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Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium.

bComputer Science Department, Escuela Politécnica Superior,
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Abstract

In this paper we introduce a framework for making statistical inference on
the asymptotic prediction of parallel classification ensembles. The validity
of the analysis is fairly general. It only requires that the individual classi-
fiers are generated in independent executions of some randomized learning
algorithm, and that the final ensemble prediction is made via majority vot-
ing. Given an unlabeled test instance, the predictions of the classifiers in the
ensemble are obtained sequentially. As the individual predictions become
known, Bayes’ theorem is used to update an estimate of the probability that
the class predicted by the current ensemble coincides with the classification
of the corresponding ensemble of infinite size. Using this estimate, the voting
process can be halted when the confidence on the asymptotic prediction is
sufficiently high. An empirical investigation in several benchmark classifica-
tion problems shows that most of the test instances require querying only
a small number of classifiers to converge to the infinite ensemble prediction
with a high degree of confidence. For these instances, the difference between
the generalization error of the finite ensemble and the infinite ensemble limit
is very small, often negligible.

Key words: Classification Ensembles, Classification Trees, Bayesian
Inference, Infinite Ensembles

∗Corresponding author. Tel: +32-10-47-2445; fax: +32-10-45-0345.
Email addresses: daniel.hernandez-lobato@uclouvain.es (Daniel

Hernández-Lobato), gonzalo.martinez@uam.es (Gonzalo Mart́ınez-Muñoz),
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1. Introduction

Ensembles are among the most successful methods used to address su-
pervised learning problems [1, 2, 3, 4, 5, 6, 7]. The prediction of an ensemble
is obtained by combining the individual predictions of a collection of diverse
classifiers. Provided that these predictions are complementary, ensembles
provide an effective mechanism to achieve better generalization performance.
In this work we consider parallel ensembles of classifiers of the same type.
The individual classifiers in the ensemble are generated in independent exe-
cutions of a randomized learning algorithm. This procedure takes advantage
of instabilities in the base learning algorithm to generate a collection of di-
verse classifiers [3, 6]. Finally, the prediction of the ensemble is computed
by majority voting. Bagging [1], random forest [2], extra-trees [7], subagging
[4], rotation forest [6] and class-switching ensembles [5] are representative
ensembles of this kind.

In these types of ensembles the generalization error typically decreases as
the size of the ensemble increases [1, 2, 8, 7, 5]. In general, the larger the
ensemble is, the more accurate its prediction. However, the rate of improve-
ment in performance becomes smaller as the size of the ensemble increases.
Furthermore, the computational costs of generation, storage and prediction
increase linearly with the number of classifiers included in the ensemble.
Therefore, it is important to determine whether it is possible to estimate the
prediction of an ensemble of very large size (ideally of infinite size) using
only the predictions of a finite collection of classifiers. Or, alternatively, to
quantify how confident one can be that the prediction of an ensemble of finite
size coincides with the prediction of the corresponding ensemble of infinite
size. In this work we show that the answer to these questions strongly de-
pends on the particular instance that is being classified. For most instances,
the infinite ensemble prediction can be estimated with a very high degree
of confidence using the predictions of only a small number of classifiers. By
contrast, instances that are close to classification frontiers (usually a small
fraction of the instances considered) require querying a very large number of
classifiers to converge to the asymptotic (infinite) ensemble prediction.

These questions can be addressed by analyzing the convergence of ma-
jority voting in the infinite-ensemble limit. The probabilistic framework de-
scribed in [9, 10] is particularly suited for this purpose. For a given instance,
the asymptotic prediction of the ensemble can be expressed in terms of the
set of probabilities that an individual classifier assigns a particular class label
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to that instance. The difficulty is that these class probabilities, which depend
on the particular instance considered, are initially unknown. Nevertheless,
the voting process provides information that can be used to estimate their
distribution. Starting from a uniform prior, Bayes’ theorem is used to com-
pute a posterior that incorporates the evidence given by the predictions of
the individual classifiers as they become known. The posterior distribution
describes the uncertainty of the provisional estimates of the class probabili-
ties. This distribution is then used to compute the probability that the class
label currently predicted by the finite ensemble (the current majority class)
coincides with the class label that an ensemble of infinite size would predict.
Provided that a small amount of uncertainty in the final prediction is ac-
ceptable, the voting process can be stopped when the probability estimate
exceeds some specified threshold, π. This stopping strategy guarantees that
the differences between the classification error of the finite ensemble and of
the infinite-ensemble are at most 1−π. This is because the differences in error
are necessarily smaller than the differences in class predictions. In particular,
if the changes in the class labels affect correctly and incorrectly classified in-
stances in approximately equal numbers, the differences in classification error
should be much smaller than this upper bound. The validity of this analysis
is illustrated in extensive experiments in benchmark classification problems.
In these problems, most of the test instances require knowing the output of
only a few classifiers to produce a reliable estimate of the asymptotic ensem-
ble prediction. Furthermore, the error of the ensemble in this subset of test
instances is very close to the asymptotic (infinite ensemble) limit.

The organization of the manuscript is as follows: In Section 2 we analyze
the prediction process of the ensemble by majority voting. This analysis is
used to make inference about the prediction of the ensemble in the infinite-
size limit. Section 3 discusses the relation of the present work with analyses
found in the literature. In Section 4 the results of experiments in a wide
range of classification problems are used to illustrate the validity of the pro-
posed framework. Finally, the results and conclusions of this investigation
are summarized in Section 5.

2. Inference on the Asymptotic Ensemble Prediction

Consider an ensemble {hi(x)}ti=1 composed of t classifiers. Assuming that
majority voting is used to combine the decisions of the individual predictors,
the class label assigned by the ensemble to an unlabeled instance described
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by the vector of attributes x is

ŷt = arg max
y

t
∑

i=1

I(hi(x) = y), y ∈ Y , (1)

where I is an indicator function and Y = {y1, . . . , yl} is the set of possible
class labels.

As described in [10], if the individual classifiers of the ensemble are built
independently when conditioned to the training data1, the polling process
defined in Eq.˜(1) can be seen as a sequence of t independent trials. Each
individual trial corresponds to the classification of x given by an individ-
ual classifier. The possible outcomes of the t independent trials follow a
multinomial distribution

P(t|t,p(x)) = t!

t1!, . . . tl!
p1(x)

t1 . . . pl(x)
tl , (2)

where t = {t1, t2, . . . , tl;
∑l

i=1 ti = t}, ti is the number of classifiers that
predict class label yi and p(x) is the probability vector

p(x) = {p1(x), p2(x), . . . , pl(x)},
l
∑

i=1

pi(x) = 1. (3)

The quantity pi(x) is the probability that an ensemble classifier assigns the
label yi ∈ Y to instance x. The values of these probabilities depend on the
ensemble learning algorithm, on the particular classification problem and on
the specific instance considered. To simplify the notation, the dependence of
p on x will be assumed implicit in the rest of the article.

If the value of p for instance x is known, Eq.˜(2) can be directly used to
compute the probability that an ensemble of size t assigns the class label yi
to x. One simply needs to sum (2) over all possible situations in which the
number of ensemble classifiers that predict the class label yi is larger than
the number of classifiers that predicted any other class label. For binary

1Note that this is different from assuming that the classifiers are unconditionally inde-
pendent.
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Fig. 1: Probability of predicting class label y1 as a function of p1 for different values of t,
the ensemble size. In the limit t → ∞ this probability is a step function that takes value
0 when p1 < 1/2 and 1 when p1 > 1/2.

classification problems (l = 2) this probability is

P(ŷt = y1|t, p1) =
t
∑

t1=⌈ t

2
⌉

(

t

t1

)

pt11 (1− p1)
t−t1

= Ip1

(

⌊ t
2
⌋+ 1, t− ⌊ t

2
⌋
)

, (4)

where Ip(a, b) is the regularized incomplete beta function [11]. For multi-class
problems this can be a costly computation because the number of terms that
need to be included in the sum grows exponentially with the number of
possible class labels l.

In the limit of an ensemble of infinite size (t → ∞), the class predic-
tion probabilities given by Eq.˜(4) become Boolean values. Specifically, the
asymptotic class prediction is yi with i = arg maxk pk. Fig. 1 displays the
dependence of (4) on p1, the probability of predicting class label y1 in a bi-
nary classification problem, for different values of the ensemble size t. For
t = 1, (4) is the identity function. As t grows, it approaches a step function.
In the limit t → ∞, the probability that the ensemble predicts class y1 for
p1 > 1/2 tends to one while for p1 < 1/2 this probability approaches zero.
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2.1. Inference on the prediction of an ensemble of infinite size

According to the probabilistic framework introduced, the asymptotic pre-
diction of the ensemble for a given instance x can be computed in terms of
the vector of class probabilities p. These probabilities are initially unknown.
Nevertheless, it is possible to make inference about p using the evidence given
by the predictions of a finite number of ensemble classifiers. Suppose that
the votes of t classifiers t = {t1, t2, . . . , tl;

∑l
i=1 ti = t} are known. Assume

a uniform prior distribution for p. The multinomial likelihood described in
Eq.˜(2) can be combined with this prior to compute a posterior distribution
for p using Bayes’ theorem

P(p|t) = P(t|p)P(p)

P(t)
=

Γ(
∑l

i=1 ti + l)
∏l

i=1 Γ(ti + 1)
pt11 p

t2
2 . . . ptll , (5)

where Γ(z) is the gamma function. The posterior is a Dirichlet distribution
of order l with parameters (t1 + 1, . . . , tl + 1).

Eq.˜(5) can be used to make inference on the asymptotic prediction of
the ensemble when t classifiers have been queried. Specifically, one needs to
compute the probability that one component of the vector p is higher than
the other components.

P(ŷ∞ = yi|t) = P
(

⋂

j 6=i

pi > pj|t
)

. (6)

In binary classification problems this probability is

P(ŷ∞ = y1|t) = P (p1 > p2|t) = I1/2(t2 + 1, t1 + 1) . (7)

In multi-class problems, Eq.˜(6) is difficult to compute. However, it can be
approximated by a lower bound L(yi|t) ≤ P(ŷ∞ = yi|t) that provides a
conservative estimate of the confidence level on the asymptotic prediction

P(ŷ∞ = yi|t) ≥ L(yi|t) =
∏

j 6=i

P (pi > pj|t) =
∏

j 6=i

I1/2(tj + 1, ti + 1). (8)

The derivation of this lower bound uses the relation

P(pi > pj|
⋂

k∈K

pi > pk, t) ≥ P(pi > pj|t) (9)
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Fig. 2: Plots of the probability P(ŷ∞ = yi|t) (6) and of the lower bound L(yi|t) (8) as
a function of ti, the number of votes for class yi, l = 5 and fixed values of {tj ; j 6= i} =
{5, 3, 2, 1}.

∀K in {1, 2, . . . , l} \ {i, j}, which can be derived from the FKG inequality
[12]. In binary classification problems the bound L(yi|t) coincides with the
exact value, given by Eq.˜(7). The proposed lower bound is fairly tight,
specially for values of P(ŷ∞ = yi|t) close to 1. This is illustrated in Fig. 2
for a problem with five classes (l = 5). The curves in Fig. 2 display the
dependence of P(ŷ∞ = yi|t) and L(yi|t) as a function of ti, the number
of observations of class i, for fixed values of the votes for the other classes
{tj; j 6= i} = {5, 3, 2, 1}. Similar curves are obtained for different values of
l and of {tj; j 6= i}. The exact values of P(ŷ∞ = yi|t) used in this graph
are calculated by a standard numerical quadrature algorithm. The time-
complexity of the exact calculation is exponential in the number of classes
and soon becomes unmanageable as the number of classes increases.

2.2. Stopping criterion

Consider a specific instance to be classified. Assume that the predictions
of a finite number of ensemble classifiers are known. These predictions are
summarized in the vector of vote counts t. The lower bound of the prob-
ability estimate L(yi|t) can be used to determine when the evidence given
by t is sufficient to provide an estimate of the asymptotic ensemble predic-
tion with a high level of confidence π. Specifically, if the estimate of the
probability L(y∗|t) for the current majority class, y∗, exceeds threshold π,
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the polling process can be stopped. This prescription guarantees that the
class label assigned by the finite and by the infinite ensembles coincide with
a probability greater than or equal to ≈ π. The number of classifiers that
need to be queried in a given classification task depends on the value of π.
As π approaches 1, this number diverges.

Consider the instances that satisfy the stopping criterion for a given con-
fidence level π. For these instances, the differences between the classification
error of the finite ensemble and the infinite ensemble limit must be smaller
than 1− π . In the classification problems investigated these differences are
generally much smaller than 1 − π. This means that the changes in class
labels affect correctly and incorrectly classified instances in approximately
equal numbers.

The overhead of determining whether the querying process should be
halted is small, provided that some computations are made beforehand.
Specifically, the evaluation of (8) involves the product of (l− 1) terms. Each
term is an evaluation of the regularized incomplete beta function on inte-
gers. The required computations are identical irrespective of the classifica-
tion problem or the type of randomized parallel ensemble considered. Thus,
the values required for these computations can be precalculated, stored in
memory and retrieved when needed. The cost of retrieving (l − 1) of these
tabulated values, multiplying them and comparing the result to the specified
confidence level π is fairly small. In binary classification problems it is more
convenient to store the values of t∗(t; π), i.e. the minimum number of ma-
jority class votes needed to guarantee that the prediction of the ensemble of
size t coincides with the asymptotic ensemble prediction.

Fig. 3 illustrates the use of the proposed stopping criterion in a binary
classification problem. The curves displayed in this figure correspond to
the fraction of class y1 votes, t1/t, as a function of the total number of
votes t for three different instances. Each instance is characterized by a
different value of p1 (the probability that an arbitrary ensemble classifier
assigns class y1 to that instance). The black curve corresponds to the critical
value t∗(t; π = 0.99)/t. As more predictions are known, the number of class
y1 votes follows a binomial process with parameter p1. This random walk
eventually reaches the critical threshold t∗(t; π)/t. This time of first passage
is marked with a circle in the plots. At this point the confidence on the
class estimate is above ≈ π and the querying process can be stopped. In
this figure, one can observe that the instance with p1 = 0.5 has not reached
the critical level even after querying 200 classifiers. Instances with p1 in the
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Fig. 3: Prediction by majority voting in a binary classification process for instances with
different values of p1. The fraction of class y1 votes (t1/t) is plotted as a function of the
total number of votes t. The black line corresponds to the critical value t∗(t;π = 0.99)/t.
When the fraction of majority class votes obtained by an instance are above this line, the
probability that the current majority class coincides with the asymptotic majority class is
above π.

vicinity of 0.5 may require an extremely large number of classifiers to receive
a stable prediction with a high level of confidence.

In typical classification problems only a few instances (those near classi-
fication frontiers) have values of p1 close to 0.5. Most instances reach their
asymptotic prediction after querying only a few classifiers. This observa-
tion is illustrated in a simple two-dimensional binary classification task. In
this problem, instances are drawn from a uniform distribution in the region
[−1, 1] × [−1, 1]. Instances inside a circumference of radius

√
2 centered at

the origin are class 1. Class label 2 is assigned to instances outside the circle.
To make the problem more realistic some noise is injected: the class of 5%
of the instances selected at random is flipped. The experiment is repeated
100 times. For each realization we generate a training set of 300 examples.
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Fig. 4: (Left) Average number of classifiers (in log
10

scale) used to estimate with π = 0.99
certainty the class labels given by an ensemble of infinite size. Instances that required
more than 10, 000 classifiers to reach a stable classification are not included this plot.
(Right) Fraction of instances that required more than 10, 000 classifiers to reach a stable
classification in the 100 executions.

Each of these training sets is used to generate a bagging ensemble of size
10, 000. The generalization performance of the ensemble is estimated using
a test set consisting of 101 × 101 points located on a regular grid in the
region [−1, 1] × [−1, 1]. For each test point, the individual classifiers in the
ensemble are queried, one classifier at a time, until the confidence in the
class prediction is above π = 0.99 or until all 10, 000 classifiers have been
queried. The results of these experiments are summarized in Fig. 4. On the
left plot, the average number of queried classifiers is shown as a heat map
in logarithmic (log10) scale. To compute this average we have removed in-
stances whose stable classification would have required more than the 10, 000
classifiers generated. The right plot shows also as a heat map the fraction
of times that more than 10, 000 classifiers would have been needed to reach
a confidence level π = 0.99 in the class assignment. These figures show that
instances away from the classification frontier require querying a fairly small
number of classifiers. In contrast, the prediction of instances close to the class
boundaries between the two classes takes many more classifiers to converge.
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3. Related Work

The analysis of the prediction process presented in the previous section
applies to any kind of parallel ensemble in which the individual classifiers
are generated in independent executions of a randomized learning algorithm.
These include bagging [1], random forest [2], extra-trees [7], subagging [4], ro-
tation forest [6] and class-switching ensembles [5], among others. By contrast,
the analysis cannot be directly applied to sequential ensemble algorithms,
such as boosting [13, 14]. In boosting, the ensemble grows by incorporat-
ing new classifiers that focus on instances that are difficult to predict by the
classifiers included earlier. This procedure introduces correlations among the
classifiers that invalidate the independence assumption.

The analysis of the prediction of an ensemble in terms of majority voting
was first made by Hansen and Salamon [9]. In that work, the authors derive
explicit formulas for the ensemble error assuming that the prediction errors
of the individual classifiers of the ensemble in the test set are independent.
These formulas depend on the size of the ensemble and on the probability that
an individual classifier of the ensemble predicts the correct label for an arbi-
trary example. The assumption that the errors of the individual predictors
are independent is clearly not realistic. In a more sophisticated analysis they
take into account the possibility that the prediction for a specific instance
has an associated level of difficulty that is independent of the particular en-
semble member that is doing the classification. The infinite ensemble limit
is not considered explicitly. Nevertheless, this limit can be readily derived
from their formulas.

In [2] the Strong Law of Large Numbers is used to prove that the pre-
diction of random forests converges almost surely to a limit as the number
of trees in the forest becomes large. Therefore, the generalization error for
random forests converges, which means the infinite ensemble limit is well de-
fined. This proof also applies to randomized ensembles of the type considered
in this investigation. This convergence property explains why randomized
ensembles do not overfit as more predictors are included.

In [15, 16], ensemble learning and, in particular, bagging and boosting
are analyzed from the perspective of Monte Carlo algorithms. The authors
introduce a Monte Carlo ensemble learner that extracts hypotheses at ran-
dom any time it needs to classify a new example. Bagging is shown to be
an approximation to such a process. The analysis presented in [16] allows
to establish under which conditions the ensemble can be expected to outper-
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form the best single predictor. Thanks to the special properties of the Monte
Carlo ensemble learner, it is possible to derive a closed form expression for
the expected ensemble error as a function of the number of classifiers con-
sidered for prediction. The case of an ensemble with an infinite number of
classifiers is also explicitly discussed.

The prediction error of majority voting has also been analyzed in terms of
classification margins in [17]. The classification margin for a test instance x is
defined as the difference between the fraction of votes given by the ensemble
for the correct class and the maximum fraction of votes assigned to some
other class label. Assuming that the distribution of these margins is known,
[17] derives an upper bound on the ensemble error. This bound provides an
estimate of the average ensemble classification error. Using this bound one
can also show that, as the ensemble size increases, instances with positive
(negative) margin tend to be correctly (incorrectly) classified. Therefore, the
asymptotic prediction error of the ensemble can be computed as the fraction
of instances with positive margin.

The main difference with previous investigations is that in the present
analysis we compare the prediction of a finite ensemble with the prediction
of an ensemble of infinite size and not with the actual class of the instance
to be classified. Targeting the infinite ensemble prediction has the advantage
that it can be accurately estimated without knowledge of the true class la-
bels. Therefore, it is not necessary to have access to the probability that an
ensemble classifier predicts the correct class label for a particular instance.
The estimation of these probabilities from the training data can be unreliable
because of biases in the learning process.

The related problem of estimating the prediction of a finite ensemble by
querying only a subset of classifiers was considered in [10]. In that work,
the main goal was to reduce the number of classifiers needed for prediction
(ensemble pruning). The current investigation provides an extension of the
analysis presented in [10] to ensembles of infinite size.

4. Experiments

The application of the probabilistic framework for inference on the asymp-
totic prediction of parallel ensembles is illustrated in a variety of classification
problems from the UCI repository [18]. The ensembles used for the empirical
validation of this analysis are bagging [1] and random forest [2]. In bagging,
the individual classifiers are built by applying the same learning algorithm to
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independent bootstrap samples of the training set [1]. Each bootstrap sam-
ple has the same size as the original training set and is obtained by drawing
with replacement from this set. Random forest [2] was introduced as an
improvement over bagging when the classifiers of the ensemble are decision
trees. Besides resampling, random forest uses randomized decision trees. The
splits in the internal nodes of a randomized decision tree are made in terms
of a subset of randomly selected attributes.

The characteristics of the datasets used in the analysis are displayed in
Table 1. For each classification problem, the data are randomly partitioned
into two disjoint sets. The first set, which contains two thirds of the available
data, is used for training. The remaining data are used for testing. In the
synthetic problems Twonorm, Ringnorm, Threenorm, Led andWaveform the
training set (300 instances) and the test set (1000 instances) are generated
by random sampling from the model distribution. This process is repeated
100 times for each dataset. The results reported are averages over these
realizations.

Table 1: Datasets used in the experiments.

Problem Attributes Instances Classes

breast 9 669 2
glass 9 214 6
heart 13 270 2
led 7 - 10
liver 6 345 2
new-thyroid 5 215 3
pima 8 768 2
ringnorm 20 - 2
spam 57 4,601 2
threenorm 20 - 2
twonorm 20 - 2
vehicle 18 846 4
vowel 10 990 11
waveform 21 - 3
wine 13 178 3

For each realization, a random forest (RF) [2] and a bagging ensemble
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[1] composed of unpruned CART trees [19] are built using the corresponding
training set. Both RF and bagging are parallel ensemble learning algorithms
in which the individual classifiers are built independently when conditioned
to the training data. Therefore, the framework introduced in Section 2 is
appropriate to describe their prediction by majority voting.

The analysis focuses on test instances for which the querying process is
halted when at most 101 trees have been polled. This particular value (101
classifiers) has been selected because it is a common choice for the ensemble
size in the literature on bagging and random forests [2, 4, 20, 7]. An odd
number of classifiers is used to avoid ties in binary classification problems.
For these instances, the prediction of the finite ensemble is compared with
the prediction of an ensemble of the same type, built using the same training
set, and composed of 10, 000 trees. This ensemble is sufficiently large to serve
as a proxy for the ensemble of infinite size because it assigns the asymptotic
class label to all but a very small fraction of the test instances.

The evaluation protocol involves the following steps: For each instance
in the test set, the classifiers in the ensemble are sequentially queried. The
vector t, which keeps a tally of the class predictions, is updated after the
prediction a new classifier becomes known. This vector of votes is then used
to compute the value of L(y⋆|t) for the provisional majority class. The voting
process is stopped if L(y⋆|t) > π with π = 99%. For these instances, the
class predicted by the partial ensemble is compared with the prediction of the
ensemble composed of 10, 000 trees. Then, both predictions are compared
with the true class label of the instance to estimate the corresponding gener-
alization errors. We also record the percentage of instances whose asymptotic
class label can be estimated at the specified level of confidence by querying
at most 101 trees and the average number of classifiers involved in the pre-
diction. Finally, we also determine whether using the same finite ensemble
(irrespective of the instance considered), instead of selecting a different num-
ber of classifiers depending on the instance considered (instance-based strat-
egy), also yields correct estimates of the asymptotic predictions with high
probability. For this purpose, the results for an ensemble of fixed size are
reported as well. The number of classifiers queried in this fixed-size ensemble
(FS) strategy is the ceiling of the average number of classifiers obtained by
the instance-based (IB) strategy. The computational cost of the FS strategy
is similar to the cost of the IB strategy because the overhead to determine
whether the voting process should be stopped is negligible compared to the
time needed to query a classifier.

14



Tables 2 and 3 display the results of experiments on different benchmark
classification problems for bagging and RF, respectively. The first column
gives the percentage of test instances that receive a stable classification with a
confidence level π = 99% by querying at most 101 classifiers. These percent-
ages are fairly high for both RF and bagging. They range between ≈ 75% and
≈ 98% in the problems investigated. The remaining columns of these tables
report averages over these test instances only. The third column presents the
average number of classifiers queried in the voting process when the instance-
based stopping criterion is applied. The average number of trees queried in
the IB strategy varies between ≈ 8 and ≈ 25. Similar sizes are obtained
using bagging and RF. These values are well below the maximum number of
trees considered, which is 101. The fourth and the fifth columns display the
average disagreement rates between the predictions of the finite ensembles
(labeled Bag-FS and RF-FS for the strategy that uses a fixed number of clas-
sifiers, and Bag-IB and RF-IB for the strategy that determines the number
of classifiers needed dynamically, depending on the instance considered) and
the predictions of the corresponding asymptotic ensembles. The disagree-
ment rates in the IB strategies are generally below the level of 1 − π = 1%
fixed in the experiments. This behavior is the result of the fact that L(yi|t) is
a lower bound and that the uniform prior for p in Eq.˜(5) generally produces
conservative estimates for the stopping point. Slightly higher rates than 1%
are observed in the classification problems Liver and Threenorm. In these
problems, the distribution of p in the test data has a mode around p1 = 1/2,
which implies that the assumption of a uniform prior in (5) introduces a
non-conservative bias in the estimation of the posterior distribution. The
disagreement rates for the FS ensembles are much larger than for the corre-
sponding IB ensembles. Furthermore, they are above the level of 1% in many
of the problems investigated. This means that using a fixed ensemble size
for all instances is not an effective strategy. The sixth and seventh columns
display the average error rate of the different strategies. The last columns of
each table, labeled RF∞ and Bag∞, respectively, present the error rates of
ensembles of 10, 000 trees. Note that the differences between the error rates
of the finite ensemble (columns 5 and 6) and the infinite ensemble (column
7) are necessarily smaller than the disagreement rates reported in columns 3
and 4. From these results it is apparent that the error differences between the
IB ensembles and the asymptotic ones are almost negligible in most of the
problems investigated. By contrast, the error rates of the finite FS ensembles
are systematically worse than the corresponding infinite ensembles.
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Table 2: Experimental results for bagging. Average fraction of test instances for which the prediction by the finite ensemble
provides an estimate of the asymptotic prediction whose confidence level is above π = 99%, average fraction of trees needed
for these instances, average disagreement rates between the predictions of the finite ensembles and of the asymptotic one, and,
finally, classification error of the different ensembles for these instances. The results are given for the instance-based (IB) and
for the fixed-size (FS) strategies.

Problem % of test # Trees % of disagreement Classification Error in %

instances Bag-IB Bag-FS Bag-IB Bag-FS Bag-IB Bag∞
breast 97.8±0.9 8.1±0.6 0.8±0.6 0.1±0.2 3.6±1.1 3.2±1.0 3.2±1.0
glass 82.3±4.4 21.1±2.8 1.7±1.7 0.4±0.7 21.7±5.6 21.4±5.5 21.4±5.5
heart 87.4±4.0 16.7±1.9 1.4±1.4 0.4±0.8 16.5±4.5 16.2±4.2 16.2±4.3
led 91.4±2.6 13.8±1.4 1.0±1.0 0.1±0.3 26.0±2.1 25.8±2.1 25.8±2.1
liver 78.8±4.2 23.9±2.5 2.3±1.5 1.1±1.2 25.6±3.5 25.4±3.5 25.4±3.7
new-thyroid 97.0±2.1 9.7±1.5 0.8±1.2 0.1±0.4 4.8±2.6 4.7±2.6 4.7±2.7
pima 85.0±2.6 18.1±1.4 2.2±1.0 0.7±0.6 21.4±2.5 20.8±2.6 20.8±2.6
ringnorm 87.2±1.8 19.6±1.6 1.8±0.6 0.5±0.3 6.4±1.7 5.5±1.7 5.4±1.7
spam 96.9±0.5 9.5±0.3 1.0±0.3 0.1±0.1 5.2±0.6 4.8±0.6 4.8±0.6
threenorm 76.5±1.9 25.5±1.5 2.3±0.8 1.1±0.5 13.8±2.2 13.1±2.2 12.9±2.2
twonorm 88.8±1.1 18.4±0.7 1.7±0.5 0.4±0.3 4.4±1.2 3.4±1.2 3.3±1.1
vehicle 80.2±2.7 20.7±1.5 1.8±0.9 0.5±0.5 18.7±2.5 18.4±2.5 18.4±2.5
vowel 85.7±1.9 23.2±1.1 1.1±0.6 0.1±0.2 5.8±1.6 5.1±1.5 5.0±1.5
waveform 83.4±1.8 20.6±1.3 1.9±0.5 0.5±0.3 15.1±1.9 14.6±1.9 14.6±1.8
wine 96.4±2.7 11.3±1.7 1.1±1.4 0.1±0.5 3.4±2.7 2.8±2.5 2.8±2.5
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Table 3: Experimental results for random forest (RF). Average fraction of test instances for which the prediction by the finite
ensemble provides an estimate of the asymptotic prediction whose confidence level is above π = 99%, average fraction of trees
needed for these instances, average disagreement rates between the predictions of the finite ensembles and the asymptotic one,
and finally, classification error of the different ensembles for these instances. The results are given for the instance-based (IB)
and the fixed-size (FS) strategies.

Problem % of test # Trees % of disagreement Classification Error in %

instances RF-IB RF-FS RF-IB RF-FS RF-IB RF∞
breast 98.0±0.8 8.1±0.5 0.7±0.5 0.1±0.2 3.1±1.0 2.8±0.9 2.7±0.9
glass 78.9±4.8 22.9±2.6 1.2±1.5 0.3±0.6 18.1±5.5 17.6±5.4 17.6±5.4
heart 86.1±3.1 18.6±2.5 2.1±1.6 0.6±0.9 14.4±3.6 13.7±3.6 13.6±3.5
led 82.7±4.9 23.9±2.9 1.0±1.3 0.2±0.6 22.5±2.1 22.2±2.0 22.2±2.0
liver 75.1±4.2 26.7±2.7 2.6±1.8 1.2±1.4 24.5±4.2 23.8±4.2 23.4±4.1
new-thyroid 96.1±2.5 10.6±1.2 1.0±1.3 0.1±0.3 3.3±2.2 2.9±2.1 2.9±2.1
pima 83.6±2.3 20.0±1.5 2.1±1.0 0.7±0.5 20.6±2.2 20.3±2.4 20.2±2.4
ringnorm 88.3±1.3 20.1±1.3 1.8±0.5 0.5±0.3 4.3±1.0 3.3±0.9 3.2±0.9
spam 96.5±0.4 10.3±0.3 1.0±0.3 0.1±0.1 4.2±0.5 3.7±0.5 3.7±0.5
threenorm 73.8±1.8 27.6±1.2 2.4±0.6 1.3±0.5 11.4±1.5 10.6±1.4 10.3±1.4
twonorm 90.2±1.0 18.7±0.7 1.5±0.4 0.4±0.2 2.9±0.5 1.9±0.5 1.7±0.5
vehicle 77.5±2.7 22.0±1.3 1.8±0.9 0.5±0.5 16.4±2.6 16.2±2.6 16.2±2.6
vowel 86.2±2.1 25.8±1.1 0.9±0.6 0.1±0.2 2.7±1.0 2.0±1.0 2.0±1.0
waveform 80.5±1.7 23.8±1.1 1.8±0.5 0.7±0.3 11.9±1.3 11.4±1.2 11.3±1.3
wine 97.1±2.0 12.2±1.5 0.9±1.3 0.1±0.3 1.9±1.7 1.3±1.4 1.3±1.4

17



The performance of the asymptotic and the finite ensembles are com-
pared using the statistical framework introduced in [21]. This framework
allows to compare the overall performance of the different classification sys-
tems in several problems. In general, comparisons across multiple datasets
are less affected by Type 1 errors than comparisons that use a single dataset.
This is because in the former the variance comes from the differences be-
tween the data sets, which are generally independent. By contrast, when
a single dataset is used for comparison, the variance of the results comes
from variations among different partitions of the same data. Because of the
dependencies among the different partitions, this variance is typically un-
derestimated. To perform the comparison, the different methods are ranked
according to their performance in each of the problems considered (rank 1 for
the best method, rank 2 for the second best and so on). Then, the average of
the ranks obtained by each method in each of the problems is computed. Fi-
nally, statistical tests are applied to determine whether the differences among
the average ranks of the methods considered are statistically significant. Ro-
bust, non-parametric tests are used because many of the assumptions made
by standard parametric tests are often violated when analyzing the perfor-
mance of machine learning algorithms [21]. In these tests, RF and bagging
ensembles are analyzed separately. A Friedman test based on these average
ranks rejects (with a p-value < 0.05) the null-hypothesis that there are no sig-
nificant differences in performance among the different methods evaluated,
for both bagging and RF. Finally, a Nemenyi test is applied to determine
whether the differences in average rank are statistically significant. If the
average ranks of the methods differ by more than a critical distance (CD),
the differences are statistically significant.

Fig. 5 displays the results of this test for both bagging (top) and RF
(bottom). Ensembles for which the differences in average rank are not sta-
tistically significant with a p-value < 0.05 are connected with a horizontal
solid black line. The critical distance (CD) above which the differences in
average rank are considered significant is displayed at the top of each plot.
From the results of this test one can conclude that, for both RF and bagging
ensembles, there are no significant differences in performance between the IB
and the asymptotic ensembles when only the instances that can be assigned
a final class label with at most 101 classifiers are considered. By contrast,
the deterioration in performance caused by using an ensemble of fixed size is
statistically significant.

Finally, we carry out additional experiments to investigate the depen-
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Fig. 5: Results of a Nemenyi test on the average ranks of the finite and the asymptotic
ensembles in the classification problems investigated for bagging (top) and RF (bottom).
Ensembles for which the differences in average rank are not statistically significant with
p-value < 0.05 are linked with a solid black line. The critical distance (CD) above which
the differences in rank are considered significant is displayed at the top of each figure.

dence on π of the fraction of test instances that satisfy the stopping criterion
before querying the 101 classifiers in the ensemble. The curves that display
the dependence of the fraction of such examples as a function of π are plotted
in Fig. 6 for the classification problems Pima and Waveform. These curves
are representative of all the classification problems investigated. They show
that there is a trade-off between the desired level of confidence in the predic-
tions (π) and the number of test instances for which it is sufficient to query at
most 101 classifiers to obtain a stable prediction at the specified confidence
level. The larger the value of π, the lower the number of instances that reach
this confidence level. Specifically, when π approaches 100% the fraction of
these instances tends to zero. As the confidence level is decreased, but still
remains close to 100%, there is a sharp increase of the fraction of test in-
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stances whose classification with 101 trees is stable. Eventually, the curves
saturate and only small benefits are obtained by allowing a lower confidence
level on the estimates.

5. Conclusions

In this paper we have introduced a probabilistic framework for making
inference on the asymptotic (infinite) ensemble prediction. For this, we have
used the evidence given by the output of a finite set of ensemble classifiers.
The analysis presented is based on the estimation of the class prediction
probabilities of a single classifier for a given test instance. To estimate these
probabilities, the classifiers in the ensemble are queried sequentially. Starting
from an uniform prior, Bayes’ theorem is used to update the probability
estimates as new predictions become known. These estimates are used to
compute the probability that the provisional majority class (determined on
the basis of the known class votes) coincides with the asymptotic ensemble
prediction. Since the evaluation of this probability is costly for multi-class
classification problems, we use an approximation based on a lower bound
that can be readily computed.

The framework considered can be used to identify data instances for which
the predictions of a finite ensemble are sufficient to estimate the asymptotic
class prediction with a high level of confidence. The analysis applies to col-
lections of classifiers trained on independent realizations of a randomized
learning algorithm and whose predictions are combined by majority vot-
ing. To classify a test instance, the individual classifiers from the ensemble
are queried sequentially. After evaluating the output of each classifier, we
compute an estimate of the probability that the provisional majority class
coincides with the asymptotic ensemble prediction. The estimate (actually,
a lower bound of this probability) is computed in terms of the predictions of
the classifiers that have been queried up to that moment. If the lower bound
is above a specified threshold π, the voting process can be stopped. Given
that the actual probability is approximated using a lower bound, the voting
process does not stop prematurely in most cases. For instances in which the
querying process is halted, the predictions of the partially queried ensemble
and the predictions of an ensemble of infinite size are expected to coincide
with a probability larger than ≈ π. Furthermore, the disagreement rate be-
tween the finite ensemble and the asymptotic one is bounded from above by
1− π.
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Fig. 6: Fraction of test instances in which ensembles of at most 101 classifiers reach a
confidence level in their estimate of the asymptotic error that is above π for different
values of π. Values corresponding to π = 99% are marked with a dotted line in the case
of bagging, and with a solid line in the case of RF.
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An experimental evaluation in a variety of binary and multi-class clas-
sification problems illustrates the application of this framework to describe
majority voting in random forest and bagging ensembles. In the problems
investigated, a large fraction of the test instances require on average a fairly
small number of classifiers to gather sufficient statistical evidence on the
asymptotic ensemble prediction. For these instances, the disagreement rates
between the predictions of the finite ensemble and the asymptotic ones are
close to, and in most cases below the specified confidence level. Furthermore,
the differences between the generalization error of the finite ensembles on
these instances and the asymptotic infinite-ensemble limit are much smaller
than the differences in classification. This means that the changes in the class
labels that arise if the querying process is continued, affect both correctly and
incorrectly classified instances in approximately equal numbers.
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