arXiv:1004.1982v1 [cs.LG] 9 Apr 2010

State-Space Dynamics Distance for Clustering
Sequential Data

Dario Garcia-Garcia®, Emilio Parrado-Hernédndez, Fernando Diaz-de-Maria

Signal Theory and Communications Deparment
Escuela Politécnica Superior, Universidad Carlos III de Madrid
Avda. de la Universidad, 30
28911, Leganés, Spain

Abstract

This paper proposes a novel similarity measure for clustering sequential data.
We first construct a common state-space by training a single probabilistic
model with all the sequences in order to get a unified representation for the
dataset. Then, distances are obtained attending to the transition matrices
induced by each sequence in that state-space. This approach solves some
of the usual overfitting and scalability issues of the existing semi-parametric
techniques, that rely on training a model for each sequence. Empirical studies
on both synthetic and real-world datasets illustrate the advantages of the
proposed similarity measure for clustering sequences.

Keywords: Sequential data, Clustering

1. Introduction

Clustering is a a core task in machine learning and data processing. It is
an unsupervised technique whose goal is to unveil a natural partition of data
into a number of groups or clusters. Clustering techniques have been widely
studied and applied for a long time, yielding a large number of well-known
and efficient algorithms [1]. Recently, the family of algorithms collectively

*Corresponding author. Tel: +34 91 6248805; Fax: +34 91 6248749
Email addresses: dggarcia@tsc.uc3m.es (Dario Garcia-Garcia),
emipar@tsc.uc3m.es (Emilio Parrado-Herndndez), fdiaz@tsc.uc3m.es (Fernando
Diaz-de-Maria)
URL: http://www.tsc.uc3m.es/ dggarcia (Darfo Garcia-Garcia)

Preprint submitted to Elsevier June 13, 2018


http://arxiv.org/abs/1004.1982v1

known as spectral clustering [2, 3|, that connect the clustering problem with
the kernel methods, have received a lot of attention due to their good perfor-
mance. They share a graph-theoretic approach that results in non-parametric
partitions of a dataset, in the sense that they do not require any parametric
model of the input data.

The application of clustering techniques to sequential data is lately re-
ceiving growing attention [4]. In these scenarios, the useful information is not
encoded only in the data vectors themselves, but also in the way they evolve
along a certain dimension (usually time). Examples of sequential data range
from stock market analysis to audio signals, video sequences, etc. Developing
machine learning techniques for these scenarios poses additional difficulties
compared to the classical setting where data vectors are assumed to be inde-
pendent and identically distributed (i.i.d.). The common framework consists
in combining a distance or similarity measure between sequences of variable
length, which captures their dynamical behavior, with a clustering algorithm
developed for i.i.d. data.

The design of similarity measures for sequences is generally addressed
from a model-based perspective. Specifically, hidden Markov models (HMMs)
[5] are usually employed as models for the sequences in the dataset. HMMs
have been widely used in signal processing and pattern recognition because
they oofer a good trade-off between complexity and expressive power. Based
on the work of Smyth [6], many researchers [7, 8, 9, 10] have proposed dif-
ferent distance measures based on a likelihood matrix obtained using each
single sequence to train an HMM. Besides, [11] defines the similarity be-
tween two sequences as the probability product kernel (PPK) between the
HMDMs trained on each sequence. The application of a non-parametric clus-
tering to the distance matrix obtained in one of the aforementioned ways
yields a semi-parametric model: each individual sequence follows a para-
metric model, but no assumption is made about the global cluster structure.
These semi-parametric methods have been shown [10, 11] to outperform both
fully parametric methods such as mixture of HMMs [12] or combinations of
HMMs and dynamic time warping [13].

This paper aims to solve a main weakness of the aforementioned semi-
parametric models. The fact that each model is trained using just one se-
quence can lead to severe overfitting or non-representative models for short
or noisy sequences. In addition, the learning of a semi-parametric model
involves the calculation of a number of likelihoods or probability product
kernels that is quadratic in the number of sequences, which hinders the scal-



ability of the method. To overcome these disadvantages, we propose to train
a single HMM using all the sequences in the dataset, and then cluster the
sequences attending to the transition matrices they induce in the state-space
of the common HMM.

The rest of the paper is organized as follows: Section 2 starts with a brief
review of hidden Markov models and spectral clustering followed by a presen-
tation of the state of the art in model-based clustering of sequences. Section
3 describes how to cluster sequences using information about their dynam-
ics in a common state-space. This new proposal is empirically evaluated in
comparison with other methods in Section 4. Finally, Section 5 draws the
main conclusions of this work and sketches some promising lines for future
research.

2. Clustering Sequences with Hidden Markov Models

This section reviews the state-of-the-art framework employed to cluster
sequential data, which consists of two phases: (1) The design of a similarity
or distance measure for sequences based on Hidden Markov Models; and
(2) the use of that measure in a clustering algorithm. We opt for spectral
clustering due to its good results reported in the literature. Nonetheless,
the distances presented in this work can be used in combination with any
clustering algorithm.

2.1. Hidden Markov Models

Hidden Markov models (HMMs) [5] are a type of parametric, discrete
state-space model. They provide a convenient model for many real-life phe-
nomena, while allowing for low-complexity algorithms for inference and learn-
ing. Their main assumptions are the independence of the observations given
the hidden states and that these states follow a Markov chain.

Assume a sequence S of T' observation vectors S = {xi,...,x7}. The
HMM assumes that x;, the ¢! observation of the sequence, is generated ac-
cording to the conditional emission density p(x;|q;), with ¢ being the hidden
state at time t. The state ¢; can take values from a discrete set {s1,..., sk}
of size K. The hidden states evolve following a time-homogeneous first-order
Markov chain, so that p(q|q—1,qi—2,---,q0) = p(q|qi-1)-

In this manner, the parameter set 6 that defines an HMM consists of the
following distributions:

e The initial probabilities vector 7 = {m;}= , where m; = p(gy = 5;).

3



e The state transition probability, encoded in a matrix A = {a”} i j=1
with a;; = p(q1 = sjlq = 5:), 1 < 4,5 < K.

e The emission pdf for each hidden state p(x;|q; = s;),1 < i < K.

From these definitions, the likelihood of a sequence S = {xy,...,x7} can
be written in the following factorized way:

T
p(SI0) = D mep(xolgo) [ [ p(xela)ag, . q. (1)
t=1

q0;---,9T

The training of this kind of models in a maximum likelihood setting is
usually accomplished using the Baum-Welch method [5], which is a partic-
ularization of the well-known EM algorithm. The E-step finds the expected
state occupancy and transition probabilities, which can be done efficiently
using the forward-backward algorithm [5]. This algorithm implies the calcu-
lation of both the forward a and backward [ variables that are defined as
follows:

ag(t) = p(x1,..., %X, q = si) (2)
Be(t) = p(Xes1,- .-, Xp|qe = si). (3)

These variables can be obtained in O(K?T) time through a recursive proce-
dure and can be used to rewrite the likelihood from Eq. (1) in the following
manner:

p(S16) =~ an(t)Bi(t), (4)

which holds for all values of t € {1,...,T}.

Given a previously estimated A, the state transition probabilities can be
updated using the forward /backward variables and that previous estimation,
yielding:

Qij o Z () agp(xp il qrr = ;)85 (' +1). (5)

=1
Then, the M-step updates the parameters in order to maximize the likelihood
given the expected hidden states sequence. These two steps are then iterated
until convergence. It is worth noting that the likelihood function can have
many local maxima, and this algorithm does not guarantee convergence to

4



the global optimum. Due to this, it is common practice to repeat the training
several times using different initializations and then select as the correct run
the one providing a larger likelihood.

The extension of this training procedure to multiple input sequences is
straightforward. The interested reader is referred to [5] for a complete de-
scription.

2.2. Spectral Clustering

Clustering [1] consists in partitioning a dataset S comprised of N elements
into C' disjoint groups called clusters. Data assigned to the same cluster must
be similar and, at the same time, distinct from data assigned to the rest of
clusters. It is an unsupervised learning problem, meaning that it does not
require any prior labeling of the data, and thus it is very appropriate for
exploratory data analysis or scenarios where obtaining such a labeling is
costly.

Algebraically, a clustering problem can be formulated in the following
way. Given a dataset S, one forms a N x N similarity matrix W, whose ;"
element w;; represents the similarity between the i and j™ instances. The
clustering problem then consists in obtaining a N x C' clustering matrix Z,
where z;. = 1 if instance ¢ belongs to cluster ¢ and z;,. = 0 otherwise, which
is optimal under some criterium.

Spectral clustering (SC) algorithms [3] approach the clustering task from
a graph-theoretic perspective. Data instances form the nodes V' of a weighted
graph G = (V, FE) whose edges FE represent the similarity or adjacency be-
tween data, defined by the matrix W. This way, the clustering problem is
cast into a graph partitioning one. The clusters are given by the partition
of G in C groups that optimize certain criteria such as the normalized cut
[14]. Finding such an optimal partition is an NP-hard problem, but it can
be relaxed into an eigenvalue problem on the Laplacian matrix L =D — W,
where D is the diagonal matrix with elements d;; = Z;.Vzlwij, or one of
its normalized versions, followed by k-means or any other clustering algo-
rithm on the rows of the matrix of selected eigenvectors. Specifically, in the
experiments in this paper, we employ the spectral clustering algorithm de-
fined in [2], which uses the symmetric version of the normalized Laplacian
Lsym = D7'/2LD~"2. The actual clustering is applied to the normalized
rows of the C' eigenvectors associated with the lowest eigenvalues. It is worth
noting that the embedding of the original data into the rows of the normal-
ized Laplacian eigenvectors also have some appealing properties from the



point of view of dimensionality reduction [15].

The time complexity for the spectral clustering is dominated by the eigen-
decomposition of the normalized Laplacian, which in general is O(N?). How-
ever, if the affinity matrix is sparse (e.g. if only the affinities between the
nearest neighbors of a given node are considered), there exist efficient it-
erative methods that notably reduce this complexity, such as the Lanczos
method [16], which makes it feasible even for large datasets [3].

2.3. Semi-Parametric Model-Based Sequence Clustering

Semi-parametric sequence clustering methods make no assumptions about
the cluster structure. These methods typically use generative models such as
HMDMs in order to represent the sequences in the dataset in a common space,
and then apply a non-parametric clustering algorithm. Following [6], many
methods use a log-likelihood matrix L whose i element l;; is defined as

li; = log pi; = jlogp(Syl6), 1<ij <N, (6)

1
length(S;

where 6; is the model trained for the i*" sequence S; and N is the number of
sequences in the dataset. The log-likelihoods are normalized with respect to
the length of the sequences to compensate the exponentially increasing size
of the probability space.

The literature reports several methods to construct a similarity (distance)
matrix D from L, such as:

e The “symmetrized distance” (SYM) [6]: 5™ = 1(1;; + L)

e The BP distance in [8]: dff = %{l”ll + %}, which takes into
account how well a model represents the sequence it has been trained

o1.
e The Yin—Yang distance of [10] dz;y = |l“ + ljj - lij - lji|>

The distance matrix D is then fed into a clustering algorithm that partitions
the set of sequences. It is worth noting that all these methods define the
distance between two sequences S; and S; using solely the models trained on
these particular sequences (6; and 6;).

In [11] another method for constructing the similarity matrix in a model-
based approach is proposed which avoids the calculation of the likelihood



matrix L. Again an HMM is trained on each individual sequence, but then
similarities between sequences are computed directly through a probability
product kernel (PPK). Specifically, this kernel is obtained by integrating a
product of the probability distributions spanned by two HMMs in the space
of the sequences of a fixed length Tip, which is a free parameter. This way,
L is no longer necessary because the similarities are obtained directly from
parameters of the models. The calculation of the PPK between two HMMs
can be carried out in O(K?Tppy) time.

Furthermore, the method proposed in [7] assumes the existence of a latent
model space 6 formed by some HMMs that actually span the data space.
Then, the models 61, ..., 0y trained on each sequence are regarded as a set 6
of intelligently sampled points of 8. Let Ly be a column-wise normalisation
of L. The i column of Ly can be interpreted as a probability density
function fgl(ﬁ) over the approximated model space 0 for S;. This way it is
possible to re-express Ly as:

Ly = |/5'(6).....157(0)].

This interpretation leads to a distance measure consisting in Kullback-Leibler
(KL) divergences between the columns of Ly, so:

0 = Dusent (F31115) (7)

where Dy, stands for the symmetrized version of the KL divergence:
Divsyn(Pllg) = 3 (Diw(pllg) + Diw(g|p)). This way, the distance between
two sequences is obtained in a global way, using a data-dependent repre-
sentation. Under this paradigm, it is possible to select a subset of P < N
sequences to train individual models on, instead of fitting an HMM to every
sequence in the dataset. This can reduce the computational load and im-
prove the performance in real-world data. However, the a priori selection of
such a subset remains an open problem.

The aforementioned semi-parametric methods share the need to train an
individual HMM on each sequence in the dataset (or in a subset of it, as in
[7]). We see this as a disadvantage for several reasons. Short sequences are
likely to result in overfitted models, giving unrealistic results when used to
evaluate likelihoods or PPKs. Moreover, training individual models in an
isolated manner prevents the use of similar sequences to get more accurate
representations of the states. As for the computational complexity, these

7



methods do not scale well with the dataset size N. Specifically, the number
of likelihoods that need to be obtained is N? (or PN using the KL method).
In the case of PPKs, N?/2 evaluations are required, since the kernel is sym-
metric.

3. State Space Dynamics (SSD) Distance

In this paper, we propose to take a different approach in order to overcome
the need to fit an HMM to each sequence. To this end, we propose to train
a single, large HMM 6 of K hidden states using all the sequences in the
dataset. This will allow for a better estimation of the emission probabilities
of the hidden states, compared to the case where an HMM is trained on each
sequence. Then, we use the state-space of f as a common representation
for the sequences. Each sequence S,, is linked to the common state-space
through the transition matrix that it induces when is fed into the model.
This matrix is denoted as A" = {alf;}szl, where

ay; = p(aiy, = sjla’ = $i,5n,0). (8)

In order to obtain each A", we run the forward-backward algorithm for
sequence S,, under the parameters # (including the learned transition matrix
A = {a;;}) and then obtain the sequence-specific transition probabilities by
using equation (5):

T
Qg Z o (t)aip(Xe41lqr+1 = ;)87 (' + 1), (9)
=1
where o (t) and 8}(t' + 1) are the forward and backward variables for S,,,
respectively. This process can be seen as a projection of the dynamical
characteristics of S,, onto the state-space defined by the common model 6.
Therefore, the overall transition matrix A of the large model 6 act as a com-
mon, data-dependent “prior” for the estimation of these individual transition
matrices.

This procedure is somewhat equivalent to obtaining individual HMMs
with emission distributions that are shared or “clamped” amongst the differ-
ent models. Clamping is a usual and useful tool when one wants to reduce
the number of free parameters of a model in order to either obtain a better
estimate or reduce the computational load. In our case, the effects of clamp-
ing the emission distributions are two-fold: we get the usual benefit of better



estimated parameters and, at the same time, it allows for simple distance
measures between hidden Markov models using the transition distributions.
This happens because the transition processes of the different models now
share a common support, namely the fixed set of emission distributions.

As previously mentioned, running the forward-backward algorithm im-
plies a time complexity of O(K?T) for a sequence of length T, which is
the same complexity required for obtaining the likelihood of an HMM. Our
proposal only requires N of these calculations, instead of N? likelihood eval-
uations or N?/2 PPKs as in the methods mentioned in the previous section.
This makes the SSD algorithm a valuable method for working with large
datasets.

At this point, we have each sequence S,, represented by its induced tran-
sition matrix A™. In order to define a meaningful distance measure between
these matrices, we can think of each An = a1, ... ,anK]T as a collection
of K discrete probability functions a,1, ..., a,x, one per row, corresponding
with the transition probabilities from each state to every other state. In
this manner, the problem of determining the affinity between sequences can
finally be transformed into the well-studied problem of measuring similarity
between distributions. In this work, we employ the Bhattacharyya affinity

[17], defined as:
Dp(p1,p2) = Z Vp1(@)p2 (), (10)

where p; and py are discrete probability distributions. We consider the affin-
ity between two transition matrices to be the mean affinity between their
rows. The distance between two sequences S; and S; can then be written as:

K
1
df = ~log — ,; D (pir, pjr)- (1

Other approaches could be used in order to define distances between
the different transition matrices. For example, instead of using A" directly,
an idea similar to diffusion distances [18] can be applied by using different

~ t
powers of the transition matrices (A") , where ¢ is a time index. This is

equivalent to iterating the random walk defined by the transition matrices
for ¢ time steps. The j row of such an iterated transition matrix encodes
the probabilities of transitioning from state j to each other state in ¢ time
steps. However, this introduces the extra parameter ¢, which must be set



very carefully. For example, many transition matrices converge very quickly
to the stationary distribution even for low ¢ (specially if the number of states
is small). This can be a problem in cases where the stationary distributions
for sequences in different clusters are the same. An example of such a scenario
is presented in Section 4.

Moreover, the SSD distance measure is very flexible. Measuring distances
between sequences is highly subjective and application dependant. For ex-
ample, in a certain scenario we may not be interested in the rest time for
each state, but only in the transitions (similar to Dynamic Time Warping
[19]). To this end, a good alternative would be to obtain the transition ma-
trices A™ for every sequence, but ignore the self transitions in the distance
measurement. That can be easily done by setting all the self-transitions to
0 and then renormalizing the rows of the resulting transition matrices.

Once the distances between all the sequences are obtained, the actual
clustering can be carried out using spectral clustering (or any other typi-
cal technique). We refer to this algorithm as state-space dynamics (SSD)
clustering. It is summarized in Alg. 1.

It is worth noting that our proposal does not include any special ini-
tialization of the large model representing the dataset, such as imposing a
block-diagonal structure on the transition matrix to encourage the cluster-
ing [6]. We do not aim to obtain a single generative model of the complete
dataset, but an adequate common representation that allows for a subsequent
successful non-parametric clustering.

An important free parameter of our method is the number of hidden states
of the common model. It should be chosen accordingly to the richness and
complexity of the dataset. In the worst case (that is to say, assuming that
there is no state sharing amongst different groups), it should grow linearly
with the number of groups. In this work, we have fixed this size a priori, but
it could be estimated using well-known criteria such as BIC or AIC [20]. Re-
member that the forward-backward algorithm for HMMs is O(K?T'), where
K is the number of states and T the sequence length. This indicates that
our proposal is specially suitable for datasets consisting of a large number of
sequences coming from a small number of clusters, which is a usual case. In
such a scenario, the number of hidden states required for a successful cluster-
ing is low, so the time penalty in the FW-BW algorithm will be more than
compensated by the significant computational load reduction coming from
the linear complexity in the number of sequences. If sequences coming from
different clusters share some emission distributions, the improvements will

10



Algorithm 1 SSD distance for clustering sequential data
Inputs:
Dataset S = {Si,...,Sn}, N sequences
K: Number of hidden states

Algorithm:
Step 1: Learning the global model (Baum Welch)
0 = arg maxy P(Sy,...,Sn|0)

Step 2: Estimating A" = {a} (Forward/Backward)
for all S, do
ag(t) = P(S,(1),...,S,(t ) —
Bi(t) = P(S,(t+1),. ( ),
agj ZtT;Ll O‘Z'(t)awp(xt+1|%+1 =
end for

k|0)
q = k|0)
)8 (t +1)

Step 3: Obtaining the distance matrix D = {d;;}
for all 7,5 do _
pir = k™ row of A’

dij = —log £ > vy /Pt (K )pju (k)
end for

Step 4: Clustering using D

be even more notorious, because the algorithm will exploit that sharing in a
natural way.

Finally, our work can be seen as similar to [21]. There, the authors
propose a bayesian clustering method based on transition matrices of Markov
chains. They assume that the sequences are discrete, so a Markov chain can
be directly estimated via transition counts. Our proposal, on the other hand,
uses Markov chains on the latent variables (states), what makes it far more
general. Moreover, our focus is on defining a general model-based distance
between sequences, so that the SSD distance can be directly coupled with a
wide range of clustering algorithms depending on the task at hand.

11



4. Experimental Results

In this section we present a thorough experimental comparison between
SSD and state of the art algorithms using both synthetic and real-world data.
Synthetic data include an ideal scenario where the sequences in the dataset
are actually generated using HMMs, as well as a control chart clustering
task. Real data experiments include different scenarios (character, gesture
and speaker clustering) selected from the UCI-ML [22] and UCI-KDD [23]
repositories. The implementation of the compared algorithms is provided in
the author’s website!, except for PPK, which is available in Prof. Jebara’s
website?.

The compared methods for obtaining the distance matrix are: SSD,
state-space dynamics clustering with Bhattacharyya distance; PPK, Proba-
bility Product Kernels [11]; KL, KL-divergence based distance [7]; BP, BP
metric [8]; Y'Y, Yin-Yang distance [10] and SYM, Symmetrized distance [6].

We denote the number of hidden states of the global model used by SSD
as K, and the number of states per model of the methods that rely on training
a HMM on each single sequence as K,,.

Once a distance matrix is available, we perform the actual clustering using
the spectral algorithm described in [2]. The different distance matrices are
turned into similarity matrices by means of a Gaussian kernel whose width is
automatically selected in each case attending to the eigengap. Though more
elaborated methods such as [24] can be used to select the kernel width, in our
experiments it is automatically selected in each case attending to the eigengap
since the experimental results are good enough. We assume that the number
of clusters is known a priori. If this is not the case, automatic determination
of the number of clusters can be carried out by methods such as those in
[24, 25]. The PPK method directly returns a similarity matrix, that is first
converted into a distance matrix by taking the negative logarithm of each
element. Then, it is fed into the clustering algorithm with automatic kernel
width selection. The final k-means step of the spectral clustering algorithm
is run 10 times, choosing as the final partition the one with the minimum
intra-cluster distortion. The free parameter T ppx of the PPK method is fixed
to 10 following [11].

The results shown in the sequel are averaged over a number of iterations

http://www.tsc.uc3m.es/~dggarcia
2http://wwwl.cs.columbia.edu/~jebara/code.html

12



in order to account for the variability coming from the EM-based training
of the HMM. Performance is measured in the form of clustering accuracy,
understood as the percentage of correctly classified samples under an optimal
permutation of the cluster labels, or its reciprocal, the clustering error.

4.1. Synthetic data

In this subsection we test the algorithms using two kinds of synthetically
generated data: a mixture-of-HMMs (MoHMM) scenario as in [6, 7], and a
UCI-ML dataset representing control charts.

4.1.1. Mizture of HMMs

Each sequence in this dataset is generated by a mixture of two equiprob-
able HMMs 6, and 6,. Each of these models has two hidden states, with an
uniform initial distribution, and their corresponding transition matrices are

06 04 04 0.6

A1_<0.4 0.6) A2_<0.6 0.4)'
Emission probabilities are the same in both models, specifically N (0, 1) in the
first state and N(3,1) in the second. This is a deceptively simple scenario.
Since both the emission probabilities and the equilibrium distributions are
identical for both models, the only way to differentiate sequences generated
by each of them is to attend to their dynamical characteristics. These, in
turn, are very similar, making this a hard clustering task. The length of
each individual sequence is uniformly distributed in the range [0.64r, 1.451],
where pip is the mean length.

Figure 1 shows the clustering error achieved by the compared algorithms
in a dataset of N = 100 sequences, averaged over 50 runs. All the algo-
rithms use a correct model structure (K, = 2 hidden states per class) to fit
each sequence. For SSD, this implies using 4 hidden states for the common
model (K = 4). As expected, when the sequences follow an HMM generative
model and the representative model structure is chosen accordingly, SSD
achieves impressive performance improvements for short sequence lengths.
In contrast, algorithms that rely on training an HMM for each sequence suf-
fer from poor model estimation when the mean sequence length is very low
(< 100), which in turn produces bad clustering results. Our proposal over-

comes this difficulty by using information from all the sequences in order
to generate the common representative HMM. Consequently, the emission

13



probabilities are estimated much more accurately and the distances obtained
are more meaningful, leading to a correct clustering. Nonetheless, when the
sequences are long (> 200) very accurate models can be obtained from each
single sequence and the different methods tend to converge in performance.

50 100 150 200 250
Mean sequence length

Figure 1: Clustering error for the MoHMM case

4.1.2. Synthetic Control Chart

This dataset contains unidimensional time series representing six different
classes of control charts: normal, cyclic, increasing trend, decreasing trend,
upward shift and downward shift. There are 100 instances of each class, with
a fixed length of 60 samples per instance. A sample of each class is plotted
in Fig. 2.

We carry out a multi-class clustering task on this dataset, partitioning
the corpus into 6 groups which we expect to correspond with the different
classes of control charts. As explained in Sec. 3, the size of the state-space
for the HMM in SSD clustering should be chosen accordingly to the number
of classes, so we employ a number of hidden states in the range 12-28. It
also allows us to show that our proposal is robust enough to produce good
performance in such an extense range. Results, averaged over 10 runs, are
shown in Table 1. It should be pointed out that the methods SYM, YY, KL,
BP, PPK could not handle the complete dataset of 100 instances per class in
reasonable time, and had to be tested on a set of 30 sequences per class.

14



50

20+

10

Normal
Cyclic
Increasing trend

Decreasing trend
= Upward shift
Downward shift

-10 L L L I I
0 10 20 30 40 50 60

Figure 2: Some samples from the Synthetic Control Chart dataset

SSD clearly outperforms the compared algorithms. It is also remarkable
that these results confirm that our proposal benefits notably from larger
datasets, as can be seen by comparing the performances for 30 and 100
sequences per class. This is due to the fact that, in contrast to previous
proposals, the modeling employed by SSD clustering improves as the dataset
size increases. The confusion matrix when N = 30 and K = 20 (averaged
over the 10 runs) is shown in Fig. 3 in the form of a Hinton diagram.

”°""a'i i

cyclic

Inc. Trend

Dec. Trend|

Up. Shift

Down. Shift : -l - =

| | | | |
Normal Cyclic Inc. Trend Dec. Trend Up. Shift Down. Shift

Figure 3: Confusion matrix for SSD clustering with 30 sequences per class and 20 hidden
states

15



4.2. Real-world data clustering experiments
We use the following datasets from the UCI ML and KDD archives:

Character Trajectories: This dataset consists of trajectories captured by
a digitizing tablet when writing 20 different characters. Each sample is
a 3-dimensional vector containing the x and y coordinates as well as the
pen tip force. The sequences are already differentiated and smoothed
using a Gaussian kernel. We use 25 sequences per character, and carry
out two-class clustering between all the possible combinations, giving
a total of 190 experiments. The average length of the sequences in this
dataset is around 170 samples.

AUSLAN: The Australian Sign Language dataset is comprised of 22-dimens-
ional time series representing different sign-language gestures. The ges-
tures belong to a single signer, and were collected in different sessions
over a period of nine weeks. There are 27 instances per gesture, with
an average length of 57 samples. Following [11], we perform 2-class
clustering tasks using semantically related concepts. These concepts
are assumed to be represented by similar gestures and thus provide a
difficult scenario.

Japanese Vowels: To construct this dataset, nine male speakers uttered
two Japanese vowels consecutively. The actual data is comprised of
the 12-dimensional time-series of LPC cepstrum coefficients for each
utterance, captured at a sampling rate of 10KHz using a sliding window
of 25.6ms with a 6.4ms shift. The number of samples per sequence
varies in the range 7-29 and there are 30 sequences per user. We use
this dataset for two different tasks: speaker clustering and speaker
segmentation.

Table 2 shows the numerical results, averaged over 10 runs. In the Char-
acter Trajectories dataset, the individual sequences are fairly long and the
classes are mostly well separated, so this is an easy task. Single sequences
are informative enough to produce good representative models and, conse-
quently, most methods achieve very low error rates. Nonetheless, using the
SSD distance outperforms the competitors.

For the AUSLAN dataset, following [11], we used HMMs with K, = 2
hidden states for the methods that train a single model per sequence. The

16



sequences were fed directly to the different algorithms without any prepro-
cessing. We reproduce the results for the PPK method from [11]. The com-
mon model for SSD employs K = 4 hidden states (2K,,), since the 2-way
clustering tasks are fairly simple in this case. It is worth noting that the bad
performance in the ‘Yes’ vs ‘No’ case is due to the fact that the algorithms
try to cluster the sequences attending to the recording session instead of to
the actual sign they represent. Our proposal produces great results in this
dataset, surpassing the rest of the methods in every pairing except for the
pathological ‘Yes” vs ‘No’ case.

Finally, we carry out a 9-class speaker clustering task using the Japanese
Vowels dataset. The large number of classes and their variability demands a
large number of hidden states in the common HMM of SSD. This, in turn,
means a time penalty as the HMM training time is quadratic in the number
of hidden states. Nonetheless, the performance obtained in this dataset by
our proposal is very competitive in terms of clustering accuracy, only being
surpassed by the KL method. It is also remarkable how the SSD-based
clustering exhibits a very stable performance in a huge range of state-space
cardinalities, what confirms our intuition that an accurate determination of
that parameter is not crucial to the algorithm.

4.2.1. Speaker Segmentation

In order to briefly show another application of sequence clustering, we
have reproduced the Japanese Vowels Dataset segmentation experiment from
[26] using our proposed SSD distance. This scenario is constructed by con-
catenating all the individual sequences in the dataset to form a long sequence
which we would like to divide into 9 segments (one per user). Only two meth-
ods, KL and SSD have been tested in this task because KL they were the
best-performing methods in the clustering task. In order to carry out the
sequence-clustering-based segmentation, we first extract subsequences using
a non-overlapping window. The length of these windows range from 10 to 20
samples. When using the KL distance, each subsequence is modeled using a
2-state HMM, which is the optimal value for the previously shown clustering
task. A distance matrix is then obtained from these subsequences using the
KL or SSD distances, and then spectral segmentation (SS) is carried out
instead of spectral clustering [26]. This amounts to performing dynamic pro-
gramming (DP) on the eigenvectors resulting from the decomposition of the
normalized Laplacian matrix used for spectral clustering. In the ideal case,
those eigenvectors are expected to be approximately piece-wise constant on

17



each cluster, thus being a very adequate representation to run DP on in order
to obtain a segmentation of the subsequences.

Table 3 shows the performance obtained in this task. Segmentation error
is measured as the number of incorrectly “classified” segments in the se-
quence, which can be seen as the fraction of the time that the segmentation
algorithm is giving wrong results. As the results confirm, using the SSD dis-
tance is very adequate in this scenario because the number of subsequences
is quite large and, at the same time, all of them are very short. This way,
we exploit both the reduced time complexity in the number of sequences and
the better estimation of the emission distributions.

5. Conclusions

In this paper we have presented a new distance for model-based sequence
clustering using state-space models. We learn a single model representing
the whole dataset and then obtain distances between sequences attending to
their dynamics in the common state-space that this model provides. It has
been empirically shown that the proposed approach outperforms the previous
semi-parametric methods, specially when the mean sequence length is short.
Furthermore, the proposed method scales much better with the dataset size
(linearly vs quadratically). As drawback of this method it should be men-
tioned that, as the number of classes grow, the common model may need a
large number of hidden states to correctly represent the dataset (although
the method is empirically shown not to be too sensitive to the accurate deter-
mination of the model size). In the case of hidden Markov models, the time
complexity of the training procedure is quadratic in this number of states,
so total running time can be high in these cases. Consequently, we find our
proposal specially appealing for scenarios with a large number of sequences
coming from a few different classes, which is a very usual case.

Promising lines for future work include the application of this methodol-
ogy to other state-space models, both discrete and continuous, and to semi-
supervised scenarios. We are also investigating alternative definitions of dis-
tance measures between transition matrices in order to take into account the
potential redundancy of the state-space.

References

[1] R. Xu, D. W. II, Survey of Clustering Algorithms, IEEE Trans. Neural
Networks 16 (3) (2005) 645 678,

18



2]

[10]

[11]

A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and
an Algorithm, in: Advances in Neural Information Processing Systems,
2002.

U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Com-
puting 17 (4).

T. W. Liao, Clustering of time series data—a survey, Pattern Recognition
38 (11) (2005) 1857 — 1874. doi:DOI: 10.1016/j.patcog.2005.01.025.
URL http://www.sciencedirect.com/science/article/
B6V14-4G7G4BP-2/2/8e96ce614dd47a4a84c6712bd0c43022

L. Rabiner, A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition, Proc. of the IEEE 77 (2) (1989) 257-286.

P. Smyth, Clustering Sequences with Hidden Markov Models, Advances
in Neural Information Processing Systems 9 (1997) 648-654.

D. Garcia-Garcia, E. Parrado-Herndndez, F. Diaz-de-Maria, A New
Distance Measure for Model-Based Sequence Clustering, IEEE Trans.
Pattern Analysis and Machine Intelligence 31 (7) (2009) 1325-1331.
doi:10.1109/ TPAMI.2008.268.

A. Panuccio, M. Bicego, V. Murino, A Hidden Markov Model-Based
Approach to Sequential Data Clustering, in: Proc. of the Joint IAPR
International Workshop on Structural, Syntactic and Statistical Pattern
Recognition, 2002, pp. 734-742.

F. Porikli, Clustering Variable Length Sequences by Eigenvector Decom-
position Using HMM, in: Proc. International Workshop on Structural
and Syntactic Pattern Recognition, Lisbon, Portugal, 2004, pp. 352-360.

J. Yin, Q. Yang, Integrating Hidden Markov Models and Spectral Anal-
ysis for Sensory Time Series Clustering, in: Fifth IEEE International
Conference on Data Mining, 2005.

T. Jebara, Y. Song, K. Thadani, Spectral Clustering and Embedding
with Hidden Markov Models, in: Proc. of the 18th European Conference
on Machine Learning (ECML), Warsaw, Poland, 2007.

19



[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Alon, S. Sclaroff, G. Kollios, V. Pavlovic, Discovering Clusters in
Motion Time-Series Data, in: Proc. of the 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’03),
2003.

T. Oates, L. Firoiu, P. Cohen, Using Dynamic Time Warping to Boot-
strap HMM-Based Clustering of Time Series, in: Sequence Learning
- Paradigms, Algorithms, and Applications, Springer-Verlag, London,
UK, 2001, pp. 35-52.

J. Shi, J. Malik, Normalized Cuts and Image Segmentation, IEEE Trans.
Pattern Analysis and Machine Intelligence 22 (8) (2000) 888-905.

M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering, in: Advances in Neural Information Process-
ing Systems 14, MIT Press, 2001, pp. 585-591.

G. Golub, C. Van Loan, Matrix Computations, John Hopkins University
Press, 1989.

A. Bhattacharyya, On a measure of divergence between two statistical
populations defined by their probability distributions, Bull. Calcutta
Math Soc.

A. Szlam, R. Coifman, M. Maggioni, A general framework for adaptive
regularization based on diffusion processes, Journal of Machine Learning
Research (JMLR) 9 (9) (2008) 1711-1739.

H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for
spoken word recognition, IEEE Transactions on Acoustics, Speech and
Signal Processing 26 (1) (1978) 43-49.

C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

M. Ramoni, P. Sebastiani, P. Cohen, Bayesian cluster-
ing by dynamics, Machine Learning 47 (1) (2002) 91-121.
doi:http://dx.doi.org/10.1023/A:1013635829250.

C. Blake, C. Merz, UCI Repository of machine learning databases, Uni-
versity of California, Irvine, Dept. of Information and Computer Sci-
ences, [http://www.ics.uci.edu/~mlearn/MLRepository.html].

20



23]

[24]

S. Hettich, S. Bay, The UCI KDD Archive, University of
California, Irvine, Dept. of Information and Computer Science,
[http://kdd.ics.uci.edu].

G. Sanguinetti, J. Laidler, N. D. Lawrence, Automatic determination
of the number of clusters using spectral algorithms, in: TEEE Work-
shop on Machine Learning for Signal Processing, 2005, pp. 55-60.
doi:10.1109/MLSP.2005.1532874.

URL http://dx.doi.org/10.1109/MLSP.2005 . 1532874

L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, Advances in
Neural Information Processing Systems (2004) 1601-1608.

D. Garcia-Garcia, E. Parrado-Hernandez, F. D. de Maria, Sequence seg-
mentation via clustering of subsequences, in: International Conference
on Machine Learning and Applications (ICMLA), 2009.

21



GG

Table 1: Mean accuracy (standard deviation in brackets) in the Control Chart dataset. SYM, YY, KL, BP, PPK had to be
tested with 30 sequences per class due to computational reasons.

# hidden stat. SYM YY KL BP PPK
K,,=2 76.11% (£0.1)  74.11% (£5.3) 74.67% (£5.3) 78.33% (£0.2) 46.89% (+£3.3)
K,,=3 74.00% (£0.6) 74.67% (£0.5) 78.67% (£3.9) 75.89% (£3.6) 55.22% (0.6)
K,,=4 74.78% (£0.6) 76.44% (+£1.6) 79.33% (£3.1) 76.00% (£4.4) 51.22% (+4.8)
K,,=5 77.00% (£1.8) 79.11% (£3.2) 77.44% (£4.9) 79.78% (£1.6) 41.78% (+3.1)
K,,=6 74.67% (£0.3) 76.89% (+£3.1) 76.22% (£2.9) 74.44% (£2.0) 40.11% (£3.5)

# of hidden states | SSD (30 seq/class) SSD (100 seq/class)
K=12 81.61% (£6.0) 91.57% (£1.5)
K=16 86.28% (+6.3) 92.71% (£1.8)
K=20 87.33% (£4.1) 93.23% (+1.4)

K=28 88.19% (+4.7) 94.07% (£1.1)



Table 2: Performance on the Character Trajectories (top), AUSLAN (middle) and
Japanese Vowels (bottom, 9-class clustering task) datasets. The standard deviation of
the results for the AUSLAN dataset is 0 in every case except for ‘SPEND’ vs ‘COST’
using Y'Y distance, with a value of 0.8. The number of hidden states is K = 4 for SSD
and K, = 2 for the rest of methods (best case)

# hidden stat. | SYM YY KL BP PPK # hidden stat. SSD
K, -2 96.10% 97.02% 96.42% 96.57% 76.72% K14 97.17%
(£0.4)  (£0.2) (£0.1) (£0.2) (£0.8) (£0.3)
K, =3 96.30% 96.90% 96.45% 95.23% 67.66% K16 97.58%
(£0.1)  (£0.2) (£0.0) (+0.3) (£0.8) (+£0.2)
K, —4 95.31% 95.53% 95.69% 83.92% 62.25% K20 98.23%
(£0.2)  (£0.0) (£0.1) (£0.8) (£0.2) (£0.2)
K, —5 96.28% 96.40% 96.58% 84.70% 61.39% K—99 98.35%
(£0.3)  (£0.1) (£0.1) (£0.1) (£0.2) (£0.2)
SIGNS SYM YY KL BP PPK SSD

‘HOT’ vs ‘COLD’ 100% 100% 100% 100% 100% 100%
‘EAT’ vs ‘DRINK’ | 51.85%  92.59% 92.59% 92.59% 93%  95.37%
‘HAPPY’ vs ‘SAD’ | 59.26% 98.15% 100% 98.15%  87% 100%
‘SPEND’ vs ‘COST’ | 54.07% 99.63% 100% 100%  80% 100%

‘YES’ vs ‘NO’ 60.36% 55.56% 55.56% 55.56%  59% = 56.66%
# hidden stat. | SYM YY KL BP PPK # hidden stat. SSD

K, -2 66.67% 85.11% 90.15% 85.30 % 75.48% =90 82.30%
(£2.8)  (£2.1) (£1.7)  (£1.0) (3.7 (£3.7)

K, —3 67.18% 79.01% 81.14%  75.44%  82.59% =30 85.48%
(£3.0)  (£4.1)  (£4.0) (£3.7)  (&5.1) (£4.5)

K, -4 67.96% 83.41% 85.55%  78.55%  79.78% K40 87.93%
(£3.4) (£6.2) (£5.4) (£4.8)  (£3.7) (+4.4)

K, —5 70.44% 82.81% 82.30% 79.77% 78.15% K50 86.37%
(£3.6) (£5.2) (£5.5) (+£4.4)  (£3.9) (£6.9)

23



Ve

Table 3: Segmentation error (mean and standard deviation) in the Japanese Vowels dataset (9 sources and segments) using
KL and SSD distances

KL-SS SSD-SS
Window length K,,=2 K=18 K=24 K=32 K=40
W=10 1.0% (£0.22) | 1.61% (£0) 1.0% (£0.29) 0.82% (£0.35) 0.72% (4-0.33)
W=15 3.5% (£0) | 2.39% (£0) 1.12% (£0.39) 0.95% (£0.29) 0.98% (40.27)
W=20 1.4% (£0) | 2.66% (£0) 1.26% (+0.44) 1.03% (4+0.53) 0.75% (£0.45)




