrected images
in the training set. We perform a one-to-one comparison
described by FRGCv2 database, where we compare one image
from the target set (controlled illumination) with one image from
the query set (uncontrolled illumination). The face recognition
methods used for this comparison are the PCA-LDA likelihood
ratio and the kernel correlation filter (KCF). The receiver operating
characteristics (ROC) of these methods are presented in Figs. 4(a)
and (b). We observe from Fig. 4(a) that the virtual illumination
grid method clearly performs best in combination with the
likelihood ratio, followed by the method of Gross et al. The other
global illumination correction method of Zhang et al. performs
better than uncorrected images at FARr1%. Using the KCF, we
observe that the difference between VIG and Gross et al. is small.
Fig. 3. The output of the illumination correction methods: the first row contains

the original images, the second row shows the output of local preprocessing

method of Gross et al., in the third row the images corrected are the global

illumination correction method of Zhang et al., the last row shows the images

obtained using VIG.
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The method of Gross et al. reaching similar results as reported in
Fig. 4(b) of the paper on KCF [33], where they performed the same
experiment. In the same paper, the KCF achieves even better
recognition results, by using the gallery images to train a SVM. We
did not perform this experiment, because it deviates for the FRGC
protocol. The results of Zhang et al. are in this experiment better
than uncorrected images. By comparing Figs. 4(a) and (b) with
each other, the likelihood ratio reaches best results in
combination with VIG.

3.5. Fusion

In [34], we have fused local and global illumination method in
order to improve the performance. In this paper, we fuse VIG with
the method of Gross et al. in order to investigate if the combination
of both methods improves the performance. To fuse both methods,
we use simple z-score normalization on the similarity scores. The
ROC curves of this experiment are shown in Fig. 5. The combinations
improve the results of the likelihood ratio slightly and the KCF much
more. We also combine all scores achieving a much better
performance than each of the separate classifiers. Of course, other
face recognition methods can be used to even further improve the
face recognition. However, here the goal is to show that the
combination of VIG and Gross et al. improves the performance of
well-known face recognition methods.
4. Discussion

In the previous section, we have shown that VIG improves the
face recognition results. In order to provide more inside informa-
tion about VIG, we discuss the following two issues: The first issue
concerns the limitations of our method and we discuss the
influence of these limitations on the face recognition results. The
second issue is the accuracy of the depth maps in relationship
with the reflectance models.

4.1. Limitations

We have shown that VIG performs well for the uncontrolled
conditions in Experiment 4, for instance in Fig. 4(a), although
fusion with the method of Gross et al. still shows room for
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Fig. 6. Examples of face images containing baseball caps. Because of the cast

shadow in the facial images caused by the baseball caps, VIG is unable to

determine the correct illumination conditions. The first column shows the entire

face, the second column is the region of interest used by VIG, the last column

contains the corrected image.

Fig. 7. Comparison of depth maps using the 3D FRGC database: first column

contains the original image, second column shows the correction of VIG, third

column is the 3D range map acquired with a laser-scanner and in last column our

estimate of the depth map is given.
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improvement. We observed that the main reason is the use of
reflectance and face models, which are not able to include all
exceptions. Baseball caps, for instance, cause a cast shadow in the
face, making it impossible to estimate the correct illumination
conditions using the entire image, as can be observed in Fig. 6.
Another well-known problem in face recognition is glasses, which
reflect the light in other directions than anticipated by the
reflection model, making the estimation of the face shape difficult.
In order to solve these problems, a detection method for glasses
Please cite this article as: B.J. Boom, et al., Virtual illumination grid fo
Recognition (2010), doi:10.1016/j.patcog.2010.07.022
and cap can be developed, allowing us to ignore parts of the image
in these cases. Although VIG might not always work in case of the
mentioned exceptions, the results show a clear contribution of
VIG in most other cases. By comparing VIG with the method of
Gross et al., which gives us an illumination invariant
representation of the face, we observe from the fusion results
that both methods make different errors. The illumination
invariant representation of Gross et al. is able to deal with for
instance caps and glasses, because it uses local assumptions. On
the other hand, VIG creates a reconstruction based on more global
assumptions which cannot be modelled by Gross et al. The
advantage is that the reconstruction will give us more
information, like the estimated depth map of the face. This can
be used to incorporate 3D and 2D face recognition, which is
impossible with illumination invariant representation of Gross
et al.
4.2. Accuracy of the depth maps

We estimate the depth maps based on the Lambertian
reflectance model and a PCA model of depth maps of faces. From
literature, we know that the Lambertian reflectance model is a
reasonably good estimate of the reflectance of the skin, but more
accurate reflectance models are known. Bidirectional reflectance
distribution functions (BRDF) like the Phong and Torrance-
Sparrow model probably provide a better explanation. The
disadvantage of these models is that they are non-linear, which
has large consequences on the computation time. Another
possibility is to measure a BRDF for human skin, using 3D face
acquisition equipment, although we are not sure that this BRDF
holds for different types of light. Because we use the Lambertian
reflectance model throughout this paper, we expect that the
depth maps are not always accurate in certain regions. We also
observe that PCA models have limitations in modelling details. On
the other hand, PCA models are able to correct certain mistakes by
enforcing domain specific knowledge. From Fig. 7, we observe
that the depth maps estimated using VIG fail to recover the sharp
contours. Instead, we obtain a smooth version of the surface.
r correction of uncontrolled illumination in facial images, Pattern
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Similar results can be observed in the research presented in [35],
where shape from shading is compared with measured profiles.
However, Fig. 7 also shows that VIG is to a certain extend able to
model expressions, like the round cheeks in the second row.
Although, we show that the accuracy of the depth maps is limited,
this does not have to affect the face recognition results. The
reason that VIG might calculate an incorrect depth map is that our
model can be biased to certain explanations. As long as for
individuals the same mistakes are made in calculating the depth
maps, these mistakes do not have to affect the face recognition
results.
5. Conclusions

We present a new method to correct for illumination effects in
facial images. Although multiple methods for illumination
correction in facial images are described in literature, this method
has some advantages with respect to most other methods. First of
all, we assume and model multiple light sources using a virtual
illumination grid (VIG). This allows us to achieve good recognition
results, especially for facial images taken under uncontrolled
conditions. Secondly, we use two PCA models, both for the depth
maps and the albedo and we couple them, taking into account the
correlation between depth map and albedo. Thirdly, we are able
to estimate a depth map of the surface, which can be useful for
improving face recognition under pose variations or for compar-
ison with 3D face recognition. We test multiple methods on the
FRGCv2 database using Experiment 4, where faces are recorded
under uncontrolled conditions. Our experiment is different from
most other illumination correction methods, which are tested on
databases recorded in laboratories. In these cases, the illumina-
tion directions are predetermined and they include usually only a
single light source, while in truly uncontrolled conditions, both
the illumination directions and the number of light sources are
usually unknown. We show that VIG is able to improve the results
of different face recognition methods significantly under these
uncontrolled conditions. Furthermore, we fuse VIG, which is a
global illumination correction method, with a local illumination
correction by Gross et al. [4], which further improves the
recognition results.
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