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Abstract

Gaussian mixture models (GMM), commonly used in pattern recognition and machine learning, provide a flexible probabilistic
model for the data. The conventional expectation-maximization (EM) algorithm for the maximum likelihood estimation of the
parameters of GMMs is very sensitive to initialization and easily gets trapped in local maxima. Stochastic search algorithms have
been popular alternatives for global optimization but their uses for GMM estimation have been limited to constrained models using
identity or diagonal covariance matrices. Our major contributions in this paper are twofold. First, we present a novel parametrization
for arbitrary covariance matrices that allow independent updating of individual parameters while retaining validity of the resultant
matrices. Second, we propose an effective parameter matching technique to mitigate the issues related with the existence of
multiple candidate solutions that are equivalent under permutations of the GMM components. Experiments on synthetic and real
data sets show that the proposed framework has a robust performance and achieves significantly higher likelihood values than the
EM algorithm.

Keywords: Gaussian mixture models, maximum likelihood estimation, expectation-maximization, covariance parametrization,
identifiability, stochastic search, particle swarm optimization

1. Introduction

Gaussian mixture models (GMMs) have been one of the
most widely used probability density models in pattern recog-
nition and machine learning. In addition to the advantages of
parametric models that can represent a sample using a relatively
small set of parameters, they also offer the ability of approxi-
mating any continuous multi-modal distribution arbitrarily well
like nonparametric models by an appropriate choice of its com-
ponents [1, 2]. This flexibility of a convenient semiparametric
nature has made GMMs a popular choice for both density mod-
els in supervised classification and cluster models in unsuper-
vised learning problems.

The conventional method for learning the parameters of a
GMM is maximum likelihood estimation using the expectation-
maximization (EM) algorithm. Starting from an initial set of
values, the EM algorithm iteratively updates the parameters by
maximizing the expected log-likelihood of the data. However,
this procedure has several issues in practice [1, 2]. One of the
most important of these issues is that the EM algorithm eas-
ily gets trapped in a local maximum as the objective being a
non-concave optimization problem. Moreover, there is also the
associated problem of initialization as it influences which local
maximum of the likelihood function is attained.

The common approach is to run the EM algorithm many
times from different initial configurations and to use the result
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corresponding to the highest log-likelihood value. However,
even with some heuristics that have been proposed to guide the
initialization, this approach is usually far from providing an ac-
ceptable solution especially with increasing dimensions of the
data space. Furthermore, using the results of other algorithms
such as k-means for initialization is also often not satisfactory
because there is no mechanism that can measure how differ-
ent these multiple initializations are from each other. In addi-
tion, this is a very indirect approach as multiple EM procedures
that are initialized with seemingly different values might still
converge to similar local maxima. Consequently, this approach
may not explore the solution space effectively using multiple
independent runs.

Researchers dealing with similar problems have increas-
ingly started to use population-based stochastic search algo-
rithms where different potential solutions are allowed to inter-
act with each other. These approaches enable multiple candi-
date solutions to simultaneously converge to possibly different
optima by making use of the interactions. Genetic algorithm
(GA) [3, 4, 5, 6, 7], differential evolution (DE) [8], and par-
ticle swarm optimization (PSO) [9, 10, 11, 12] have been the
most common population-based stochastic search algorithms
used for the estimation of some form of GMMs. Even though
these approaches have been shown to perform better than non-
stochastic alternatives such as k-means and fuzzy c-means, the
interaction mechanism that forms the basis of the power of the
stochastic search algorithms has also limited the use of these
methods due to some inherent assumptions in the candidate so-
lution parametrization. In particular, the interactions in the GA,
DE, and PSO algorithms are typically implemented using ran-
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domized selection, swapping, addition, and perturbation of the
individual parameters of the candidate solutions. For example,
the crossover operation in GA and DE randomly selects some
parts of two candidate solutions to create a new candidate so-
lution during the reproduction of the population. Similarly, the
mutation operation in GA and DE and the update operation in
PSO perturb an existing candidate solution using a vector that is
created using some combination of random numbers and other
candidate solutions. However, randomized modification of in-
dividual elements of a covariance matrix independently does
not guarantee the result to be a valid (i.e., symmetric and pos-
itive definite) covariance matrix. Likewise, partial exchanges
of parameters between two candidate solutions lead to similar
problems. Hence, these problems confined the related work to
either use no covariance structure (i.e., implicitly use identity
matrices centered around the respective means) [7, 8, 9, 10, 12]
or constrain the covariances to be diagonal [3, 11]. Conse-
quently, most of these approaches were limited to the use of
only the mean vectors in the candidate solutions and to the
minimization of the sum of squared errors as in the k-means
setting instead of the maximization of a full likelihood func-
tion. Full exploitation of the power of GMMs involving arbi-
trary covariance matrices estimated using stochastic search al-
gorithms benefits from new parametrizations where the individ-
ual parameters are independently modifiable so that the result-
ing matrices remain valid covariance matrices after the stochas-
tic updates and have finite limits so that they can be searched
within a bounded solution space. In this paper, we present a
new parametrization scheme that satisfies these criteria and al-
lows the estimation of generic GMMs with arbitrary covariance
matrices.

Another important problem that has been largely ignored
in the application of stochastic search algorithms to GMM es-
timation problems in the pattern recognition literature is iden-
tifiability. In general, a parametric family of probability den-
sity functions is identifiable if distinct values of the parameters
determine distinct members of the family [1, 2]. For mixture
models, the identifiability problem exists when there is no prior
information that allows discrimination between its components.
When the component densities belong to the same parametric
family (e.g., Gaussian), the mixture density with K components
is invariant under the K! permutations of the component labels
(indices). Consequently, the likelihood function becomes in-
variant under the same permutation, and this invariance leads to
K! equivalent modes, corresponding to equivalence classes on
the set of mixture parameters. This lack of uniqueness is not a
cause for concern for the iterative computation of the maximum
likelihood estimates using the EM algorithm, but can become a
serious problem when the estimates are iteratively computed
using simulations when there is the possibility that the labels
(order) of the components may be switched during different it-
erations [1, 2]. Considering the fact that most of the search
algorithms depend on the designed interaction operations, per-
formances of the operations that assume continuity or try to
achieve diversity cannot work as intended, and the disconti-
nuities in the search space will make it harder for the search
algorithms to find directions of improvement. In an extreme

case, the algorithms will fluctuate among different solutions
in the same equivalence class, hence, among several equiva-
lent modes of the likelihood function, and will have significant
convergence issues. In this paper, we propose an optimization
framework where the optimal correspondences among the com-
ponents in two candidate solutions are found so that desirable
interactions become possible between these solutions.

It is clear that a formulation that involves unique, inde-
pendently modifiable, and bounded parameters is highly de-
sired for effective utilization of stochastic search algorithms
for the maximum likelihood estimation of unrestricted Gaus-
sian mixture models. Our major contributions in this paper are
twofold: we present a novel parametrization for arbitrary co-
variance matrices where the individual parameters can be in-
dependently modified in a stochastic manner during the search
process, and describe an optimization formulation for resolv-
ing the identifiability problem for the mixtures. Our first con-
tribution, the parametrization, uses eigenvalue decomposition,
and models a covariance matrix in terms of its eigenvalues and
Givens rotation angles extracted using QR factorization of the
eigenvector matrices via a series of Givens rotations. We show
that the resulting parameters are independently modifiable and
are bounded so they can be naturally used in different kinds of
stochastic global search algorithms. We also describe an algo-
rithm for ordering the eigenvectors so that the parameters of
individual Gaussian components are uniquely identifiable.

As our second major contribution, we propose an algorithm
for ordering of the Gaussian components within a candidate so-
lution for obtaining a unique correspondence between two can-
didate solutions during their interactions for parameter updates
throughout the stochastic search. The correspondence identifi-
cation problem is formulated as a minimum cost network flow
optimization problem where the objective is to find the corre-
spondence relation that minimizes the sum of Kullback-Leibler
divergences between pairs of Gaussian components, one from
each of the two candidate solutions. We illustrate the proposed
parametrization and identifiability solutions using PSO for den-
sity estimation. An early version of this paper [13] presented
initial experiments on clustering.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 establishes the notation
and defines the estimation problem. Section 4 summarizes the
EM approach for GMM estimation. Section 5 presents the de-
tails of the proposed covariance parametrization and the solu-
tion for the identifiability problem. Section 6 describes the PSO
framework and its adaptation as a stochastic search algorithm
for GMM estimation. Section 7 presents the experiments and
discussion using both synthetic and real data sets. Finally, Sec-
tion 8 provides the conclusions of the paper.

2. Related work

As discussed in the previous section, existing work on the
use of stochastic search algorithms for GMM estimation typi-
cally uses only the means [7, 8, 9, 10, 12] or means and stan-
dard deviations alone [3, 11] in the candidate solutions. Ex-
ceptions where both mean vectors and full covariance matrices
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were used include [4, 5] where EM was used for the actual lo-
cal optimization by fitting Gaussians to data in each iteration
and GA was used only to guide the global search by selecting
individual Gaussian components from existing candidate solu-
tions in the reproduction steps. However, treating each Gaus-
sian component as a whole in the search process and fitting it
locally using the EM iterations may not explore the whole solu-
tion space effectively especially in higher dimensions. Another
example is [6] where two GA alternatives for the estimation
of multidimensional GMMs were proposed. The first alterna-
tive encoded the covariance matrices for d-dimensional data us-
ing d + d2 elements where d values corresponded to the stan-
dard deviations and d2 values represented a correlation matrix.
The second alternative used d runs of a GA for estimating 1D
GMMs followed by d runs of EM starting from the results of
the GAs. Experiments using 3D synthetic data showed that the
former alternative was not successful and the latter performed
better. The parametrization proposed in this paper allows the
use of full covariance matrices in the GMM estimation.

The second main problem, identifiability, that we investi-
gate in this paper is known as “label switching” in the statis-
tics literature for the Bayesian estimation of mixture models
using Markov chain Monte Carlo (MCMC) strategies. The la-
bel switching corresponds to the interchanging of the parame-
ters of some of the mixture components and the invariance of
the likelihood function as well as the posterior distribution for
a prior that is symmetric in the components under such per-
mutations [2]. Proposed solutions to label switching include
artificial identifiability constraints that involve relabeling of the
output of the MCMC sampler based on some component pa-
rameters (e.g., sorting of the components based on their means
for 1D data) [2], deterministic relabeling algorithms that select
a relabeling at each iteration that minimizes the posterior ex-
pectation of some loss function [14, 15], and probabilistic re-
labeling algorithms that take into consideration the uncertainty
in the relabeling that should be selected on each iteration of the
MCMC output [16].

Even though the label switching problem also applies to the
population-based stochastic search procedures, only a few pat-
tern recognition studies (e.g., only [6, 7] among the ones dis-
cussed above) mention its existence during GMM estimation.
In particular, Tohka et al. [6] ensured that the components in a
candidate solution were ordered based on their means in each it-
eration. This ordering was possible because 1D data were used
in the experiments but such artificial identifiability constraints
are not easy to establish for multivariate data. Since they have
an influence on the resulting estimates, these constraints are
also known to lead to over- or under-estimation [2] and cre-
ate a bias [14]. Chang et al. [7] proposed a greedy solution that
sorted the components of a candidate solution based on the dis-
tances of the mean vectors of that solution to the mean vectors
of a reference solution that achieved the highest fitness value.
However, such heuristic orderings depend on the ordering of
the components of the reference solution that is also arbitrary
and ambiguous. The method proposed in this paper can be con-
sidered as a deterministic relabeling algorithm according to the
categorization of label switching solutions as discussed above.

It allows controlled interaction of the candidate solutions by
finding the optimal correspondences among their components,
and enables more effective exploration of the solution space.

In addition to the population-based stochastic search tech-
niques, alternative approaches to the basic EM algorithm also
include methods for reducing the complexity of a GMM by try-
ing to estimate the number of components [17, 18] or by forcing
a hierarchical structure [19, 20]. This paper focuses on the con-
ventional problem with a fixed number of components in the
mixture. However, the above mentioned techniques will also
benefit from the contributions of this paper as it is still impor-
tant to be able to find the best possible set of parameters for a
given complexity because of the existing multiple local max-
ima problem. There are also other alternatives that use iterative
simulation techniques such as Monte Carlo EM, imputation-
posterior algorithm for data augmentation, and Markov chain
Monte Carlo EM that define priors for the unknown parameters
and replace the E and M steps by draws from conditional dis-
tributions computed using these priors [21]. Since these algo-
rithms are not population-based methods and are generally used
for more complicated mixture models rather than the standard
GMMs, they are out of the scope of this paper. However, our
proposed parametrization can also be used in these approaches
by providing alternative choices for defining the priors.

3. Problem definition: GMM estimation

The paper uses the following notation. R denotes the set of
real numbers, R+ denotes the set of nonnegative real numbers,
R++ denotes the set of positive real numbers, Rd denotes the set
of d-dimensional real vectors, and Sd

++ denotes the set of sym-
metric positive definite d×d matrices. Vectors and matrices are
denoted by lowercase and uppercase bold letters, respectively.

We consider a family of mixtures of K multivariate Gaus-
sian distributions in Rd indexed by the set of parameters Θ =
{α1, . . . , αK , θ1, . . . , θK}. Each θk = {µk,Σk} represents the pa-
rameters of the k’th Gaussian distribution pk(x|θk) such that
µk ∈ Rd and Σk ∈ Sd

++ are the means and the covariance
matrices, respectively, for k = 1, . . . ,K. Mixing probabilities
αk ∈ [0, 1] are constrained to sum up to 1, i.e.,

∑K
k=1 αk = 1.

Given a set of N data pointsX = {x1, . . . , xN}where x j ∈ Rd are
independent and identically distributed (i.i.d.) according to the
mixture probability density function p(x|Θ) =

∑K
k=1 αk pk(x|θk),

the objective is to obtain the maximum likelihood estimate Θ̂ by
finding the parameters that maximize the log-likelihood func-
tion

log L(Θ|X) = log p(X|Θ) =
N∑

j=1

log
( K∑

k=1

αk pk(x j|θk)
)
. (1)

Since the log-likelihood function typically has a compli-
cated structure with multiple local maxima, an analytical solu-
tion for Θ̂ that corresponds to the global maximum of (1) can-
not be obtained by simply setting the derivatives of log L(Θ|X)
to zero. The common practice for reaching a local maxi-
mum of the log-likelihood function is to use the expectation-
maximization (EM) algorithm that iteratively updates the pa-
rameters of individual Gaussian distributions in the mixture.
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For completeness and to set up the notation for the rest of the
paper, we briefly present the EM algorithm in the next section.
The proposed solution to the maximum likelihood estimation
problem is described in the following section.

4. GMM estimation using expectation-maximization

In this section we present a review of the EM algorithm and
its application to GMM estimation. Details of this review can be
found in [1, 2]. Since the log-likelihood in (1) is not a concave
function, gradient descent-based algorithms typically converge
to a local optimum. One of the commonly used techniques for
efficient search of a local optimum is provided by the EM al-
gorithm. In the EM approach to the GMM estimation problem,
the given data, X, is considered as incomplete data, and a set of
N latent variables Y = {y1, . . . , yN} are defined where each y j

indicates which Gaussian component generated the data vector
x j. In other words, y j = k if the j’th data vector was generated
by the k’th mixture component. Instead of the log-likelihood
function, the EM algorithm maximizes an auxiliary function
Q(Θ,Φ). Q(Θ,Φ) is a function of both the parameters Θ and
the assignments Φ = {w jk} of the data vectors to the Gaussian
components for j = 1, . . . ,N and k = 1, . . . ,K.

This auxiliary function

Q(Θ,Φ) =
N∑

j=1

K∑
k=1

w jk log(αk pk(x j|θk)) −
N∑

j=1

K∑
k=1

w jk log(w jk)

(2)
is a lower bound to the log-likelihood function for any param-
eters Θ and assignments Φ, i.e., log L(Θ|X) ≥ Q(Θ,Φ). When
Q(Θ,Φ) is maximized over assignments Φ that are set to be
the posterior probabilities Φ̃where w jk = P(y j = k|x j,Θ), it has
the same value as the log-likelihood function, i.e., log L(Θ|X) =
Q(Θ, Φ̃). On the other hand, when Q(Θ,Φ) is maximized over
parameters Θ̃, we have Q(Θ̃,Φ) ≥ Q(Θ,Φ).

The GMM-EM algorithm is based on these two properties
of the Q function. Starting from a set of initial parameters, the
algorithm finds a local maximum for the log-likelihood func-
tion by alternatingly maximizing the Q function over the as-
signments Φ and the parameters Θ. Maximization over the as-
signments is called the expectation step as the assignments

w(t)
jk = P(y j = k|x j,Θ

(t)) =
α(t)

k pk(x j|θ
(t)
k )∑K

i=1 α
(t)
i pi(x j|θ

(t)
i )

(3)

make the log-likelihood function, that is also referred to as the
incomplete likelihood, equal to the expected complete likeli-
hood. Maximization of the Q function over the parameters is
referred to as the maximization step, and results in the parame-
ter estimates

α̂(t+1)
k =

1
N

N∑
j=1

w(t)
jk (4)

µ̂(t+1)
k =

∑N
j=1 w(t)

jk x j∑N
j=1 w(t)

jk

(5)

Σ̂
(t+1)
k =

∑N
j=1 w(t)

jk (x j − µ̂
(t+1)
k )(x j − µ̂

(t+1)
k )T∑N

j=1 w(t)
jk

(6)

where t indicates the iteration number.

5. GMM estimation using stochastic search

Since the EM algorithm converges to a local optimum, in
its application to the GMM parameter estimation problem, the
common practice is to use multiple random initializations to
find different local maxima, and to use the result correspond-
ing to the highest log-likelihood value. As discussed in Section
1, an alternative is to use population-based stochastic search
algorithms where different candidate solutions are allowed to
interact with each other. However, the continuation of the it-
erations that search for better candidate solutions assume that
the parameters remain valid both in terms of the requirements
of the GMM and with respect to the bounds enforced by the
data. The validity and boundedness of the mean vectors are rel-
atively easy to implement but direct use of covariance matrices
introduce problems. For example, one might consider to use
d(d+1)/2 potentially different entries of a real symmetric d×d
covariance matrix as a direct parametrization of the covariance
matrix. Although this ensures the symmetry property, it can-
not guarantee the positive definiteness where arbitrary modifi-
cations of these entries may produce non-positive definite ma-
trices. This is illustrated in Table 1 where a new covariance
matrix is constructed from three valid covariance matrices in a
simple arithmetic operation. Even though the input matrices are
positive definite, the output matrix is often not positive definite
for increasing dimensions. Another possible parametrization
is to use Cholesky factorization but the resulting parameters
are unbounded (real numbers in the (−∞,∞) range). There-
fore, lack of a suitable parametrization for arbitrary covariance
matrices has limited the flexibility of the existing approaches
in modeling the covariance structure of the components in the
mixture.

In this section, first, we propose a novel parametrization
where the parameters of an arbitrary covariance matrix are in-
dependently modifiable and can have upper and lower bounds.
We also describe an algorithm for unique identification of these
parameters from a valid covariance matrix. Then, we describe
a new solution to the mixture identifiability problem where dif-
ferent orderings of the Gaussian components in different can-
didate solutions can significantly affect the convergence of the

Table 1: Simulation of the construction of a covariance matrix from three ex-
isting covariance matrices. Given the input matrices Σ1, Σ2, and Σ3, a new
matrix is constructed as Σnew = Σ1 + (Σ2 − Σ3) in an arithmetic operation that
is often found in many stochastic search algorithms. This operation is repeated
for 100, 000 times for different input matrices at each dimensionality reported
in the first row. As shown in the second row, the number of Σnew that is posi-
tive definite, i.e., a valid covariance matrix, decreases significantly at increasing
dimensions. This shows that the entries in the covariance matrix cannot be di-
rectly used as parameters in stochastic search algorithms.

Dimension 3 5 10 15 20 30
# valid 44,652 27,443 2,882 103 1 0
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√
Λ= G(1, 2, π/3) G(1, 3, π/6) G(2, 3, π/4)

√
Λ I

=

 cos( π3 ) sin( π3 ) 0
− sin( π3 ) cos( π3 ) 0

0 0 1


 cos( π6 ) 0 sin( π6 )

0 1 0
− sin( π6 ) 0 cos( π6 )


1 0 0
0 cos( π4 ) sin( π4 )
0 − sin( π4 ) cos( π4 )


2 0 0
0 1 0
0 0 0.5


1 0 0
0 1 0
0 0 1



?????

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

−2
−1

0
1

2
−1

0
1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

=

 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31


Σ=(V

√
Λ) (V

√
Λ)T =

 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31


 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31


T

=

 1.10 −1.00 −1.01
−1.00 2.69 1.10
−1.01 1.10 1.47


Figure 1: Example parametrization for a 3×3 covariance matrix. The example matrix can be parametrized using {λ1, λ2, λ3, φ

12, φ13, φ23} = {4, 1, 0.25, π/3, π/6, π/4}.
The ellipses from right to left show the covariance structure resulting from each step of premultiplication of the result of the previous step, starting from the identity
matrix.

search procedure. The proposed approach solves this issue by
using a two-stage interaction between the candidate solutions.
In the first stage, the optimal correspondences among the com-
ponents of two candidate solutions are identified. Once these
correspondences are identified, in the second stage, desirable
interactions such as selection, swapping, addition, and pertur-
bation can be performed. Both the proposed parametrization
and the solutions for the two identifiability problems allow ef-
fective use of population-based stochastic search algorithms for
the estimation of GMMs.

5.1. Covariance parametrization
The proposed covariance parametrization is based on eigen-

value decomposition of the covariance matrix. For a given d-
dimensional covariance matrix Σ ∈ Sd

++, let {λi, νi} for i =
1, . . . , d denote the eigenvalue-eigenvector pairs in a particu-
lar order where λi ∈ R++ for i = 1, . . . , d correspond to the
eigenvalues and νi ∈ Rd such that ‖νi‖2 = 1 and νT

i ν j = 0
for i , j represent the eigenvectors. A given d-dimensional
covariance matrix Σ can be written in terms of its eigenvalue-
eigenvector pairs as Σ =

∑d
i=1 λiνiν

T
i . Let the diagonal matrix

Λ = diag(λ1, . . . , λd) denote the eigenvalue matrix, and the uni-
tary matrix V = (ν1, . . . , νd) denote the corresponding eigenvec-
tor matrix where the normalized eigenvectors are placed into
the columns of V in the order determined by the correspond-
ing eigenvalues in Λ. Then, the given covariance matrix can be
written as Σ = VΛVT .

Due to its symmetric structure, an arbitrary d-dimensional
covariance matrix has d(d + 1)/2 degrees of freedom; thus, at
most d(d + 1)/2 parameters are needed to represent this ma-
trix. The proposed parametrization is based on the following
theorem.

Theorem 1. An arbitrary covariance matrix with d(d + 1)/2
degrees of freedom can be parametrized using d eigenvalues in
a particular order and d(d−1)/2 Givens rotation matrix angles
φpq ∈ [−π/4, 3π/4] for 1 ≤ p < q ≤ d computed from the
eigenvector matrix whose columns store the eigenvectors in the
same order as the corresponding eigenvalues.

The proof is based on the following definition, proposition,
and lemma. An example parametrization for a 3× 3 covariance
matrix is given in Figure 1.

Definition 1. A Givens rotation matrix G(p, q, φpq) with three
input parameters corresponding to two indices p and q that sat-
isfy p < q, and an angle φpq has the form

G(p, q, φpq) =



1 ··· 0 ··· 0 ··· 0
...
. . .

...
...

...
0 ··· cos(φpq) ··· sin(φpq) ··· 0
...

...
. . .

...
...

0 −sin(φpq) ··· cos(φpq) ··· 0
...

...
...
. . .
...

0 ··· 0 ··· 0 ··· 1


. (7)

Premultiplication by G(p, q, φpq)T corresponds to a counter-
clockwise rotation of φ radians in the plane spanned by two
coordinate axes indexed by p and q [22].

Proposition 1. A Givens rotation can be used to zero a partic-
ular entry in a vector. Given scalars a and b, the c = cos(φ)
and s = sin(φ) values in (7) that can zero b can be computed as
the solution of (

c s
−s c

)T (
a
b

)
=

(
h
0

)
(8)

using the following algorithm [22]
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if b = 0 then
c = 1; s = 0

else
if |b| > |a| then
τ = −a/b; s = 1/

√
1 + τ2; c = sτ

else
τ = −b/a; c = 1/

√
1 + τ2; s = cτ

end if
end if

where φ can be computed as φ = arctan(s/c). The resulting
Givens rotation angle φ is in the range [−π/4, 3π/4] by defini-
tion (because of the absolute values in the algorithm).

Lemma 1. An eigenvector matrix V of size d × d can be writ-
ten as a product of d(d − 1)/2 Givens rotation matrices whose
angles lie in the interval [−π/4, 3π/4] and a diagonal matrix
whose entries are either +1 or −1.

Proof of Lemma 1. Existence of such a decomposition can be
shown by using QR factorization via a series of Givens rota-
tions. QR factorization decomposes any real square matrix into
a product of an orthogonal matrix Q and an upper triangular ma-
trix R, and can be computed by using Givens rotations where
each rotation zeros an element below the diagonal of the in-
put matrix. When the QR algorithm is applied to V, the angle
φpq for the given indices p and q is calculated using the values
V(p, p) and V(q, p) as the scalars a and b, respectively, in Def-
inition 1, and then, V is premultiplied with the transpose of the
Givens rotation matrix as G(p, q, φpq)T V where G is defined in
Definition 1. This multiplication zeros the value V(q, p). This
process is continued for p = 1, . . . , d − 1 and q = p + 1, . . . , d,
resulting in the orthogonal matrix

Q =
d−1∏
p=1

d∏
q=p+1

G(p, q, φpq) (9)

and the triangular matrix

R = QT V. (10)

Since the eigenvector matrix V is orthogonal, i.e., VT V = I,
RT QT QR = I leads to RT R = I because Q is also orthogonal.
Since R should be both orthogonal and upper triangular, we
conclude that R is a diagonal matrix whose entries are either
+1 or −1.

Proof of Theorem 1. Following Lemma 1, an eigenvector ma-
trix V in which the eigenvectors are stored in a particular order
can be written using d(d − 1)/2 angle parameters for the Q ma-
trix and an additional d parameters for the R matrix. However,
since both νi and −νi are valid eigenvectors (Σνi = λiνi and
Σ(−νi) = λi(−νi)), we can show that those additional d param-
eters for the diagonal of R are not required for the parametriza-
tion of eigenvector matrices.

This follows from the invariance of the Givens rotation an-
gles to the rotation of the eigenvectors with π radians such
that when any column of the V matrix is multiplied by −1,
only the R matrix changes, while the Q matrix, hence the

Table 2: To demonstrate its non-uniqueness, all equivalent parametrizations of
the example covariance matrix given in Figure 1 for different orderings of the
eigenvalue-eigenvector pairs. The angles are given in degrees. The parameters
in the first row are used in Figure 1.

λ1 λ2 λ3 φ12 φ13 φ23

4 1 0.25 60.00 30.00 45.00
4 0.25 1 60.00 30.00 -45.00
1 4 0.25 123.43 -37.76 39.23
1 0.25 4 123.43 -37.76 129.23
0.25 4 1 -3.43 -37.76 -39.23
0.25 1 4 -3.43 -37.76 50.77

Givens rotation angles, do not change. To prove this invari-
ance, let P = {P|P ∈ Rd×d,P(i, j) = 0,∀i , j, and P(i, i) ∈
{+1,−1} for i = 1, . . . , d} be a set of modification matrices. For
a given P ∈ P, define V̂ = VP. Since V = QR, we have
V̂ = QRP. Then, defining R̂ = RP gives V̂ = QR̂. Since Q did
not change and R̂ = RP is still a diagonal matrix whose entries
are either +1 or −1, it is a valid QR factorization. Therefore,
we can conclude that there exists a QR factorization V̂ = QR̂
with the same Q matrix as the QR factorization V = QR.

The discussion above shows that the d(d − 1)/2 Givens ro-
tation angles are sufficient for the parametrization of the eigen-
vectors because the multiplication of any eigenvector by −1
leads to the same covariance matrix Σ, i.e.,

Σ =

d∑
i=1, i, j

λiνiν
T
i + λ j(−ν j)(−ν j)T

=

d∑
i=1, i, j

λiνiν
T
i + λ j(ν j)(ν j)T

=

d∑
i=1

λiνiν
T
i .

(11)

Finally, together with the d eigenvalues, the covariance matrix
can be constructed as Σ = VΛVT .

5.2. Identifiability of individual Gaussians

Theorem 1 assumes that the eigenvalue-eigenvector pairs
are given in a particular order. However, since any d-
dimensional covariance matrix Σ ∈ Sd

++ can be written as
Σ =

∑d
i=1 λiνiν

T
i and there is no inherent ordering of the

eigenvalue-eigenvector pairs, it is possible to write this summa-
tion in terms of d! different eigenvalue and eigenvector matrices
as Σ = VΛVT simply by changing the order of the eigenvalues
and their corresponding eigenvectors in the eigendecomposition
matrices Λ and V. For example, all equivalent parametrizations
of the example covariance matrix in Figure 1 are given in Ta-
ble 2. Furthermore, multiplying any column of the eigenvector
matrix by −1 still gives a valid eigenvector matrix, resulting in
2d possibilities. Since we showed that there exists a unique Q
matrix and a corresponding set of unique Givens rotation angles
can be extracted via QR factorization in the proof of Theorem 1,
the result is invariant to these 2d possibilities. However, for an
improved efficiency in the global search, it is one of our goals
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Σ1 =

 1.56 −0.36 −0.70
−0.36 2.56 0.35
−0.70 0.35 1.88


−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

⇒ Λ1 =

3 0 0
0 2 0
0 0 1

, V1 =

 0.43 0.44 0.79
−0.75 0.66 0.05
−0.50 −0.61 0.62

⇒ {φ12
1 , φ

13
1 , φ

23
1 } = {60.00, 30.00, 45.00}

Σ2 =

 1.11 0.79 −1.21
0.79 2.18 −1.24
−1.21 −1.24 1.97


−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

⇒ Λ2 =

1 0 0
0 4 0
0 0 0.25

, V2 =

 0.42 0.44 0.80
−0.78 0.63 0.06
−0.47 −0.64 0.60

⇒ {φ12
2 , φ

13
2 , φ

23
2 } = {61.80, 28.20, 46.80}

Σ3 =

 1.11 0.79 −1.21
0.79 2.18 −1.24
−1.21 −1.24 1.97


−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

y
x

z

⇒ Λ3 =

4 0 0
0 1 0
0 0 0.25

, V3 =

 0.44 0.42 0.80
0.63 −0.78 0.06
−0.64 −0.47 0.60

⇒ {φ12
3 , φ

13
3 , φ

23
3 } = {125.09,−39.97, 38.07}

Figure 2: Parametrization of 3 × 3 covariance matrices by using different orderings of the eigenvectors. Eigendecomposition matrices Λi and Vi, and the Givens
angles extracted from Vi as {φ12

i , φ
13
i , φ

23
i } are given for three cases, i = 1, 2, 3. The eigenvectors in V2 are ordered according to the eigenvectors of V1 by using the

algorithm proposed in this paper, and the eigenvectors in V3 are ordered in descending order of the eigenvalues in Λ3. The resulting angles {φ12
2 , φ

13
2 , φ

23
2 } are very

similar to {φ12
1 , φ

13
1 , φ

23
1 }, reflecting the similarity of the principal directions in V1 and V2, and enabling the interactions to be aware of the similarity between Σ1

and Σ2. However, the angles {φ12
3 , φ

13
3 , φ

23
3 } do not show any indication of this similarity, and interactions between Σ1 and Σ3 will be very different even though the

matrices Σ2 and Σ3 are identical.

to pair the parameters between alternate solution candidates be-
fore performing any interactions among them. Therefore, the
dependence of the results on the d! orderings and the resulting
equivalence classes still need to be eliminated.

In order to have unique eigenvalue decomposition matrices,
we propose an ordering algorithm based on the eigenvectors so
that from a given covariance matrix we can obtain uniquely or-
dered eigenvalue and eigenvector matrices, leading to a unique
set of eigenvalues and Givens rotation angles as the parameters.
The ordering algorithm uses only the eigenvectors and not the
eigenvalues because the eigenvectors correspond to the princi-
pal directions of the data whereas the eigenvalues indicate the
amount of the extent of the data along these directions. The de-
pendency of the results on the d! orderings can be eliminated
by aligning the principal directions of the covariance matrices
so that a unique set of angle parameters with similar values for
similarly aligned matrices can be obtained. Figure 2 illustrates
two different orderings based on eigenvectors and eigenvalues.

The proposed eigenvalue-eigenvector ordering algorithm
uses an orthogonal basis matrix as a reference. In this greedy
selection algorithm, the eigenvector among the unselected ones
having the maximum absolute inner product with the i’th ref-
erence vector is put into the i’th column in the output matrix.
Let Sin = {{λin

1 , ν
in
1 }, . . . , {λ

in
d , ν

in
d }} denote the input eigenvalue-

eigenvector pair set, Vref = (νref
1 , . . . , ν

ref
d ) denote the refer-

ence orthogonal basis matrix, Λout = diag(λout
1 , . . . , λ

out
d ) and

Vout = (νout
1 , . . . , ν

out
d ) denote the final output eigenvalue and

eigenvector matrices, and I be the set of indices of the remain-
ing eigenvalue-eigenvector pairs that need to be ordered. The
ordering algorithm is defined in Algorithm 1.

Any reference basis matrix Vref in Algorithm 1 will elim-
inate the dependency on the d! orderings, and will result in a
unique set of parameters. However, the choice of Vref can af-
fect the convergence of the likelihood during estimation. We
performed simulations to determine the most effective reference
matrix Vref for eigenvector ordering. The maximum likelihood

Algorithm 1 Eigenvector ordering algorithm.

Input: Sin, Vref, I = {1, . . . , d}
Output: Λout, Vout

1: for i = 1 to d do
2: i∗ = arg max j∈I |(νin

j )T (νref
i )|

3: λout
i ← λ

in
i∗

4: νout
i ← ν

in
i∗

5: I ← I − {i∗}
6: end for

estimation problem in Section 3 was set up to estimate the co-
variance matrix of a single Gaussian as follows. Given a set of
N data points X = {x1, . . . , xN} where each x j ∈ Rd is indepen-
dent and identically distributed according to a Gaussian with
zero mean and covariance matrix Σ, the log-likelihood function

log L(Σ|X) = −
Nd
2

log(2π) −
N
2

log(|Σ|) −
1
2

N∑
j=1

xT
i Σ
−1xi (12)

can be rewritten as

log L(Σ|X) = −
Nd
2

log(2π) −
N
2

log(|Σ|) −
N
2

tr(Σ−1X) (13)

where X = 1
N

∑N
i=1 xixT

i . Thus, the maximum likelihood esti-
mate of Σ can be found as the one that maximizes log(|Σ−1|) −
tr(Σ−1X). We solved this maximization problem using GA,
DE, and PSO implemented as in [6], [23], and [24], respec-
tively. For GA and DE, candidate reference matrices were the
identity matrix and the eigenvector matrix corresponding to the
global best solution. For PSO, candidate reference matrices
were the identity matrix, the eigenvector matrix correspond-
ing to each particle’s personal best, and the eigenvector ma-
trix corresponding to the global best particle. For each case,
100 different target Gaussians (X in (13)) were randomly gen-
erated by sampling the eigenvalues from the uniform distribu-
tion Uniform[0.1, 1.0] and the Givens rotation angles from the
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Figure 3: Average error in log-likelihood and its standard deviation (shown as
error bars at one standard deviation) in 1, 000 trials for different choices of ref-
erence matrices in eigenvector ordering during the estimation of the covariance
matrix of a single Gaussian using stochastic search. Choices for the reference
matrix are I: identity matrix, GB: the eigenvector matrix corresponding to the
global best solution, and PB: the eigenvector matrix corresponding to the per-
sonal best solution.

uniform distribution Uniform[−π/4, 3π/4]. This was repeated
for dimensions d ∈ {3, 5, 10, 15, 20, 30}, and the respective op-
timization algorithm was used to find the corresponding covari-
ance matrix (Σ in (13)) that maximized the log-likelihood using
10 different initializations. Figure 3 shows the plots of esti-
mation errors resulting from the 1, 000 trials. The error was
computed as the difference between the target log-likelihood
computed from the true Gaussian parameters (Σ = X) and the
resulting log-likelihood computed from the estimated Gaussian
parameters. Based on these results, we can conclude that the
eigenvector matrix corresponding to the personal best solution
for PSO, and the eigenvector matrix corresponding to the global
best solution for GA and DE (no personal best is available in
GA and DE) can be used as the reference matrix in the eigen-
vector ordering algorithm.

Summary: The discussion above demonstrated that a d-
dimensional covariance matrix Σ ∈ Sd

++ can be parametrized
using d eigenvalues λi ∈ R++ for i = 1, . . . , d and d(d − 1)/2
angles φpq ∈ [−π/4, 3π/4] for 1 ≤ p < q ≤ d. We showed that,
for a given covariance matrix, these parameters can be uniquely
extracted using eigenvalue decomposition, the proposed eigen-
vector ordering algorithm that aligns the principal axes of the
covariance ellipsoids among alternate candidate solutions, and
QR factorization using the Givens rotations method. We also
showed that, given these parameters, a covariance matrix can be
generated from the eigenvalue matrix Λ = diag(λ1, . . . , λd) and
the eigenvector matrix V =

∏d−1
p=1

∏d
q=p+1 G(p, q, φpq)R where

R = I as Σ = VΛVT .

GMM1 =
[
µ1,Σ1 µ2,Σ2 µ3,Σ3

]
GMM2 =

[
µ1,Σ1 µ2,Σ2 µ3,Σ3

]? ? ?
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(b) Desired correspondence relation

Figure 4: Example correspondence relations for two GMMs with three compo-
nents. The ellipses represent the true components corresponding to the colored
sample points. The numbered blobs represent the locations of the components
in the candidate solutions. When the parameter updates are performed accord-
ing to the component pairs in the default order, some of the components may
be updated based on interactions with components in different parts of the data
space. However, using the reference matching procedure, a more desirable cor-
respondence relation can be found enabling faster convergence.

5.3. Identifiability of Gaussian mixtures

Similar to the problem of ordering of the parameters within
individual Gaussian components to obtain a unique set of pa-
rameters as discussed in the previous section, ordering of the
Gaussian components within a candidate solution is impor-
tant for obtaining a unique correspondence between two can-
didate solutions during their interactions for parameter updates
throughout the stochastic search. The correspondence identifi-
ability problem that arises from the equivalency of K! possible
orderings of individual components in a candidate solution for
a mixture of K Gaussians affects the convergence of the search
procedure. First of all, when the likelihood function has a mode
under a particular ordering of the components, there exists K!
symmetric modes corresponding to all parameter sets that are
in the same equivalence class formed by the permutation of
these components. When these equivalencies are not known, a
search algorithm may not cover the solution space effectively as
equivalent configurations of components may be repeatedly ex-
plored. In a related problem, in the extreme case, a reproduction
operation applied to two candidate solutions that are essentially
equal may result in a new solution that is completely different
from its parents. Secondly, the knowledge of the correspon-
dences helps performing the update operations as intended. For
example, even for two candidate solutions that are not in the
same equivalence class, matching of their components enables
effective use of both direct interactions and cross interactions.
For instance, cross interactions may be useful to increase diver-
sity; on the other hand, direct interactions may be more helpful
to find local minima. Without such matching of the compo-
nents, these interactions cannot be controlled as desired, and
the iterations proceed with arbitrary exploration of the search
space. Figure 4 shows examples for default and desired corre-
spondence relations for two GMMs with three components.

We propose a matching algorithm for finding the cor-
rect correspondence relation between the components of two
GMMs to enable interactions between the corresponding com-
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ponents in different solution candidates. In the following, the
correspondence identification problem is formulated as a mini-
mum cost network flow optimization problem. Although there
are other alternative distance measures that can be used for this
purpose, the objective is set to find the correspondence rela-
tion that minimizes the sum of Kullback-Leibler (KL) diver-
gences between pairs of Gaussian components. For two Gaus-
sians g1(x|µ1,Σ1) and g2(x|µ2,Σ2), the KL divergence has the
closed form expression

D(g1‖g2) =
1
2

(
log
|Σ2|

|Σ1|
+ tr

(
Σ−1

2 Σ1

)
− d + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)
)
.

(14)
Consequently, given a target GMM with parameters
{{µtar

1 ,Σ
tar
1 }, . . . {µ

tar
K ,Σ

tar
K }} and a reference GMM with pa-

rameters {{µref
1 ,Σ

ref
1 }, . . . {µ

ref
K ,Σ

ref
K }}, the cost of matching the

i’th component of the first GMM to the j’th component of the
second GMM is computed as

ci j = log
|Σref

j |

|Σtar
i |
+tr

(
(Σref

j )−1Σtar
i

)
+(µtar

i −µ
ref
j )T (Σref

j )−1(µtar
i −µ

ref
j ),

(15)
and the correspondences are found by solving the following op-
timization problem:

minimize
I11,...,IKK

∑K
i=1

∑K
j=1 ci jIi j

subject to
∑K

i=1 Ii j = 1, ∀ j ∈ {1, . . . ,K}∑K
j=1 Ii j = 1, ∀i ∈ {1, . . . ,K}

Ii j =


1, correspondence between

i’th and j’th components
0, otherwise.

(16)

In this formulation, the first and third constraints force each
component of the first GMM to be matched with only one com-
ponent of the second GMM, and the second constraint makes
sure that only one component of the first GMM is matched to
each component of the second GMM. This optimization prob-
lem can be solved very efficiently using the Edmonds-Karp al-
gorithm [25]. Note that the solution of the optimization prob-
lem in (16) does not change under any permutation of the com-
ponent labels in the target and reference GMMs. Figure 5 illus-
trates the optimization formulation for the example in Figure
4. Once the correspondences are established, the parameter up-
dates can be performed as intended.

We performed simulations to evaluate the effectiveness of
correspondence identification using the proposed matching al-
gorithm. We ran the stochastic search algorithms GA, DE, and
PSO for maximum likelihood estimation of GMMs that were
synthetically generated as follows. The mixture weights were
sampled from a uniform distribution such that the ratio of the
largest weight to the smallest weight was at most 1.3 and all
weights summed up to 1. The mean vectors were sampled
from the uniform distribution Uniform[0, 1]d where d was the
number of dimensions. The covariance matrices were gener-
ated by sampling the eigenvalues from the uniform distribution
Uniform[1, 1.6] and the Givens rotation angles from the uni-
form distribution Uniform[−π/4, 3π/4]. The minimum sepa-
ration between the components in the mixture was controlled
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Figure 5: Optimization formulation for two GMMs with three components
shown in Figure 4. The correspondences found are shown in red.

with a parameter called c. Two Gaussians are defined to be
c-separated if

‖µ1 − µ2‖2 ≤ c
√

d max{λmax(Σ1), λmax(Σ2)} (17)

where λmax(Σ) is the largest eigenvalue of the given covariance
matrix [26]. The randomly generated Gaussian components in
a mixture were forced to satisfy the pairwise c-separation con-
straint. Distributions other than the uniform can be used to gen-
erate different types of synthetic data for different applications,
but c-separation was the only criterion used to control the diffi-
culty of the experiments in this paper. The mixtures in the fol-
lowing simulations were generated for c = 4.0, K = 5, and di-
mensions d ∈ {3, 5, 10, 20}. 100 such mixtures were generated,
and 1, 000 points were sampled from each mixture. The param-
eters in the candidate solutions in GA, DE, and PSO were ran-
domly initialized as follows. The mean vectors were sampled
from the uniform distribution Uniform[0, 1]d, the eigenvalues
of the covariance matrices were sampled from the uniform dis-
tribution Uniform[0, 10], and the Givens rotation angles were
sampled from the uniform distribution Uniform[−π/4, 3π/4].
10 different initializations were used for each mixture, result-
ing in 1, 000 trials. The true parameters were compared to the
estimation results obtained without and with correspondence
identification. Figure 6 shows the plots of estimation errors
resulting from the 1, 000 trials. The error was computed as
the difference between the target log-likelihood computed from
the true GMM parameters and the resulting log-likelihood com-
puted from the estimated GMM parameters. Based on these re-
sults, we can conclude that using the proposed correspondence
identification algorithm leads to significantly better results for
all stochastic search algorithms used.

6. Particle swarm optimization

We illustrate the proposed solutions for the estimation of
GMMs using stochastic search in a particle swarm optimiza-
tion (PSO) framework. The following sections briefly describe
the general PSO formulation by setting up the notation, and
then present the details of the GMM estimation procedure us-
ing PSO.
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Figure 6: Average error in log-likelihood and its standard deviation (shown
as error bars at one standard deviation) in 1, 000 trials without and with the
correspondence identification step in the estimation of GMMs using stochastic
search.

6.1. General formulation
PSO is a population-based stochastic search algorithm that

is inspired by the social interactions of swarm animals. In PSO,
each member of the population is called a particle. Each parti-
cle Z(m) is composed of two vectors, a position vector Z(m)

u and
a velocity vector Z(m)

v where m = 1, . . . ,M indicates the parti-
cle index in a population of M particles. The position of each
particle Z(m)

u ∈ Rn corresponds to a candidate solution for an
n-dimensional optimization problem.

A fitness function defined for the optimization problem of
interest is used to assign a goodness value to a particle based
on its position. The particle having the best fitness value is
called the global best, and this position is denoted as Z(GB)

u .
Each particle also remembers its best position throughout the
search history as its personal best, and this position is denoted
as Z(m,PB)

u .
PSO begins by initializing the particles with random posi-

tions and small random velocities in the n-dimensional param-
eter space. In the subsequent iterations, each of the n velocity
components in Z(m)

v is computed independently using its previ-
ous value, the global best, and the particle’s own personal best
in a stochastic manner as

Z(m)
v (t + 1) = ηZ(m)

v (t) + c1 U1(t)
(
Z(m,PB)

v (t) − Z(m)
v (t)

)
+ c2 U2(t)

(
Z(GB)

v (t) − Z(m)
v (t)

)
(18)

where η is the inertia weight, U1 and U2 represent random num-
bers sampled from Uniform[0, 1], c1 and c2 are acceleration
weights, and t is the iteration number. The randomness of the
velocity is obtained by the random numbers U1 and U2. These
numbers can be sampled from any distribution depending on
the application, but we chose the uniform distribution used in

the standard PSO algorithm. Then, each particle moves from
its old position to a new position using its new velocity vector
as

Z(m)
u (t + 1) = Z(m)

u (t) + Z(m)
v (t + 1), (19)

and its personal best is modified if necessary. Additionally, the
global best of the population is updated based on the particles’
new fitness values.

The main difference between PSO and other popular search
algorithms like genetic algorithms and differential evolution is
that PSO is not an evolutionary algorithm. In evolutionary al-
gorithms, a newly created particle cannot be kept unless it has a
better fitness value. However, in PSO, particles are allowed to
move to worse locations and this mechanism allows the parti-
cles to escape from local optima gradually without the need of
any long jump mechanism. In evolutionary algorithms, this can
generally be achieved by mutation and crossover operations but
these operations can be hard to design for different problems. In
addition, PSO uses the global best to coordinate the movement
of all particles and uses personal bests to keep track of all local
optima found. These properties make it easier to incorporate
problem specific ideas into PSO where the global best serves as
the current state of the problem and the personal bests serve as
the current states of the particles.

6.2. GMM estimation using PSO
The solutions proposed in this paper enable the formulation

of a PSO framework for the estimation of GMMs with arbitrary
covariance matrices. This formulation involves the definition of
the particles, the initialization procedure, the fitness function,
and the update procedure.

Particle definition. Each particle that corresponds to a candi-
date solution stores the parameters of the means and covariance
matrices of a GMM. Assuming that the number of components
in the mixture is fixed as K, the position vector of the m’th par-
ticle is defined as

Z(m)
u =

(
(µ(m,k)

u )T , λ(m,k)
1,u , . . . , λ

(m,k)
d,u , φ

12,(m,k)
u , . . . φ(d−1)(d),(m,k)

u ,

for k = 1, . . . ,K
)

(20)

where µ(m,k)
u ∈ Rd for k = 1, . . . ,K denote the mean vectors

parametrized using d real numbers, λ(m,k)
i,u ∈ R++ for i = 1, . . . , d

and k = 1, . . . ,K denote the eigenvalues of the covariance ma-
trices, and φpq,(m,k)

u ∈ [−π/4, 3π/4] for 1 ≤ p < q ≤ d and
k = 1, . . . ,K denote the Givens rotation angles as defined in
Section 5.1. The velocity vector Z(m)

v is defined similarly. The
K mixture weights α1, . . . , αK are calculated from the proba-
bilistic assignments of the data points to the components, and
are not part of the PSO particles.

Initialization. Initialization of each particle at the beginning of
the first iteration can be done using random numbers within the
ranges defined for each parameter. The proposed parametriza-
tion makes this possible because the angles are in a fixed range
while lower and upper bounds for the mean values and up-
per bounds for the eigenvalues can easily be selected with the
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knowledge of the data. As an alternative, one can first ran-
domly select K data points as the means, and form the initial
components by assigning each data point to the closest mean.
Then, the covariance matrices can be computed from the as-
signed points, and the parameters of these matrices can be ex-
tracted using eigenvalue decomposition and QR factorization
using the Givens rotations method as described in Section 5.1.
Another alternative for selecting the initial components is the
k-means initialization procedure described in [27].

Fitness function. The PSO iterations proceed to find the maxi-
mum likelihood estimates by maximizing the log-likelihood de-
fined in (1).

Update equations. Before updating each particle as in (18) and
(19), the correspondences between its components and the com-
ponents of the global best particle are found. This is done by
using the particle’s personal best as the reference GMM and
the global best particle as the target GMM in (15). The cor-
respondence relation computed using (15) and (16) as Ii j = 1
is denoted with a function f (k) that maps the current particle’s
component index k to the global best particle’s corresponding
component index f (k) according to k = j and f (k) = i for
I f (k)k = 1. Using this correspondence relation, the mean param-
eters are updated as

µ(m,k)
v (t + 1) = ηµ(m,k)

v (t) + c1(t)
(
µ(m,PB,k)

u (t) − µ(m,k)
u (t)

)
+ c2(t)

(
µ(GB, f (k))

u (t) − µ(m,k)
u (t)

)
, (21)

µ(m,k)
u (t + 1) = µ(m,k)

u (t) + µ(m,k)
v (t + 1), (22)

and the eigenvalues and angles as the covariance parameters are
updated as

λ(m,k)
i,v (t + 1) = η λ(m,k)

i,v (t) + c1(t)
(
λ(m,PB,k)

i,u (t) − λ(m,k)
i,u (t)

)
+ c2(t)

(
λ

(GB, f (k))
i,u (t) − λ(m,k)

i,u (t)
)
, (23)

λ(m,k)
i,u (t + 1) = λ(m,k)

i,u (t) + λ(m,k)
i,v (t + 1) (24)

φ
pq,(m,k)
v (t + 1) = η φpq,(m,k)

v (t) + c1(t)
(
φ

pq,(m,PB,k)
u (t) − φpq,(m,k)

u (t)
)

+ c2(t)
(
φ

pq,(GB, f (k))
u (t) − φpq,(m,k)

u (t)
)
,

(25)

φ
pq,(m,k)
u (t + 1) = φpq,(m,k)

u (t) + φpq,(m,k)
v (t + 1). (26)

The uniform random numbers U1 and U2 are incorporated into
c1 and c2. The rest of the notation is same as in Sections 5.1
and 6.1.

The convergence of the search procedure can also be im-
proved by running a set of EM iterations for each particle at the
end of each iteration. After the covariance parameters are up-
dated as above, new covariance matrices are constructed from
the parameters using Σ = VΛVT , the EM procedure is al-
lowed to converge to a local maximum as described in Section
4, and new parameters are computed by performing another set
of eigenvalue decomposition and QR factorization steps. These
EM iterations help converging to local maxima effectively and
efficiently, whereas the PSO iterations handle the search for the

Algorithm 2 PSO algorithm for GMM estimation.
Input: d-dimensional data set with N samples, number of

components (K), PSO parameters (η, c1, and c2)
1: Initialize population with M particles as in (20)
2: for t = 1 to T1 do {T1: number of PSO iterations}
3: for m = 1 to M do
4: Construct K eigenvalue matrices
5: Construct K eigenvector matrices by multiplying

Givens rotation angles
6: Run EM for local convergence for T2 iterations

{T2: number of EM iterations for each PSO iter-
ation}

7: Compute K eigenvalue and eigenvector matrices
via singular value decomposition of new covari-
ance matrices

8: Reorder eigenvalues and eigenvectors of each co-
variance matrix according to personal best

9: Extract Givens rotation angles using QR factor-
ization

10: Replace particle’s means, eigenvalues, and an-
gles

11: Calculate log-likelihood
12: Update personal best
13: end for
14: Update global best
15: for m = 1 to M do
16: Reorder components of global best according to

personal best
17: Update particle’s means, eigenvalues, and angles

as in (21)–(26)
18: end for
19: end for

global maximum. The overall estimation procedure is summa-
rized in Algorithm 2.

7. Experiments

We evaluated the framework for GMM estimation (Sections
5 and 6) using both synthetic and real data sets. Comparative
experiments were also done using the EM algorithm (Section
4). The procedure used for synthetic data generation and the
results for both synthetic and real data sets are given below.

7.1. Experiments on synthetic data

Data sets of various dimensions d ∈ {5, 10, 15, 20, 30, 40}
and number of components K ∈ {5, 10, 15, 20} were generated.
For dimensions d ∈ {5, 10, 15}, d = 20, and d ∈ {30, 40},
the sample size N was set to 1, 000, 2, 000, and 4, 000, re-
spectively. The d and N values were chosen based on real
data sets used for the experiments described in the next sec-
tion. For a particular d and K combination, a GMM was
generated as follows. The mixture weights were sampled
from a uniform distribution such that the ratio of the largest
weight to the smallest weight was at most 2 and all weights
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summed up to 1. The mean vectors were sampled from the uni-
form distribution Uniform[0, 100]d. The covariance matrices
were generated using the eigenvalue/eigenvector parametriza-
tion described in Section 5.1. The eigenvalues were sampled
from the uniform distribution Uniform[1, 16], and the Givens
rotation angles were sampled from the uniform distribution
Uniform[−π/4, 3π/4]. Furthermore, the proximity of the com-
ponents were controlled using c-separation defined in (17). Dif-
ferent values of c ∈ {2.0, 4.0, 8.0} were used to control the dif-
ficulty of the estimation problem. The selection of c value was
based on visual observations in 2-dimensional data. We ob-
served that the minimum value of c where K individual Gaus-
sian components were distinguishable by visual inspection was
close to 2.0, and c = 8.0 corresponded to the case where the
components were well separated. Consequently, we divided the
relative difficulties of the data sets into three. The easy settings
corresponded to d ∈ {5, 10} and c = 8.0, the medium settings
corresponded to d ∈ {10, 15, 20} and c = 4.0, and the hard set-
tings corresponded to d ∈ {20, 30, 40} and c = 2.0. 10 different
mixtures with N samples each were generated for each setting.

The PSO and EM parameters were initialized similarly for
a fair evaluation. We assumed that the number of components
was known a priori for each data set. Following the common
practice in the literature, the initial mean vector for each com-
ponent was set to a randomly selected data point. The initial
covariance matrices and the initial mixture weights were calcu-
lated from the probabilistic assignment of the data points to the
components with the initial mean vectors and identity covari-
ance matrices. The initial mixture weights were used only in
the EM procedure as the proposed algorithm does not include
the weights as parameters. After initialization, the search pro-
cedure constrained the components of the mean vectors in each
particle defined in (20) to stay in the data region defined by
the minimum and maximum values of each component in the
data used for estimation. Similarly, the eigenvalues were con-
strained to stay in [λmin, λmax] where λmin = 10−5 and λmax was
the maximum eigenvalue of the covariance matrix of the whole
data, and the Givens rotation angles were constrained to lie in
[−π/4, 3π/4]. The PSO parameters η, c1, and c2 in (18) were
fixed at η = 0.728, c1 = c2 = 1.494 following the common
practice in the PSO literature [24]. Thus, no parameter tuning
was done during both initialization and search stages.

For each test mixture, each PSO run consisted of M par-
ticles that were updated for T1 iterations where each iteration
also consisted of at most T2 EM iterations as described at the
end of Section 6.2. Each primary EM run consisted of a group
of M individual secondary runs where the initial parameters of
each secondary run was the same as the parameters of one of
the M particles in the corresponding PSO run. Each secondary
run was allowed to iterate for at most T1 × T2 iterations or un-
til the relative change in the log-likelihood in two consecutive
iterations was less than 10−6. The number of iterations were
adjusted such that each PSO run (M particles with T1 PSO it-
erations and T2 EM iterations for each PSO iteration) and the
corresponding primary EM run (M secondary EM runs with
T1 × T2 iterations each) were compatible.

Table 3 shows the details of the synthetic data sets generated

Table 3: Details of the synthetic data sets used for performance evaluation. The
three groups of rows correspond to the settings categorized as easy, medium,
and hard with respect to their relative difficulties. The parameters are described
in the text.

Setting # d K c N M T1 T2 T1 × T2

1 5 5 8.0 1,000 20 30 20 600
2 5 10 8.0 1,000 20 30 20 600
3 10 5 8.0 1,000 20 30 20 600
4 10 5 4.0 1,000 20 30 20 600
5 10 10 4.0 1,000 20 30 20 600
6 10 15 4.0 1,000 20 30 20 600
7 15 5 4.0 1,000 30 30 20 600
8 15 10 4.0 1,000 30 30 20 600
9 15 15 4.0 1,000 30 30 20 600

10 20 5 4.0 2,000 30 50 20 1,000
11 20 10 2.0 2,000 30 50 20 1,000
12 20 15 2.0 2,000 30 50 20 1,000
13 20 20 2.0 2,000 30 50 20 1,000
14 30 10 2.0 4,000 40 100 20 2,000
15 30 15 2.0 4,000 40 100 20 2,000
16 30 20 2.0 4,000 40 100 20 2,000
17 40 15 2.0 4,000 40 100 20 2,000
18 40 20 2.0 4,000 40 100 20 2,000

using these settings. For each setting, 10 different mixtures with
N samples each were generated as described above. For each
mixture, the target log-likelihood was computed from the true
GMM parameters. Then, for each mixture, 10 different initial-
izations were obtained as described above, and both the PSO
and the EM procedures were run for each initial configuration.
The parameters of the global best particle were selected as the
final result of each PSO run at the end of the iterations. The
final result of each primary EM run was selected as the parame-
ters corresponding to the best secondary run having the highest
log-likelihood among the M secondary runs. The estimation
error was computed as the difference between the target log-
likelihood and the resulting log-likelihood computed from the
estimated GMM parameters.

Table 4 and Figure 7 present the error statistics computed
from the 100 runs (10 different mixtures and 10 different ini-
tializations for each mixture) for each setting. When all set-
tings were considered, it could be seen that the proposed PSO
algorithm resulted in better estimates compared to those by the
EM algorithm for all settings. In particular, the PSO algorithm
converged to the true GMM parameters in more than half of the
runs for 11 out of 18 settings (all of the 10 easy and medium set-
tings and one hard setting) with a median error of zero, whereas
the EM algorithm could do the same for only five settings. For
all settings, the average error obtained by the PSO algorithm
was significantly lower than the error by the EM algorithm. For
the settings with a small number of components, both EM and
PSO had no problem in finding the optimal solution. This was
mainly due to good initial conditions where it was relatively
easier to find a small number of good initial data points that be-
haved as good initial means. Note that a good initialization for
only one of the M secondary runs for each primary EM run was
sufficient to report a perfect performance because the best out
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Table 4: Statistics of the estimation error for the synthetic data sets using the GMM parameters estimated via the EM and PSO procedures. The mean, standard
deviation (std), median, and median absolute deviation (mad) are computed from 100 different runs for each setting.

EM PSO
Setting # mean std median mad mean std median mad

1 6.18 61.46 0.00 0.00 0.00 0.00 0.00 0.00
2 304.99 183.36 362.71 71.94 41.30 112.55 0.00 0.00
3 66.59 335.93 0.00 0.00 17.42 122.22 0.00 0.00
4 20.32 115.54 0.00 0.00 0.00 0.00 0.00 0.00
5 283.29 135.85 331.03 37.41 27.15 81.98 0.00 0.00
6 500.68 110.17 480.89 78.46 69.80 83.05 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 300.83 174.13 367.08 68.42 11.28 55.66 0.00 0.00
9 654.48 145.67 654.23 163.56 51.39 100.70 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 490.14 307.53 615.89 126.93 112.75 227.90 0.00 0.00
12 842.94 242.63 880.06 192.40 224.89 231.03 97.21 75.14
13 975.60 152.44 912.21 113.53 261.34 98.73 120.66 45.12
14 1,171.30 592.29 1,105.42 205.61 236.63 315.23 102.31 102.70
15 1,651.47 518.35 1,576.24 124.21 309.21 232.49 272.18 58.23
16 2,098.39 460.39 1,971.43 384.08 523.84 183.92 375.28 114.02
17 2,328.13 676.15 2,093.80 403.16 609.92 281.59 412.54 93.84
18 2,946.89 760.48 2,882.77 425.04 697.02 292.17 468.27 100.57
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Figure 7: Statistics of the estimation error for the synthetic data sets using the
GMM parameters estimated via the EM (blue) and PSO (red) procedures. The
boxes show the lower quartile, median, and upper quartile of the error. The
whiskers drawn as dashed lines extend out to the extreme values.

of M was used.
The above argument could be extended for PSO to all set-

tings relatively independent of the number of dimensions and
the number of components. We could conclude that the pro-
posed algorithm was less sensitive to initializations because in
every iteration the particles took small number of steps toward
one of the local maxima using the local EM iterations, and then
due to their interaction with the global best, they could move
away from that local maximum. We could argue that the com-
mon characteristic of the small number of wrong convergences
of PSO was the initialization of most of the particles including
the global best near the same local maximum. In that case, both
the local EM iterations and the global best particle attracted

all particles toward the same region. This problem could be
eliminated by a more sophisticated initialization procedure that
increased the diversity of the particles. However, we used the
same initialization procedure that used the same random points
for both EM and PSO algorithms to do a fair comparison.

In this paper, we only investigated the advantages of cor-
respondence identification with regard to finding better global
maxima of the log-likelihood. We showed that stochastic search
algorithms performed better in finding global optima. However,
correspondence identification can also be useful in increasing
the population diversity. For instance, once we find the corre-
spondence relations via the proposed matching algorithm, we
can force the parameters to be updated with the distant (not
matching) ones in the global best in some random way to in-
crease the diversity. Another approach may be to temporarily
modify the update equations so that the particles move away
from the global best if the KL divergence between their per-
sonal best and the global best becomes too small in early itera-
tions to overcome premature convergence to a local maximum.

We did not try to tune the parameters of PSO such as η, c1,
and c2. For different settings, parameter tuning might be useful
in terms of increased convergence speed and increased estima-
tion accuracy. However, such tuning could have led to an unfair
advantage of PSO over the EM algorithm. We also did not tune
the number of particles and the number of iterations except in-
creasing them linearly with increasing dimension. Increasing
the number of iterations will not improve the performance of
EM after its convergence but larger number of iterations will
allow PSO to explore a larger portion of the parameter space.
However, the number of iterations were fixed to the same num-
ber for EM and PSO to allow a fair comparison.
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Table 5: Details of the real data sets used for performance evaluation. Ktrue corresponds to the number of classes in each data set. K corresponds to the number of
Gaussian components used in the experiments. The rest of the parameters are described in the text.

Data set d Ktrue K N M T1 T2 T1 × T2

Glass 9 6 { 6, 7, 8, 9, 10 } 214 20 30 20 600
Wine 13 3 { 3, 4, 5, 6, 7 } 178 30 30 20 600

ImgSeg 19 7 { 7, 8, 9, 10, 11 } 2,310 30 50 20 1,000
Landsat 36 7 { 7, 8, 9, 10, 11 } 4,435 40 100 20 2,000
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Figure 8: Average log-likelihood and its standard deviation (shown as error
bars at one standard deviation) computed from 10 different runs of EM and
PSO procedures for the real data sets.

7.2. Experiments on real data
We also used four data sets from the UCI Machine Learning

Repository [28] for real data experiments. These data sets are
referred to as Glass (glass identification), Wine, ImgSeg (Statlog
image segmentation), and Landsat (Statlog Landsat satellite).
Table 5 summarizes the characteristics of these data sets and
the corresponding experimental settings. For each data set and
for each K value, both PSO and EM were run using 10 different
initial configurations that were generated as described in the
previous section. The resulting log-likelihood values for each
setting for each data set are shown in Figure 8. The results show
that the proposed PSO algorithm performed better than the EM
algorithm for all settings.

7.3. Computational complexity
The overall worst case time complexity of the EM algo-

rithm in terms of the overall number of iterations T , the num-
ber of components K, and the number of data dimensions d
is O(T Kd3N). It involves a singular value decomposition that
takes O(d3) for each of the K covariance matrices in each of
the T iterations, and the multiplication of K eigenvalues (d),
eigenvector matrices (d×d), and mean subtracted data matrices
(d×N). The former has O(T Kd3) complexity and the latter has
O(T Kd3N) complexity, leading to the overall complexity given

above. The PSO algorithm has additional QR factorizations to
extract the Givens rotation angles and the multiplication of the
resulting angles that both take O(d3) time, but these operations
do not change the overall complexity. We can conclude that
both the EM algorithm and the proposed PSO-based algorithm
have the same worst case time complexities.

8. Conclusions

We presented a framework for effective utilization of
stochastic search algorithms for the maximum likelihood es-
timation of unrestricted Gaussian mixture models. One of
the contributions of this paper was a covariance parametriza-
tion that enabled the use of arbitrary covariance matrices in
the search process. The parametrization used eigenvalue de-
composition, and modeled each covariance matrix in terms of
its eigenvalues and Givens rotation angles extracted from the
eigenvector matrices. This parametrization allowed the indi-
vidual parameters to be independently modifiable so that the
resulting matrices remained valid covariance matrices after the
stochastic updates. Furthermore, the parameters had finite
lower and upper bounds so that they could be searched within
a bounded solution space. We also described an algorithm for
ordering the eigenvectors so that the parameters of individual
Gaussian components were uniquely identifiable.

Another contribution of this paper was an optimization for-
mulation for resolving the identifiability problem for the mix-
tures. The proposed solution allowed a unique correspondence
between two candidate solutions so that desirable interactions
became possible for parameter updates throughout the stochas-
tic search.

We showed that the proposed methods can be used effec-
tively with different stochastic search algorithms such as ge-
netic algorithms, differential evolution, and particle swarm op-
timization. The final set of experiments using particle swarm
optimization with synthetic and real data sets showed that the
proposed algorithm could achieve significantly higher likeli-
hood values compared to those obtained by the conventional
EM algorithm under the same initial conditions.
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