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Abstract

In this paper we show that the performance of binary classifiers based
on Boosted Random Ferns can be significantly improved by appropri-
ately bootstrapping the training step. This results in a classifier which is
both highly discriminative and computationally efficient and is particu-
larly suitable when only small sets of training images are available.

During the learning process, a small set of labeled images is used to
train the boosting binary classifier. The classifier is then evaluated over
the training set and warped versions of the classified and misclassified
patches are progressively added into the positive and negative sample
sets for a new re-training step. In this paper we thoroughly study the
conditions under which this bootstrapping scheme improves the detection
rates. In particular we assess the quality of detection both as a function
of the number of bootstrapping iterations and the size of the training
set. We compare our algorithm against state-of-the-art approaches for
several databases including faces, cars, motorbikes and horses, and show
remarkable improvements in detection rates with just a few bootstrapping
steps.

1 Introduction

Object detection and categorization has become a central topic in computer
vision research, and recent approaches have shown impressive results under
challenging situations such as changes in object appearance, occlusions or pose
variations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Most of these approaches apply statistical learning techniques over a set of
labeled training data to build classifiers which are then used for the recognition
task. However, the success of such classifiers is highly conditioned on the quan-
tity and quality of the training data. While this does not generally represent
an issue, there are situations in which obtaining training data is not feasible.

A common method to tackle object detection problems with reduced train-
ing sets is to introduce additional examples by synthetically generating warped
versions of the original images, which can be efficiently represented by means
of binary structures such as random trees [11] or Ferns [12]. However, these ap-
proaches were conceived to address tracking problems, where only one or very
few object classes have to be identified. For problems involving a larger number
of classes, a popular approach to handle situations with limited training data
is to perform re-sampling over the set of available training examples and use



Figure 1: Examples of detections —localization and recognition— obtained with
our approach on several standard databases. We propose a classifier that com-
bines the benefits of binary classifiers, boosting and bootstrapping, that yields
high recognition rates despite challenging conditions such as cluttered back-
ground, occlusions, scale changes or lighting variations. In addition, it is very
efficient, and detection may be performed in about one second per image.

small subsets of data to iteratively refine the classifier. This technique is known
as bootstrapping and was first introduced in [13], and subsequently followed by
many other authors [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Another alternative
is using online learning algorithms that incrementally train the classifier as new
data is obtained [24, 25]. Yet, while these approaches work remarkably well
and allow real-time applications, they are again limited to problems involving
a reduced number of object classes.

In this paper we combine ideas of the aforementioned methods to propose a
classifier which is highly discriminative, may be computed and evaluated very
efficiently, and can handle situations with reduced amounts of training data.
For this purpose we initially build a classifier that uses binary object descriptors
based on Boosted Random Ferns [26]; and then re-train this classifier following
a bootstrapping strategy, which has the effect of increasing the detection rate
without requiring further training examples. During this re-training phase we
enlarge the size of the positive training set by adding to it warped versions of
the object samples that were not detected. If the object is correctly detected,
but under a scale factor or offset, it is also added subject to this transformation
to the training set. Furthermore, false positive object patches are added to the
background training set. All these operations allow the classifier to successively



become more dedicated to those challenging samples lying near the decision
boundary.

As shown in the results section, just a few (two or three) bootstrapping iter-
ations are enough to ensure a significant improvement of the recognition rates.
We demonstrate the advantages of using Bootstrapped Boosted Random Ferns
through extensive evaluation in several databases (see Fig. 1). Note that al-
though the individual ingredients (Bootstrapping and Boosted Random Ferns)
of our work already exist, our main contribution is to bring these pieces together
and build a binary classifier which is both highly discriminative and computa-
tionally efficient while retaining the simplicity of the original Boosted Random
Ferns. This is in contrast to state-of-the-art approaches, which increase the dis-
criminability of simple detectors through relatively complex additional stages
which involve solving sophisticated optimization problems, or the iteration over
generative and discriminative steps [27, 28, 29, 30, 31] that make them compu-
tationally expensive. As we will show in the results section, we achieve similar
results as these recent approaches, but at a significantly reduced cost.

Another advantage of our approach is that contrary to most other meth-
ods, bootstrapping allows to use very generic features, making the technique
sufficiently general to be used with very different object classes as shown in the
experiments section.

2 Related Work

Several machine learning techniques have been proposed over the years to im-
prove the discriminability of object classifiers. A standard approach is to use
boosting, i.e, building a strong classifier as a linear combination of weak learn-
ers [32, 33, 34, 35].

A simple and efficient strategy to improve classifier response is that of boot-
strapping, which consists of iteratively re-training the classifier with a training
dataset that is progressively augmented by tagging as outliers false positives
from previous iterations. The method was originally presented in [13], and has
become widely used [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], especially when dealing
with training sets with a reduced number of samples.

Co-training is another methodology used to automatically build the training
set [36]. In this case, the samples used to train a specific classifier are chosen by
taking the classification results of a secondary classifier. This approach, though,
has the limitation that the positively labeled samples with high confidence for
one classifier do not need to be informative for the second classifier. This is ad-
dressed by seeking the most informative samples lying at the decision boundary,
which is not an easy task. This kind of approach is useful when dealing with a
large number of training examples and features, and using all of them becomes
prohibitive.

There are other approaches that can be used to accelerate training, typically
by either sampling the features or the samples used to train the classifier [37,
38, 39]. This, however is not the situation envisioned in the current paper, as we
will assume that our training set is limited. Under this situation, bootstrapping
appears to be one of the most effective solutions.

The popularity gained by both boosting and bootstrapping lies in the com-
bination of their simplicity and efficiency, while generally guaranteeing state-
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Figure 2: Our proposed learning algorithm combines binary descriptors, boost-
ing and bootstrapping. We assume we are given a dataset of labeled images
with both positive (object) and negative (background) samples (a). We initially
compute a set of features, called Random Ferns, which are defined as pairwise
random comparisons of bins on local Histograms of Gradients (b). These Ran-
dom Ferns remain constant throughout the whole learning process. The training
data is extracted from the dataset images using the ground truth and an initial
set of background images (c). We then use Real Adaboost to build the Boosted
Random Ferns (BRF) classifier (d). The training process is iterated according
to a bootstrapping strategy, where the classifier is tested over the whole training
set (e). Since ground truth is available, the detection results may be labeled as
true positives (green), false positives (red) and undetected (black) (f). Finally,
warped versions of these undetected patches are appropriately merged to the
positive and negative training sets in addition to detected patches for a new
training phase (g).

of-the-art performance. Their joint use has been previously reported for the
creation of classifiers based on contour features [17]. In this paper, we pro-
pose to build a classifier based on a new type of features coming from random
Ferns computed over histograms of oriented gradients. We will show, that ap-
propriately using Adaboost on these features, and learning the parameters of
the classifier using bootstrapping we achieve results which are comparable and
even better than other current approaches based on far more complex strate-
gies [40, 41, 17, 42, 6, 31, 43].

3 Overview of the Method

The learning algorithm we describe in this paper combines in an original form
the strengths of several existing tools. In particular, it incorporates the following
elements:

e Binary Descriptors: Inspired on the Ferns descriptor [12], we use a bi-
nary representation of image patches based on a small number of pairwise
pixel comparisons. The image position of the pixels is randomly cho-



sen, and hence the name Random Ferns. But instead of comparing pixel
intensities as in [12, 44|, we perform comparisons between bins of local
Histograms of Gradients (HoGs). This is a key ingredient to increase the
generality of the method, as gradients are known to better represent lager
intra-class variations than intensities.

e Boosting: We consider the Random Ferns computed over HoGs as weak
classifiers, which are further linearly combined using Real Adaboost [45] to
form a strong classifier. We call the resulting learning algorithm Boosted
Random Ferns and describe it in [26]. Furthermore, we share Random
Ferns accross different object categories to reduce the computational load
of the method.

e Bootstrapping: The previous boosting step is iteratively repeated fol-
lowing a bootstrapping strategy. After each iteration, the current classifier
is evaluated over the training set, and warped versions of the misclassified
samples are merged to the training data. This extended dataset is then
used for a new Adaboost training phase. The result of the bootstrapping
process is a classifier more dedicated to the challenging samples, and thus
with a smaller global error rate.

The combination of all these ingredients and flow of information during the
learning process is depicted in Fig. 2. In the following sections we describe each
one of these constituent pieces in more detail. We then evaluate quantitatively
the proposed algorithm.

4 Boosted Random Ferns

The features we use to build our weak classifiers are Random Ferns. The original
formulation of this descriptor consisted on sets of logical pairwise comparisons
on the intensity levels of randomly selected pixels in the input images [12]. Yet,
although the use of pixel intensity comparisons yields robustness to illumina-
tion changes, the fact that the descriptor is computed on the intensity domain
reduces its generalization when comparing objects belonging to the same class
but with different appearances. Under these variations, gradient information
has demonstrated a higher degree of stability. Therefore, following [26], we
compute the Random Ferns instead by pairwise comparisons on the bins of
local Histograms of Oriented Gradients.

More specifically, let HoG, be the histogram computed from an image patch
centered at z. We define the Random Fern f = [fi(z),..., fr(2)]T as a R-
dimensional binary vector, where fi(s) is computed as follows:

i) = {1 HoGy (i) > HoG. ) 1)
0 HoG(i) < HoG.(j)

and where ¢ and j are random bin locations of the histogram chosen during the
training stage. Note that each Random Fern F captures the co-occurrence of
R binary features, and thus, maps image samples = to a K = 2F-dimensional
space of binary descriptors.

F:x—z2 (2)
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Figure 3: The Random Ferns are computed over local HoGs. Given a Histogram
of Oriented Gradients of a patch centered at a point =, we define the Fern by
concatenating the responses of binary functions that compare random bins of
the Histogram. The plot shows an example of a 3-dimensional Random Fern.
The position of the bins which are compared is randomly chosen during the
training stage of the classifier.

where z = 1,2, ..., K. Fig. 3 shows an example of how a 3-dimensional Random
Fern is computed.

In addition, as already proposed in [46], the efficiency of Random Ferns is
increased when shared among different classes. That is, the position of the
bins used for each Fern comparison is retained, and used for all classes. This,
obviously, does not constrain the Fern response for each class to be the same. In
the following let us denote by ¢ = {F 1,...,F pr} our pool of M Random Ferns.

Class-specific classifiers are then built using a boosted combination of Ran-
dom Ferns, which play the role of weak classifiers. More specifically, we seek
to retrieve the Ferns F¢ € ¢ and their image locations g* to build the classi-
fier Ho, (z) that most discriminates the class Cj from the background B. This
classifier is computed with the Real Adaboost algorithm [45], that iteratively
assembles T' weak classifiers and updates their weighting values so as to succes-
sively dedicate to those challenging samples incorrectly classified by previous
weak classifiers. Note that the same pool of Random Ferns is shared for the
selection of each weak classifier. We therefore define the boosted classifier of
class C; by:

T
He,(x) =Y hie,(x) > Bo, (3)

where x is a sample image, 8¢, is a classifier threshold, and htcj (x) is a weak



classifier computed by

t 1 P(F|C.g" 2 (x) = k) + ¢
=—1 4
s (7) = 5 18 BB, g1, () = k) + e @

where k£ = 1,2,...K, and € is a smoothing factor. At each boosting iteration
t, the probabilities P(F|Cj, g%, 2") and P(F|B,g",2") are computed using a
distribution of weights W over the training images:

P(F'C "2 =k) = Y W)
izt (x;)=k
yi=+1
P(rF|B,¢", 2" =k) = Z Wh(z;), (5)
izt (xy)=k
yi=—1
where z; for i = 1,2,..., N is the set of training samples. In order to choose

which is the most discriminative weak classifier htcj at iteration ¢, we use the

common criterion of picking the one that minimizes the following Bhattacharyya
distance Q¢ between the distributions of the class C; and background B:

K
Qt :22 \/P(Ft‘chgtvzt = k)P(Ft|Bagt7zt = k) (6)

k=1

And finally, once the weak classifier is computed, its classification results are
used to update the weight distribution W*:

W (x;) exp(yihe, (2:))
Wi (z;) = . . 7
(z:) SN W () exp(yihe, (1)) @)

The pseudocode for this whole process is given in Algorithm 1. From the prac-
tical point of view, it is worth to mention that in this work all class-specific
classifiers are learned using the same parameters. In particular, for all exper-
iments reported in the results section we have used T = 300 weak classifiers,
a pool of M = 15 shared Random Ferns and R = 7 binary features per Fern.
The size of the fern pool and the number of features per fern set a compromise
between recognition rates and computational burden. Our choice of these values
is empirical. However, we must stress out that slight variations of these values
do not hinder classifier performance, and on the contrary, the generalization of
these parameters spreads out for the multiple datasets treated.

5 Bootstrapping Boosted Random Ferns

In the previous section we described the class-specific classifier we built using
a combination of boosting and binary features computed from a set of labeled
training images. We next integrate this classifier within a bootstrapping frame-
work in which warped versions of the training data is sequentially used to re-
train the classifier. The advantages of adding a Bootstrapping step to refine the
classifier are twofold:

1. Tt allows learning from databases with small number of samples.



Algorithm 1 Boosted Random Ferns
1: Input:
[
e D ={(z1,v1),...,(xn,yn)}: Training dataset for the class C;, where
x; is an image sample and y; € {+1,—1} indicates if the sample be-
longs to the class C; or background B.

e 9={F1,...,F m}: Pool of Random Ferns.

o T, Bc;: Number of weak classifiers to be used, and classifier threshold,
respectively.

2: Initialize the weights distribution over the training samples to W1(z;) =
where i =1,2,..., N.

3: fort=1to T do

4:  Use the current weight distribution W?* to pick the Random Fern f* €
¥ and image position ¢g' that minimizes the Bhattacharyya distance Q;
(Eq. 6).
Use F¢ and g' to compute the weak classifier htcj (Eq. 4).
Update the weight distribution W (Eq. 7).

end for

Output: Build the strong classifier using Eq. 3.

1
N

2. It allows to put more emphasis on challenging training samples, and pro-
gressively build a classifier with a smaller error rate.

In the following subsections, we will describe each of the building blocks of
the bootstrapping scheme we propose.

5.1 Imitial Training Set

For each object class, we assume a labeled dataset is available, which is made
of both positive (object) and negative (background) images. For the positive
subset, the object position is defined by means of a rectangular bounding box.

In order to generate the positive training samples from the database, all
object images are cropped around their bounding box, aligned, and their sizes
normalized. Yet, and in contrast to previous approaches [14], we do not apply
any other image warping at this stage, besides the normalization step. As will be
explained below, we synthetically warp some of the images during the learning
process, but only when they are misclassified. This will allow the final classifier
to put more emphasis on these samples.

On the other hand, the negative training sample set is generated by taking
random patches from background images, with the same size as for the positive
patches. Fig. 4 shows some of the training images we use in our experiments,
containing both positive and negative samples.

5.2 Testing the Classifier

Given the training sample sets properly cropped onto the object and background
regions, we then proceed to build the classifier as discussed in Section 4. Once
the Boosted Random Ferns classifier is learned, we evaluate its performance over



all images within the dataset. That is, the original and full-size labeled images.
During this operation, the classifier is tested at several scales for every image
location. This yields a number of potential object detections Z;, each of them
with an associated confidence level. Fig. 5 shows an example of how this testing
is performed. The object classifier (red rectangle) is evaluated at every location
and over several HoG resolutions. In order to reduce the computational cost,
we compute the HoG pyramid using integral images [1, 47].

The L object candidates with the largest confidence level are retained and are
labeled as either true positive or false positive (negative) samples, based on the
degree of overlapping with the ground truth object position. More specifically,
an object sample Z; with bounding box B(Z;) is considered a true positive if

the ratio of areas R
o |B(Iz) N Btrue‘

"= |B(§jz) U Btrue‘ (8)

is above a certain threshold 7., and where By, indicates the ground truth
bounding box. The candidate is considered as a negative sample otherwise.

In fact, this metric is a standard criterion used to evaluate the performance
of classifiers [48], and usually a value of ry.x = 0.5 is chosen. In our results
section we will also set rnax to 0.5, except for a specific experiment where we
will evaluate the overall performance of our system for different values of 7.

5.3 Generating New Training Examples

After testing the classifier over the entire dataset, we obtain a set of samples
that may be classified as either positive or negative. In addition, we also have
a subset of object samples that were not detected. In order to increase the
recognition rate of our classifier we use these samples to generate new training
images that will be included into the original training set. The criteria we use
to build the new training examples are the following:

e Positive samples are included into the original set of positive images, al-
though with the specific scale and offset under which they were detected.
This will ensure that the correctly detected samples are not lost in subse-
quent training stages.

e False positives, i.e., background patches classified as object instances, are
reintroduced intro the original set of negative images.

e Undetected samples are re-introduced into the original set of positive im-
ages. However, to increase the focus of the classifier into these samples,
we will produce repeated copies under different affine transformations,
including skew and scale changes.

Figure 6 shows the kind of new training samples generated by our bootstrapping
strategy. Positive samples, shown in column (c) in the figure, are generated
from matching object instances (green boxes) with the specific scale and shift
variations under which they are detected. Negative samples on the other hand,
are collected from false positives (red boxes), and are shown in column (d).
These are the most valuable additions to the sample set for any bootstrapping
algorithm, ours included, since they concentrate on the decision boundary of the
classifier. The bottom row in the figure shows an example of misclassification on



the target object (black rectangle) by the classifier. In these cases, new positive
samples are virtually synthesized by applying random affine distortions over the
original ground truth image.

Note that each bootstrapping step increases the size of the training set.
In order to keep it to a reasonable size, we limit the number of new training
images to the following values: for each image we pick the best L = 6 object
candidates; the positive samples are directly reintroduced into the training set;
and for each undetected and negative sample we generate 6 new training images.
With these numbers, initial training sets with about 50 samples, grow up to 600
in 2 bootstrapping steps. Of course, for larger initial training set sizes, these
parameters would change to keep the training dataset tractable.

5.4 Updating the Classifier

When the Boosted Random Ferns over local HoGs are retrained with the new
extended training set, we obtain a classifier more dedicated to the problematic
samples. As a consequence, the updated classifier puts more emphasis on the
most distinctive parts of the object that let to reduce the global classification
error. Fig. 7 illustrates the benefits of the bootstrapping process for the horse
database. The color coded images represent the distribution of the location of
the local HoG Fern-based weak classifiers chosen by our method. Reddish tones
indicate higher concentrations of classifiers and bluish colors correspond to lower
concentrations. Note hat at early stages of bootstrapping, features concentrate
on the single most discriminative part of the object around the neck. However, as
the number of bootstrapping iterations increases, discriminative features move
towards other parts of the horse such as the belly and the head.

The next section extensively evaluates our approach, and shows that only a
few bootstrapping iterations are necessary to significantly improve the recogni-
tion rate of our classifier.

6 Experimental Results

We evaluated our approach on several publicly available datasets including
the GENKI face dataset [49], the INRIA horse dataset [50], the Caltech face
dataset [42], our IRI freestyle motocross dataset [26] and the UIUC car dataset [30].
As shown in Fig. 4, all these datasets correspond to images of object categories
acquired from a single viewpoint, but under large inter-class variations due to
scale changes, cluttered background, occlusions, and significantly different light-
ing conditions.

The validation is performed through different types of experiments, in which
we study the performance of the Bootstrapped Boosted Random Ferns (BBRF's)
under different parameters, such the number of bootstrapping iterations, the
number of training images or the amount of overlapping ry,.x. Since the features
are randomly chosen during training, we perform both training and testing five
times, and report the average results.

In the graphs and tables of this section we will use the following nota-
tion: PR: Precision-recall; EER: Equal Error detection Rate; ROC curve: Re-
ceiver Operating Characteristic curve; FPPI: False Positives Per Image; BRFs:
Boosted Random Ferns; BBRFs: Bootstrapped Boosted Random Ferns.
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Method PR Num. Num. Boots.
EER Images Images
pos. / neg. pos. / neg.
BBRFs/iter. 0 | 74.3% +0.4 100/100 100/100
BBRFs/iter. 1 | 77.8% + 1.9 100/100 491/869
BBRFs/iter. 2 | 82.7% +0.3 100/100 868/1579
BBRFs/iter. 3 | 83.2% +0.4 100/100 1231/2000
BBRFs/iter. 4 | 83.0% +0.4 100/100 1577,/2000
BBRFs/iter. 5 | 82.8% +0.5 100/100 1914,/2000

Table 1: GENKI face dataset. Equal Error detection Rates (EER) at in-
creasing number of bootstrapping iterations. The EER is computed for the
precision-recall (PR) curve. The last column reports the effective number of
training images used after each iteration.

6.1 GENKI Face Dataset [49]

Dataset. For our experiments we used the GENKI-SZSL subset, containing
3500 images of faces under different positions and sizes. Although, this dataset
originally has a large number of training samples, we just used a small part of
them in order to assess the performance of our approach for small training sets.
More precisely, we trained the classifier with the first 100 sample images and
tested with the remaining 3400 images.

Results. The detection plots, precision-recall curves, of BBRFs for several
bootstrapping iterations are shown in Fig. 8 (left). We can observe that the
performance of the classifier is improved as the number of bootstrapping iter-
ations increases, achieving maximum classification rate at three iterations and
decreasing marginally after that. This is depicted in Fig. 8 (middle) that shows
the EER values (equal error rate) after each iteration. Table 1 summarizes the
detection rates of our approach for the GENKI face dataset, as a function of
the number of initial sample images used to train the classifier and the average
number of bootstrapped samples per iteration. Note that after each iteration
the classifier is re-trained with a larger amount of samples, the actual number
of training images remains the same. Finally, the top two rows of Fig. 14 shows
a few sample detections. Note that we are able to address large variability in
the size and appearance of the faces.

Comparing plain BRFs with Bootstrapped BRFs. We also compared
the use of the bootstrapping strategy versus increasing the actual number of
training images. The results are shown in Fig. 8 (right). Observe that when
using the plain BRFs with no bootstrapping, the more training images we use,
the better is the detection rate. The best results are obtained using BRFs
with 1000 training samples. Yet, we can obtain similar results by just using
100 training samples and three bootstrapping iterations. Table 2 reports the
detection rates for this experiment using the precision-recall (PR) and receiver
operating characteristic (ROC) curves.
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Method PR ROC Num.
EER | 1.0 FPPI Images
pos. / neg.
BRFs/100 samples | 74.3% 78.2% 100,/100
BRFs/250 samples 77.7% 81.3% 250/250
BRFs/500 samples | 79.7% 83.4% 500/500
BRFs/1000 samples | 81.7% 85.3% 1000/1000
BBRFs/iter. 3 83.0% 86.3% 100/100

Table 2: GENKI face dataset. Detection rates for the proposed BBRFs and
BRFs with varying number of training images. The classifier performance is
measured in terms of the Equal Error detection Rate for both the PR and ROC
curves. ROC values are measured considering 1 false positive per image.

Method Num. Num. Boots. PR ROC
Samples Samples EER 1.0 FPPI
pos. / neg. pos. / neg.
Ferrari et al. [40] 50/50 - - 73.7%
Ferrari et al. [41] 50/50 - - 80.8%
Riemenschneider et al. [28] 50/0 - - 83.7%
Maji et al. [29] 50/50 - - 86.0%
Yarlagadda et al. [27] 50/0 - - 87.3%
Toshev et al. [51] 50/50 - - 92.4%
Monroy et al. [23] 50/50 - - 94.5%
BHOGs/iter. 0 50/50 - 55.6% 76.5%
BHOGs/iter. 1 50/50 151/198 56.2% 66.6%
BHOGs/iter. 2 50/50 251/344 64.4% 75.6%
BHOGs/iter. 3 50/50 351/488 63.2% 79.6%
BBRFs/iter. 0 50/50 - 56.7% + 4.6 | T1.2% + 4.2
BBRFs/iter. 1 50/50 295/576 68.4% + 3.5 | 80.0% + 4.6
BBRFs/iter. 2 50/50 577/1044 75.0% £ 3.2 | 85.1% £2.9
BBRFs/iter. 3 50/50 861,/1350 77.0% £ 3.0 | 86.0% + 2.8
BBRFs/iter. 4 50/50 1120/1590 75.6% +£1.3 | 84.4% £ 1.6

Table 3: INRIA horse dataset. Quantitative detection results and compar-
ison with the state of the art. For every bootstrapping iteration the training
data is extended with new positive and negative samples. Indeed, they are the
same original samples (50 samples) under image distortions: scaling, location
shifts and affine transformations.

6.2 INRIA Horse Dataset [40]

Dataset. This dataset has 170 images with one or more horses per image. The
dataset also contains 170 background images which are used as negative sam-
ples. The main difficulties encountered in this dataset are due to scale changes,
and also to slight poses changes and out-of-plane rotations. For training, as
suggested in [40], the first 50 positive and 50 negative images are chosen. The
remaining images are used to test the classifier.

Results. Bootstrapping produces significantly better recognition rates on this
dataset. As shown in Fig. 9 (left, middle), our BRF classifiers are evaluated for
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several bootstrapping iterations, with the conclusion that it takes three itera-
tions to optimize the results of bootstrapping. Note how for more iterations,
overfitting starts to kick in and the performance of the classifier slightly de-
grades. Moreover, the method competes favorably with the state of the art as
shown in Table 3.

With regard to the state of the art, our method outperforms some related
works with a detection rate of 86.0% +2.8 at 1 FPPI. This detection result and
the number of training samples used at each bootstrap iteration are shown in
Table 3. The proposed method is only superseded by Yarlagadda et al. [27],
Toshev et al. [51] and Monroy et al. [23]. However, these works require larger
computational effort. In Yarlagadda’s work, for example, a novel Hough-based
voting scheme is proposed for object detection. This method, requires an opti-
mization procedure to group dependent parts and a verification stage to refine
the voting hypotheses. In Toshev’s work, a boundary structure segmentation
model is proposed. Particularly, this method makes use of an initial segmen-
tation based on superpixels and an optimization problem that is solved using
semidefinite programming relaxation. In Monroy’s work, the method integrates
curvature information with HoG-based descriptors to produce better recognition
and accuracy results. However, this method also requires additional processing
steps, such as the computation of sophisticated edges, the extraction of segments
based on connected elements and the computation of the distance accumulation.
Besides, this work also performs bootstrapping. More precisely, three iterations
are carried out to bootstrap more negative samples.

Finally, some detections results for this dataset are shown in Fig. 14. In
spite of challenging poses of the horses, the BBRFs are capable of detecting the
object category remarkably well.

Detection times. The proposed BBRFs are very fast to compute, and take
about 1 second to detect horses in one image. On the contrary, Yarlagadda’s
method takes about a couple of minutes per image on this dataset and Riemen-
schneider et al. takes about 5 seconds per image. This fact reflects the compu-
tational benefit of our method. This efficiency is achieved by using simple but
discriminative Random Ferns in combination with a boosting phase [26]. Fig. 9
(right) shows the detection times of our proposed method in terms of the boot-
strap iterations. Specifically, the times for computing the HOG from images,
and testing the BRFs are shown. We also see that the bootstrapped classifier
is more efficient because it is more selective and can discards background image
regions more quickly.

Comparison against Boosted HoGs. In order to highlight the advantages
of the Random Ferns we have also compared our BBRFs approach against a
boosted classifier based on local HoGs (BHOGs). More precisely, we have used
AdaBoost to iteratively pick and compute the most discriminative HoGs. This
results in a set of weighted and local HoGs that capture the most important
object boundaries (Fig. 10 (left)). In order to perform a fair comparison, we
have used the proposed bootstrapping strategy to progressively retrain the HoG
classifier using larger sets of training samples. Fig. 10 (middle) and Table 3 show
the detection performance of the BHOGs at different bootstrapping steps. It
can be seen that BBRFs consistently outperform BHOGs, specially for larger
number of iterations. This is also shown in the EER of the Precision-Recall
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Method PR ROC
EER EER
Shotton et al. [17] 94.0% 96.5%
Fergus et al. [42] - 96.4%
BBRFs/iter. 0 94.5% +1.2 | 94.4% +1.2
BBRFs/iter. 1 98.4% + 0.5 | 98.4% +0.5
BBRFs/iter. 2 99.6% + 0.2 | 99.7% £+ 0.2
BRFs/ext. set 1 97.8% + 0.6 | 97.9% + 0.5
BRFs/ext. set 2 98.4% + 0.4 | 98.4% +0.4

Table 4: Caltech face dataset. Equal error detection rates for two competing
approaches, as well as BRFs with and without bootstrapping. The EER is com-
puted for both the the precision-recall and the receiver operating characteristic
curves.

curve depicted in Fig. 10 (right), which indicates that BBRFs are more ade-
quate to capture intra-class variations and out-of-plane rotations than the HoGs
templates.

6.3 Caltech Face Dataset [42]

Dataset. This dataset consists of 450 frontal people face images. The images
are acquired both in indoor and outdoor situations and show extreme illumina-
tion changes. In our experiments we use 89 images (corresponding to 5 persons)
for training, and 361 images (corresponding to the other 23 persons) for test-
ing. The dataset also contains background images, and we choose the first 89
to generate our initial set of negative samples. Note that a set of 89 training
images represents quite a small set size, and hence, is a good scenario to exploit
the benefits of our bootstrapping approach.

Results. The detection performance of BBRF's for this dataset with respect to
the number of bootstrapping iterations is shown in Fig. 11 (left). In these ex-
periments, the classifier is first learned using the whole training set (89 images),
and then bootstrapped with true and false positives accordingly. Recognition is
tested on the rest of the set (361 images). It takes only one bootstrap iteration
to achieve remarkable detection rates, compared to the classifier trained without
bootstrapping.

The fifth and sixth rows in Fig. 14 show some detection results for the face
dataset. The proposed method is able to detect faces in images with extreme
lighting conditions, partial occlusions, scale variations, and even in drawings.
Detection fails for more severe occlusions and backlight.

Comparison. We compare our method against other state of the art methods
for this dataset in Table 4. The comparison is done according to the equal
error rate (EER), the point at which accept and reject errors are equal, as
computed from the precision-recall (PR) and receiving operating characteristic
(ROCQ) curves. The last two rows in the table show results of using the BRFs
classifier without bootstrapping, but with artificially enlarged initial training
sets the same size as the bootstrapped sets, for which positive training samples
were produced artificially with moderate affine transformations, and negative
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Method PR ROC

EER EER
Villamizar et al. [26] 91.0% -
BBRFs/iter. 0 82.0% + 2.6 | 82.2% + 2.5
BBRFs/iter. 1 88.9% + 2.0 | 88.6% £ 2.0
BBRFs/iter. 2 88.1% + 1.7 | 87.9% + 1.8

BBRFs/iter. 2/r=0.1 | 87.9% £3.6 | 87.5% + 4.2
BBRFs/iter. 2/r=0.3 | 89.1% + 2.7 | 88.5% + 3.0
BBRFs/iter. 2/r=0.5 | 88.1% £ 1.7 | 87.9% £ 1.8
BBRFs/iter. 2/r=0.7 | 84.1% +3.4 | 84.8% + 2.7

Table 5: IRI freestyle motocross dataset. EER rates over the PR and ROC
curves. BBRFs are compared to BRFs with large initial sample sets. In this
case BBRFs do not outperform BRFs.

training samples were also added. This is to show that the increase in detection
performance in the bootstrapped methods does not come at the expense of
larger training sample sizes at each bootstrap iteration.

6.4 IRI Freestyle Motocross Dataset [26]

Dataset. This dataset was originally proposed for validating a rotationally-
invariant detector. It has two sets of images, one including motorbikes with
large rotations in the image plane, and a second one containing side views of
motorbikes with a similar pose. In this work, we only tested our classifier over
the second set, which contains 69 images with 78 motorbike instances. Although
rotations are not considered, this set of images still represents a challenging
dataset, mostly due to the presence of large scale changes and partial occlusions.
As training data we used 50 positive and 50 negative images from another
dataset, the Caltech motorbike dataset [42]. This is again a situation with a
rather small training set.

Results. Our BBRFs classifiers are again tested for varying numbers of boot-
strap iterations. The results are shown in Fig. 11 (middle). As with the faces
dataset, one bootstrap iteration suffices to substantially increase classification
performance. Furthermore, the results of a second comparison, this time with
respect to the size of the overlap ratio r, are given in Fig. 11 (right). The overlap
ratio controls the level of distortion for samples to be added in the next boot-
strap iteration. That is, low values of this ratio allow increased feature variation
in the positive samples set. Large values of r mean little intra-class variation
for the positive training sample set, thus limiting the effect of bootstrapping.
As shown in the plot, the best detection rates are achieved at r = 0.3 for this
dataset.

Detection rates via EER on the PR and ROC curves are summarized in
Table 5, and compared against EER rates for the method proposed in [26]. To
allow for a fare comparison with respect to the size of the training set, the latter
method contains 800 positive and 800 negative sample images, collected from the
Caltech motorbike dataset [42]. Bootstrapping has a difficult time superseding
the already good classification levels of BRFs on this very challenging dataset.
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Method PR Num.
EER Images
pos. / neg.
Agarwal et al. [30] 39.6% 500/500
Fritz et al. [52] 87.8% 500,/500
Mutch et al. [43] 90.6% 500/500
Mikolajczyk et al. [31] 94.7% 50/0
Leibe et al. [6] 95.0% 50/0
Lampert et al. [53] 98.6% 500/500
Gall et al. [7] 98.6% 500/450
BBRFs/iter. 0 93.9% + 2.3 50/50
BBRFs/iter. 1 89.8% 2.5 50/50
BBRFs/iter. 2 97.6% + 0.5 50/50
BBRFs/iter. 3 97.9% + 0.5 50/50

Table 6: UIUC car dataset. EER of our approach at varying bootstrapping
iterations compared to competing methods. Our approach achieves virtually the
same detection results as other methods even when using a significantly smaller
number of training samples.

6.5 UIUC Car Dataset [30]

Dataset. This dataset contains graylevel side-view images of cars with very
large intra-class variation. This is a very large dataset with 550 positive samples
and 500 negative samples. Yet, for the experiments reported below, we will use
a much smaller subset of training images.

Results. We train the BBRF's using an input training set of only 50 positive
and 50 negative samples. Our aim is to compute an effective but also efficient
object classifier using a small set of training data. As we did in the previous
experiments we show the precision-recall curve for increasing number of boot-
strap steps. Surprisingly, the classifier does not improve after the first iteration,
but it does afterwards. This is probably because the UTUC car dataset does not
include background regions in the positive samples, and hence, the first boot-
strapping step only introduces affine transformations of positive samples in the
training data.

Table 6 compares Equal Error detection Rates on the PR curve for the
BBRFs and other state-of-the-art approaches. Competitive results are obtained
only after the second bootstrap iteration, overcome only by Lampert et al. [53]
that uses subwindow search and by Gall et al. [7] that relies on class specific
Hough forests for object detection. Note however, that we are achieving equiv-
alent results using approximately one tenth of the training data used by these
methods.

Efficiency. Fig. 12 shows average detection times for the BBRFs for varying
numbers of bootstraping iterations. The plots indicate the average time per
image spent by the algorithm during recognition while testing over the reduced
dataset of 100 images. Given that bootstrapping increases classifier specifity, a
BBRFs classifier with four bootstrapping iterations is more efficient than the
same method with fewer numbers of bootrstrapping iterations. The time spent
computing Ferns and HoGs on the image remains constant.
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Parameters. We also evaluated our approach under different parameters that
determine the configuration of the BRFs, such as the number M of Ferns and
the number R of binary features per Ferns. The results of this experiment are
depicted in the middle and right plots of Fig. 13. The best detection rates are
obtained for (R = 7) and (M = 15), which agrees with the results already
reported in [26].

7 Conclusions

We have presented a method to improve the performance of binary classifiers
based on Boosted Random Ferns by bootstrapping the learning step. The pre-
sented method shows that bootstrapping allows significant reduction in the size
of the training sets without jeopardizing classification performance. This results
in a classifier which is both highly discriminative and computationally efficient
and is particularly suitable when only small sets of training images are available.

We compared our algorithm against state-of-the-art approaches for several
databases including faces, cars, motorbikes and horses, and showed remarkable
improvements in efficiency and detection rates with just a few bootstrapping
steps.
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(i) Non-motorbikes (j) Non-cars

Figure 4: Samples of the training sets we use for the four object categories.
Top: positive (object) samples. Bottom: negative (background) samples. Here,
it is important to emphasize that our method works with grayscale images, and
more specifically on the gradients domain. In consequence, we use as negative
samples the set of bakground images (grayscale images) given by the Caltech
dataset [42] for some object categories.
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HOG Pyramid

Figure 5: The classifier —red rectangle— is tested over a HOG pyramid computed
from the input image. Integral images allow a evaluation of the classifier.
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(b) Detections

(c) Positive samples (d) Negative samples

Figure 6: New training samples collected after one bootstrapping iteration.
Positive samples are generated from matching object instances (green boxes)
subject to small scale variations and shifts. Negative samples are collected from
false positives (red boxes), and include difficult background regions and some
partial matches. In the bottom row, the classifier misses the target object (black
rectangle) and thus new positive samples are virtually synthesized by applying
random affine distortions over the original ground truth image

24



A0 SO0 O

(a) Image ) Iteration O (c) Iteration 1 (d) Iteration 2 (e) Iteration 3 (f) Iteration 4

Figure 7: Spatial distribution of the features during the bootstrapping process.
(a) Object category example. (b-f) Spatial layout of Random Ferns for 0,1,2,3
and 4 bootstrapping iterations. Reddish regions indicate higher concentration
levels of weak classifiers (Random Ferns). Note that when increasing the number
of iterations, the features move towards all of the discriminant features. This
yields a classifier with higher recognition rates.
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Figure 8: GENKI face dataset. Left: Precision-recall plots of BBRFs for
several bootstrapping iterations. The detection rate increases with the number
of iterations. Middle: EER values for each one of bootstrapping iterations.
The maximum rate is achieved at three bootstrapping iterations. After that, the
performance of BBRF's decreases slightly. Right: Detection curves of BRF's [26]
as a function of size of the training set. Note that bootstrapping 100 training
images yields better results than directly training the BRFs with 1000 sample
images.
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Figure 9: INRIA horse dataset. The detection performance of Boosted Ran-
dom Ferns on the horses dataset improves substantially as the number of boot-
strapping iterations increases. (left) Precision-recall curve. (middle) Receiver-
operator curve. (right) Detection times for BBRFs according to the number of
bootstrapping iterations. The bootstrapped classifier is not only more discrim-
inative but also more efficient.
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Figure 10: INRIA horse dataset. Detection performance of Boosted HoGs
and their comparison with BBRFs. (left) Layout and weights of object cate-
gory gradients. (middle) FPPI curve in terms of the number of bootstrapping
iterations. (right) EER rate on Precision-Recall curve.
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Figure 11: Caltech face and IRI freestyle motocross datasets. Left:
Classifier evaluation on the Caltech face dataset with a training set with 89
images and a test set with 361 images. The plot shows detection performance for
0, 1 and 2 bootstrapping iterations in the form of ROC curves. Note that in this
case, one iterations suffices to obtain nearly perfect classification rates. Middle:
Classifier evaluation for the IRI freestyle motocross dataset. ROC curves are
shown for varying bootstrap iteration values. Right: Effect of overlap ratio for
the IRI freestyle motocross dataset. ROC curves for BBRFs classification with
three bootstrap iterations and varying ratios of overlap (Eq. 7). An overlap of
r = 0.3 yields the best recognition rates for this dataset.
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Figure 12: UIUC car dataset. Classifier performance for varying number of
bootstrapping iterations. Note that as the number of bootstrapping iterations
increases, the detector becomes more discriminant with the consequent increase
in classifier efficiency.
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Figure 13: UIUC car dataset. Left: The BBRFs are evaluated as a function
of the number of iterations and using just 50 positive and 50 negative images
for training. Middle, Right: Detection rates as a function of the number of
Random Ferns and the number of binary features per Fern.
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Figure 14: Detection results of Bootstrapped Boosted Random Ferns on several
databases. The method is capable of correctly finding multiple object classes
with low failure rates despite very challenging intra-class variations such as pose
change, color, texture, and size for the horses data set; illumination and size for
the faces data set; size and difficult badRground for the motorcycles dataset; or
shape and size for the cars dataset. Correct matches are labeled in green and
missed matches are labeled in red. The blue squares indicate ground truth in
some of the training data.



