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Abstract
With the development of micron-scale imaging techniques, capillaries can be conveniently
visualized using methods such as two-photon and whole mount microscopy. However, the
presence of background staining, leaky vessels and the diffusion of small fluorescent molecules
can lead to significant complexity in image analysis and loss of information necessary to
accurately quantify vascular metrics. One solution to this problem is the development of accurate
thresholding algorithms that reliably distinguish blood vessels from surrounding tissue. Although
various thresholding algorithms have been proposed, our results suggest that without appropriate
pre- or post-processing, the existing approaches may fail to obtain satisfactory results for capillary
images that include areas of contamination. In this study, we propose a novel local thresholding
algorithm, called directional histogram ratio at random probes (DHR-RP). This method explicitly
considers the geometric features of tube-like objects in conducting image binarization, and has a
reliable performance in distinguishing small vessels from either clean or contaminated
background. Experimental and simulation studies suggest that our DHR-RP algorithm is superior
over existing thresholding methods.
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1. Introduction
Modern imaging techniques such as two-photon and whole mount microscopy enable us to
gain new insights into vascular architecture and development, both in normal tissue and in
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disease settings such as cancer [1–5]. Whole mount microscopy emerged almost a decade
ago as a powerful, simple and relatively low cost method for assessing the three-dimensional
structure of blood vessels, and for determining effects of local cytokine expression on tumor
vasculature [3]. This represents a marked improvement on conventional
immunohistochemistry of tissue sections, which yields only two-dimensional information. In
addition, two-photon imaging is a comparatively new technique [6] that allows one to
visualize three-dimensional living tissues using fluorescent dyes, and provides important
advantages over traditional techniques such as confocal microscopy (e.g., greater tissue
penetration depth and lower phototoxicity) [7].

To interpret complex vessel image data, a number of independent studies have proposed
various morphological measures to quantify vessel plexus, including vessel length
distribution, vessel radii/diameter distribution, vessel direction, vessel area/volume density,
vessel branching point density, vessel branching angles, vessel endpoint density, fractal
dimension etc. [8–18]. Obviously, the accuracy of these metrics heavily depends on the
outcome of image processing (e.g., denoising, segmentation, and skeletonization).
Unfortunately, local contamination of image data could occur in capillary images due to
background staining, vascular leak or dye diffusion through vessel walls into surrounding
tissues. In this case, it can become challenging to reliably define and map dense vessels
(especially smaller vessels such as capillaries) in such images. A large number of vessel
segmentation or extraction methods have been proposed in previous studies. For
convenience, six categories of vessel segmentation methods (pattern recognition based,
model based, tracking based, artificial intelligence based, neural network based, and tube-
like object detection based approaches) have been reviewed in [19]. Also, segmentation
techniques primarily for 3D vessel images have been discussed in [20]. Using the methods
mentioned above (e.g., Amira or VidaSuite [21]), research on 3D highly-complex vessel
network analysis has become feasible [15, 18, 22, 23]. However, we notice that the binarized
version of a vessel image is usually required before extracting the skeleton/ridge of vessels,
or detecting the contour of the vessels using deformable models. Also, before using some
vessel segmentation methods, one or more thresholding procedures may need to be
performed [21]; for example, Socher’s method [24], a marginal space learning approach
using hierarchical classifiers, needs to find edges at the first level of hierarchy and the edge
detection accuracy could significantly benefit from the removal of contamination regions
using thresholding algorithms. In addition, certain issues in vessel image thresholding have
not been sufficiently addressed, as suggested in this study (Result section). Therefore,
improved or new thresholding algorithms for specific problems still keep emerging [25–29].
In this study, we aim at developing a new and more accurate thresholding method that can
deal with both clean and heavily contaminated vessel images.

1.1 Related Work
There are a wealth of thresholding methods, which can be classified as either global [26, 30,
31] or local approaches [32] based on whether the local neighborhood information of a
pixel/voxel is used. Alternatively, depending on the type of information employed, such
methods can be also classified as histogram shape-based [33–37], clustering-based [25, 38–
42], entropy-based [43–48], attribute-similarity-based [49–51], spatial distribution-based
[52–54] or local statistics-based approaches [55, 56]. The histogram-based methods
calculate a threshold according to the shape of the intensity histogram. The clustering-based
methods use similarity or dissimilarity measures to distinguish the foreground from the
background [38]. Entropy-based methods determine a threshold by maximizing the entropy
of the binary image [45, 57] or minimizing the cross-entropy between the original image and
the resulted binary image [44, 58]. The attribute-based methods evaluate the difference
between the original image and the binarized outcome based on attributes such as edge,
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shape, gray level moments etc. [28, 49, 59]. These methods seek to preserve the geometric
features of the raw image to the maximum. Spatial distribution-based methods mainly make
use of the neighbor dependency among pixels, such as the co-occurrence matrix and the
second order statistics. The strategy is to minimize the distributional variation from the
original image to the binarized version [43]. The local statistics-based methods compute the
threshold for a single pixel or a sub-window based on the local variance or contrast [60, 61],
which usually result in different thresholds for different sub-windows [62]. Besides the well-
classified methods above, alternative techniques such as fuzzy set [63, 64], evolutionary
optimization [27], hybrid optimization [65], have also been proposed for image
thresholding. Nevertheless, the basic ideas of these methods are similar to the six categories
of thresholding methods described before and thus are not further discussed.

Unfortunately, the global thresholding algorithms usually cannot preserve object details
properly, which could significantly compromise the robustness of outcomes. The local
approaches can better preserve local details, but the size of the local region could have a
great influence on the algorithm performance. The histogram-based methods are
conceptually simple but only effective when the background and foreground are well
separated in a raw image. When the histogram profile shape gets sophisticated (e.g., multiple
peaks), the performance of such methods is likely to become unacceptable. For capillary
images, noise pixels/voxels due to dye diffusion will have a high intensity such that they can
be easily misclassified as foreground by the histogram-based methods. The attribute
similarity-based methods heavily depend on how well the geometric attributes are extracted
and thus are sensitive to image contents and associated attribute extraction methods. Due to
the complexity of the geometric shapes of vessel plexus, the attribute (e.g., edge) based
methods are difficult to apply. The clustering-based methods are among the most popular
thresholding methods [25]. For example, the Otsu method and its variations [25, 38, 66],
which seek the optimum threshold by minimizing the within class variance of foreground
and background, have been implemented as automatic thresholding methods in prevailing
image processing packages such as MATLAB™ [25]. Kittler’s method is another popular
clustering-based technique, which outperforms many other thresholding algorithms
according to a recent survey [32]. However, our preliminary results (not shown) suggest that
these clustering methods cannot generate satisfying results for the contaminated vessel
images because the cloud of noise pixels/voxels has nearly the same intensity as that of
vessels. The local statistics-based methods could perform well for certain local areas, but in
general, such methods are not designed to distinguish meaningful objects from noise by
shape. Besides the thresholding methods mentioned above, additional approaches have also
been proposed for vessel segmentation [67, 68]; however, problems such as labor-intensive
and subjective manual parameter tuning could be a serious issue for such approaches. For
convenience, we summarize the representative thresholding methods in Table 1.

1.2 The DHR-RP Approach
Due to the unsatisfactory performance (or failure) of existing thresholding algorithms for
capillary images, we propose a novel local adaptive method for vessel image thresholding in
this study. The key idea of our method is to explicitly take the geometric feature of vessels
into consideration such that the level of local background contamination can be
automatically detected and an appropriate threshold can then be chosen. Specifically, after
dividing the whole image into sub-windows, we use random probes (RP) to sample each
sub-window; then a directional histogram ratio (DHR) at all the probes is calculated as an
indicator of the existence of tube-like objects as well as the contamination level. The
proposed DHR-RP criterion is also theoretically justified to illustrate why it can serve its
purpose. It turns out that our new thresholding algorithm outperforms a number of existing
methods, including the highest ranked Kittler’s method in Sezgin and Sankur [32]. Also, the
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proposed method can be easily adapted to other types of images with tube-like objects, such
as the retina image [69], the brain MRI image [70], the yarn image [71], and the aerial road
image [68].

Related researches on the use of geometric feature of vessels mainly include local binary
pattern (LBP)[72], ray-casting features [73, 74] and rod-filtering [21]. LBP and the proposed
DHR method share some similarity in choosing the neighbors of a pixel using a star-shape
probe; however, LBP calculates the number of patterns at each neighborhood to obtain a
texture spectrum, while our DHR-RP method counts the neighbors along each branch of the
star-shape probe to obtain the directional distribution. The ray-casting feature technique
casts equal-angularly rays from a pixel within the vessel to detect vessel walls and measures
the centerness of the pixel. The rod-filtering method filters the vessel image by matching
sub-blocks with rods at different orientations with the number of rods up to 82. Furthermore,
although the concept of DH has been introduced before (e.g., to measure the thickness of an
object along parallel directions [75]), the way we generate the directional histogram is
different from the previous studies and our DH serves a different purpose. In short, the
proposed DHR-RP algorithm is new and different from existing methods mentioned above
although it also uses the geometric features of tube-like objects.

This paper is organized as follows. In Section 2, the contamination problem in capillary
images is described in detail and the DHR-RP method is depicted for both 2D and 3D cases.
In Section 3, the algorithm implementation is described. Experiment results are summarized
and discussed in Section 4. In Section 5, we summarize this work and discuss its possible
extension.

2. Method
2.1. Problem description

The whole mount and two-photon imaging can have a micron or submicron-scale resolution
(e.g., [76]) and are thus suitable to small vessel visualization (i.e., the diameter of capillaries
is 8 μm in average but could be as small as 3 μm [77]). However, capillary plexus has an
extremely irregular and entangled network-like structure such that it is challenging to extract
such vessels from a noisy background. In particular, in the contaminated region due to, e.g.,
dye diffusion, the area of the noise cloud could be 10 more times larger than the capillary
diameter and the difference in intensity between the vessel and the noise can be small. For
example, in Fig. 1(a), the area of the noise cloud is 130 × 50 μm2; in addition, the intensity
of the pixels within the noise cloud varies from around 70 to 165 (in red), and the intensity
of the vessel pixels ranges from around 80 to 200 (in red). It can be seen that the intensity of
some noise pixels is even higher than that of the vessels. Such facts make the task of vessel
extraction even more challenging. Unfortunately, existing thresholding methods cannot well
address such a problem and thus either the small vessels in the contaminated region are
thrown away or the contaminated background is misclassified as foreground. Consequently,
the metrics (e.g., vessel length, area or volume) for interpreting vessel image data cannot be
accurately calculated.

To better illustrate the problem, we use the vessel image in Fig. 1(a) as an example, where
we can clearly see a contaminated region in the upper middle area. To extract the vessels
from the background, we first apply the Kittler’s method to the raw image and the result is
shown in Fig. 1(b). Limited by space, we cannot try all existing thresholding methods here;
therefore, the Kittler’s method is used as a representative approach because it outperformed
other 39 thresholding algorithms in different scenarios [32]. In Fig. 1(b), we see that,
although all vessels are preserved, the contaminated region is also misclassified as
foreground. To illustrate the problem of losing small vessels, we also apply the maximum
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entropy method [78] to Fig. 1(a) and the result is shown in Fig. 1(c). We see that although
the contaminated region is removed, however, together with a loss of the majority of true
signals (vessels).

The problems illustrated above are not unique for capillary imaging. For example, similar
problems have also been spotted in the retinal image analysis [69], the yarn image analysis
[71], the road segmentation in aerial images [68], and many other images involving uneven
illumination or artifacts. Therefore, it is necessary and useful to develop an adaptive local
thresholding algorithm that can deal with both clean and heavily-contaminated regions in an
image.

2.2. Directional histogram ratio at random probes
The directional histogram ratio at random probes (DHR-RP) algorithm consists of several
steps, including background cleaning, sub-window division, DHR calculation for each sub-
window, and threshold choosing for binarization etc.; for the complete procedure, the reader
is referred to Section III. In this section, we mainly focus on the concept and calculation of
DHR at random probes.

While noise pixels (or voxels) could randomly spread over the whole image, pixels (or
voxels) from the same solid object will stay next to each other and are geometrically
bounded; furthermore, an object always has a geometric shape, which could be either regular
(e.g., square) or highly irregular (e.g., network-like entangled tubes). Such two simple facts
are actually the basis of the DHR-RP algorithm. More specifically, we note that vessels are
tube-like and thus the length of a vessel is (much) longer than its diameter. Given such a
fact, one can expect that, within a circle centered at the major axis of a vessel, if the circle
diameter is larger than the vessel diameter, the number of bright pixels/voxels one can
sample along the major vessel axis direction could be much larger than that along the vessel
diameter direction. However, within a circle in the noise cloud, the numbers of bright pixels/
voxels sampled along different directions are expected to be close to each other since noise
pixels/voxels randomly spread out. Therefore, the difference in the numbers of bright pixels
along different direction could be an indicator that can reflects both the tube-like shape and
the spatial distribution of noise. Based on this hypothesis, we develop the DHR-RP
algorithm and we briefly summarize the key steps of this algorithm before we move onto its
official formulation. First, we randomly spread a pre-specified number of probes into a sub-
window of an image at positions that have a positive intensity. Second, at each probe
location, we find certain neighbors of this probe along multiple different directions. Third,
based on the neighbor pixel counts at all probes, we can generate a histogram with the
number of bins being equal to the number of different directions, which is called directional
histogram (DH). Finally, the difference in the pixel numbers along different directions is
quantified as the criterion for choosing a threshold for image binarization.

For convenience, we first give the definition of d-neighbor, which has been described in
some previous studies (e.g., LBP [72]).

Definition 1 (d-neighbor)—For two different pixels/voxels i and j in the same image
(that is, i ≠ j), let d denote the number of pixels/voxels between i and j along the straightline
direction i → j, pixel/voxel j is then called pixel i ’s d-neighbor in direction i → j.

Note that the definition above is different from the conventional definition of neighbor for
images in that a distance d is jumped. All the d-neighbors of pixel/voxel i constitute a d-

neighbor set, denoted as , where  is the d-neighbor
of pixel/voxel i in direction i → j and h is the number of different directions under
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consideration. Before we move onto the definition of directional histogram, the concept of
random probe should be introduced first. Simply speaking, a random probe is a randomly
selected pixel (or voxel) that has a positive intensity; that is, we expect that both true signal
(vessel pixel/voxel) and noise should have a positive intensity and thus we exclude the
completely dark pixels/voxels (with an intensity of zero) from consideration as possible
positions of probes.

Definition 2 (directional histogram)—For the i-th random probe (i = 1,2,…,n), let 
denote the intensity of the d-neighbor in the j-th direction (j = 1,2,…,h). A histogram with a
total of h bins is called a directional histogram if its j-th bin is used to count the number of
the d-neighbors of all the probes that are in the j-th direction and have a positive intensity

( ). For convenience, we let  denote a directional histogram with

(1)

where 1(·) is the indicator function.

To better illustrate the two definitions above, Figures 2(a) and 2(b) show a probe and its d-
neighbors for the 2D and 3D cases, respectively. In Fig. 2(a), the light pixel at the center is a
randomly selected pixel, and the eight light pixels on the border are the 8 d-neighbors of the
center pixel for d = 3. In Fig. 2(b), the light sphere at the center of the cube is a randomly
selected voxel and all the light spheres on the cube surfaces are the d-neighbors of the center
voxel for d = 1. Furthermore, if the center pixel in Fig. 2(a) and the center voxel in Fig. 2(b)
are both probes, we can choose the 8 and 26 straightline directions from the center to the d-
neighbors for the 2D and 3D cases, respectively. If the intensity of the d-neighbor of a probe
in the j-th direction is positive (Fig. 2(a)), it then will be counted in the j-th bin of a
directional histogram (e.g., j=1,2,…,8 for a 2D image and j=1,2,…,26 for a 3D image).

To describe the difference in the numbers of non-zero d-neighbors along different directions,
we introduce the following definition, which is our criterion for choosing binarization
threshold.

Definition 3 (directional histogram ratio)—The ratio between the maximum and
minimum of a directional histogram is called the directional histogram ratio, denoted as

.

Before we theoretically justify the criterion above, we need to discuss one particular
geometric property of tube-like objects. For simplicity, we consider a 2D case as in Fig. 3.
Let i be a pixel from a tube-like object O (shadowed) in an image (denoted as i ∈ O), and let
j and k denote two d-neighbors of i in directions i → j and i → k, respectively. In Fig. 3, i
→ j is chosen to be the vessel axis direction; also, if d is some distance larger than the local
diameter of the tube, we can easily find a d-neighbor like k that falls outside of the tube in
many directions (e.g., directions 1, 2, 3, 5, 6 and 7 in Fig. 3). Thus, for a tube-like object O
in Fig. 3, we can expect that for any pixel i ∈ O, there exist two d-neighbors j and k in two
different directions such that j ∈ O and k ∉ O; for a general tube-like object such as vessel,
we can expect that this conclusion will still hold at least within a local region of the object.
Furthermore, since pixel i falls on the object and thus has a positive intensity, it will be
counted in the directional histogram bin which corresponds to the tube axis direction;
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however, pixel k falls in the background and has a zero intensity such that it will not be
counted in the histogram bin that corresponds to direction i → k. Therefore, one can expect
that for the directional histogram of a tube-like object, the number of non-zero d-neighbors
counted in a certain bin (e.g., corresponding to the tube axis direction) will be much larger
than that of other bins (e.g., corresponding to the tube diameter direction). Consequently, the
directional histogram ratio (DHR) could be large and even goes to infinity for an ideal case
such as in Fig. 3 since the minimum of the directional histogram is zero (min(Hd) = 0).
However, for real vessel images with noise and multiple tube-like objects, min(Hd) could be
a small number but not exactly zero such that the DHR will become smaller. Therefore, the
value of DHR could be an indicator of the existence of tube-like objects as well as the level
of contamination in the background. To theoretically verify this, we consider two scenarios
in capillary images: multiple tube-like objects with a clean background (scenario 1), and
very few or no tube-like objects in a heavily contaminated region (scenario 2).

Proposition 1—Assume that all the objects in an image are tube-like and the spatial
distribution of these objects is not isotropic with respect to all the directions used to generate
the directional histogram, then E (Dr) ≫ 2 for scenario 1 and 1 ≤ E (Dr)< 2 for scenario 2,
respectively, where E (Dr) denotes the expectation of the directional histogram ratio.

Proof—Let m denote the total number of pixels/voxels in an image, among which m1
pixels/voxels are from the object (with positive intensity), m2 are noise (with positive
intensity) and m3 belong to the background (with zero intensity). Also, let M1 denote the set
of the m1 pixels/voxels and M2 denote the set of the m2 pixels/voxels, then the random
probes will be selected only within the union M1 ∪ M2 according to the definition of RP.
The probability of the i-th RP (i = 1,2,…,n) coming from the object is

(2)

and the probability of RP being from noise is

(3)

Let  be a d-neighbor of RP i at a distance d. Ignore the possible spatial correlation

between RP i and  for simplicity, the probability of  coming from an object satisfies
the following inequality under the two assumptions given in the proposition

(4)

where the lower boundary corresponds to the case in direction i → k in Fig. 3 and the upper
boundary corresponds to the case in direction i → j in Fig. 3, respectively. Since noise can

randomly spread over the whole image, the probability of  being noise is

(5)
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For a d-neighbor  to be counted in the j-th bin of the directional histogram, it must have a

positive intensity and thus could be either noise or from an object. Let  denote the event

that a  is positive and counted in the j-th bin of the directional histogram, then the

probability of event  can be derived based on Eqns. (4) and (5) as follows

(6)

The expectation of the total number of positive d-neighbors in the j-th bin of the directional
histogram satisfies

(7)

According to Eq. (7) and the definition of the directional histogram ratio, it can be easily
verified that

(8)

For scenario 1, we have m1≫ m2 and a small m2 (e.g., approximately zero); based on Eq.
(8), we have

(9)

for scenario 2, we have m2 ≫ m1 such that

(10)

In the proposition above, we consider two extreme scenarios and the DHR is shown to be
very different for the two scenarios. It is difficult to consider a comprehensive scenario that
can mathematically describe all possible vessel images due to the large stochasticity in
vessel number, vessel spatial distribution, vessel diameter, and noise/contamination position
and intensity; however, the proof above based on two simplified scenarios sufficiently
illustrates why DHR works. We will further discuss the assumptions in Proposition 1 in the
discussion section.

3. Implementation
Since the DHR-RP algorithm is a local method, we need to divide the whole image into a
number of sub-windows first. In this study, a 2D rectangular window and a 3D cube are
used for 2D and 3D images, respectively. Within each sub-window, the directional
histogram can be generated by following the steps in Fig. 4, where rp is the counter of the

Lu et al. Page 8

Pattern Recognit. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



random probes and n is the pre-specified maximum number of random probes allowed in a
sub-window. In the experiments of this paper, n is set to 100 unless specified otherwise.
After a probe is randomly planted at a non-zero pixel/voxel, its d-neighbors are searched
along the directions illustrated in Fig. 2. If the intensity of a d-neighbor is positive, 1 should
be added to its corresponding bin of the directional histogram. For more details, please see
Fig. 4.

After the directional histogram is generated, the directional histogram ratio needs to be
calculated. As illustrated in the previous section, DHR is an effective indicator of both the
existence of tube-like objects and the contamination level. More specifically, a large DHR
value suggests the existence of tube-like objects as well as a low contamination level such
that a small intensity threshold should be used for image binarization; accordingly, a large
intensity threshold should be used for a small DHR value. According to proposition 1, we
can compare the calculated DHR with 2 to judge whether the directional histogram ratio is
large or small. That is, when the directional histogram ratio of a sub-window is larger than 2,
a low threshold should be used; otherwise, a high threshold will be suitable. In practice, a
number greater than 2 can be used if the contamination is not heavy; however, a value of 2
turns out to be able to well meet the performance requirement in this study.

Once it is verified whether a low or high threshold should be used for a sub-window, the
remaining problem is how to calculate this local threshold for binarization. As mentioned in
the introduction section, a number of methods have been developed in previous studies to
calculate the binarization threshold and our DHR-RP method can be flexibly combined with
any of such methods. For example, the Otsu method is a popular and widely implemented
algorithm and is thus used in our current implementation. For simplicity, we applied the
multi-level Otsu method [66] to the whole image to automatically obtain two thresholds as
the high and low thresholds, respectively. Specifically, in the experiments of this paper, 3-
level Otsu is employed and the lowest two levels have been adopted as the low and high
thresholds. Furthermore, the multi-level Otsu method can be applied to each sub-window
instead of the whole image such that a different set of high and low thresholds can be
obtained for each local area. However, our experiments show that our simplified
implementation can already achieve satisfactory performance. It should be mentioned that
within one cube of a 3D image, the high and low thresholds need to be obtained from each
different image slice.

The complete procedure of the proposed DHR-RP algorithm is shown in Fig. 5, where wmax
is the total number of sub-windows and w is a counter of the sub-windows. Finally, it should
be mentioned that a background cleaning step needs to be performed before entering the
body of the DHR-RP algorithm, which simply sets the intensities of the dark pixels/voxels to
zero if their intensities are smaller than, e.g., 5% of the intensities of the brightest pixels/
voxels. This step can prevent the random probes from being planted in the clean background
region. For fair comparison, the same background cleaning procedure has been applied
before the execution of every method in comparison.

4. Result and discussion
We first validate the idea of the DHR-RP algorithm using a few sample images. Limited by
space, the details of validation are included in the Supplementary Materials, but the results
suggest that the DHR-RP algorithm behaves as predicted by the theories in Section 2.

4.1. Experimental results
4.1.1 Comparison with global thresholding methods—To verify the performance
of the DHR-RP algorithm, we conduct a number of comparisons for capillary images of
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different quality (specifically, 38 frames of brain vessel images from 4 mice). Limited by
space, here we only report results from 3 representative images of different quality. In
Figures 6(a), 7(a) and 8(a), we have a high-quality image, a moderately contaminated image,
and a heavily contaminated image, respectively. More specially, Fig. 6(a) has nearly no
contaminated region; Fig. 7(a) has a small but obvious contaminated region in the upper
middle part; and Fig. 8(a) is heavily contaminated in the upper right corner and one can see
contamination at many places.

The first set of comparisons we conduct are between our DHR-RP method and the existing
global thresholding algorithms. We have not compared our method with some integrated
vessel extraction methods, like those in VidaSuite [21] and VesSeg [29], because these tools
employ a number of preprocessing (e.g. median filtering, Gaussian filtering and image
enhancement) and post processing algorithms (such as erosion, dilation, gap filling) to
obtain better extraction performance, which are thus not fair to be compared in our
experiments. Limited by space, we only select six representative global algorithms here for
comparison, including the Otsu method [38], Huang’s method [63], the percentile method
[31], the triangle method [79], the maximum entropy method [78] and Kittler’s method [40,
41]. Some of these methods like Otsu are among the most widely used methods and have
been implemented in both open-source software (e.g., ImageJ) and commercial packages
(e.g., MATLAB™) [25, 32]; also, the Kittler’s method is chosen as it was ranked the highest
in a recent survey of thresholding methods [32]. For Fig. 6(a), we see that the DHR-RP
method and the Otsu method generate comparable binarization results; as indicated in
Figures 6(b) and 6(c), the two methods can both remove most of the noise and preserve the
vessels well. However, Huang’s method, the percentile method, the triangle method and
Kittler’s method tend to misclassify the noise as foreground, as shown in Figures 6(d), (e),
(f) and (h); also, the maximum entropy method removes most of the vessels as well as noise,
as suggested in Fig. 6(g). Thus, except for the DHR-RP and the Otsu methods, all other
methods give unsatisfactory results even for the high-quality image in Fig. 6(a). For Fig.
7(a), we see that the DHR-RP method performs the best as almost all the other methods
misclassify the contamination in the middle upper region as foreground, as shown in Figures
7(c), (d), (e), (f) and (h); the only exception is the maximum entropy method, which still
removes both a majority of true signals and noise (Fig. 7(g)). One possible reason why the
previous methods perform worse is that the intensities of some noise pixels are actually
higher than those of the vessels nearby. Fig. 8 gives the thresholding results for a severely
contaminated image, where the DHR-RP method turns out to be superior to the other
methods because it obviously better deal with the contaminated region around the upper
right corner.

4.1.2 Comparison with local thresholding methods—The DHR-RP method itself is
a local adaptive algorithm, it is thus necessary to compare it with existing local thresholding
methods. Again, we only select a limited number of representative methods for comparison,
including Bernsen’s method [80], the mean method [81], the median method [81], the
MidGray method [81], Niblack’s method [82], and Sauvola’s method [83]. Since the local
thresholding methods are designed to deal with local contamination, we only use the heavily
contaminated image in Fig. 8(a) for performance comparison. For the previous algorithms,
we first use the existing implementation in ImageJ with its default computing parameters to
binarize Fig. 8(a). The results are shown in Fig. 9, where we can tell that the results are
barely acceptable. The vessels extracted by Bersen’s method are disconnected, dim, and
shrunk in area; meanwhile, the rest five methods show serious misclassification problems.
Among the six methods, we then select four methods of better performance for further
comparison, including Bernsen’s method, the mean method, the median method, and the
MidGray method. We then finely tune the computing parameters of these four methods until
the best results can be obtained based on our visual perception, and the tuned results are
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presented in Fig. 10. We find that the outcomes of all the four methods are significantly
improved after parameter tuning; also, the mean method can generate outcomes that are
even better than the DHR-RP method at certain region (e.g. the lower right part in Fig.
10(c)). However, we also can tell from the result that the mean method fails to remove the
noise in the upper right corner; also, the vessel width is clearly inflated by the mean method,
which could result in biased calculation of image metrics such as the vessel area. Thus, in
this case, we conclude that the DHR-RP method has a comparable performance to the mean
method. We then further compare the DHR-RP algorithm with the mean method using the
image in Fig. 11(a), where the contamination problem gets worse. Now we see that the
DHR-RP method can still well separate the foreground from the background (Fig. 11(b)),
while the mean method fails to remove the background contamination even after a fine
tuning of its computing parameters (Fig. 11(c)). Note that when we apply the DHR-RP
method to the sample images, we use the same set of computing parameters and the results
turn out to be among the highest quality for all the cases considered so far. Thus, we may
conclude that the DHR-RP algorithm is not sensitive to the computing parameters like other
local methods.

4.1.3 Quantitative comparison—To quantitatively evaluate the performance of DHR-
RP against other methods, we have manually labeled the vessel image in Fig. 7(a) as the
ground truth (see supplementary Fig. 4 for the manually labeled image). We consider four
evaluation criteria, including the misclassification error (ME), false positive rate (FPR),
false negative rate (FNR), and the dice coefficient (DC). The misclassification error [28] is
defined as,

where BO and FO are the background and foreground of the ground truth image,
respectively, BT and FT denote the resulted background and foreground after thresholding,
and |·| denotes the cardinality of a set. The dice coefficient [84] is defined as

where TP, FP and FN denote true positive, false positive and false negative, respectively.
DC is always between 0 and 1, with a value closer to one meaning a higher agreement with
truth. In Table 2, the performance of the DHR-RP method versus several other global and
local methods is given for one specific image sample Fig. 7(a). Among these seven methods
in comparison, the proposed DHR-RP algorithm has the smallest misclassification error
(2.48%), clearly suggesting a superiority of our DHR-RP method over the rest methods on
the analyzed dataset. Although the DC of the maximum entropy method (0.96) is larger than
that of the DHR-RP method (0.90), the FNR of the maximum entropy method is extremely
high (98%), which suggests that this algorithm misclassifies almost all the vessels as
background. Therefore, the overall performance of the DHR-RP algorithm is actually the
best for the selected image sample in Fig. 7(a).

4.1.4 Simulation study—To confirm the superior performance of the DHR-RP method,
we conduct an extensive simulation study. Without loss of generality, we add contamination
regions (CR) to the image in Fig. 7(a) to generate simulated samples as follows (see Fig. 6 in
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Supplementary Materials). First, each 1000 images are generated with 1, 2, 3, 5, 10 or 15
CRs, respectively (thus, 6000 images are generated in total). Second, since both background
staining and vessel leaking can lead to contaminations, the positions of all CRs are randomly
chosen so the CRs will not just stay around vessels. Third, considering that the areas of real
CRs can vary from one local region to another, the area of each CR in the simulated images
is randomly picked from a uniform distribution between 100×100 and 150×150 pixels to
better match the reality. Finally, given the fact that the intensities of noise pixels in real CRs
are subject to variation, we generate noise intensities from a truncated Gaussian distribution
so the noise intensities will fall between 0 and 255; also, a standard deviation around 15 is
used in the truncated normal distribution, which is close to the maximum standard deviation
found in the 38 real samples. We then evaluate the performances of the DHR-RP method
and the 5 other algorithms by calculating the average misclassification errors over each 1000
simulated images that have the same number of CRs. The evaluation results are summarized
in Table 3. As suggested in Table 3, the DHR-RP algorithm clearly has the best performance
for all the cases. More specifically, the MEs of the DHR-RP algorithm range from 2.2% to
6.21% for CR=1 and CR=15, respectively; however, the MEs of the second best algorithm
(Bernsen’s method) is 19%~74% larger than DHR-RP’s. Also, the DHR-RP algorithm has
the highest DCs for all cases (ranging from 0.35 to 0.70), which are at least 20% larger than
those of the second best algorithm (Bernsen’s method). Furthermore, the FPRs of our
algorithm are the smallest among all methods in comparison. Although the FNRs of DHR-
RP are not the smallest, no algorithms can achieve the smallest FRPs and FNRs
simultaneously. Therefore, according to MEs and DCs of the algorithms under comparison,
the DHR-RP method has the overall best performance.

We also realize that different image samples may have different features, which could affect
algorithm performance. Therefore, we conduct additional simulation studies based on six
different real image samples (see Fig. 12). The six samples are chosen for their different
characteristics. That is, low vs. high vessel density in Fig. 12(a) and 12(b), respectively; low
vs. high vessel curvature in Fig. 12(c) and 12(d), respectively; and low vs. high branch node
density in Fig. 12(e) and 12(f), respectively. Based on each of the six real samples, 100
simulated images are generated by adding 15 CRs (contamination regions). Algorithm
performances are evaluated again using ME, FPR, FNR and DC as in Table 4. The results
clearly suggest that the DHR-RP method has the best performance in terms of MEs and
DCs. The FPR of the DHR-RP algorithm is also the smallest for almost all the cases. As
discussed before, although the FNRs of the DHR-RP algorithm are not the smallest, the MEs
and DCs of this algorithm are convincing evidence of its overall superior performance over
others. Finally, the histograms of ME, sensitivity, specificity and DC of the DHR-RP
algorithm are plotted for visualization of their distributions as in Fig. 7 of the Supplementary
Materials.

4.1.5 3D image example—Finally, to illustrate the performance of the DHR-RP method
on 3D images, we conduct further experiments on 8 two-photon 3D vessel images. The
RDH-RP method obtained satisfactory binarization results for all these real samples.
However, limited by space, here we only show one thresholding result. Fig. 12(a) is the
original image; in Figures 13(b) and 13(c), two different sets of low and high thresholds are
used, respectively. The results in Figures 13(b) and (c) clearly suggest that the contaminated
region can be appropriately removed, and the vessels in the original image have also been
well preserved for both cases. In summary, the DHR-RP method is also naturally applicable
to 3D image thresholding as we expect.
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4.2. Tuning parameters
Several parameters need to be specified to use the DHR-RP method, which include the size
of the sub-image window, the d-neighbor distance and the number of random probes.
However, in practice, the only parameter that the DHR-RP method might be sensitive to is
the size of the sub-window. We thus conducted further experiments and the results suggest
that the performance of the algorithm is not sensitive to the change of the sub-window size
(see supplementary Fig. 2 and Table 1 for details). Specifically in this study, we use a sub-
window of 150×150 pixels for (1280×1024, 1031×825 and 1063×836) 2D images and a
window of 30×30×30 for (220×220×110) 3D cases. Typical values of the d-neighbor
distance could be from 5 to ≤30, depending on the image resolution as well as the size of
objects in the image; in this study, we use a distance of 20 pixels for 2D cases and 5 voxels
for 3D cases, respectively. As mentioned before, the larger the number of random probes for
each sub-window, the better the performance; however, to reduce the computing cost, 100
probes usually will be sufficient to sample a sub-window.

Another issue that deserves further discussion is the scenarios in which the DHR-RP
algorithm may fail. For example, if a random probe happens to fall at the center of a tube
ring and the distance d happens to be the value such that all the d-neighbors fall on the ring,
the frequencies of all the directional histogram bins will be equal to each other. Thus, even if
the background is clean and there exist only tube-like objects in an image, the DHR will
become 1 instead of being greater than 2. This is why we need to assume that “the spatial
distribution of these objects is not isotropic with respect to all the directions used to generate
the directional histogram” in Proposition 1. However, in practice, such scenarios are
unlikely to occur because real vessels do not spread regularly in space. Furthermore,
dividing the whole image into sub-windows can alleviate this problem because, e.g., a
portion of a tube ring will lose the symmetry of the whole ring.

Finally, it should be addressed that the performance of the DHR-RP algorithm can be further
improved. For example, a different threshold for binarization can be calculated for each
different sub-window. Also, instead of sampling only one d-neighbor along each different
direction at a random probe, one can sample multiple d-neighbors to generate a directional
histogram at each random probe; in this way, the DHR will not be affected by the spatial
orientation of a tube-like object and thus become more sensitive to the existence of tube-like
objects. However, since our current implementation of the DHR-RP algorithm can already
achieve superior performance, we leave the investigation of possible variations of the DHR-
RP algorithm to the future.

4.3. Computational complexity
For the proposed DHR-RP algorithm, mainly the multi-level Otsu method and the
calculation of DH cost more computing time. The computational complexity of multi-level
Otsu has been analyzed in [66] and [85], thus in this paper we will only discuss the
computational cost of the DH calculation. Use the same notations as in section III, we
assume there are wmax sub-windows in the computed image and we plant n random probes
within each sub-image to calculate the DH. In the worst case (that is, every neighbor pixel
checked needs to be added to the DH), there will be 8wmaxn of additions for 2D cases and
26wmaxn additions for 3D cases. Besides these additions, the maximum and minimum of the
8 or 26 dimensions of DH vector should be searched with a complexity of O(8) or O(26).
One extra division is needed for each sub-window to calculate the DHR, which would
require wmax of divisions for the whole image. Therefore, the computational complexity of
DHR-RP is linearly proportional to wmaxn without considering the multi-level Otsu part,
which is totally acceptable for the thresholding need.
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5. Conclusion
In this study, we developed a novel algorithm for capillary image thresholding. In particular,
the proposed method, called directional histogram ratio at random probes (DHR-RP),
explicitly takes the geometric feature of vessels into consideration and to our best
knowledge, this idea is proposed for the very first time. Specifically, within each sub-
window of either a 2D or 3D image, a number of random probes are planted on bright
pixels/voxels to collect their so-called d-neighbors along multiple different directions; then a
directional histogram is generated based on the intensities of these d-neighbors and the ratio
of the maximum and minimum bin frequencies of the histogram is calculated as an indicator
of the existence of tube-like objects as well as the severity of contamination. A low DHR
(<2) indicates a heavily contaminated region and thus one can choose a high threshold for
image binarization; contrarily, a large ratio (≫ 2) suggests the use of a low threshold for
binarization. We then theoretically and experimentally verified the performance of the
DHR-RP. The results suggest that the DHR-RP approach outperforms many existing
algorithms under a number of different conditions (i.e., different numbers, sizes and noise
intensities of contamination regions). We also illustrated that the DHR-RP algorithm is
applicable to both 2D and 3D vessel images. We also realize that the DHR-RP method is
specialized to images with tube-like objects; however, in the future, this method can be
extended to images with objects of different shapes by changing, e.g., the way how the
random probes sample their neighbors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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• Thresholding algorithm deals with both clean and heavily contaminated vessel
images

• Random probes sample the geometric features of tube-like objects

• Directional histogram ratio can be an indicator of both contamination and
existence of tube objects

• DHR-RP has a superior performance over existing approaches based on real
samples and an extensive simulation study
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Fig 1.
Illustration of the contamination problem in two-photon vessel image. (a) Two photon vessel
image; (b) Thresholding result of the Kittler’s method; (c) Thresholding result of the
maximum entropy method.
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Fig 2.
Schematic illustration of d-neighbors in multiple different directions. (a) A 2D case where
the light pixel at the center is a randomly selected pixel and the eight light pixels on the
border are its 3-neighbors. (b) A 3D case where the light sphere at the center of the cube is a
randomly selected voxel and the light spheres on the surfaces are its 1-neighbors (only six
black spheres in between light spheres are shown here for a clear view).
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Fig 3.
Illustration of a tube-like object using an 8-directional probe. The shadowed part is an
object. Pixel i is a randomly selected pixel on the object and j and k are two d-neighbors of i.
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Fig 4.
Flow chart for generating the directional histogram.
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Fig 5.
Flow chart of the DHR-RP thresholding algorithm.
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Fig 6.
Results of seven different thresholding methods applied to a high-quality two-photon vessel
image. (a) Original image. (b) DHR-RP method. (c) Otsu method. (d) Huang’s method. (e)
Percentile method. (f) Triangle method. (g) Maximum entropy method. (h) Kittler’s method.
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Fig 7.
Results of seven different thresholding methods applied to a moderately contaminated two-
photon vessel image. (a) Original image. (b) DHR-RP method. (c) Otsu method. (d) Huang’s
method. (e) Percentile method. (f) Triangle method. (g) Maximum entropy method. (h)
Kittler’s method.
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Fig 8.
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Results of seven different thresholding methods applied to a heavily contaminated two-
photon vessel image. (a) Original image. (b) DHR-RP method. (c) Otsu method. (d) Huang’s
method. (e) Percentile method. (f) Triangle method. (g) Maximum entropy method. (h)
Kittler’s method.
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Fig 9.
Local thresholding results of the two-photon vessel image in Fig. 8(a). The open source
software ImageJ is employed to obtain these results using the default computing parameters.
The three images in the upper row are results of Bersen’s method, the mean method and the
median method. The three images in the lower row are results of MidGray’s method,
Niblack’s method and Sauvola’s method.
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Fig 10.
Improved local thresholding results by finely tuning computing parameters. (a) Result of
Bernsen’s method. (b) Result of the mean method. (c) Result of the median method. (d)
Result of the MidGray method.
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Fig 11.
Comparison of the DHR-RP method with the mean method. (a) Original image. (b) Result
of the DHR-RP method. (c) Result of the mean method.
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Figure 12.
Six real image samples with different features. (a) Low vessel density. (b) High vessel
density. (c) Low vessel curvature. (d) High vessel curvature. (e) Low branch node density.
(f) High branch node density.
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Fig 13.
Thresholding results of the DHR-RP algorithm on a 3D two-photon vessel image. (a)
Original image. (b) DHR-RP thresholding result with a lower threshold. (c) DHR-RP
thresholding result with a higher threshold.
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Table 1

Summary of the representative thresholding methods.

Category Feature Applicability

Histogram based Use intensity histogram shape;
Conceptually simple;

Mostly for unimodal histograms or histograms
with well-separated peaks;

Entropy based Optimize (cross-)entropy;
Many existing tools and theories for optimization problems;

Empirical;
Using second-order entropy can usually lead to
better performance;

Attribute based Incorporate information from not only intensity but also
edge, gray-level moments etc.

Images with low noise level;
Accurate feature extraction methods are required;

Spatial distribution based Consider spatial correlation;
Flexible;

Need distribution assumption;
Images of low noise level;

Clustering based Use similarity or dissimilarity between foreground and
background;
Effective and broadly used;

Better performance for images with well-
separated background and foreground;

Local statistics based Use adaptive thresholds;
Usually have a better performance than global approaches;

Subject to the choice of statistics;
Images of low noise level;
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