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a b s t r a c t

In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is
presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull
is used to define the boundary of the target class defining the problem. Expansions and contractions of
this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a
point belongs to the convex hull model in high dimensional spaces is approximated by means of random
projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-
convex structures. Experimental results show that the proposed strategy is significantly better than state
of the art one-class classification methods on over 200 datasets.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In pattern recognition, a particular typology of problems is
defined when only data related to one target class are available.
These problems are known as one-class classification problems.
These classification tasks naturally arise when target data can be
effortlessly collected while counterexamples are scarce or difficult
to obtain [1]. Typical one-class problems are the prediction of
mean time before a machinery failure [1,2] or the problem of
banknotes verification [3]. In the former case, examples of non-
regular operations can only be found in the presence of cracks and
malfunctions. In the latter case, while it is possible to easily provide
all the examples necessary to model the examples of valid bank-
notes, it is hard to define a proper sampling of examples belonging
to the counterexample set. Effective one-class classification strate-
gies use density estimation methods and boundary methods to
model the target class. Gaussian Model, Mixture of Gaussian Model
and Parzen Density Estimation are density estimation methods
widely used. Density estimation methods work well when there
exists a-priori knowledge of the problem at hand and a big amount
of data is available. On the other hand, boundary methods only
intend to model the boundary of the problem without focusing on
the complete description of the underlying distribution. Well
known approaches to boundary methods are k-centers [4], Nearest
Neighbors [2]) and extensions of Support Vector Machines (SVM)
to the one-class setting [5–7]. Support Vectors Data Description

(SVDD) [2] represents the state of the art in one-class classification.
SVDD computes the minimum hypersphere containing all the data
in a multi-dimensional space, providing an elegant and intuitive
understanding about the solution of the classification problem.
Indeed, many classification problems can be efficiently solved
when addressed from the geometrical point of view. In particular,
when the geometrical framework is taken into account, the convex
hull, i.e., the smallest polytope containing the full set of points, may
represent an even more general structure than the hypersphere.

The convex hull has always been considered a powerful tool in
geometrical pattern recognition [8–11]. Bennet et al. [12,13]
showed that there exists a geometrical interpretation of the SVM
related to the convex hull, i.e., finding the maximum margin
between two classes is equivalent to finding the nearest neighbors
in the convex hull of each class when classes do not overlap.

Nevertheless, using the convex hull in real applications is
limited by the fact that its computation in high dimensional spaces
has an extremely large computational cost. Although advanced
solutions have been proposed to overcome the limitation of
building the convex hull in high dimensional spaces [14,15], there
exists a wide range of pattern recognition problems where the use
of the convex hull is still unsuitable specially when limited
computational resources are considered. Hence, theoretical meth-
odologies for building a convex hull in constrained scenarios are
worth to be investigated. In addition, detecting whether a point
lies inside or outside of the convex hull in high dimensional spaces
still remains an open problem. Random projections and high
dimensional geometry lie at the heart of several important approx-
imation algorithms [16]. Random projections have been widely used
in pattern recognition applications as a tool for dimensionality
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reduction [17–19]. The random projections technique is based on
the idea that high dimensional data can be projected into a lower
dimensional space without significantly losing the structure of the
data. This data structure preservation has been proved by Johnson
and Linderstrauss (JL) [20] and it is ensured with high probability if
data are projected into a destination space having dimensionality
proportional to the logarithm of the cardinality of the dataset. The
capability to reduce the dimensionality of the problem without a
significant computational effort and loss of structure allows to create
very simple and powerful learning techniques. The simplest learning
algorithm based on random projections [21] consists in two steps:
project the data in a random subspace and run the learning
algorithm in that space. Some works suggest that using random
projections is equivalent to using the ‘kernel trick’ [22]. Other works
[23] suggest that random projections can help in the feature
selection process and can also provide specific insights in the
construction of large margin classifiers. Moreover, even picking a
random separator on data projected down to a line, there is a
reasonable chance to get a valid weak hypothesis.

In this work,1 three main contributions are proposed in the
context of one-class classification:

1. The geometric structure of the convex hull is proposed for
modeling the boundary of the one-class classification problem.
Shrunken or enlarged versions of the baseline convex hull of the
training data are used to avoid over-fitting and to find the
optimal operating point of the classifier. These versions are
called extended convex polytopes and their growth is governed
by a parameter α. Using this model, a new data point is said to
belong to the target class if it lies inside the extended convex
polytope. The creation of the extended convex polytope is
limited by the fact that its computation is unfeasible in high
dimensional spaces.

2. This limitation is circumvented by approximating the D-dimen-
sional expanded convex polytope decision by an ensemble of
decisions in very low-dimensional spaces d5D. This new
geometric structure is called approximate convex polytope deci-
sion ensemble. In these low-dimensional spaces, computing the
convex hull and establishing whether points lie inside the
geometric structure are both well known problems having very
computationally efficient solutions [25,26]. In this work, the
effect of projecting and constructing the ensemble using two-
dimensional and one-dimensional random spaces is analyzed.
As a result, a very efficient and powerful one-class classifier is
obtained.

3. However, many real world problems are not well modeled using
a convex polytope. Thus, an ensemble of convex polytopes is
finally proposed in order to approximate the non-convex
boundary of the one-class classification problem. The algorithm
is based on a tiling strategy and each convex polytope is
approximated by the approximate convex polytope decision
ensemble.

All the proposed one-class methodologies are validated on a set
of 5 toy problems with different cardinalities, 82 one-class pro-
blems derived from the UCI machine learning repository, 15
problems related to mobile user verification from walking patterns
and 100 text categorization datasets. The paper is organized as
follows. In Section 2, the proposed one-class classification method

based on the convex hull is described in detail. Its extension for
modeling non-convex boundaries is described in Section 3. In
Section 4, the validation protocol is described and in Section 5,
experimental results are presented. In Section 6 some methodolo-
gical topics of interest are discussed. In particular, discussions on
the number of random projections needed by the proposed
methodology, the effect of the expansion parameter and the
computational complexity in comparison to state of the art one-
class classification methods are addressed. Finally Section 7 concludes
the paper.

2. Approximate polytopes decision ensemble for one-class
classification

One-class classification can be performed by modeling the
boundary of the set of points defining the problem. If the boundary
encloses a convex area, then the convex hull, defined as the
minimal convex set containing all the training points, provides a
good general tool for modeling the target class. The convex hull of a
set CDRn, denoted conv C, is the smallest convex set that contains
C and is defined as the set of all convex combinations of points in C:

conv C ¼ θ1x1þ⋯þθmxmjxiAC;θiZ0; 8 i;∑
i
θi ¼ 1

( )
:

In this scenario, the one-class classification task is reduced to the
problem of knowing if test data lie inside or outside the hull.
Although the convex hull provides a compact representation of the
data, outliers may lead to shapes of the convex polytope not
corresponding to the desired model and a decision using this
structure is prone to over-fitting. In this sense, it is useful to define
a parameterized set of convex polytopes associated with the
original convex hull of the training data. This set of polytopes are
shrunken/enlarged versions of the original convex hull governed
by a parameter α. This expansion parameter allows to calculate the
Receiver Operating Characteristic (ROC) curve and set the optimal
operating point for the final one-class classifier. Given the set
CDRn, the extended convex polytope is defined with respect to the
center point c and expansion parameter α. Vertices of the convex
polytope are defined as in

vα : vþα
ðv�cÞ
Jv�cJ

vAconv Cj g
�

ð1Þ

Fig. 1. Illustration of the expanded convex polytope in the 2D space. The central
light gray convex polygon represents the original convex hull with vertices
fvi ; i¼ 1…5g. The outer dark gray polygon corresponds to the enlargement of the
original convex hull using α40. The inner white polygon corresponds to a
shrunken version of the convex hull using αo0.

1 The current paper improves and extends our seminal work [24]. The previous
paper shares with the present work the basic idea of using random projections for
reducing the complexity of building the convex hull in a high dimensional space. In
the current paper the methodology is revised and new contents are introduced, i.e.
the use of the expansion factor and a methodology for handling non-convex shapes
as well as a large validation section.
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The parameter α defines a constant shrinking (�Jv�cJrαr0) or
enlargement (αZ0) of the convex structure with respect to the c.
If α¼ 0 then v0 ¼ conv C. Fig. 1 illustrates a shrunken and enlarged
expanded convex polytopes. Two fundamental limitations exist in
the suggested approach: Both the task of computing the extended
convex polytope and testing if a point lies in its interior in high
dimensional spaces is computationally unfeasible. In the following
section, a solution to these problems is proposed.

2.1. Approximate convex polytope decision ensemble

The creation of a high-dimensional convex hull is computation-
ally hard. The cost of computing a D-dimensional convex hull on N
data examples is OðN⌊D=2⌋þ1Þ. This cost is prohibitive in time and
memory and, for a classification task, only checking if points lie
inside the multi-dimensional structure is needed. The approximate
convex polytope decision ensemble (APE) consists in approximating
the decision made by the extended convex polytope in the original
D-dimensional space by aggregating a set of τ randomly projected
decisions made on low-dimensional spaces. The approximation is
based on the observation that the vertices defining a convex
polytope in a low-dimensional projection of the data set corre-
spond to a subset of the projected vertices belonging to the convex
polytope in the original D-dimensional space. With this considera-
tion in mind, the decision rule can be defined as follows: given a set
of τ randomly projected replicas of the training set, a point does
not belong to the modeled class if and only if there exists at least
one case in which the point lies outside of the projected convex
polytope.

In Fig. 2, the graphical explanation of the method is shown.
A three-dimensional convex polytope and a test point lying outside
the hull are presented. In the bottom, three random projection
planes are displayed. It should be noted that a testing point outside
the original structure might appear inside one or more projections.

2.2. The expansion factor in random spaces

The decision that one point belongs to the class is made by
considering the extended convex polytope. This structure is a
shrunken or expanded version of the convex hull governed by
parameter α. The approximate convex polytope decision strategy
relies in creating the expanded polytope in a low-dimensional
space. Since the projection matrix is created at random, the norm

of the original space is not preserved in the resulting space. Hence,
a constant value of the parameter α in the original space corre-
sponds to a set of values γi in the projected one. As a result, the
low-dimensional approximation of the expanded polytope is
defined by the set of vertices as

vα : vi þγi
ðvi�cÞ
Jvi�c J

� �
; i¼ 1…N ð2Þ

where c ¼ Pc represents the projection of the center c given a
random projection matrix P, vi is the set of vertices belonging to
the convex hull of the projected data and γi is defined as

γi ¼
ðvi�cÞTPTPðvi�cÞ

Jvi�cJ
α ð3Þ

where vi is the ith vertex of the convex hull in the original space.
It is worthy of attention that there exist different expansion

factors for each of the vertex vi belonging to the projected convex
hull. Fig. 3 illustrates the difference between the constant expan-
sion of the original polytope and the different gamma parameters
in the projected counterpart.

2.3. Approximate convex polytope decision ensemble learning
algorithms

The steps needed for learning and testing the proposed
approach are described in Algorithms 1 and 2, respectively. Both
algorithms require defining the number of projections τ. In the
learning phase, at each iteration, a random matrix is created. Then,
the training set is projected into the space spanned by the random
projection matrix. Finally, the vertices of the convex hull of the
projected data set are found. R2 and R have been used as final
destination spaces. Although this solution may appear to contradict
the JL Lemma, it must be noted that APE does not directly rely on
the pair-wise distance preservation property but on a relaxed
version of it since only whether a point lies inside the polytope
is needed. Building a convex hull in R2 and R and checking if a
point lies inside or outside of it are well known problems in
computational geometry with very efficient solutions.

Fig. 2. Illustration of the approximate convex polytope decision strategy: a point
does not belong to the modeled class if there exists at least one projection where
the point is outside the projected convex polytope.

Fig. 3. Illustration of an expanded convex polytope in the original 2D space and the
corresponding projected convex polytope in a 1D space. Observe that though the
convex polytope is expanded by a constant value α in the original space, different
expansion parameters γi arise in the projected space.
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Algorithm 2 describes the test procedure. At each iteration t of the
algorithm, the test point is projected into the space spanned by the
t-th random projection matrix. Then, each vertex of the t-th convex
hull computed at the training step is expanded by its corresponding
gamma value defined in Eq. (3). Given the set of vertices of the
expanded convex polytope in the low-dimensional space as defined
in Eq. (2), it is possible to check if the test point lies inside the
projected polytope. A point approximately belongs to the model if it
lies inside all the t projected polytopes. Many algorithms may be used
to check if a data point is inside a 2-D convex polytope like, for
instance, the ray casting algorithm [27]. In the 1-D case, the convex
polytope is reduced to a single line segment. Hence, checking if a
point lies on the segment requires at most two comparisons.

Algorithm 2. Approximate convex polytope decision ensemble
testing algorithm.

Input: A test point xARD;
The model M; The parameter α

Output: ResultsAfINSIDE;OUTSIDEg
Results¼ INSIDE;
for t ¼ 1‥τ do
xt ¼ Ptx % Project data:;

vαt : viþγi
ðvi�cÞ
Jvi�c J

���viAfvgt
n o

% Find the expanded convex

polytope in the low dimensional space;
if xt =2conv vαt then
Results¼OUTSIDE
Break

����
end

������������������
end

3. Modeling non-convex distributions

The main drawback of APE is that the boundary of training data
may not be well modeled by a convex polytope. Hence, an extension of
the algorithm to cope with non-convex boundaries is also proposed.
The underlying idea of this extension is to divide the non-convex
boundary into a set of convex problems. Then, each of the convex
problems is solved by means of the approximate convex polytope
decision ensemble. The result of this process is another ensemble
algorithm called non-convex APE (NAPE). Algorithm 3 describes the
pseudo-code for creating this decomposition. Starting with a random
point c, the set of points inside a ball centered at c with radius r are
considered in the first step. Fig. 4(a) illustrates this first step. The black
point corresponds to the first center c. Around c a D-ball of radius r is

laid and the convex hull of the set of points inside the ball is computed.
This first D-dimensional convex hull is approximated using the APE
technique. For each projection, the set of vertices conforming the
convex hull in the reduced space is back projected2 into the original
space. A graphical explanation is provided in Fig. 4(a). These points are
added to a list of new candidate centers. In the following iteration, the
algorithm removes one of the possible candidate centers of the list and
repeat the process as long as there are still training points not covered
by any of the created convex hulls. Fig. 4(b) shows the second iteration
of this process.

Algorithm 3. Non-convex approximate decomposition algorithm.

Input: Training set CARD, with D the number of features;
Number of Projections τ

Output: Model M composed of several convex models defined
by Algorithm 1

L¼∅;
Pick a random training point cstart;
L¼ L [ fcstartg % Initialize the list of possible centers with the

first random element;
Set all data points xAC to the value not visited;
while ( x with value not visited do
if L¼∅ then
Pick a random a training point with attribute not visited;

pAC

L¼ L [ fpg

�������
end
p¼ first ðLÞ % Remove the first element of the list;
Ci : fxACjJx�pJrrg % Find the set of points to be modeled
with a convex polytope in this iteration;
Set all data points xACi to the value visited;

Mi ¼ TrainAPEðCi; TÞ % Find the approximate model associated
to the selected set using Algorithm 1;
M¼M [ Mi % Add the new convex model to the final
model set:;
L¼ L [ fviACjvi AMig % Add the points of C corresponding to
vertices of the projected convex hulls of the current
model Mi;

����������������������������������������
end

Algorithm 1. Approximate convex polytope decision ensemble learning algorithm.

Input: Training set C ¼ fxigARD; i¼ 1:::N , with D the dimensionality of each data example xi;
Number of projections τ

Output: The model M composed of τ projection matrices and their respective convex hull vertices.

M¼∅;
c¼ 1

N∑ixi; 8xiAC;
for t ¼ 1‥τ do
Pt �N ð0;1Þ % Create a normal random projection matrix;
Ct : fPtxjxACg % Project data onto the low dimensional random space;
fvigt ¼ conv Ct % Find the convex hull and return the set of vertices;
M¼M [ ðPt ; fvigtÞ % Store the set of vertices associated to the convex hull in the projected space and the projection matrix;

����������
end

2 It should be noted that this step only needs to keep track of the points that are
selected in the low-dimensional space and correspond to the vertices of the
projected convex hull.
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In the same way the extended convex polytope is defined, an
extended non-convex polytope is also defined. Observe that due to
the definition of the extended convex polytope (Eq. (1)) and its
approximation in Eq. (2), taking a global α value for all the convex
polytopes suffices to expand the whole non-convex shape by a
constant value α. In order to test if a point lies inside the non-
convex model, one must check if it lies inside of at least one of the
constituting approximate polytope ensemble. Otherwise, it is said
to be outside.

4. Validation methodology

The APE and NAPE algorithms are compared with several state-
of-the-art one-class pattern recognition methods. APE is created by
projecting data down to both one-dimensional (APE-1) and two-
dimensional (APE-2) spaces. The methods are validated on three
different typology of problems using standard performance eva-
luation metrics.

Datasets. APE and NAPE are validated on three different typol-
ogies of problems:

� Artificial datasets. These datasets are used to evaluate the
behavior of the methods with respect to non-convexity. Normal
distribution, banana-shaped, S-shaped, toroidal and 3-shaped
distributions are used. Non-target points are generated using the
procedure described in [28]. The radius of the generating hyper-
sphere is set to 2. For each problem, 10-fold cross validation is
performed on ten randomly created sets and results averaged.

� UCI datasets. 82 real one-class problems derived from 23 UCI
machine learning repository datasets are considered. For each
dataset, one-class classification problems are obtained consid-
ering one of the classes as target and all the other classes as
non-targets. The list of datasets used is shown in Table 1. Each
problem is evaluated using 5-fold stratified cross-validation on
10 different permutations of the data for a total of 50 experi-
ments per problem.The final result is obtained averaging all the
results. Due to its high computational complexity in training, a
reduced set of problems are used for comparison with SVDD.
This subset Dn is composed by problems in Table 1 marked with
a star. The choice of these datasets is based on the fact that all
these datasets, except Tic-tac-toe, have cardinality less than 500
elements.

� Real world classification problems. Two one-class modeling tasks
related to user verification from walking patterns and text
categorization have been considered as real-world scenarios
for validating the proposed methodology.
The user verification task must be viewed as a prototypical
example of one-class classification task due to the difficulty to
obtain all the possible counterexamples of unauthorized users. In
this application, a commercial Android smart-phone is used to
verify users in the wild, such as in rough terrains or in adversarial

conditions, in crowded places or with obstacles using smart-
phone sensors data from 15 testers. Data associated to each user
present high non-convexity. This is attributed to different user's
walking speed, terrain conditions and obstacles. A 36-
dimensional feature vector is computed from the triaxial accel-
eration data. Given a time frame, the extracted features are the
average and standard deviation of the difference between pairs
of consecutive peaks, difference between the maximum and the
minimum values of consecutive peaks for acceleration and its
derivative. The amount of data collected adds to 11 M examples.
Text categorization has been considered as the second classifica-
tion problem. The Technion Repository of Text Categorization
Datasets [29] provides a large number of diverse collections for
use in text categorization research. The collection contains many
different datasets automatically acquired. In this experiment, the
TechTC-100 collection containing 100 datasets has been used.
Each dataset consists of a pair of categories with 150–200
documents. The number of features vary depending on the
dataset. The dimensionality of the problems is considerably high,
ranging from � 13;000 to � 30;000. In order to have one-class
classification problems, for each dataset the first class to be
categorized has been considered as target class.

Methods. The proposed approaches are compared to different
density and boundary methods for one class classification.
Gaussian model (Gauss), Mixture of Gaussians (MoG), Parzen
Density Estimation (PDE) have been chosen as density methods.
The boundary methods selected are k-centers (kC), k-nearest
neighbor (kNN), k-means (kM) [30], Minimum Spanning Trees
(MST) [31] and SVDD.3 These methods are the most commonly
used in the literature for one-class classification problems.

Fig. 4. Approximation of bi-dimensional banana-shaped dataset using NAPE.

Table 1
List of datasets: for each class, a one-class classification problem is considered.

Dataset Classes Dataset Classes

Balance-scale 3 nIonosphere 2
Breast-cancer 2 nIris 3
nBreast tissue 6 nMonks 1 2
nBupa 2 nMonks 2 2
Car 4 nMonks 3 2
Cardiotogography 10 nStatlog heart 2
nCB-sonar 2 Statlog Seg 7
nCB-vowel 2 nTeaching 3
Contraceptive 3 nTic-tac-toe 3
nGlass 3 Vowel 11
nHaberman 2 nWine 3
nHayes–Roth 3

3 SVDD has been shown to behave better than one-class SVM classifiers over a
wide range of problems [2].
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Evaluation metrics. For artificial and UCI datasets, the Area
Under the ROC Curve (AUC) is used as the performance measure
for comparing different classification methods [32]. For real world
classification problems, precision, recall and F-measure have been
used to quantify the classification performances and explicitly
show values resulting from parameter selection. For each run of
cross-validation, the performance measures have been computed
on the testing set once the operating point on the ROC curve has
been chosen on a validation set.

Parameters setting. In order to compute the Area Under the
Curve, each ROC curve is evaluated on 50 points varying the
appropriate threshold of the classification method or the α para-
meter in APE-1, APE-2 and NAPE. In the case where additional
parameters must be set, and for choosing the threshold values in
the rest of the performance measures, i.e. precision, recall and
F-measure, 2-fold cross-validation on the remaining training set for
each iteration of the global stratified cross-validation process is
used. The k value in k-NN, k-means, k-centers is chosen in the
range from 1 to 10. The regularization parameter of SVDD is set
using an outlier rejection rate of 0.1. For APE-1, APE-2 and NAPE,
the number of projections has been set arbitrarily to 1000. Proper
discussion regarding the number of projections needed is reported
in Section 6.

5. Experimental results

In this section, results obtained on artificial and UCI datasets are
described in Sections 5.1 and 5.2, respectively. In Section 5.3, results
related to user verification and text categorization are reported.

5.1. Results on artificial datasets

Experiments on artificial datasets have been performed on
datasets with 500, 750 and 1000 data-points. Due to its high

computational complexity in training, SVDD has been evaluated
only on a dataset with 500 data-points. In Table 2, mean AUC and
standard deviations are reported. APE-2 generally achieves better
results than APE-1 for the same number of projections. NAPE
always performs better than APE with significant improvement in
the performances when the data set can be modeled using highly
non-convex models, i.e. banana and toroidal datasets. Comparing
with the rest of the methods, NAPE performs better than all the
other methods on all the artificial problems taken into account,
closely followed by MoG.

5.2. Results on UCI datasets

Results obtained on Dn and D are reported in Tables 3 and 4.
Each element of the table represents the number of times the
methods reported on the rows wins, ties and loses with respect to
the method reported on the column. In order to evaluate the
statistical significance at 95% significance level of the results, a
z-test [33] is applied. The results show that NAPE is statistically
better than almost all the methods on Dn. On a bigger number of
problems, NAPE is in most cases significantly better at 95%
significance level and always significantly better at 90% signifi-
cance level. This fact is shown in Table 4. It should be noted that,
there exists a wide range of problems where APE-2 and NAPE tie.
This fact derives directly from the definition of the NAPE metho-
dology that behaves like APE-2 when the problem is correctly
modeled with just one convex model. APE-1 does not provide
significant results when compared with the other methods.

5.3. Results on user verification

Average AUC and standard deviation on the user verification
problem are shown in Fig. 5. Both APE-2 and NAPE achieve the best
results. At the same time, NAPE displays very small standard
deviation with respect to the rest of the classifiers and the highest

Table 2
Comparative results for artificial datasets: mean AUC and standard deviation. In bold font, the method with best performance is highlighted.

Method Normal Banana Esse Tre Toro

Gauss 0.96370.006 0.94170.010 0.95170.010 0.95470.008 0.91270.010
MoG 0.96370.006 0.96770.005 0.97370.006 0.97170.007 0.94170.009
PDE 0.96370.006 0.96770.005 0.97370.006 0.97070.006 0.94170.008
kNN 0.94970.009 0.95670.008 0.96670.007 0.96570.006 0.93070.009
kM 0.95870.008 0.96170.006 0.96970.006 0.96970.007 0.93470.009
kC 0.96170.007 0.95570.008 0.96170.007 0.96370.008 0.92470.012
MST 0.94270.012 0.95370.009 0.96470.007 0.96470.006 0.92770.010
SVDD 0.95970.006 0.95570.010 0.95470.007 0.95270.007 0.91170.013
APE-1 0.92170.029 0.87270.055 0.93170.027 0.88170.056 0.91170.023
APE-2 0.96070.013 0.88070.064 0.96270.010 0.95570.015 0.83170.050
NAPE 0.96670.008 0.97570.005 0.97770.006 0.96070.004 0.95770.012

Table 3
Counts of wins, ties and losses obtained on Dn. In bold font, methods that are pairwise statistically different at 95% significance level.

Method Gauss MoG PDE kNN kM kC MST SVDD APE-1 APE-2 NAPE

Gauss 0/0/0 21/4/17 22/3/17 19/3/20 23/2/17 23/0/19 19/1/22 19/3/20 25/0/17 17/0/25 17/0/25
MoG 17/4/21 0/0/0 22/3/17 14/3/25 27/2/13 23/0/19 18/1/23 19/3/20 22/0/20 13/0/29 12/0/30
PDE 17/3/22 17/3/22 0/0/0 11/3/28 27/2/13 25/0/17 13/1/28 14/3/25 22/0/20 13/0/29 12/0/30
kNN 20/3/19 25/3/14 28/3/11 0/0/0 29/2/11 29/0/13 12/1/29 16/4/22 23/0/19 16/0/26 14/0/28
kM 17/2/23 13/2/27 13/2/27 11/2/29 0/0/0 24/0/18 9/0/33 14/2/26 24/0/18 11/0/31 11/0/31
kC 19/0/23 19/0/23 17/0/25 13/0/29 18/0/24 0/0/0 15/0/27 15/0/27 30/0/12 16/0/26 13/0/29
MST 22/1/19 23/1/18 28/1/13 29/1/12 33/0/9 27/0/15 0/0/0 17/1/24 22/0/20 14/0/28 13/0/29
SVDD 20/3/19 20/3/19 25/3/14 22/4/16 26/2/14 27/0/15 24/1/17 0/0/0 25/0/17 16/0/26 15/0/27
APE-1 17/0/25 20/0/22 20/0/22 19/0/23 18/0/24 12/0/30 20/0/22 17/0/25 0/0/0 12/2/28 10/1/31
APE-2 25/0/17 29/0/13 29/0/13 26/0/16 31/0/11 26/0/16 28/0/14 26/0/16 28/2/12 0/0/0 0/30/12
NAPE 25/0/17 30/0/12 30/0/12 28/0/14 31/0/11 29/0/13 29/0/13 27/0/15 31/1/10 12/30/0 0/0/0
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classification performance. k-means is the method that, after NAPE
and APE-2, provide the best AUC. APE-1 does not provide sig-
nificant good results when compared with other one-class classi-
fication methods. Precision, recall and F-measure obtained on the
user verification problem are shown in Fig. 6. NAPE provides the
best performance for all the considered metrics. APE-2 achieves
the second best general performance, though it has precision lower
than MST because it can only model convex shapes. A pairwise
comparison of MoG, MST, k-means, and k-NN against APE-2 and

NAPE is provided in Figs. 5 and 6. Figs. 8 and 9 display scatter plots
of the F-measure of one method compared with another. Each
problem is depicted as a point in the plot. Each point above the
separation line indicates that the F-measure performance on that
problem is better by using the method reported on the Y-axis than
using the method on the X-axis. Few problems have been better
modeled by MoG and MST when compared with APE2. On the
other hand, NAPE is able to model all the user verification problems
better than the rest of the methods.

Table 4
Counts of wins, ties and losses obtained on D. In bold font, methods that are pairwise statistically different at 95% significance level.

Method Gauss MoG PDE kNN kM kC MST APE-1 APE-2 NAPE

Gauss 0/0/0 25/21/36 28/18/36 26/18/38 49/13/20 50/4/28 28/9/45 50/0/32 31/0/51 30/0/52
MoG 36/21/25 0/0/0 34/18/30 27/18/37 54/13/15 49/4/29 34/9/39 51/0/31 39/0/43 36/0/46
PDE 36/18/28 30/18/34 0/0/0 20/22/40 54/13/15 50/4/28 25/13/44 50/0/32 38/0/44 35/0/47
kNN 38/18/26 37/18/27 40/22/20 0/0/0 54/13/15 54/4/24 23/16/43 51/0/31 41/0/41 37/0/45
kM 20/13/49 15/13/54 15/13/54 15/13/54 0/0/0 43/3/36 16/4/62 39/0/43 24/0/58 20/0/62
kC 28/4/50 29/4/49 28/4/50 24/4/54 36/3/43 0/0/0 27/4/51 48/0/34 32/0/50 27/0/55
MST 45/9/28 39/9/34 44/13/25 43/16/23 62/4/16 51/4/27 0/0/0 47/0/35 36/0/46 32/0/50
APE-1 32/0/50 31/0/51 32/0/50 31/0/51 43/0/39 34/0/48 35/0/47 0/0/0 13/20/49 10/5/67
APE-2 51/0/31 43/0/39 44/0/38 41/0/41 58/0/24 50/0/32 46/0/36 49/20/13 0/0/0 0/51/31
NAPE 52/0/30 46/0/36 47/0/35 45/0/37 62/0/20 55/0/27 50/0/32 67/5/10 31/51/0 0/0/0

Fig. 5. User verification problem: AUC obtained on different one-class classifiers.

Fig. 6. User verification problem: precision, recall and F-measure obtained on different one-class classifiers.
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5.4. Results on text categorization

Error bars for average precision, recall and F-measure for the
text categorization problems are reported in Fig. 7. The experi-
mental results obtained on these very high dimensional datasets
with scarce data availability show that NAPE converges to APE-2.
This is expected since the correct modeling of a discrete set of
points by means of convex models is a matter of resolution and
data point density. Although APE2-NAPE have lower recall when
compared to Gauss, k-means and MST, the method always shows
higher precision and F-measure. Scatter plots for the F-measure
comparing APE2-NAPE with the rest of the most significant
methods are shown in Fig. 10. Observe that the number of
problems where APE2-NAPE outperform the other technique is
significantly high.

6. Discussions

In this section, the number of random projections needed to
approximate the original multi-dimensional convex hull, the role of

the expansion parameter α in the classification process and the
computational complexity of the methods are discussed. These para-
meters define the operating regime of the proposed methodologies.

6.1. Number of projections

The number of projections in APE-1, APE-2 and NAPE has been
arbitrarily set to 1000. Experiments show that using 1000 projec-
tions, the AUC obtained generally converges to a maximum level of
performances. However, using a lower number of projections, high
level of performance can still be achieved. In Table 5, the minimum,
mean and maximum number of projections needed to reach 90%,

Fig. 7. Text categorization problem: precision, recall and F-measure obtained on different one-class classifiers.

Fig. 8. User verification problem: F-measure obtained by APE2 and other one-class classifiers.

Table 5
Number of projections: minimum value, mean value and maximum value.

Method 90% 95% 99%

APE-1 1/31/69 2/63/255 14/266/715
APE-2 1/15/40 1/51/175 1/167/522
NAPE 1/11/33 1/38/131 1/141/463
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95% and 99% of the highest performance level computed on the
one-class problems derived from UCI datasets are reported.

APE-2 and NAPE need a lower number of projections with
respect to APE-1. Moreover, APE-2 and NAPE approximately used
the same number of projections for reaching the maximum
performance that is much lower than 1000, the number of
projections used in the experiments with the UCI datasets. In
order to reach 90% of the maximum value, APE-2 and NAPE need a
very small number of projections. It is worth to note that, though
the number of projections for reaching 90% and 95% of the
performance is very small, a considerable number of projections
is needed for reaching 99% of the maximum performance. Never-
theless, a mean value of 170 projections is needed for reaching the
maximum performance with APE-2 and NAPE.

6.2. Expansion parameter

When non-target data are close to the boundary of the convex
hull, the number of projections needed for checking if those points
are inside the polytope might be very high. However, there is a
synergistic effect that allows to mitigate this drawback. The
number of projections needed for checking if a point lies inside
of the polytope depends on the relative distance of the point to be
checked d and the size of the polytope. If a ball of radius R
inscribing the polytope is considered, the number of projections
depends on pe�d=R. It should be noted that a negative value of the
expansion factor α shrinks the polytope. This fact has the double
effect of increasing the distance of the point to the polytope by α
and reducing the size of the polytope. As a result, the relative

Fig. 9. User verification problem: F-measure obtained by NAPE and other one-class classifiers.

Fig. 10. Text categorization problem: comparative F-measure between NAPE-APE2 and other one-class classifiers.
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distance becomes ðdþαÞ=ðR�αÞ. Thus, reducing the value of the α
parameter reduces drastically the number of projections needed at
the cost of possibly changing the operating point.

6.3. Computational complexity

The proposed strategy has great advantages from both compu-
tational and memory storage points of view when compared with
computing the multi-dimensional convex hull. In the following
analysis, the number of examples is denoted by N; space dimen-
sion, d; iterations in k-means and number of projections in APE
variants, τ; components in k-NN, k-means, MoG and NAPE, k; the
number of support vectors and the number of vertices in APE
variants, M, where M5N. Table 6 shows the different training and
testing complexities for each of the methods.4 APE1 and APE2 have
two different parts: First, the random projection the from original
space to a one- or two-dimensional spaces and, second, the
creation of the convex hull in low dimensionality. The complexity
for building the convex hull in 1D is OðNÞ and in 2D is OðN log NÞ.
The projection of N data samples is OðNdÞ. Thus the complete
computational complexity is given by OðτðNðdþ1ÞÞÞ for APE1 and
OðτðNdþN log NÞÞ for APE2. In terms of memory storage, it
requires storing the set of vertices and the projection matrices.
This value is upper bounded by τKd (note that many vertices can be
shared among projected convex hulls). In test time, APE1 projects
data into τ random subspaces of dimension 1, OðτdÞ, and then
checks if the data point lies inside each interval OðτÞ. APE2 test
complexity just adds the complexity of checking if a point lies
inside the polygon, OðMÞ. Thus, the final test computational
complexities for APE1 and APE2 are Oðτðdþ2ÞÞ and OðτðdþMÞÞ,
respectively. NAPE adds k components to the method. This results
in a k times increment of the computational complexities of APE1

or APE2. When comparing the theoretical training computational
complexities for reasonable values, we may observe that APE and
k-means variants have presumably the smallest computational
complexities. These methods are closely followed by MoG. MST
and NAPE come afterwards. Finally, the highest training complexity
corresponds to SVDD. In test time, the presumably smallest
complexity is given by k-means and APE variants, followed by
MoG and SVDD. The most complex methods are k-NN, NAPE and
MST. An estimation of training and testing time for all the methods
is reported in Fig. 11. Tests have been performed in Matlab R2009a
on 4-core Intel i5-2300@2.80 GHz desktop computer with 8 GiB
RAM. Training time is represented by white bars and testing time
with black ones. Positive bars are representative of slower times,
negative bars represent faster times. Measures are reported with
respect to APE-2 computational performance. For APE and NAPE,
training and testing have been performed on 300 projections.
Observe that the theoretical expected results are consistent with
the bars shown in the figure.5 APE-1 is the fastest algorithm in both
training and testing, followed by APE-2. SVDD is the slowest
algorithm in training, followed by NAPE, though NAPE is 15 times
faster than SVDD. NAPE is the slowest method in testing, followed
by MST by a slight difference. NAPE is built using many APE-2
classifiers and the size of its ensemble depends by the radius
parameter. If the problem is highly non-convex, many polytopes
are needed to properly approximate the geometry of the original
structure.

7. Conclusions

In this work, the approximate polytope ensemble (APE) and
non-convex approximate polytope ensemble (NAPE) are presented.

Table 6
Training and testing computational complexity for each analyzed method.

Method APE1 APE2 NAPE SVDD k-NN k-means MoG MST

Training τðNðdþ1ÞÞ τðNdþN log NÞ τKðNdþN log NÞ N3d – τKNd Nd3K N2 log N
Test τðdþ2Þ τðdþMÞ

MoN
τKðdþMÞ

MoN
Md

M ¼ jSV joN
Nd Kd Kd2 4Nd

Fig. 11. Comparison of training (white) and testing (black) time relative to APE-2 times. Values on Y-axis are reported in the logarithmic scale.

4 Some computational complexities can differ according to the algorithm used.
We have chosen the most fair or known algorithms complexities.

5 The training time of k-NN shown in the figure corresponds to the time for
setting the distance threshold value for a certain outlier rejection rate.
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APE is based and extends the geometric concept of convex hull to
model one-class classification problems. Expansion and contrac-
tion of the original polytope governed by a parameter α allows to
avoid over-fitting and to choose the optimal operating point in the
ROC curve. The high computational complexity for building the
convex hull in high dimensional spaces is handled by projecting
data down to one or two-dimensional spaces. In those low-
dimensional spaces, building the convex hull and check if a point
lies inside the polygon are well known problems with very efficient
solutions. NAPE extends this approach using a tiling strategy of
convex patches able to model non-convex structures. APE and
NAPE have been compared on three different typologies of pro-
blems with widely used one-class classifiers. When highly non-
convex distributions are present, the differences in performance
between NAPE and APE-2 is significant, as highlighted by the
results obtained on artificial datasets. On those datasets, MoG is
competitive with NAPE. On 82 one-class problems derived from
UCI multi-class datasets, NAPE consistently outperforms the rest of
the methods. A specific one-class problem related to mobile-phone
user verification from walking patterns has been also used for
evaluating the new methodology. On such problem, NAPE provides
the best solution due to its ability to manage strong non-convex
distributions. Finally, the proposed methods are validated in 100
text categorization datasets with very high dimensionality and
scarce data availability. In those datasets NAPE converges to APE-2
and both significantly outperform the rest of the methods. Experi-
mental results show that the number of projections needed by the
method is not critical. For NAPE, there exists an optimal radius able
to provide the best approximation at the expense of the time
complexity. Further effort in improving the computational cost for
building NAPE is needed. Additionally, the study of the role of the
number of projections as a regularizer for controlling the model
complexity and theoretical bounds on this number should be
further investigated.
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