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Abstract

In this paper we address the problem of 3D facial expression recognition. We

propose a local geometric shape analysis of facial surfaces coupled with ma-

chine learning techniques for expression classification. A computation of the

length of the geodesic path between corresponding patches, using a Rieman-

nian framework, in a shape space provides a quantitative information about

their similarities. These measures are then used as inputs to several classi-

fication methods. The experimental results demonstrate the effectiveness of

the proposed approach. Using Multi-boosting and Support Vector Machines

(SVM) classifiers, we achieved 98.81% and 97.75% recognition average rates,

respectively, for recognition of the six prototypical facial expressions on BU-

3DFE database. A comparative study using the same experimental setting

shows that the suggested approach outperforms previous work.

Keywords: 3D facial expression classification, shape analysis, geodesic

path, multi-boosting, SVM.
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1. Introduction1

In recent years, 3D facial expression recognition has received growing2

attention. It has become an active research topic in computer vision and3

pattern recognition community, impacting important applications in fields4

related to human-machine interaction (e.g., interactive computer games) and5

psychological research. Increasing attention has been given to 3D acquisition6

systems due to the natural fascination induced by 3D objects visualization7

and rendering. In addition 3D data have advantages over the 2D data, in8

that 3D facial data have high resolution and convey valuable information that9

overcomes the problem of pose/lighting variations and the detail concealment10

of low resolution acquisition.11

In this paper we present a novel approach for 3D identity-independent12

facial expression recognition based on a local shape analysis. Unlike the13

identity recognition task that has been the subject of many papers, only14

few works have addressed 3D facial expression recognition. This could be15

explained through the challenge imposed by the demanding security and16

surveillance requirements. Besides, there has long been a shortage of publicly17

available 3D facial expression databases that serve the researchers exploring18

3D information to understand human behaviors and emotions. The main task19

is to classify the facial expression of a given 3D model, into one of the six20

prototypical expressions, namely Happiness, Anger, Fear, Disgust, Sadness21

and Surprise. It is stated that these expressions are universal among human22

ethnicity as described in [1] and [2].23

The remainder of this paper is organized as follows. First, a brief overview24

of related work is presented in Section 2. In Section 3 we describe the BU-25
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3DFE database designed to explore 3D information and improve facial ex-26

pression recognition. In Section 4, we summarize the shape analysis frame-27

work applied earlier for 3D curves matching by Joshi et al. [3], and discuss28

its use to perform 3D patches analysis. This framework is further expounded29

in section 5, so as to define methods for shapes analysis and matching. In30

section 6 a description of the feature vector and used classifiers is given.31

In section 7, experiments and results of our approach are reported, and the32

average recognition rate over 97% is achieved using machine-learning algo-33

rithms for the recognition of facial expressions such as Multi-boosting and34

SVM. Finally, discussion and conclusion are given in section 8.35

2. Related work36

Facial expression recognition has been extensively studied over the past37

decades especially in 2D domain (e.g., images and videos) resulting in a38

valuable enhancement. Existing approaches that address facial expression39

recognition can be divided into three categories: (1) static vs. dynamic;40

(2) global vs. local ; (3) 2D vs. 3D. Most of the approaches are based on41

feature extraction/detection as a mean to represent and understand facial42

expressions. Pantic and Rothkrantz [4] and Samal and Iyengar [5] presented43

a survey where they explored and compared different approaches that were44

proposed, since the mid 1970s, for facial expression analysis from either static45

facial images or image sequences. Whitehill and Omlin [6] investigated on46

the Local versus Global segmentation for facial expression recognition. In47

particular, their study is based on the classification of action units (AUs),48

defined in the well-known Facial Action Coding System (FACS) manual by49
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Ekman and Friesen [7], and designating the elementary muscle movements50

involved in the bio-mechanical of facial expressions. They reported, in their51

study on face images, that the local expression analysis showed no consistent52

improvement in recognition accuracy compared to the global analysis. As53

for 3D facial expression recognition, the first work related to this issue was54

presented by Wang et al. [8]. They proposed a novel geometric feature based55

facial expression descriptor, derived from an estimation of primitive surface56

feature distribution. A labeling scheme was associated with their extracted57

features, and they constructed samples that have been used to train and test58

several classifiers. They reported that the highest average recognition rate59

they obtained was 83%. They evaluated their approach not only on frontal-60

view facial expressions of the BU-3DFE database, but they also tested its61

robustness to non-frontal views. A second work was reported by Soyel and62

Demirel [9] on the same database. They extracted six characteristic distances63

between eleven facial landmarks, and using Neural Network architecture that64

analysis the calculated distances, they classified the BU-3DFE facial scans65

into 7 facial expressions including neutral expression. The average recog-66

nition rate they achieved was 91.3%. Mpiperis et al. [10] proposed a joint67

3D face and facial expression recognition using bilinear model. They fitted68

both formulations, using symmetric and asymmetric bilinear models to en-69

code both identity and expression. They reported an average recognition70

rate of 90.5%. They also reported that the facial expressions of disgust and71

surprise were well identified with an accuracy of 100%. Tang and Huang [11]72

proposed an automatic feature selection computed from the normalized Eu-73

clidean distances between two picked landmarks from 83 possible ones. Using74
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regularized multi-class AdaBoost classification algorithm, they reported an75

average recognition rate of 95.1%, and they mentioned that the surprise ex-76

pression was recognized with an accuracy of 99.2%.77

In this paper, we further investigate the problem of 3D identity-independent78

facial expression recognition. The main contributions of our approach are79

the following: (1) We propose a new process for representing and extracting80

patches on the facial surface scan that cover multiple regions of the face;81

(2) We apply a framework to derive 3D shape analysis to quantify similarity82

measure between corresponding patches on different 3D facial scans. Thus,83

we combine a local geometric-based shape analysis approach of 3D faces and84

several machine learning techniques to perform such classification.85

3. Database Description86

BU-3DFE is one of the very few publicly available databases of annotated87

3D facial expressions, collected by Yin et al. [12] at Binghamton University.88

It was designed for research on 3D human face and facial expression and to89

develop a general understanding of the human behavior. Thus the BU-3DFE90

database is beneficial for several fields and applications dealing with human91

computer interaction, security, communication, psychology, etc. There are a92

total of 100 subjects in the database, 56 females and 44 males. A neutral93

scan was captured for each subject, then they were asked to perform six94

expressions namely: Happiness (HA), Anger (AN), Fear (FE), Disgust (DI),95

Sad (SA) and Surprise (SU). The expressions vary according to four levels96

of intensity (low, middle, high and highest or 01-04). Thus, there are 25 3D97

facial expression models per subject in the database. A set of 83 manually98
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annotated facial landmarks is associated to each model. These landmarks are99

used to define the regions of the face that undergo to specific deformations100

due to single muscles movements when conveying facial expression [7]. In101

Fig. 1, we illustrate examples of the six universal facial expressions 3D models102

including the highest intensity level.

Happy Angry Fear Disgust Sad Surprise

Figure 1: Examples of 3D facial expression models (first row 3D shape models, second row

3D textured models) of the BU-3DFE database.

103

4. 3D Facial Patches-based Representation104

Most of the earlier work in 3D shape analysis use shape descriptors such as105

curvature, crest lines, shape index (e.g., ridge, saddle, rut, dome, etc.). These106

descriptors are defined based on the geometric and topological properties of107

the 3D object, and are used as features to simplify the representation and108

thus the comparison for 3D shape matching and recognition tasks. Despite109

their rigorous definition, such features are computed based on numerical110

approximation that involves second derivatives and can be sensitive to noisy111

data. In case of 3D facial range models, the facial surface labeling is a112

critical step to describe the facial behavior or expression, and a robust facial113
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surface representation is needed. In Samir et al. [13] the authors proposed114

to represent facial surfaces by an indexed collections of 3D closed curves115

on faces. These curves are level curves of a surface distance function (i.e.,116

geodesic distance) defined to be the length of the shortest path between a117

fixed reference point (taken to be the nose tip) and a point of the extracted118

curve along the facial surface. This being motivated by the robustness of the119

geodesic distance to facial expressions and rigid motions. Using this approach120

they were able to compare 3D shapes by comparing facial curves rather than121

comparing corresponding shape descriptors.122

In our work we intend to further investigate on local shapes of the facial123

surface. We are especially interested in capturing deformations of local facial124

regions caused by facial expressions. Using a different solution, we compute125

curves using the Euclidean distance which is sensitive to deformations and126

thus can better capture differences related to variant expressions. To this127

end, we choose to consider N reference points (landmarks) {rl}1≤l≤N (Fig.2128

(a)) and associated sets of level curves {clλ}1≤λ≤λ0 (Fig.2 (b)). These curves129

are extracted over the patches centered at these points. Here λ stands for the130

value of the distance function between the reference point rl and the point131

belonging to the curve clλ, and λ0 stands for the maximum value taken by132

λ. Accompanying each facial model there are 83 manually picked landmarks,133

these landmarks are practically similar to the MPEG-4 feature points and134

are selected based on the facial anatomy structure. Given these points the135

feature region on the face can be easily determined and extracted. We were136

interested in a subset of 68 landmarks laying within the face area, discarding137

those marked on the face border. Contrary to the MPEG-4 feature points138
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specification that annotates the cheeks center and bone, in BU-3DFE there139

were no landmarks associated with the cheek regions. Thus, we add two extra140

landmarks at both cheeks, obtained by extracting the middle point along the141

geodesic path between the mouth corner and the outside eye corner.142

Discarded landmarks provided by BU-3DFE 

Retained landmarks provided by BU-3DFE

Automatically added landmarks

 

 

Figure 2: (a) 3D annotated facial shape model (70 landmarks); (b) 3D closed curves

extracted around the landmarks; (c) 3D curve-based patches composed of 20 level curves

with a size fixed by a radius λ0 = 20mm; (d) Extracted patches on the face.

We propose to represent each facial scan by a number of patches centered143

on the considered points. Let rl be the reference point and Pl a given patch144

centered on this point and localized on the facial surface denoted by S. Each145

patch will be represented by an indexed collection of level curves. To extract146

these curves, we use the Euclidean distance function ‖rl − p‖ to characterize147

the length between rl and any point p on S. Indeed, unlike the geodesic148

distance, the Euclidean distance is sensitive to deformations, and besides,149

it permits to derive curve extraction in a fast and simple way. Using this150

function we defined the curves as level sets of:151

‖rl − .‖ : clλ = {p ∈ S | ‖rl − p‖ = λ} ⊂ S, λ ∈ [0, λ0]. (1)

Each clλ is a closed curve, consisting of a collection of points situated at an152
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equal distance λ from rl. The Fig. 2 resumes the scheme of patches extraction.153

5. Framework for 3D Shape Analysis154

Once the patches are extracted, we aim at studying their shape and design155

a similarity measure between corresponding ones on different scans under156

different expressions. This is motivated by the common belief that people157

smile, or convey any other expression, the same way, or more appropriately158

certain regions taking part in a specific expression undergo practically the159

same dynamical deformation process. We expect that certain corresponding160

patches associated with the same given expression will be deformed in a161

similar way, while those associated with two different expressions will deform162

differently. The following sections describe the shape analysis of closed curves163

in R
3, initially introduced by Joshi et al. [3], and its extension to analyze164

shape of local patches on facial surfaces.165

5.1. 3D Curve Shape Analysis166

We start by considering a closed curve β in R
3. While there are several167

ways to analyze shapes of closed curves, an elastic analysis of the parametrized168

curves is particularly appropriate in 3D curves analysis. This is because (1)169

such analysis uses a square-root velocity function representation which al-170

lows us to compare local facial shapes in presence of elastic deformations,171

(2) this method uses a square-root representation under which the elastic172

metric reduces to the standard L
2 metric and thus simplifies the analysis,173

(3) under this metric the Riemannian distance between curves is invariant174

to the re-parametrization. To analyze the shape of β, we shall represent it175

mathematically using a square-root representation of β as follows ; for an176
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interval I = [0, 1], let β : I −→ R
3 be a curve and define q : I −→ R

3 to be177

its square-root velocity function (SRVF), given by:178

q(t)
.
=

β̇(t)
√

‖β̇(t)‖
. (2)

Here t is a parameter ∈ I and ‖.‖ is the Euclidean norm in R
3. We179

note that q(t) is a special function that captures the shape of β and is par-180

ticularly convenient for shape analysis, as we describe next. The classical181

elastic metric for comparing shapes of curves becomes the L
2-metric under182

the SRVF representation [14]. This point is very important as it simpli-183

fies the calculus of elastic metric to the well-known calculus of functional184

analysis under the L
2-metric. Also, the squared L

2-norm of q, given by:185

‖q‖2 =
∫

S1
< q(t), q(t) > dt =

∫

S1
‖β̇(t)‖dt , which is the length of β.186

In order to restrict our shape analysis to closed curves, we define the set:187

C = {q : S1 −→ R
3|
∫

S1
q(t)‖q(t)‖dt = 0} ⊂ L

2(S1,R3). Notice that the188

elements of C are allowed to have different lengths. Due to a non-linear (clo-189

sure) constraint on its elements, C is a non-linear manifold. We can make it190

a Riemannian manifold by using the metric: for any u, v ∈ Tq(C), we define:191

〈u, v〉 =

∫

S1

〈u(t), v(t)〉 dt . (3)

So far we have described a set of closed curves and have endowed it with a192

Riemannian structure. Next we consider the issue of representing the shapes193

of these curves. It is easy to see that several elements of C can represent194

curves with the same shape. For example, if we rotate a curve in R
3, we get a195

different SRVF but its shape remains unchanged. Another similar situation196

arises when a curve is re-parametrized; a re-parameterization changes the197
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SRVF of curve but not its shape. In order to handle this variability, we define198

orbits of the rotation group SO(3) and the re-parameterization group Γ as199

the equivalence classes in C. Here, Γ is the set of all orientation-preserving200

diffeomorphisms of S1 (to itself) and the elements of Γ are viewed as re-201

parameterization functions. For example, for a curve β : S1 → R
3 and a202

function γ : S1 → S
1, γ ∈ Γ, the curve β ◦ γ is a re-parameterization of β.203

The corresponding SRVF changes according to q(t) 7→
√

γ̇(t)q(γ(t)). We set204

the elements of the orbit:205

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} , (4)

to be equivalent from the perspective of shape analysis. The set of such206

equivalence classes, denoted by S
.
= C/(SO(3)× Γ) is called the shape space207

of closed curves in R
3. S inherits a Riemannian metric from the larger space208

C due to the quotient structure.209

The main ingredient in comparing and analysing shapes of curves is the210

construction of a geodesic between any two elements of S, under the Rieman-211

nian metric given in Eq.(3). Given any two curves β1 and β2, represented212

by their SRVFs q1 and q2, we want to compute a geodesic path between the213

orbits [q1] and [q2] in the shape space S. This task is accomplished using214

a path-straightening approach which was introduced in [15]. The basic idea215

here is to connect the two points [q1] and [q2] by an arbitrary initial path α216

and to iteratively update this path using the negative gradient of an energy217

function E[α] = 1
2

∫

s
〈α̇(s), α̇(s)〉 ds. The interesting part is that the gradient218

of E has been derived analytically and can be used directly for updating α.219

As shown in [15], the critical points of E are actually geodesic paths in S.220
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Thus, this gradient-based update leads to a critical point of E which, in turn,221

is a geodesic path between the given points. In the remainder of the paper,222

we will use the notation dS(β1, β2) to denote the length of the geodesic in the223

shape space S between the orbits q1 and q2, to reduce the notation.224

5.2. 3D Patches Shape Analysis225

Now, we extend ideas developed in the previous section from analyzing226

shapes of curves to the shapes of patches. As mentioned earlier, we are going227

to represent a number of l patches of a facial surface S with an indexed228

collection of the level curves of the ‖rl− .‖ function (Euclidean distance from229

the reference point rl). That is, Pl ↔ {clλ, λ ∈ [0, λ0]} , where clλ is the level230

set associated with ‖rl − .‖ = λ. Through this relation, each patch has been231

represented as an element of the set S [0,λ0]. In our framework, the shapes of232

any two patches are compared by comparing their corresponding level curves.233

Given any two patches P1 and P2, and their level curves {c1λ, λ ∈ [0, λ0]} and234

{c2λ, λ ∈ [0, λ0]}, respectively, our idea is to compare the patches curves c1λ235

and c2λ, and to accumulate these differences over all λ. More formally, we236

define a distance dS[0,λ0] given by:237

dS[0,λ0](P1, P2) =

∫ L

0

dS(c
1
λ, c

2
λ)dλ . (5)

In addition to the distance dS[0,λ0](P1, P2), which is useful in biometry238

and other classification experiments, we also have a geodesic path in S [0,λ0]
239

between the two points represented by P1 and P2. This geodesic corresponds240

to the optimal elastic deformations of facial curves and, thus, facial surfaces241

from one to another. Fig. 3 shows some examples of geodesic paths that242

are computed between corresponding patches associated with shape models243
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convexconcave

Target

Reference Query

Source

Figure 3: Examples of intra-class (same expression) geodesic paths with shape and mean

curvature mapping between corresponding patches.

sharing the same expression, and termed intra-class geodesics. In the first244

column we illustrate the source, which represents scan models of the same245

subject, but under different expressions. The third column represents the246

targets as scan models of different subjects. As for the middle column, it247

shows the geodesic paths. In each row we have both the shape and the248

mean curvature mapping representations of the patches along the geodesic249

path from the source to the target. The mean curvature representation is250

added to identify concave/convex areas on the source and target patches and251
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equally-spaced steps of geodesics. This figure shows that certain patches,252

belonging to the same class of expression, are deformed in a similar way.253

In contrast, Fig. 4 shows geodesic paths between patches of different facial254

expressions. These geodesics are termed inter-class geodesics. Unlike the255

intra-class geodesics shown in Fig. 3, these patches deform in a different way.256

convexconcave

Target

Reference Query

Source

Figure 4: Examples of inter-class (different expressions) geodesic paths between source

and target patches.

6. Feature Vector Generation for Classification257

In order to classify expressions, we build a feature vector for each facial258

scan. Given a candidate facial scan of a person j, facial patches are extracted259

around facial landmarks. For a facial patch P i
j , a set of level curves {cλ}

i
j are260

extracted centered on the ith landmark. Similarly, a patch P i
ref is extracted261

in correspondence to landmarks of a reference scans ref. The length of the262

geodesic path between each level curve and its corresponding curve on the263
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reference scan are computed using a Riemannian framework for shape anal-264

ysis of 3D curves (see Sections 5.1 and 5.2). The shortest path between two265

patches at landmark i, one in a candidate scan and the other in the reference266

scan, is defined as the sum of the distances between all pairs of corresponding267

curves in the two patches as indicated in Eq. (5). The feature vector is then268

formed by the distances computed on all the patches and its dimension is269

equal to the number of used landmarks N = 70 (i.e., 68 landmarks are used270

out of the 83 provided by BU-3DFED and the two additional cheek points).271

The ith element of this vector represents the length of the geodesic path that272

separates the relative patch to the corresponding one on the reference face273

scan. All feature vectors computed on the overall dataset will be labeled and274

used as input data to machine learning algorithms such as Multi-boosting275

and SVM, where Multi-boosting is an extension of the successful Adadoost276

technique for forming decision committees.277

7. Recognition Experiments278

To investigate facial expression recognition, we have applied our proposed279

approach on a dataset that is appropriate for this task. In this Section,280

we describe the experiments, obtained results and comparisons with related281

work.282

7.1. Experimental Setting283

For the goal of performing identity-independent facial expression recog-284

nition, the experiments were conducted on the BU-3DFE static database. A285

dataset captured from 60 subjects were used, half (30) of them were female286

and the other half (30) were male, corresponding to the high and highest287
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intensity levels 3D expressive models (03-04). These data are assumed to be288

scaled to the true physical dimensions of the captured human faces. Follow-289

ing a similar setup as in [16], we randomly divided the 60 subjects into two290

sets, the training set containing 54 subjects (648 samples), and the test set291

containing 6 subjects (72 samples).292

To drive the classification experiments, we arbitrarily choose a set of six293

reference subjects with its six basic facial expressions. We point out that294

the selected reference scans do not appear neither in the training nor in the295

testing set. These references, shown in Fig. 5, with their relative expressive296

scans corresponding to the highest intensity level, are taken to play the role297

of representative models for each of the six classes of expressions. For each298

reference subject, we derive a facial expression recognition experience.299

7.2. Discussion of the Results300

Several facial expression recognition experiments were conducted with301

changing at each time the reference. Fig. 5 illustrates the selected references302

(neutral scan). Using the Waikato Environment for Knowledge Analysis303

(Weka) [17], we applied the Multiboost algorithm with three weak classi-304

fiers, namely, Linear Discriminant Analysis (LDA), Naive Bayes (NB), and305

Nearest Neighbor (NN), to the extracted features, and we achieved average306

recognition rates of 98.81%, 98.76% and 98.07%, respectively. We applied307

the SVM linear classifier as well, and we achieved an average recognition rate308

of 97.75%. We summarize the resulting recognition rates in Table 1.309

We note that these rates are obtained by averaging the results of the310

10 independent and arbitrarily run experiments (10-fold cross validation)311

and their respective recognition rate obtained using the Multiboost-LDA312

16



Table 1: Classification results using local shape analysis and several classifiers.

Classifier Multiboost-LDA Multiboost-NB Multiboost-NN SVM-Linear

Recognition rate 98.81% 98.76% 98.07% 97.75%

classifier. We note that different selections of the reference scans do not313

affect significantly the recognition results and there is no large variations in314

recognition rates values. The reported results represent the average over the315

six runned experiments. The Multiboost-LDA classifier achieves the highest316

recognition rate and shows a better performance in terms of accuracy than317

the other classifiers. This is mainly due to the capability of the LDA-based318

classifier to transform the features into a more discriminative space and,319

consequently, result in a better linear separation between facial expression320

classes.321
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Figure 5: Different facial expression average recognition rates obtained using different

reference subjects (using Multiboost-LDA).

The average confusion matrix relative to the the best performing classi-322
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fication using Multiboost-LDA is given in Table 2.

Table 2: Average confusion matrix given by Multiboost-LDA classifier.

% AN DI FE HA SA SU

AN 97.92 1.11 0.14 0.14 0.69 0.0

DI 0.56 99.16 0.14 0.0 0.14 0.0

FE 0.14 0.14 99.72 0.0 0.0 0.0

HA 0.56 0.14 0.0 98.60 0.56 0.14

SA 0.28 0.14 0.0 0.0 99.30 0.28

SU 0.14 0.56 0.0 0.0 1.11 98.19

323

In order to better understand and explain the results mentioned above,324

we apply the Multiboost algorithm on feature vectors built from distances325

between patches for each class of expression. In this case, we consider these326

features as weak classifiers. Then, we look at the early iterations of the327

Multiboost algorithm and the selected patches in each iteration.328

Happy Angry Fear Disgust Sad Surprise
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0.0142

0.0141
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0.0157

0.0151

0.0148

0.0142

0.0187 0.0165

0.0163

0.0138

0.0134

0.0127

Figure 6: Selected patches at the early few iterations of Multiboost classifier for the six

facial expressions (Angry, Disgust, Fear, Happy, Sadness, Surprise) with their associated

weights.

Fig. 6 illustrates for each class of expression the most relevant patches.329

Notice that, for example, for the Happy expression the selected patches are330

localized in the lower part of the face, around the mouth and the chin. As331
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for the Surprise expression, we can see that most relevant patches are lo-332

calized around the eyebrows and the mouth region. It can be seen that333

patches selected for each expression lie on facial muscles that contribute to334

this expression.335

7.3. Comparison with Related Work336

In Table 3 results of our approach are compared against those reported337

in [11], [9], and [8], on the same experimental setting (54-versus-6-subject338

partitions) of the BU-3DFE database. The differences between approaches339

should be noted: Tang et al. [11] performed automatic feature selection us-340

ing normalized Euclidean distances between 83 landmarks, Soyel et al. [9]341

calculated six distances using a distribution of 11 landmarks, while Wang et342

al. [8] derived curvature estimation by locally approximating the 3D surface343

with a smooth polynomial function. In comparison, our approach capture344

the 3D shape information of local facial patches to derive shape analysis.345

For assessing how the results of their statistical analysis will generalize to346

an independent dataset, in [8] a 20-fold cross-validation technique was used,347

while in [11] and [9] the authors used 10-fold cross-validation to validate their348

approach.349

Table 3: Comparison of this work with respect to previous work [11], [9] and [8].

Cross-validation This work Tang et al. [11] Soyel et al. [9] Wang et al. [8]

10-fold 98.81% 95.1% 91.3% -

20-fold 92.75% - - 83.6%
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7.4. Non-frontal View Facial Expression Recognition350

In real world situations, frontal view facial scans may not be always avail-351

able. Thus, non-frontal view facial expression recognition is a challenging is-352

sue that needs to be treated. We were interested in evaluating our approach353

on facial scan under large pose variations. By rotating the 3D shape mod-354

els in the y-direction, we generate facial scans under six different non-frontal355

views corresponding to 15 ◦, 30 ◦, 45 ◦, 60 ◦, 75 ◦ and 90 ◦ rotation. We assume356

that shape information is unavailable for the occluded facial regions due to357

the face pose. For each view, we perform facial patches extraction around the358

visible landmarks in the given scan. In cases where a landmark is occluded,359

or where the landmark is visible, but the region nearby is partially occluded,360

we treat it as a missing data problem for all faces sharing this view. In these361

cases, we are not able to compute the geodesic path between corresponding362

patches. The corresponding entries in the distance matrix are blank and we363

fill them using an imputation technique [18]. In our experiments we employed364

the mean imputation method, which consists of replacing the missing values365

by the means of values already calculated in frontal-view scenario obtained366

from the training set. Let dijk = dS[0,λ0](P
k
i , P

k
j ) be the geodesic distance be-367

tween the kth patch belonging to subjects i and j (i 6= j). In case of frontal368

view (fv), the set of instances Xfv
i relative to the subject i need to be labeled369
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and is given by:370
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where N is the number of attributes. In case of non-frontal view (nfv), if371

an attribute k is missing, we replace the kth column vector in the distance372

matrix Xnfv
i by the mean of geodesic distances computed in the frontal-view373

case, with respect to the kth attribute and given by: mfv
k =

∑J
j=1 dijk

J
, where374

J is the total number of instances.375
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To evaluate the robustness of our approach in a context of non-frontal views,376

we derive a view-independent facial expression recognition. Error recognition377

rates are evaluated throughout different testing facial views using the four378

classifiers trained only on frontal-view facial scans. The Fig. 7 shows the379

average error rates of the four classification methods. The Multiboost-LDA380

shows the best performance for facial expression classification on the chosen381

database. From the figure, it can be observed that the average error rates382

increase with the rotation angle (values from 0 to 90 degrees of rotation are383

considered), and the Multiboost-LDA is the best performing methods also384
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in the case of pose variations. As shown in this figure, recognition accuracy385

remains acceptable, even only 50% of data (half face) are available when we386

rotate the 3D face by 45 degree in y-direction.387
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Figure 7: The average error rates of six expressions with different choice of views corre-

sponding to the best reference and using different classifiers.

7.5. Sensitivity to Landmarks Mis-localization388

It is known that the automatic 3D facial feature points detection is a chal-389

lenging problem. The most difficult task remains the localization of points390

around the eyebrow regions, which appear to play an important role in the391

expression of emotions. The effect of the mis-localization of the landmarks392

has been addressed in a specific experiment. We considered the eyebrow re-393

gions in that the points in these regions are expected to be the most difficult394
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to detect automatically. In these regions, we added noise to the landmarks395

provided with the BU-3DFED. In particular, we added noise to the position396

of the landmarks by moving them randomly in a region with a radius of397

10mm, as illustrated Fig. 8 by blue circles. Then we performed expression398

recognition experiments with such noisy landmarks. The results are reported399

in Fig. 8. It can be noted that with the Multiboost-LDA algorithm the lower400

decrease in the recognition rate is observed, and even with a recognition rate401

equal to 85.64% the result still outperforms the one reported in Wang et al402

[8].

79.22

80.74

82.52

98.81
98.76

98.07

97.75
85.64

Figure 8: Recognition experiment performed adding noise to the eyebrow landmarks (ran-

dom displacement).

403

8. Conclusions404

In this paper we presented a novel approach for identity-independent fa-405

cial expression recognition from 3D facial shapes. Our idea was to describe406

the change in facial expression as a deformation in the vicinity of facial407

patches in 3D shape scan. An automatic extraction of local curve based408
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patches within the 3D facial surfaces was proposed. These patches were used409

as local shape descriptors for facial expression representation. A Riemannian410

framework was applied to compute the geodesic path between correspond-411

ing patches. Qualitative (inter and intra-geodesic paths) and quantitative412

(geodesic distances) measures of the geodesic path were explored to derive413

shape analysis. The geodesic distances between patches were labeled with414

respect to the six prototypical expressions and used as samples to train and415

test machine learning algorithms. Using Multiboost algorithm for multi-class416

classification, we achieved a 98.81% average recognition rate for six proto-417

typical facial expressions on the BU-3DFE database. We demonstrated the418

robustness of the proposed method to pose variations. In fact, the obtained419

recognition rate remain acceptable (over 93%) even half of the facial scan is420

missed.421

The major limitation of our approach is that the 68 landmarks we used to422

define the facial patches were manually labeled. For our future work we423

are interested in detecting and tracking facial feature points, as proposed424

in [19], [20], for automatic 3D facial expression recognition.425
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