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b CNRS UMR 7093, l’Observatoire Océanologique de Villefranche sur Mer, France
c UMR TETIS, Cemagref, Montpellier, France
a r t i c l e i n f o

Article history:

Received 27 January 2011

Received in revised form

20 September 2011

Accepted 19 October 2011
Available online 29 October 2011

Keywords:

Data mining

Supervised learning

Concept learning

Associative classifier
03/$ - see front matter & 2011 Elsevier Ltd. A

016/j.patcog.2011.10.015

esponding author. Tel.: þ39 0116706817; fa

ail addresses: meo@di.unito.it (R. Meo),

r.bachar@unice.fr (D. Bachar), dino.ienco@tel
a b s t r a c t

Current work on assembling a set of local patterns such as rules and class association rules into a global

model for the prediction of a target usually focuses on the identification of the minimal set of patterns

that cover the training data. In this paper we present a different point of view: the model of a class has

been built with the purpose to emphasize the typical features of the examples of the class. Typical

features are modeled by frequent itemsets extracted from the examples and constitute a new

representation space of the examples of the class. Prediction of the target class of test examples occurs

by computation of the distance between the vector representing the example in the space of the

itemsets of each class and the vectors representing the classes.

It is interesting to observe that in the distance computation the critical contribution to the

discrimination between classes is given not only by the itemsets of the class model that match the

example but also by itemsets that do not match the example. These absent features constitute some

pieces of information on the examples that can be considered for the prediction and should not be

disregarded. Second, absent features are more abundant in the wrong classes than in the correct ones

and their number increases the distance between the example vector and the negative class vectors.

Furthermore, since absent features are frequent features in their respective classes, they make the

prediction more robust against over-fitting and noise. The usage of features absent in the test example

is a novel issue in classification: existing learners usually tend to select the best local pattern that

matches the example and do not consider the abundance of other patterns that do not match it. We

demonstrate the validity of our observations and the effectiveness of LODE, our learner, by means of

extensive empirical experiments in which we compare the prediction accuracy of LODE with a

consistent set of classifiers of the state of the art. In this paper we also report the methodology that

we adopted in order to determine automatically the setting of the learner and of its parameters.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the last years novel approaches to classification emerged
joining two distinct research trends in data mining and machine
learning: from one side the rich area of itemsets and class
association rules algorithms, which studied in depth efficient
algorithms on very large data-sets and on high dimensional data
being able to extract large volumes of patterns from data and to
enforce on them a rich set of evaluation constraints [1–8]. On the
other side the even richer field of machine learning discoveries,
whose algorithms and theories were able to combine in powerful
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classifiers an ensemble of already powerful elementary learners
built on a wide spectrum of inductive learning techniques [9–14].

The framework from Local Patterns to Global Models (LEGO)
approach to learning showed how it is possible to join these two
worlds trying to combine the benefits of the respective fields:
manage an increased volume of predictive patterns and at the
same time evaluate and assemble them into powerful learners.
The resulting model constitutes a general model for learning [15].

Current work [16] on assembling a set of local patterns such as
rules and class association rules into a global model for the prediction
of a target usually focuses on the identification of the minimal set of
patterns that is able to cover the training data. In this paper we
present a new learner named LODE (Learning On Distance between
Ensembles) which takes a different view point. We are convinced that
a good model of a class should emphasize the typical features of the
examples of the class and that for effective results in classification all
of them should be used at the same time at prediction time.
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Fig. 1. Difference between the induction of classification rules by covering and by

possibly overlapping rules, like in LODE.

R. Meo et al. / Pattern Recognition 45 (2012) 1409–14251410
In this approach to induction of classification patterns and
global model construction we abandon the usual learning strat-
egy based on covering. Covering algorithms often remove the
training examples covered by the local patterns already discov-
ered. The removal of examples is motivated by the aim of
identifying a global model constituted by a minimal set of as
much as possible diverse patterns.

Consider the example shown in Fig. 1 in which the examples of
the positive class are denoted by the symbol ‘þ ’. By a classical
covering algorithm, like Ripper [9] and the rule induction systems
from propositional learning [17], each new learnt classification rule
covers the most numerous set of examples that have not been
covered yet by the already learnt rules. Suppose the first classification
rule discovered is ABC ) þ . After this, all the positive examples
matching ABC are discarded from further considerations. In Fig. 1
these examples are included in the square labeled by ABC. After the
elimination of these examples, another rule like DEF ) þ has no
possibility to be extracted because without the discarded examples, it
does not cover a sufficiently large set of examples. The unfortunate
consequence of this covering strategy is that the algorithm misses
some rules that have a large support in terms of covered examples
and represent a distinctive set of characteristics of the positive class
that would give a more complete characterization to it. As a
conclusion, the examples removal by the covering strategy introduces
a distortion in the training set which prevents the induction process
to learn a sufficient number of characteristics from the removed
examples. In practice, it diverts the learning toward the construction
of a class model composed of a comprehensive set of characteristics
that describes satisfactorily the examples of a class. Instead, by LODE,
all the classification rules that cover a sufficient number of examples
are considered. LODE is characterized by the following distinguishing
issues:
1.
 The model of each class includes those classification patterns
that are frequent w.r.t. the training examples of the class. The
frequency constraint is a guarantee that the pattern has a high
coverage and represents recurrent features in the class.
Though, we do not require that any two local patterns included
in the class model should cover distinct examples. We believe
that we should create a global model that emphasizes the class
characteristics and therefore could contain more patterns that
represent the same examples.
2.
 The selected patterns generate a probabilistic class model that
consists of a different representation space of the examples.
The model of each class is a vector whose components are the
selected patterns observed in the training examples of the
class. Each vector component is represented with a magnitude
equal to the probability with which the corresponding pattern
occurs in a random example of the class.
3.
 We used as classification patterns the frequent set of items
(called itemsets). Itemsets are introduced in Section 4.1 [18].
In LODE itemsets are selected by the innovative criterion of
D [19]. D is the departure of the observed frequency of a
pattern w.r.t. an estimated frequency of that pattern computed
on the basis of the observed frequency of its subsets in the
condition of maximum entropy. As a result, a high D occurs in
itemsets whose occurrence could not be determined from the
observation of their subsets. This fact is an indication that the
itemset is not redundant with respect to its subsets in terms of
information quantity.
The adoption of D has the aim to control the volume of
patterns in the class model. In fact, an increase in the volume
of patterns could occur, due to the combinatorial explosion of
the items and the combination of unrelated, independent
elements into the itemsets.
In a related paper [20] we have validated the use of D for
itemsets selection in classification. As in LODE, in [20] the class
models are based on ensemble of itemsets as well. We have
compared D with different alternative measures such as
accuracy, KL divergence [21], strong jumping emerging pat-
terns [7]. Experiments showed that D allows to identify the
itemsets that make effective the classifiers.
4.
 Prediction of a test instance occurs by distance computation
between the vectors representing the class models and the
projection of the test instance into each class space. In this
projection, the role played by the typical characteristics of
class examples is crucial: those characteristics that are absent
in a test instance but are present in the class model will make
the difference between the classes. The predicted class will be
the one in which the typical characteristics of the class are
absent in the instance as little as possible.
Thus, one of the fundamental differences between our learner
and existing prediction techniques based on rules is that our
learner uses for the prediction all the patterns of the class model

at the same time—also the patterns that are absent in the test

example. Instead, other pattern-based classifiers, like Class
Based Association Rules (CBA), RIPPER, decision lists or deci-
sion trees, choose a single rule for the prediction; whereas
instance-based classifiers, like k-nn, rely too much on the
single examples, that come from local portions of the data-
set and could be affected by noise or result in over-fitting.

In the new classifier that we present in this paper, LODE,
prediction of a test instance occurs by distance computation
between vectors representing ensembles of local patterns. Our
learner is at some extent, similar to ensemble learners, since both
combine by an operation of weighed aggregation the contribu-
tions of a large number of elementary predictions. Though,
ensemble learners like RandomForest or AdaBoost [22] still base
the single predictions on patterns which have been recognized
present and not absent from the test instance.

We do not compare in this paper LODE with ensemble learners
but only with elementary classification techniques since our
purpose here is to show that our learning technique in itself is
already ready to be employed as a basic learning technique. The
local patterns employed in LODE, a combination both of present
and absent patterns from test instances, could still be further
combined into a more sophisticated global model, having per-
formed an evaluation and aggregation of local patterns typical of
boosting or bagging’s combination of elementary classifiers. This
is a matter for future work.

The contributions of the paper are the following. We describe
and formalize a new classifier in the context of the LEGO frame-
work. Differently from many approaches based on local patterns,
in LODE the generation of the class model by local patterns does
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not occur by a covering strategy but by frequent pattern search.
Frequent patterns produce class descriptive models. The class
models are vectors composed of the itemsets occurring in the
training class examples and are weighed by their probability in
the class. By the experimental results of Section 7, we make
evident that a descriptive model of the classes, after a suitable
simplification and evaluation by a wrapper approach, can be used
effectively with a predictive purpose.

The descriptive model is turned into a predictive model by an
optimization, randomized algorithm (Simulated Annealing)
whose working points represent the possible cuts in the ranking
of the class itemsets. Ranking has been performed by D, proposed
in our previous works [19,20]. D is an uncommon criterion for the
determination of the importance of the itemsets and is related to
a non-redundancy test between the itemsets and their subsets.

Prediction by local patterns occurs by an ensemble in which all
the patterns of the class model are used at the same time.
Furthermore, prediction makes use not only of the patterns
present in the example but also of the absent patterns. We show
that the adoption of a multitude of patterns selected from the
original class description models makes the prediction more
robust against noise and the risk of over-fitting. In this paper
we have performed extensive experiments on many data-sets and
have conducted a comparison with a consistent set of classifiers
of the state of the art. We show that LODE is specially suitable to
the prediction in noisy environments since its characteristics and
its probabilistic nature make it robust against noise. As a conclu-
sion we are able to show its excellent performances.

The last contribution is to show the methodology for the
tuning of the parameters in LODE. Tuning exploits the memory
resources of the system and occurs without the intervention of
the user. The contributions of this paper with respect to previous
work [20] consist in the formalization of the overall LODE model,
the wrapper approach based on Simulated Annealing, a more
extensive set of experiments that consider both the real and the
noisy data and the tuning strategy of the parameters.

This paper is organized as follows. Section 2 provides an
overview of the related work while Section 3 puts LODE in the
context of the research works that combine local patterns into a
global model for learning. Section 4 presents the details of the
inductive learning technique. Section 5 discusses one of the
positive issues of this type of classifier: it has at the same time
descriptive and predictive capabilities. Section 6 presents the
methodology we adopted in order to automatically set the learner
parameters. Section 7 presents the experimental results. Finally
Section 8 draws the conclusions.
2. Related work

Associative classification is a popular classification technique
which combines association mining with classification. CBA [1] is
one of the earliest associative classifier which uses association
mining to extract association rules from the training data-set.
It then ranks the rules based on their confidence. Later it builds a
global model from these rules by using a wrapper approach.
HPWR [23] is an associative classifier which uses statistical
residual analysis [24] for the selection of the best associative
patterns in the data-set and then uses the weight of evidence [25]
in making predictions. IGLUE [26] uses the concept lattice in order
to re-describe each instance of the dataset. In the new description
of instances the attributes are represented by numerical values
according to the number of their occurrences in the concept
lattice. It later uses k-nn for prediction. Classifiers based on
Emerging Patterns [6–8] choose the associative patterns for each
class that are able to discriminate between classes on the basis of
their support ratio in different classes. The patterns with larger
support ratio are given priority. L3 [27] is another associative
classifier which uses a compression method for maintaining more
associative rules compared to other associative classifiers. It
divides these rule sets into two parts where the first part contains
all the specific rules and the second part contains spare rules.
During prediction if a matching rule is not found in the first part
then the spare rules are used.

Instance based classifiers like k-nn [10,28,29] use distance
calculation similar to ours. The main difference between our
approach and K-nn is that K-nn calculates the distance between
each test instance and a (possibly large) set of training instances
for making prediction. In our approach we calculate the distance
between a test instance and a whole global model for each class.
Decision tree classifiers like J48 [30] use decision trees where the
internal nodes represent tests on attributes and the leaf nodes
represent classes. The best matching single path from root to the
leaf node is chosen for making any prediction. Rule based
classifiers are the closest cousins of associative classifiers. Typical
rule based classifiers like Ripper [30] apply the if–then paradigm
for building rules and uses the best rule for any prediction.
Probabilistic classifiers like Naive Bayes [31] use prior probabil-
ities for calculating all the class conditional probabilities of each
attribute. For making a prediction they calculate the posterior
probability of the attributes in a test instance. The class with
higher posterior probability is chosen as the predicted class. SVM
[32] uses the concept of maximum margin hyperplane to find a
decision boundary which maximizes the distance between the
examples of distinct classes. The decision boundary is the global
model which has been built by giving a special relevancy to some
local observations in the training set (closest observations coming
from different classes). In this sense it is sensitive to the presence
of noise in those local portions of the dataset.

Almost all the above mentioned classifiers use local information
for making a prediction, in the sense that they use only those patterns
or attributes which are present in both of the test instance and the
model constructed from training instances. Differently, in LODE we
use the global information of a prototypical model of the classes for
making any prediction, in the sense that we use all the information
contained in each class model as we calculate the distance between
each class model and the test instance. According to our knowledge
this is a new approach.

Our learner is at some extent, similar to ensemble learners
because it combines by an operation of weighted aggregation the
contributions of a set of elementary predictions. Though, ensem-
ble learners that make use of bagging, like RandomForest, or
boosting, like AdaBoost [22] still base the single predictions on
patterns which have been recognized present and not absent from
the test instance. Moreover, the basic mechanism by which they
learn is different to ours: they generate randomly the basic
learners and during the learning adjust their weights. Instead, in
LODE we generate first a descriptive model of the class (that acts
as a sort of prototype) and learn how to simplify the model by
elimination of some of the features. Ref. [33] shares the same idea
that an ensemble must be composed of millions of patterns but
presents important differences w.r.t. our approach: it randomly
generates patterns which have a uniform (also low) coverage in
terms of the number of examples they match. Patterns are
formulated by checking that they do not cover negative examples
and are weighted in a uniform way.
3. From local patterns to global models

LODE is an instantiation of the LEGO approach to classification
[15]. LEGO requires an initial extraction of local patterns from the



Fig. 2. Work-flow of LODE according to the LEGO approach.
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training data, possibly selected by means of some constraints.
Resulting patterns could still be redundant or loosely correlated
to the target. Thus local patterns are selected by means of some
measure of subsets evaluation. Resulting patterns can be thought
as the features on which the classification is based upon. Final
patterns are in turn aggregated into an ensemble that constitutes
the final global model which is used for prediction of test data.

In Fig. 2 we present LODE work-flow according to this approach.
In LODE the terms (local) patterns and (frequent) itemsets are meant
as interchangeable. Furthermore, each itemset is a feature in the new
representation space of the class examples and each of the features
corresponds to a vector component in the class model:
1.
FIM

dat
From the training examples of source data, frequent itemsets are
extracted as the local patterns and separately from each class. Any
algorithm for frequent itemsets extraction would be valid. The
step of frequent itemsets mining can be considered as a black-box
from the viewpoint of the final LODE classifier whose need is to
collect the largest possible set of frequent itemsets that main
memory allows.1 Resulting frequent itemsets generate a lattice.
The itemsets with the same cardinality are at the nodes of the
same level in the lattice and have edges to their subsets and their
supersets at the closer lattice levels nodes.
2.
 Then the itemsets in the lattice of each class Ci are ranked into
ranking Ri according to some evaluation measure. The purpose
of this step is to raise at the top of the ranking the patterns to
be included in the model of class Ci. In the case of LODE, as we
will see in Section 3.1, the evaluation measure is the normal-
ized D. Normalized D allows to compare itemsets of different
cardinality and, as D, allows the identification of which item-
sets are not redundant w.r.t. their subsets.
3.
 The correct top portion of the ranking must be determined so
that the ensemble can be simplified, the classifier can be made
more robust and efficient and the risk of over-fitting is
reduced. As a result of this simplification, each itemset that
is in the top portion of the ranking is placed in the ensemble.
4.
 The ensemble model of the class i is a vector (Mi). Any vector
component (pij) represents an itemset in the ranking Ri with a
weight equal to its probability (pij) to occur in an example of
the class i.
5.
 The global model is composed of all the class vectors.
The prediction of a test instance is made by projection of the
1 In the context of our implementation we adopted LCM [34], the winner of

I-2004, a competition on Frequent Itemset Mining algorithms on very dense

asets.
instance in the feature space of each class. The proximity of the
projected vector to any class vector is then evaluated for the
different classes: the class which is closest to the test instance is
predicted.

3.1. D as the measure to select the relevant itemsets for the

characterization of the classes

We use the criterion of D [19] for the selection of local patterns
that will be included in the global model. D is the departure of the
observed frequency of a pattern w.r.t. an estimated frequency of
that pattern:

D¼ Pobserved�Pestimated ð1Þ

Pobserved and Pestimated are the relative frequencies of a pattern in
each class.

The referential estimation is computed in the condition of max-
imum entropy. It represents the frequency that the itemset would
have in the case it was maximally difficult to predict its presence
when the presence of its subsets was known. In other terms, it is the
condition in which the presence of the itemset gives the maximum
information when we know the presence of its subsets.

Notice that the estimated probability is a generalized version
of the condition of independence of the itemset with respect to its
subsets: for a pair of items it corresponds to the product of their
individual probabilities. For a number of itemsets higher than two
there is not a closed formula: the solution is found by an iterative,
numerical procedure that finds the zero of the derivative of the
itemset entropy function [35]. D is a departure from a generalized
condition of independence between n items. Thus, it is able to
determine a existing dependency between all the items in the
n-itemset and to distinguish when a dependency, though present
in the itemset, is present because it has been ‘‘inherited’’ by
dependencies already existing in the subsets. Summarising, it
gives us an indication necessary to distinguish the intrinsic utility
of the itemset w.r.t its subsets.

Normalized D: In this paper we adopted a normalized version
of D as follows:

D
Pobserved

¼
Pobserved�Pestimated

Pobserved
ð2Þ

This normalization is necessary in order to compare itemsets with
different cardinalities. In fact, it is well-known that itemsets with a
higher cardinality tend to have a lower value of probability. As a
consequence, the expected values of D for higher cardinality itemsets
are lower.
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Itemsets with an absolute value of D close to zero are
considered redundant w.r.t. their subsets. If two independent
subsets are merged to form a new itemset, the contribution of the
new itemset to the model would be low because the new itemset
does not add new information w.r.t. the subsets. In case of
independent subsets, the probability of the supersets corresponds
to the estimated probability, obtained in the condition of max-
imum entropy. Therefore, a D close to zero identifies an itemset
that has been formed merely by the combinatorial process of
union of items in the itemset formation but do not constitute any
specific information, per se. This is an indication that the itemset
can be eliminated. Conversely, a high D occurs in an itemset if its
subsets are dependent. In that case, the superset would be
interesting because identifies related pieces of information that
combined appear as non-casual. Itemsets that result from the
selection based on a high value of normalized D represent the
features of interest.

The resulting class model is probabilistic and consists in a
characterization of the class based on frequent itemsets com-
posed by non-independent subsets. This is motivated by the need
of eliminating irrelevant itemsets from the multitude of frequent
itemsets. Indeed, some frequent itemsets, though might occur in
the class with a high probability, could be constituted by
independent elements; in this case they should not be kept since
they do not convey significant additional information for the class
with respect to their subsets.

3.2. Selection of the abstraction level

In LODE, ranking is used also to determine unknown char-
acteristics of the local patterns. The main unknown characteristics
of the patterns is the itemset cardinality.

Any lattice level can be considered as an abstraction level at
which the class model can be constructed. It is the purpose of the
inductive algorithm to learn the correct abstraction level at which
the itemsets must be selected in the global model. In fact,
itemsets coming from different abstraction levels should not be
kept in the model: there would be a duplication of information in
the two itemsets when a relationship of specialization (or set
containment) exists between them.

In LODE we used ranking by normalized D also to determine
the abstraction level of the itemsets in the lattice. Ranking the
itemsets makes emerge the patterns that are more relevant for
the class model. We determined from the top portion of the
itemset ranking which are the most recurrent values of the
itemset cardinality and produced a rank of the cardinality values
denoted by Rlevels. The best value of the cardinality j will be
selected from Rlevels by a wrapper approach. The wrapper is based
on the accuracy obtained by the classifier LODE with the class
models built on the portion of the itemset rankings with cardin-
ality j. In particular, the portion Rij of the ranking Ri is composed
of the itemsets extracted from class i with cardinality j. The
method is an optimization algorithm based on Simulated Anneal-
ing that is responsible also for the ranking reduction (feature
selection) and is described in Section 6.5.
4. The distance-based learner on ensembles of itemsets

In this section we describe how our distance-based learner works.

4.1. Preliminary definitions

Before entering into the details of the prediction, let us introduce
some preliminary definitions. Each test and training example is
described by some attributes whose values characterize the instance
itself. The values of each attribute belong to a certain domain that
could be continuous or discrete. Continuous attribute values are not
suitable to be employed in classification by means of class association
rules, since they do not often occur frequently in the data. The search
for recurrent and frequent itemsets usually works on discrete
(categorical or numerical) values in the class examples. Thus con-
tinuous values are usually discretized in a preprocessing step, by a
supervized algorithm like [36].
�
 Any example in the data-set is represented by a set of
attribute-value pairs. We call item an attribute-value pair.
For each item a binary variable is associated. For each example
of the data-set the binary variable associated to an item has a
true value if the example contains that attribute with that
value, false otherwise. In this way, the data-set conceptually
can be represented as a binary matrix with a row for any
example and a column for any item. In each cell of the matrix
there is a true or a false value according to the value of the
item variable for that example.

�
 Similarly, from any example we can generate itemsets, as

those sets of item variables assuming true values for the
example.

�
 Since we are interested only in recurrent characteristics

observed in the examples of a class, we recall only frequent
itemsets that occur with a certain, minimum frequency in the
examples of the class.

�
 Let be C¼ fC1,C2,: :,CLg the set of classes.

�
 Mk denotes the model of the class Ck, with k¼ 1: :L. Mk is

represented as a vector of nk components. Mk constitutes a
new feature space of representation of examples. Each com-
ponent of the feature space of class Ck is one of the frequent
itemsets extracted from the training examples of class Ck.

�
 pki denotes the probability with which ith itemset (or ith

component) of the feature space of the class Ck occurs in a
random example of class Ck.

�
 Mk � /pk1,pk2, . . . ,pknk

S.

4.2. Projection of a test instance in the class space

Each test instance is described by some attributes whose
values characterize the instance itself. Similarly, as we repre-
sented training instances, by means of itemsets variables with
true or false values, we represent test instances, adopting the
same representation.
�
 In order to predict the class of a test instance t it must be
represented in the feature space of each class Ck. This is a
projection operation.

�
 The projection works as follows. We check the presence of

each component (an itemset) of the class model Mk in the
instance t. Let us denote this generic component as the ith
component. If it is present in t (that is, if every item in the
itemset i is present in t), we set the value of the ith component
of t vector to 1; 0 otherwise. In fact, not all the itemsets
observed frequently in the objects of a certain class will be
present in every test instance, even if the instance comes from
that class.

�
 In the projection we discard those components of t that are not

present in class Ck. In fact, not all the itemsets that are present
in the instance t could be present in a certain class, even if that
instance comes from that class.

As a conclusion, the vector of instance t projected into the

feature space Mk of class Ck is denoted by t
!
? Mk

�!
whose ith
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component is

Indði,tÞ ð3Þ

where the itemset i is the ith component of the feature space Mk

and Ind(i,t) is the indicator function whose value is 1 if itemset i

belongs to test instance t, 0 otherwise.
Vectors are later used for class prediction in a distance

computation. Since, class vectors could have a different number
of components (features in the feature space) according to the
number of frequent itemsets that could be extracted from the
examples of that class, we do not want to favour in the distance
computation those classes whose feature spaces have a low
number of features since in those spaces data are less sparse
and therefore distances result reduced. To solve the problem we
normalized the vectors such that their length is 1 and as a
consequence distances are not influenced by the number of
features in the space. In the following we will use the normalized
version of the vectors, indicated by the u operator. The generic ith
component of the normalized vectors is

uðtiÞ ¼
Indði,tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jAMk

Indðj,tÞ
q ð4Þ

uðMkiÞ ¼
pkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jAMk

p2
kj

q ð5Þ

where ti and Mki represent respectively the ith component of t
!

and Mk

�!
.

Fig. 3. Example on Play ten
4.3. Distance computation between the test vector and the class

vectors

The proximity between the two vectors Mk

�!
and t
!

can be
computed in many ways, either as a measure of distance (like the
Euclidean distance), or as a measure of similarity (like the cosine
similarity), Jaccard or extended Jaccard, etc. Here, we report
results obtained by application of the Euclidean distance and
the cosine similarity (the results do not differ significantly).
Notice, however, that they have an opposite behavior: the former
increases with the dissimilarity of the instance w.r.t. the class,
while the latter decreases

Euclidean distance ðuðMkÞ
���!

,uðtÞ
��!
Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
iAMk

ðuðMkiÞ�uðtiÞÞ
2

s
ð6Þ

cosine similarity ðuðMkÞ
���!

,uðtÞ
��!
Þ¼ uðMkÞ
���!

nuðtÞ
��!

ð7Þ

Justification of the proximity formulas: It is clear from the
formulas (6) and (7) that when a feature (itemset) is present in
the class model Mk but it is absent in the test instance t, its
contribution does not increase the value of cosine similarity and
increases the Euclidean distance. On the other side, when the
total number of features in the class is high, the contribution to
each of them is lower (because of the normalization factor).
However, in this normalization factor even absent features have
their weight and contribute to decrease the weight of all the other
features (also the present ones).
nis data-set by LODE.
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4.4. Formalization of the problem with an objective function

LODE framework can be formalized as a problem of learning
the composition of the class models in terms of the frequent
itemsets extracted from the training examples. The learning
makes use of an objective function (8) that guides the tuning of
the models and can be formalized as follows.

Let C¼ fC1,C2,: :,CLg be the set of classes and Tr¼
SL

i ¼ 1 Tri the
training set where Tri is the subset of the examples of class Ci. The
goal of the learning task is to find the set of class models
fM1,M2,: :,MLg in which each Mi is composed of frequent itemsets
occurring in the examples of Tri. Each itemset j describes a set of
characteristics occurring in the examples of Tri with frequency pij.
Each Mi maximizes an objective function:

X
tATri

IndfproximityðuðMiÞ
���!

,uðt ? MiÞ
������!

Þ4proximityðuðMjÞ
���!

,uðt ? MjÞ
������!

Þg with ja i

ð8Þ

where the proximity function is Eq. (6) or (7), t is an example of
class Ci in the training set Tri. The unary indicator function Indf�g

is 1 if its parameter is true, 0 otherwise. The parameter

proximityðuðMiÞ
���!

,uðt ? MiÞ
������!

Þ4proximityðuðMjÞ
���!

,uðt ? MjÞ
������!

is the condition for the true class prediction. The proximity is
computed between two vectors: the unit vector representing the
class model and the unit vector representing a single training
instance projected in the class space. The objective function
increases for the class model Mi when the proximity between
the class model vector and the training instance vector is higher
Fig. 4. Test example on Play
then for the other class models Mj. In other terms, the
objective function represents the number of correct predictions
for class Ci.

The tuning step of LODE for the determination of the composi-
tion of Mi selects the itemsets from a ranking Ri. The itemsets in Ri

have been ranked by an evaluation measure (that in our case is
the normalized D). Let denote by Ril the set of itemsets in Ri of
cardinality l. The selection of the itemsets in Mi is made by
determination of the itemset cardinality value l (abstraction level)
and of a cut of the ranking Ril, such that the top portion of the
ranking is retained in Mi and the portion below the cut is
discarded. The cut has been formalized by the determination of
a percentage ri of the itemsets to be retained in Mi.
4.5. LODE on a toy example

In Fig. 3 we show a toy sample from the Play Tennis data-set, a
well-known example of a prediction problem of the suitable
weather conditions for playing tennis. From the examples of the
two classes (Yes and No) separately, LODE extracts the frequent
itemsets. The two diamonds represent the itemsets search space
that has the form of a lattice. LODE ranks the itemsets according
to the value of the normalized D (NDelta). Then, the itemsets
cardinality equal to a value of three is selected (see the method
described in Section 3.2). For each itemset, the value of the
relative frequency in the class is reported. In the picture, due to
lack of space, only the first 6 itemsets are shown in the ranking,
out of the total of 11 extracted itemsets. These ensembles
constitute a descriptive representation of the classes in which
tennis data-set by LODE.
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the order of the features is informative of its importance in the
description.

In Fig. 4 we show instead the test phase of LODE. On the left,
the vector model of class Yes is composed by the 11 itemsets that
were in the corresponding ensemble. Each itemset is represented
in the vector by its relative frequency in class Yes. Analogously
for the other class whose vector is shown on the right. Below, we
show both the vector models with numerical values, after
normalization.

In the center of the picture a test example is taken. At the
bottom, the picture reports the vectors representing the test
example under the viewpoint of the classes. They have been
obtained by means of projection of the original test vector in the
feature space of each class and normalized. Finally, the distance
between the unit test projected vector and the class vector is
computed. In this example, class No is predicted. In fact, class Yes
has only one present feature (which in addition occurs in the class
with a low frequency) while class No has four features (and the
first one is very frequent). In this example, both the number and
the frequency of the present features make the difference in the
computation of the two distances which depend also on the
number of absent features in the test vector projected in the
class space.
Fig. 5. Percentages of redundant itemsets by Chi-square at different cardinality

levels.
5. Descriptive and predictive capabilities of LODE

The distinctive issue in LODE is the adoption of a descriptive
model for a final predictive goal. The question that we want to
answer with this work is: Does a descriptive model support a
predictive task? We will ask with the empirical evidence of the
extensive experiments performed at Section 7.

The benefit is that it is possible to obtain both a descriptive
model of the classes and a predictive model, at the same time.
Furthermore, the test instance vector projected onto the class
models constitutes a descriptive representation of the test
instance itself. This model is interpretable: it is composed by an
ensemble of itemsets where each itemset is in practice a sentence
composed by a conjunction of predicates that are true for the
instance and are frequent in the class. Furthermore, each pre-
dicate sentence is equipped with a weight equal to the probability
of its occurrence in the class examples. This weight is then
reduced by the total number of sentences (if many sentences
are applicable each of them weighs less).

The number of class features that apply to the test instance
tells us how much that instance is similar to the class. Finally, the
evaluation measure of the proximity between the test vector and
the class vector quantifies the similarity between the test instance
and the class.

As regards the descriptive capability, we believe that using D –
this novel concept, unfortunately rarely adopted in data mining –
it is possible to distinguish which of the itemsets are really
relevant to determine a complete, but non redundant, set of
characteristics describing a class of examples.

Certainly related to this concept are the concepts of miki,
maximally informative k-itemsets [37] and pattern teams [38].
Both make use of the concept of maximum entropy but they do
not make use of the departure with respect to it. Indeed, their aim
is orthogonal to ours. Miki’s aim is to identify the minimal set of
items that is able to distinguish between the examples in the data
and search for the set of items that are distributed in the most
uniform way in the data-set. Similarly pattern teams’ aim is to
select from a set of local patterns the minimal set that is non-
redundant and that allows a maximal covering in terms of the
number of the examples they represent. Instead, our aim is
descriptive: in the class model we want to identify the most
complete set of patterns that catch all the class features observed
in the training set. This ensemble of patterns collectively provides
a probabilistic description of the class. It is composed of itemsets
that have a good coverage each (because each of them is frequent)
and such that each of them is not redundant.

Related to our goal is the field of subgroup discovery [39,40].
In subgroup discovery, the set of patterns selected for the
representation of a subgroup of the population does not need to
provide a complete description of the target but needs to
represent a set of interesting characteristics. The difference of
our approach w.r.t. subgroup discovery is that our model aims to
provide a complete description of the class while subgroup
discovery accepts to describe only a portion of the target but it
achieves a statistically sound description of a subgroup of
examples. It would be possible to adopt a subgroup discovery
model and adapt it to a predictive goal by means of the distance-
based approach on positive and negative descriptions as
described in this paper. This will be the theme of a future research
work. Currently, the authors of [40] make the reverse: they adapt
a rule induction algorithm with a predictive goal to the subgroup
discovery task.

On itemset redundancy: Itemsets redundancy is tested in our
model by D with respect to the itemsets subsets and not with
respect to their peer-itemsets. This operation by D is simpler than
other standard statistical methods like the test of independence
by w2 or on correlation by Pearson coefficient. Both these tests
work on pairs of patterns. Instead, D does not involve the peer-
itemsets but their subsets (whose number is much lower than the
number of peer-itemsets). Furthermore, the results of the experi-
ment we are describing in the following do not justify the search
of redundancies between the peer-itemsets. We checked the
number of dependent peer-itemsets by w2 test. The test is done
at different cardinality levels of the itemsets. In Fig. 5 we report
the percentages of redundant itemsets at the cardinality level
2 and 3 detected by w2 in a few UCI data-sets. We observe that the
percentage of redundant itemsets reduces dramatically as soon as
the itemsets cardinality increases. This is due to the following
fact: as a consequence of the construction of itemsets, the space
gets more sparse and the number of redundancies between
itemsets results reduced.

In agreement to these observations, many algorithms of rule
learning try to reduce redundancies between the rules. Very often
they work on redundancies between the original features (in our
case, the items). One example is [41] which learns class associa-
tion rules by an Apriori-style algorithm [18]. During rule genera-
tion Apriori-C checks that for each rule there is not already one of
its generalizations that has a better coverage. This test aims to
reduce the number of rules and is based (as D) on the comparison
between an itemset and its subsets. Rules are ordered according
to their quality measure but, in contrast to LODE, one single rule
is applied to each test example.
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6. Methodology of learner setting

In this section we present the methodology we adopted to
generate the local patterns, and later tune the model: select a
subset of the local patterns for the creation of a global model.

6.1. Motivations for the ensemble reduction

In Fig. 6 we present a study on the effect of the dimension of
the ranking of local patterns Rk on the misclassification rate.
As we explained, we ranked the local patterns by the evaluation
measure (normalized D). We reduced the dimension of the class
models by elimination of the bottom part of the rankings. Fig. 6
shows an initial gradual improvement of the classification accu-
racy which is due to a simplification of the models that leads to a
better generalization capability and a reduction of over-fitting.
After the optimum point, the model worsens because too many
itemsets have been eliminated from the model and the error rate
starts to increase.

6.2. Effect of the minimum support threshold on classification

In Fig. 7 we observe the relationship between the minimum
support threshold that governs the algorithms of frequent
Fig. 6. Error rate on Wisconsin-Breast-cancer with class models built on different

number of itemsets.

Fig. 7. Misclassification on Wisconsin-Breast-cancer by class models on frequent

itemsets at different minimum support.
itemsets mining and the misclassification rate of the ensemble
of local patterns. We notice an improvement in classification
accuracy by decreasing the support threshold. This tells us that
even itemsets with a not very high frequency could be useful for
the classification since their normalized D value could be high.

6.3. Determination of the value of minimum support threshold

How many itemsets do we have to collect? We believe that we
could try to collect the highest possible number of itemsets that our
computing system can allow: it will be responsibility of the normal-
ized D their final selection in the global model. Thus in Fig. 8 we plot
the total number of itemsets having a frequency in the interval
indicated at the x-axis. Knowing this histogram we can decide a
suitable value of the minsup parameter (i.e., the minimum itemsets
frequency allowed) given the total amount of memory in our system:
it is sufficient to sum up the total number of itemsets taken from the
histogram starting from the highest support value and going toward
the left until the maximum memory size is reached or the support
reached is 0 (in other words we consider the histogram as a
probability density function of the itemsets, and compute the area
under it from the right).

The construction of the exact histogram is of high computa-
tional cost if it is constructed by running an algorithm of frequent
itemset mining on a large data-set. Thus we suggest the following
strategy:
1.
Fig
We simply count the frequency of singletons (items) in
the data.
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Fig. 8. Histogram on the number of itemsets in class malignant of Breast.

. 9. Total number of itemsets from Breast data-set with progressive sampling.
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2.
 We compute the frequency of other itemsets under the
hypothesis of statistical independence of items and generate
the histogram of the number of itemsets with a frequency
equal to a certain value determined by the interval indicated at
x-axis (see Fig. 8). You can notice that the real and the
estimated histograms differ only at low frequency thresholds.
3.
 We select the support threshold directly on the estimated
histogram and this choice is conservative.
If we wished to establish instead the correct number of
itemsets at lower support values, we could collect a sample
of the data and test in the sample the total number of itemsets
without the hypothesis of statistical independence. In Fig. 9 we
show that this approach is practical since the total number of
itemsets collected does not differ significantly with the dimen-
sion of the sample (the percentages of the sampled examples are
indicated at the x-axis). Thus this strategy is computationally
feasible, since it requires to collect only a little portion of the data-
set. In this initial sample we lower the minimum support thresh-
old and observe the total number of itemsets extracted. The right
threshold is the one that gives the maximum number of itemsets
that the system memory allows.

6.4. Initialization of LODE

Fig. 10 shows the diagram of the initialization of LODE. After
the first step of determination of minimum support threshold
(according to the algorithm described in Section 6.3) the algo-
rithm of frequent itemsets mining is launched on the training-set
and produces a set of frequent itemsets that are ranked according
to their normalized D value (ranking Rall). This initial, unique
ranking tells us some things regarding some unknown but
characteristic parameters of the itemsets, as already explained
in Section 3.2. First of all the most recurrent value of cardinality of
the itemsets at the top portion of the ranking (top portion is set to
2/3). The most recurrent value of itemsets cardinality at the top of
the ranking is the first value that will be tested in the following
tuning process of LODE in order to select itemsets for the class
models (see Section 6.5). Then, the other cardinality levels are
ordered in a rank (Rlevels) according to the frequency of the
cardinality value of the itemsets at the top portion of the ranking
Rall. This is done because it is necessary to determine a unique
value of cardinality for the itemsets in the class models. Indeed, it
makes no sense to include itemsets with a different cardinality
value as components of the class vectors since some dependen-
cies exist between itemsets and their subsets.

6.5. Tuning step of LODE

The pseudo-code of the algorithm that performs the tuning
process of the class models is Algorithm 1. This tuning process has
been performed in all the experiments that will be described in
Section 7 within a 10-fold cross-validation (from line 6 to 37): we
repeated this process 10 times on different training sets and with
a different validation set and test set. For each training set there is
a separate validation set. On each training set the learning
algorithm produces a model (lines 14–19) with parameters which
Fig. 10. Initialization of parame
are optimized by the tuning algorithm on the validation set (lines
22–33). As can be observed from Algorithm 1, since the discreti-
zation performed by Fayyad and Irani’s method [36] is a super-
vised step, we have to guarantee that no information on the class
outcomes toward the test sets in an hidden way through the
information on the discretization. Thus, the discretization has
been applied 10 times as a pre-processing step to each different
training-set (see lines 10–11) and re-applied 10 times to the
corresponding test set (line 34). Each test-set is then used to
evaluate the classification accuracy of the generated models (lines
35–36) and gives in output the average of the values of mis-
classification for the 10 test folds (line 38).

Algorithm 1. Feature reduction tuning process of LODE within
cross-validation.
ters and
1:
 Input: D data-set

2:
 Input: MaxMemorySize

3:
 Output: TotErr LODE classification error

4:
 - - set small and big perturbation (percentage reduction) in

rankings - -
5:
 s¼0.0002, b¼0.05, TotErr¼0, Nfolds¼10

6:
 for testFolds¼1 to Nfolds - - 10-folds cross-validation - -
7:
 divide D into disjoint portions: training-set Tr,
validation-set V, test-set T
8:
 - - apply Fayyad Irani supervised discretization on

training-set and validation-set - -
9:
 set of attribute value intervals S¼FindSupDiscr(Tr [ V)

10:
 discTr¼applyDiscretization(Tr, S)

11:
 discV¼applyDiscretization(V, S)

12:
 - - Initialization of minsup and ranking of cardinality levels

by Algo. in Fig. 9
13:
 initialize(discTr, MaxMemorySize, minsup, Rlevels)

14:
 - - extract itemsets from discretized training-set and rank

them by Norm. Delta
15:
 Rall¼generate-itemsets-and-rankings(discTr, minsup)

16:
 - - Rij is the portion of Rall with freq. itemsets at cardinality

j for class i
17:
 iteration it¼1

18:
 l¼first cardinality level from Rlevels
19:
 OptimalRi ¼Ril - - initialization step - -
20:
 BestErr¼HIGHEST ERR VALUE - - initialize with worst
possible error
21:
 stop¼FALSE

22:
 repeat

23:
 - - Tune class models by Simulated Annealing on LODE

classification error - -
24:
 CurrentErr¼SA (discV, Ril, s, b) - - call Algo. 2

25:
 DErr¼ BestError-CurrentErr

26:
 IF (DErro0)

27:
 BestErr¼CurrentErr

28:
 OptimalRi¼Ril
29:
 END IF

30:
 IF ðeðDErrÞ=itrrandð0;1ÞÞ stop¼TRUE

31:
 itþþ

32:
 l¼next cardinality level in Rlevels
33:
 until stop

34:
 discT¼applyDiscretization(T, S)
of tuning of LODE.
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35:
 errorOnTestFold¼LODE(discT,OptimalRi)

36:
 TotErr¼TotErr þ errorOnTestFold

37:
 end for

38:
 return TotErr/Nfolds
1.
 At lines 7–11 the cross-validation procedure is prepared;
discretization is applied as a pre-processing step to each
different training-set of the cross-validation loop.
2.
 At line 13 the initialization phase determines the minimum
support value (by algorithm described at Fig. 10) and gener-
ates the rank of itemsets cardinality levels (Rlevels).
3.
 At the lines 16–20, during the first iteration (it¼1), the sets of
frequent itemsets are extracted separately from the classes of
the training set (with the same minimum support proposed by
the initialization step); the itemsets for class i are ranked in
ranking Ri. They are given in input to the phase of itemset
cardinality selection (lines 22–33) for the construction of the
class vectors. The level is taken from the rank of levels (Rlevels)
obtained at initialization.
4.
 From the collections of itemsets at the selected level of
cardinality l separate rankings are obtained for the various
classes (Ril). We denote by Ril the different portions of the
ranking Ri, where l represents the cardinality level of the
itemsets.
5.
 This is the phase of feature reduction on the rankings Ril (at
line 24). Since from Fig. 6 we saw that the feature selection on
the rankings (ranking reduction from the bottom) is beneficial
for classification, but we do not know how many minima of
the classification error are present, we adopt an algorithm of
global optimization (Simulated Annealing, SA) in order to search
for the optimum reduction. The pseudo-code of the algorithm
of SA is shown in Algorithm 2. We note that SA is executed on
the validation set on the rankings obtained on the training set.
6.
 After SA algorithm stops, a minimum of classification error is
obtained in correspondence to the rankings of itemsets at the
cardinality level l. Delta error (DErr) is obtained w.r.t. the best
error obtained at previous iterations (which worked on rank-
ings of itemsets with a different value of cardinality l). Stop
condition (line 33) is probabilistic. It is set to true when
eðDErr=itÞrrandð0;1Þ. It is similar to the condition seen for
entering into a big perturbation in SA: it depends on the
reduction in error computed in the current iteration w.r.t. the
best error obtained so far, the number of iterations already
computed and by a random value. According to this exponen-
tial formula, stop is encouraged if the number of iterations is
high and if the error is not improving (DErr is negative).

The approach to feature selection operated by SA in Algorithm 2
is a wrapper approach. The rankings are progressively reduced
and the decrease in classification error on validation data by the
classification algorithm LODE is monitored so that an optimum is
found. If we are in search for the next local minimum (line 12 of
Algorithm 2) small perturbations are sufficient (small ranking
reduction). Otherwise, if we need to escape from a local minimum
(line 17), in order to find a global minimum in the error, we have
the chance to escape if we adopt a big perturbation (percent big
reduction of the rankings). In the experiments we set the big
reduction to 5% while the small reduction consists in 0.0002
(corresponding to a single itemset with a ranking of 5 thousands
itemsets). Our implementation of SA has been adjusted by us to
the particular contest: the direction of movement on the ranking
is unique (bottom-up) when a small reduction is involved.
Instead, when a big reduction takes place, it searches the closer
minimum in both the directions (top-down and bottom-up).

The condition for the adoption of a big perturbation is again
probabilistic: it is governed by a random function (rand), decreases
with the number of iterations computed (parameter I) and increases
with the obtained improvement in the error (DErr).

Algorithm 2. Itemsets selection Algorithm SA by simulated

annealing.
1:
 Input: V validation-set

2:
 Input: Ri ranking of frequent itemsets.

3:
 Input: s small ranking reduction (perturbation)

4:
 Input: b big ranking reduction (perturbation)

5:
 Output: Optimal reduction of Ri based on classification

error.

6:
 –Tune class models by calling LODE algorithm –

7:
 InitialError¼LODE (V, Ri)

8:
 CurrentError¼ InitialError

9:
 MinError¼ InitialError

10:
 I¼1

11:
 repeat

12:
 perturb (Ri, s)

13:
 CurrentError¼LODE(V, Ri)

14:
 DError¼ CurrentError�MinError
15:
 IF (DErroro0)

16:
 MinError¼CurrentError

17:
 OptimalRi¼Ri
18:
 ELSE IF (DErrorZ0)

19:
 IF ðeðDErrorÞ=I4randð0;1ÞÞ

20:
 perturb (Ri, b)

21:
 Iþþ

22:
 untilI4upper limit of I

23:
 return MinError
7. Experimental results

We have implemented LODE in Cþþ. D computation and
ranking generation is instead in java. We implemented some
scripts in python and perl for the automatising of the whole
procedure. In future work we are going to implement all the
modules in a unique programming language and equip the
system with a web-based graphical user interface. Current ver-
sion of the software can be down-loaded from: http://www.di.
unito.it/�meo/Algo/LODE.zip.

We have performed classification experiments with LODE on
several datasets from the Machine Learning Repository, main-
tained by UCI as a service to the machine learning community
(http://archive.ics.uci.edu/ml/). Table 1 reports the various char-
acteristics of the datasets, chosen for their wide variability in
terms of the type of data, number of classes, number of examples,
number of attributes, total number of instances per class (indi-
cated in table separated by commas), availability in competitive
algorithms, etc. Experiments were run on a Pentium Intel core
Duo processor (P9500), running at 2.53 GHz with a RAM of
1.95 GB.

We compared the classification performances of our classifier
with many well known classification algorithms: Knn [10], J48

[30] (an implementation of Decision Trees), Naive Bayes [42],
Support Vector Machines [43] and decision Table [44], CBA [1]
and RIPPER [9] as representative learners for conjunctive rules-
based classifiers. We included also L3 [27] as a representative
learner from the set of classifiers that learn by a multitude of
rules. We used the implemented version of these classifiers that is
available in Weka (http://www.cs.waikato.ac.nz/ml/weka/), a col-
lection of machine learning algorithms for data mining tasks.

Notice that some datasets contain only categorical attributes,
while others contain also continuous ones. Itemsets are usually
extracted from categorical attributes: in fact, from continuous

http://www.di.unito.it/~meo/Algo/LODE.zip
http://www.di.unito.it/~meo/Algo/LODE.zip
http://www.di.unito.it/~meo/Algo/LODE.zip
http://archive.ics.uci.edu/ml/
http://www.cs.waikato.ac.nz/ml/weka/


Table 1
Description of datasets.

Data-set
name

Number of
attributes

Number of
classes

Number of instances per class

Analcatdata-

Bankruptcy

7 2 25,25

Analdata-

cyyoung8092

11 2 24,200

Analcatdata-

Creditscore

7 2 27,73

Analcatdata-

Lawsuit

5 2 245,19

BioMed 9 2 75,134

Bupa 7 2 145,200

Credit-a 16 2 307,383

Diabetes 9 2 500,268

Haberman 4 2 225,81

Horse 28 2 99,201

HD 14 2 165,138

Hepatitis 20 2 32,123

Heartstatlog 14 2 150,120

Monks1 5 2 62,62

Prnsynth 3 2 125,125

Titanic 4 2 711,1490

Wisconsin-

Breast-Cancer

10 2 458,241

Cars 9 3 73,79,254

Cmc 10 3 629,333,511

Iris 5 3 50,50,50

Tae 6 3 49,50,52

Grubdamage 9 4 49,41,46,19

Vehicle 19 4 212,217,218,199

Analdata-

Dmft

5 6 127,132,124,155,136,123

Glassp 10 6 70,76,17,13,9,29

Ecoli 8 8 143,77,52,35,20,5,2,2

Yeast 9 10 463,429,244,163,51,44,35,30,20,5

Table 2
Parameters and their range of values used in the tuning process of learning

competitors.

Learner Parameter Range of values Step

J48 Pruning confidence 0.05–0.5 0.05

J48 Instances per leaf 2–10 1

DTABLE No. folds cross-valid. 1–10 1

DTABLE Perf. eval. measure [acc,rmse,mae,auc] 1

NB No parameters needed – –

SVM (SMO) Complexity C �3–3 0.25

SVM (SMO) PolyKernel exp. 1–3 0.5

RIPPER No. folds for REP 1–10 1

(1-fold as pruning set)

RIPPER Min inst. weight in split 0.5–5 0.5

RIPPER No. optimiz. runs 1–10 1

KNN k 1–10 1

CBA Minsup 1% –

CBA Minconf 50% –

Table 3
Optimal parameters values resulting from tuning process in LODE.

Data-set
name

Cardinality
level

Minimum
support
threshold

Percentage of
features retained
(mean of ten
folds)

Standard
deviation of
retained
features (ten
folds)

Analcatdata-

Bankruptcy

3 0.01 100 0

Analdata-

cyyoung8092

3 0.05 89.36 1.7

Analcatdata-

Creditscore

4 0.01 100 0

Analcatdata-

Lawsuit

3 0.01 100 0

German 4 0.3 75.37 2.36

BioMed 5 0.01 76.89 3.7

Bupa 3 0.05 87.47 1.73

Australia 3 0.3 84.3 1.9

Labor 4 0.1 96.9 1.13

Sonar 4 0.3 73.23 6.7

Wave 4 0.2 70.39 2.33

Lymph 4 0.3 89.9 7.81

Diabetes 3 0.05 78.37 1.3

Haberman 2 0.01 93.13 2.37

Horse 2 0.15 90.71 1.29

HD 3 0.2 86.43 5.18

Hepatitis 4 0.2 89.5 1.3

Heartstatlog 3 0.1 81.13 3.39

Monks1 5 0.01 85.16 4.33

Prnsynth 2 0.01 87.31 1.36

Titanic 2 0.01 85.3 2.19

Wisconsin-

Breast-

Cancer

4 0.01 92.27 1.39

Cars 5 0.01 93.14 2.79

Cmc 4 0.05 90.12 1.36

Iris 4 0.05 97.1 1.7

Tae 2 0.05 94.13 3.69

Grubdamage 4 0.05 95.1 4.1

Vehicle 4 0.2 93.24 1.3

Analdata-

Dmft

3 0.1 97.4 1.2

Glassp 3 0.01 91.39 2.1

Ecoli 5 0.05 96.27 1.7

Yeast 3 0.1 98.1 1.3
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attributes itemsets would have hardly a sufficient frequency. In
order to be able to run experiments with LODE and the associative
classifiers, we performed a preprocessing step consisting in a
supervised discretization of continuous attributes by means of a
method based on entropy [36] that minimizes the entropy of the
class given the interval of discretization. We used a unique data-
set discretization method (by Fayyad and Irani) for all the
classifiers that require a discretized data-set and that do not
perform discretization by themselves. Instead, for those methods
that have their own discretization embedded in the learning
algorithm (like decision trees) or that do not require a discretized
data-set (like k-nn, SVM, etc.) we let them the original data-set.

We did discretization and parameters tuning within a 10-fold
cross-validation. The division in folds is the same for all the learning
algorithms. We performed cross-validation with (disjoint) training
set, validation set and test set. Validation-set and test-set are folds
from the 10-fold-cross-validation. Training set instead is made by the
remaining part of the data-set. We never used the test folds for
parameter tuning or discretization: we used test folds only for
accuracy testing of the algorithms. For each training-set in the
cross-validation, we performed learning of the model and used the
validation set to estimate the suitability of the parameters values.

We carefully tuned the parameters values of the competitors
as Table 2 shows. We tested all the combinations of values of their
parameters taken from a wide spectrum of possible values with
the reported variation step.

In Table 3 we report the results (mean values and standard
deviation) of the optimal parameter values that we obtained by
the parameter tuning process of LODE. In particular, for LODE, we
applied the tuning process described by Algorithm 1.

The overall results of our experiments in comparison with
other classifiers are presented in the series of tables in Figs. 11–25.
Each figure shows the results obtained for the comparison of LODE
with the other competitors on many viewpoints: classification
accuracy, training time, test time. In order to compare the statistical
significance of the observed difference we adopted the approach
overviewed in [45]. It presents the statistical test proposed by



Fig. 11. Mean ranking on classification accuracy of classifiers on original datasets

(test set).

Fig. 12. Graphical representation of the Friedman test on differences in classifica-

tion accuracy.

Fig. 13. Mean ranking on the difference between training accuracy and test

accuracy on original data.

Fig. 14. Graphical representation of the Friedman test on results of Fig. 13.

Fig. 15. Mean ranking on training time.

Fig. 16. Graphical representation of the Friedman test on differences between

training times.

Fig. 17. Mean ranking on unit test time on original datasets.

Fig. 18. Graphical representation of the Friedman test on differences between unit

test times.
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Friedman on average rankings applied to classifiers performance
results. We briefly summarize the test here.
1.
 The performance of each classifier on a certain issue (accuracy,
training times, etc.) is determined on each data-set.
2.
 The classifiers are ranked on each data-set according to the
results.
3.
 For each classifier, its position in the various rankings is
recorded and its average position w.r.t. the data-sets is
computed. This is the resulting value that we give in output in
the tables. The advantage is that it allows to present a
comparison of multiple classifiers on multiple data-sets.
4.
 The observed differences between the average rankings are
compared with the critical difference CD which establishes
whether the differences are statistically significant:
CD¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðkþ1ÞÞ=6N

p
where N is the number of datasets,



Fig. 19. Mean ranking on classification accuracy with 5% level of noise.

Fig. 20. Graphical representation of the Friedman test on results of Fig. 19.

Fig. 21. Mean ranking on classification accuracy with 20% level of noise.

Fig. 22. Graphical representation of the Friedman test on results of Fig. 21.

Fig. 23. Mean ranking on the difference between training and test accuracy with

5% of level of noise.

Fig. 24. Graphical representation of the Friedman test on the results of Fig. 23.

Fig. 25. Mean ranking on the difference between training and test accuracy with

20% of level of noise.
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k is the total number of classifiers, a is the significance level
and qa is the critical value for a=ðk�1Þ based on the Studen-
tized range statistic.

In our tests we used the value of a equal to 0.05 and the
corresponding value of qa equal to 2.394. The results of the
experiments shown in the Figs. 11, 13, 15, 17, 19, 21, 23, 25 and
27 find the results of the corresponding statistical test respec-
tively in the Figs. 12, 14, 16, 18, 20, 22, 24, 26, and 28.
The first important observation that comes out from the table
in Fig. 11 is that LODE outperforms the other learners as regards
the classification accuracy (on test set, with 10-folds cross-
validation). LODE mean ranking is equal to 1.46875 and since
the second ranked classifier is SMO with a mean rank of 4.15625
and the value of CD is equal to 1.864995 the observed differences
are statistically significant. The graphical representation of the
Friedman test on the differences in classification accuracy is
presented in Fig. 12.

In Fig. 13 we show the analogous statistical test on the
difference between the accuracy on training-set and the accuracy
on test-set. This experiment aims at putting in evidence the
capability of a classifier to escape from over-fitting. We can see
that NB is ranked first, CBA second and LODE third but these
differences are not statistically significant (Fig. 14).

In Table 4 we report the details of the classification error (and
of the difference between the error on the test-set and on the
training-set) of LODE and of SMO, which is among the learners
whose performance gets closer to LODE. We reported also the
details regarding the kind of datasets (number of classes,



Table 4
Comparison with SVM (SMO).

Dataset No. classes High dimens. (no. features) Balanced LODE SMO

Test Test – Train err Test err Test – Train err

Anal.-Bank. 2 N (7) Y 6 0 8 8

Anal.-young8092 2 Y (11) N 13.36 0.66 14.43 13.4

Anal.-Credit. 2 N (7) N 1 0 1 0

Anal.-Lawsuit 2 N (5) N 1.05 0.05 1.13 0

BioMed 2 N (9) N 2.89 1.19 7.17 1.47

Bupa 2 N (7) Y 31.05 0.96 36.81 0

Credit-a 2 Y (16) Y 12 1.1 13.91 4.93

Diabetes 2 N (9) N 17.66 1.36 21.74 0.77

Haberman 2 N (4) N 22.7 2.23 25.81 0

Horse 2 Y (28) N 17.7 2 20.66 20

HD 2 Y (14) Y 12.43 2.05 12.55 3.31

Hepatitis 2 Y (20) N 11.35 1.05 9.67 1.93

Heartstatlog 2 Y (14) Y 12.37 0.98 14.81 5.93

Monks1 2 N (5) Y 44.67 0 46.77 14.52

Prnsynth 2 N (3) Y 12.4 0.71 12.4 0

Titanic 2 N (4) N 20.1 0.04 20.94 0

Wiscon.-B. 2 Y (10) N 2.27 0.88 3 0.43

Cars 3 N (9) N 20.3 1.2 15.51 15.51

Cmc 3 Y (10) N 40.3 2.7 45.28 4.28

Iris 3 N (5) Y 4 2.25 4.66 0.66

Tae 3 N (6) Y 42.3 1.61 52.31 �0.66

Grubdamage 4 N (9) N 48.19 3.49 48.38 16.77

Vehicle 4 Y (19) Y 22.97 3.27 23.52 19.15

Anal.-Dmft 6 N (5) Y 74.2 7.1 77.44 12.97

Glassp 6 Y (10) N 23.6 1.6 20.56 5.61

Ecoli 8 N (8) N 12.3 0.6 13.39 0.89

Yeast 10 N (9) N 40.96 3.8 39.48 1.41

Mean 21.1133 22.6442
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balanced classes, number of features) in order to ascertain if the
obtained good results could be also related to the typology of data
or not. From the results it is clear that good results could be
obtained both in binary and in multi-class data, balanced or
unbalanced, high-dimensional or not (Table 4).

In Figs. 15 and 16 we show the results on execution times. NB
is first, KNN is second and Ripper is third. LODE ranks only
seventh. However, we must say that the results of these experi-
ments favour those learners (like NB and KNN) which do not have
parameters or have a few parameters only. In these cases, the
parameter tuning time is totally eliminated or strongly reduced.
In fact, tuning time depends both on the number of parameters
and on the range of values tested for each of them. In Section 7.1
we report also more studies on the family of LODE classifiers with
alternative feature selection methods. Further experiments are
conducted in order to test also if the Simulated Annealing
approach to tuning allows to get significant improvements in
accuracy and training times. Our answers will be positive.

In Fig. 17 we report results on the Friedman test on the mean
execution time needed by each classifier to predict a single test
instance. In this experiment LODE ranks sixth. We can notice that
all the classifiers that have a class model composed by a multi-
tude of patterns, like L3, DTABLE and LODE, are slow in testing,
while decision trees, NB and RIPPER, that have mechanisms of
strong pruning of rules, are faster.

Experiments on noisy datasets: One of the believed benefits of
our model-based classifier is that it is supposed to be more robust
to the presence of noise in data. This occurs in virtue of the
prototypical class models of LODE that represent the frequent
characteristics of examples on which noise superimposition
should not have many effects. In order to establish concretely
this claim we experimented with the datasets with a variable
amount of noise. We added noise to the datasets in the form of a
random change of the class. We varied the percentage of noise
from 5% to 20% of the instances.
Figs. 19 and 21 show classification results on the datasets
affected by noise at the extreme values of this range (5% and 20%)
(Fig. 20). These experiments clearly show that LODE outperforms
the other classifiers, and the improvement increases especially
with an increasing amount of noise. When comparing the results
in Fig. 19 with Fig. 21, some algorithms such as NB or J48 appear
to improve their classification accuracy. This is due to the fact that
NB and J48 predictive mechanisms rely on a global model that is
able to generalize better and results more robust w.r.t. a marked
presence of noise. The other learners (like KNN, SMO, RIPPER,
CBA) instead can sustain only lower levels of noise because they
make predictions that are based on a restricted number of local
patterns. With a marked level of noise they lost at a greater extent
their accuracy, due to the noisy modification of the data values
that results detrimental for their final prediction.

As regards the effect of over-fitting, we monitored the differ-
ences between accuracy in training and test set. In Fig. 23 we can
notice that LODE is ranked second when the level of noise in the
datasets is set to the level of 5%; LODE improved its position w.r.t.
the analogous experiment on the original datasets (it was third)
(Fig. 13). Furthermore, when the level of noise is increased to 20%
LODE reaches the first position in the ranking (see Fig. 25).

7.1. Impact on LODE of feature selection and composite features

In this new set of experiments we want to determine the
relative impact that the different settings have to the perfor-
mance of LODE. In other terms, we want to establish if the
positive results observed in terms of classification accuracy and
execution times are due to the feature selection results and the
corresponding wrapper (in particular, to the quite sophisticated
tuning process based on Simulated Annealing) or to the fact that
composite features (itemsets) are adopted instead of simple ones
(items). We therefore carry out a performance study on a family
of learners based on LODE, in which these issues are taken one by



Fig. 26. Graphical representation of the Friedman test on results of Fig. 25.

Classifier Name Mean Rank
threshold (CD) 1.20481

itemset With SA 1.234375
itemset With SBE 1.890625

itemset Without Wrapper 2.96875
item With SA 4.390625
item With SBE 4.8125

item Without Wrapper 5.703125

Fig. 27. Average ranking on classification accuracy of LODE with different settings.

Fig. 28. Graphical representation of the Friedman test on results of Fig. 27.

Table 5
Average ranking on training time of LODE with

different feature reduction methods.

Classifier name Mean rank

Threshold (CD) 0.34648

Itemsets_With_SA 1.03125

Itemsets_With_SBE 1.96875

R. Meo et al. / Pattern Recognition 45 (2012) 1409–14251424
one or in combinations. We furthermore consider two types of
wrappers: a Simple Backward Elimination (SBE) in which itemsets
are eliminated from the bottom of the rankings – one by one –
until the first minimum is found and a Backward Elimination by
Simulated Annealing (SA). In this experiment, we wish to estab-
lish if SA is relevant or not.

Results on classification error are reported in Fig. 27 while
results on execution times for the classification model generation
are reported in Table 5.

We can notice two issues. First, adopting composite features
(itemsets) is extremely beneficial (Fig. 28). All the results of LODE
with composite features are significantly improved with respect
to the experiments in which simple features (items) are adopted.
Second, using a feature reduction method is always beneficial,
both when composite features (itemsets) are used and when
simple features (items only) are adopted. Furthermore, the
observed differences are statistically significant when the feature
reduction method is based on SA.
From Table 5, in which results on training times are reported,
we can notice another main benefit of SA: not only it improves
accuracy results but also it is useful to speed-up training execu-
tion times. This result is due to its faster achievement of the
optimal working point because of the ‘‘jumps’’ it performs based
on the big reduction rate.
8. Conclusions

In this paper we have proposed LODE, a new classifier whose
class models are composed of frequent itemsets extracted from
the instances of each class in the training set. Class models have
been generated originally for a descriptive purpose but can be
employed for prediction if the number of the itemsets is reduced
by a wrapper approach. Prediction occurs by computation of the
distances between two vectors that represent respectively a class
model and a test example.

The adoption of a model-based distance is an advantage w.r.t.
learners based on local patterns that apply the best single local
pattern for each example. Indeed, using an ensemble of local
patterns for prediction reduces the chance of model overfitting
and is more robust w.r.t. the presence of noise in the data.

We have validated this new approach to classification by
several experiments on many available UCI datasets, with and
without noise. We have shown that LODE outperforms traditional
IBL such as Knn and other classifiers in the state of the art, like
decision trees, SVM, NB and rule-based classifiers. In a related
paper [20] we have experimented with different techniques of
itemsets ranking employed in order to simplify class models:
accuracy, KL divergence, strong jumping emerging patterns and
an entropy based measure (normalized D). Experiments showed
that the observed good performances of our classifier are due not
only to the mechanism of model-based distance computation –
that works on itemsets features and considers both the present
and the absent features from the test instances – but also to the
effectiveness of D.

In future work, we plan to investigate on learning the features
weights in the ensembles and in employing further mechanisms
of feature generation and selection based on principles of sub-
group discovery and on predictive and discriminative capabilities.
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