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Abstract
The most important aspect of any classifier is its error rate, because this quantifies its predictive
capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in
small-sample classifier design because the error must be estimated using the same data from
which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution
on an uncertainty class of feature-label distributions to which the true, but unknown, feature-
distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in
circumstances where accurate completely model-free error estimation is impossible. This paper
provides analytic asymptotically exact finite-sample approximations for various performance
metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the
case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance
metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with
the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay
down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting,
which enables us to derive asymptotic expressions of the desired performance metrics. From these
we produce analytic finite-sample approximations and demonstrate their accuracy via numerical
examples. Various examples illustrate the behavior of these approximations and their use in
determining the necessary sample size to achieve a desired RMS. The Supplementary Material
contains derivations for some equations and added figures.
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1. Introduction
The most important aspect of any classifier is its error, ε, defined as the probability of
misclassification, since ε quantifies the predictive capacity of the classifier. Relative to a
classification rule and a given feature-label distribution, the error is a function of the
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sampling distribution and as such possesses its own distribution, which characterizes the true
performance of the classification rule. In practice, the error must be estimated from data by
some error estimation rule yielding an estimate, ε̂. If samples are large, then part of the data
can be held out for error estimation; otherwise, the classification and error estimation rules
are applied on the same set of training data, which is the situation that concerns us here. Like
the true error, the estimated error is also a function of the sampling distribution. The
performance of the error estimation rule is completely described by its joint distribution, (ε,
ε̂).

Three widely-used metrics for performance of an error estimator are the bias, deviation
variance, and root-mean-square (RMS), given by

(1)

respectively. The RMS (square root of mean square error, MSE) is the most important
because it quantifies estimation accuracy. Bias requires only the first-order moments,
whereas the deviation variance and RMS require also the second-order moments.

Historically, analytic study has mainly focused on the first marginal moment of the
estimated error for linear discriminant analysis (LDA) in the Gaussian model or for
multinomial discrimination [1]–[12]; however, marginal knowledge does not provide the
joint probabilistic knowledge required for assessing estimation accuracy, in particular, the
mixed second moment. Recent work has aimed at characterizing joint behavior. For
multinomial discrimination, exact representations of the second-order moments, both
marginal and mixed, for the true error and the resubstitution and leave-one-out estimators
have been obtained [13]. For LDA, the exact joint distributions for both resubstitution and
leave-one-out have been found in the univariate Gaussian model and approximations have
been found in the multivariate model with a common known covariance matrix [14, 15].
Whereas one could utilize the approximate representations to find approximate moments via
integration in the multivariate model with a common known covariance matrix, more
accurate approximations, including the second-order mixed moment and the RMS, can be
achieved via asymptotically exact analytic expressions using a double asymptotic approach,
where both sample size (n) and dimensionality (p) approach infinity at a fixed rate between
the two [16]. Finite-sample approximations from the double asymptotic method have shown
to be quite accurate [16, 17, 18]. There is quite a body of work on the use of double
asymptotics for the analysis of LDA and its related statistics [16, 19, 20, 21, 22, 23]. Raudys
and Young provide a good review of the literature on the subject [24].

Although the theoretical underpinning of both [16] and the present paper relies on double
asymptotic expansions, in which n, p → ∞ at a proportional rate, our practical interest is in
the finite-sample approximations corresponding to the asymptotic expansions. In [17], the
accuracy of such finite-sample approximations was investigated relative to asymptotic
expansions for the expected error of LDA in a Gaussian model. Several single-asymptotic
expansions (n → ∞) were considered, along with double-asymptotic expansions (n, p → ∞)
[19, 20]. The results of [17] show that the double-asymptotic approximations are
significantly more accurate than the single-asymptotic approximations. In particular, even
with n/p < 3, the double-asymptotic expansions yield “excellent approximations” while the
others “falter.”
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The aforementioned work is based on the assumption that a sample is drawn from a fixed
feature-label distribution F, a classifier and error estimate are derived from the sample
without using any knowledge concerning F, and performance is relative to F. Research
dating to 1978, shows that small-sample error estimation under this paradigm tends to be
inaccurate. Re-sampling methods such as cross-validation possess large deviation variance
and, therefore, large RMS [9, 25]. Scientific content in the context of small-sample
classification can be facilitated by prior knowledge [26, 27, 28]. There are three possibilities
regarding the feature-label distribution: (1) F is known, in which case no data are needed
and there is no error estimation issue; (2) nothing is known about F, there are no known
RMS bounds, or those that are known are useless for small samples; and (3) F is known to
belong to an uncertainty class of distributions and this knowledge can be used to either
bound the RMS [16] or be used in conjunction with the training data to estimate the error of
the designed classifier. If there exists a prior distribution governing the uncertainty class,
then in essence we have a distributional model. Since virtually nothing can be said about the
error estimate in the first two cases, for a classifier to possess scientific content we must
begin with a distributional model.

Given the need for a distributional model, a natural approach is to find an optimal minimum
mean-square-error (MMSE) error estimator relative to an uncertainty class Θ [27]. This
results in a Bayesian approach with Θ being given a prior distribution, π(θ), θ ∈ Θ, and the
sample Sn being used to construct a posterior distribution, π*(θ), from which an optimal
MMSE error estimator, ε̂B, can be derived. π(θ) provides a mathematical framework for both
the analysis of any error estimator and the design of estimators with desirable properties or
optimal performance. π*(θ) provides a sample-conditioned distribution on the true classifier
error, where randomness in the true error comes from uncertainty in the underlying feature-
label distribution (given Sn). Finding the sample-conditioned MSE, MSEθ[ε̂B|Sn], of an
MMSE error estimator amounts to evaluating the variance of the true error conditioned on
the observed sample [29]. MSEθ[ε̂B|Sn] → 0 as n → ∞ almost surely in both the discrete
and Gaussian models provided in [29, 30], where closed form expressions for the sample-
conditioned MSE are available.

The sample-conditioned MSE provides a measure of performance across the uncertainty
class Θ for a given sample Sn. As such, it involves various sample-conditioned moments for
the error estimator: Eθ[ε̂B|Sn], Eθ[(ε̂B)2|Sn], and Eθ[εε̂B|Sn]. One could, on the other hand,
consider the MSE relative to a fixed feature-label distribution in the uncertainty class and
randomness relative to the sampling distribution. This would yield the feature-label-
distribution-conditioned MSE, MSE Sn[ε̂B|θ], and the corresponding moments: ESn[ε̂B|θ],
ESn[(ε̂B)2|θ], and ESn[εε̂B|θ]. From a classical point of view, the moments given θ are of
interest as they help shed light on the performance of an estimator relative to fixed
parameters of class conditional densities. Using this set of moments (i.e. given θ) we are
able to compare the performance of the Bayesian MMSE error estimator to classical
estimators of true error such as resubstitution and leave-one-out.

From a global perspective, to evaluate performance across both the uncertainty class and the
sampling distribution requires the unconditioned MSE, MSEθSn[ε̂B], and corresponding
moments EθSn[ε̂B], EθSn[(ε̂B)2], and EθSn[εε̂B]. While both MSESn[ε̂B|θ] and MSEθSn[ε̂B]
have been examined via simulation studies in [27, 28, 30] for discrete and Gaussian models,
our intention in the present paper is to derive double-asymptotic representations of the
feature-labeled conditioned (given θ) and unconditioned MSE, along with the corresponding
moments of the Bayesian MMSE error estimator for linear discriminant analysis (LDA) in
the Gaussian model.
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We make three modeling assumptions. As in many analytic error analysis studies, we
employ stratified sampling: n = n0 + n1 sample points are selected to constitute the sample
Sn in Rp, where given n, n0 and n1 are determined, and where x1, x2, …, xn0 and xn0+1,
xn0+2, …, xn0+n1 are randomly selected from distributions Π0 and Π1, respectively. Πi
possesses a multivariate Gaussian distribution N(μi, Σ), for i = 0, 1. This means that the prior
probabilities α0 and α1 = 1 − α0 for classes 0 and 1, respectively, cannot be estimated from
the sample (see [31] for a discussion of issues surrounding lack of an estimator for α0).
However, our second assumption is that α0 and α1 are known. This is a natural assumption
for many medical classification problems. If we desire early or mid-term detection, then we
are typically constrained to a small sample for which n0 and n1 are not random but for which
α0 and α1 are known (estimated with extreme accuracy) on account of a large population of
post-mortem examinations. The third assumption is that there is a known common
covariance matrix for the classes, a common assumption in error analysis [32, 3, 5, 16]. The
common covariance assumption is typical for small samples because it is well-known that
LDA commonly performs better that quadratic discriminant analysis (QDA) for small
samples, even if the actual covariances are different, owing to the estimation advantage of
using the pooled sample covariance matrix. As for the assumption of known covariance, this
assumption is typical simply owing to the mathematical difficulties of obtaining error
representations for unknown covariance (we know of no unknown-covariance result for
second-order representations). Indeed, the natural next step following this paper and [16] is
to address the unknown covariance problem (although with it being outstanding for almost
half a century, it may prove difficult).

Under our assumptions, the Anderson W statistic is defined by

(2)

where  and . The corresponding linear discriminant is

defined by ψn(x) = 1 if W(x̄0, x̄1, x) ≤ c and ψn(x) = 0 if W(x̄0, x̄1, x) > c, where .
Given sample Sn (and thus x̄0 and x̄1), for i = 0, 1, the error for ψn is given by ε = α0ε0 +
α1ε1, where

(3)

and Φ(.) denotes the cumulative distribution function of a standard normal random variable.

Raudys proposed the following approximation to the expected LDA classification error [19,
24]:

(4)

We provide similar approximations for error-estimation moments and prove asymptotic
exactness.
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2. Bayesian MMSE Error Estimator
In the Bayesian classification framework [27, 28], it is assumed that the class-0 an class-1
conditional distributions are parameterized by θ0 and θ1, respectively. Therefore, assuming
known αi, the actual feature-label distribution belongs to an uncertainty class parameterized
by θ = (θ0, θ1) according to a prior distribution, π(θ). Given a sample Sn, the Bayesian
MMSE error estimator minimizes the MSE between the true error of a designed classifier,
ψn, and an error estimate (a function of Sn and ψn). The expectation in the MSE is taken over
the uncertainty class conditioned on Sn. Specifically, the MMSE error estimator is the
expected true error, ε̂B(Sn) = Eθ[ε(θ)|Sn]. The expectation given the sample is over the
posterior density, π*(θ). Thus, we write the Bayesian MMSE error estimator as ε̂B = Eπ*[ε].
To facilitate analytic representations, θ0 and θ1 are assumed to be independent prior to
observing the data. Denote the marginal priors of θ0 and θ1 by π(θ0) and π(θ1), respectively,
and the corresponding posteriors by π*(θ0) and π*(θ1), respectively. Independence is
preserved, i.e., π*(θ0, θ1) = π*(θ0)π*(θ1) for i = 0, 1 [27].

Owing to the posterior independence between θ0 and θ1 and the fact that αi is known, the
Bayesian MMSE error estimator can be expressed by [27]

(5)

where, letting Θi be the parameter space of θi,

(6)

For known Σ and the prior distribution on μi assumed to be Gaussian with mean mi and

covariance matrix Σ/νI,  is given by equation (10) in [28]:

(7)

where

(8)

and νi > 0 is a measure of our certainty concerning the prior knowedge – the larger νi is the

more localized the prior distribution is about mi. Letting , the moments that
interest us are of the form ESn[ε̂B|μ], ESn[(ε̂B)2|μ], and ESn[εε̂B|μ], which are used to obtain
MSESn[ε̂B|μ], and Eμ,Sn[ε̂B], Eμ,Sn[(ε̂B)2], and Eμ,Sn[εε̂B], which are needed to characterize
MSEμ,Sn[ε̂B].

3. Bayesian-Kolmogorov Asymptotic Conditions
The Raudys-Kolmogorov asymptotic conditions [16] are defined on a sequence of Gaussian
discrimination problems with a sequence of parameters and sample sizes: (μp,0, μp,1, Σp,
np,0, np,1), p = 1, 2, …, where the means and the covariance matrix are arbitrary. The
common assumptions for Raudys-Kolmogorov asymptotics are n0 → ∞, n1 → ∞, p → ∞,

. For notational simplicity, we denote the limit under these
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conditions by . In the analysis of classical statistics related to LDA it is commonly

assumed that the Mahalanobis distance, , is finite

and  (see [22], p. 4). This condition assures existence of limits of performance
metrics of the relevant statistics [16, 22].

To analyze the Bayesian MMSE error estimator, , we modify the sequence of Gaussian
discrimination problems to:

(9)

In addition to the previous conditions, we assume that the following limits exist for i, j = 0,

1: , and

, where , and  are
some constants to which the limits converge. In [22], fairly mild sufficient conditions are
given for the existence of these limits.

We refer to all of the aforementioned conditions, along with νi → ∞, , as the
Bayesian-Kolmogorov asymptotic conditions (b.k.a.c). We denote the limit under these
conditions by limb.k.a.c., which means that, for i, j = 0, 1,

(10)

This limit is defined for the case where there is conditioning on a specific value of μp,i.
Therefore, in this case μp,i is not a random variable, and for each p, it is a vector of
constants. Absent such conditioning, the sequence of discrimination problems and the above
limit reduce to

(11)

and

(12)
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respectively. For notational simplicity we assume clarity from the context and do not
explicitly differentiate between these conditions. We denote convergence in probability

under Bayesian-Kolmogorov asymptotic conditions by “ ”.“ ” and “ ” denote
ordinary convergence under Bayesian-Kolmogorov asymptotic conditions. At no risk of
ambiguity, we henceforth omit the subscript “p” from the parameters and sample sizes in (9)
or (11).

We define ηa1,a2,a3,a4 = (a1 − a2)T Σ−1(a3 − a4) and, for ease of notation write ηa1,a2,a1,a2 as
ηa1,a2. There are two special cases: (1) the square of the Mahalanobis distance in the space

of the parameters of the unknown class conditional densities, ; and (2) the

square of the Mahalanobis distance in the space of prior knowledge, , where

. The conditions in (10) assure existence of limb.k.a.c ηa1,a2,a3,a4, where the
aj’s can be any combination of mi and μi, i = 0, 1. Consistent with our notations, we use

η̄a1,a2,a3,a4, , and  to denote the limb.k.a.c of ηa1,a2,a3,a4, , and , respectively.
Thus,

(13)

The ratio p/ni is an indicator of complexity for LDA (in fact, any linear classification rule):
the VC dimension in this case is p + 1 [33]. Therefore, the conditions (10) assure the
existence of the asymptotic complexity of the problem. The ratio νi/ni is an indicator of
relative certainty of prior knowledge to the data: the smaller νi/ni, the more we rely on the
data and less on our prior knowledge. Therefore, the conditions (10) state asymptotic

existence of relative certainty. In the following, we let , so that .

4. First Moment of 
In this section we use the Bayesian-Kolmogorov asymptotic conditions to characterize the
conditional and unconditional first moment of the Bayesian MMSE error estimator.

4.1. Conditional Expectation of 
The asymptotic (in a Bayesian-Kolmogorov sense) conditional expectation of the Bayesian
MMSE error estimator is characterized in the following theorem, with the proof presented in

the Appendix. Note that , and D depend on μ, but to ease the notation we leave this
implicit.

Theorem 1—Consider the sequence of Gaussian discrimination problems defined by (9).
Then

(14)

so that
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(15)

where

(16)

Theorem 1 suggests a finite-sample approximation:

(17)

where  is obtained by using the finite-sample parameters of the problem in (16),
namely,

(18)

To obtain the corresponding approximation for , it suffices to use (17) by

exchanging n0 and n1, ν0 and ν1, m0 and m1, and μ0 and μ1 in .

To obtain a Raudys-type of finite-sample approximation for the expectation of , first note
that the Gaussian distribution in (7) can be rewritten as

(19)

where z is independent of Sn, Ψi is a multivariate Gaussian , and

(20)

Taking the expectation of  relative to the sampling distribution and then applying the
standard normal approximation yields the Raudys-type of approximation:

(21)

Algebraic manipulation yields (Suppl. Section A)
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(22)

where

(23)

with  being presented in (18) and

(24)

The corresponding approximation for  is

(25)

where  and  are obtained by exchanging n0 and n1, ν0 and ν1, m0 and m1, and μ0

and μ1 in  and , respectively. It is straightforward to see that

(26)

with  being defined in Theorem 1. Therefore, the approximation obtained in (22) is
asymptotically exact and (17) and (22) are asymptotically equivalent.

4.2. Unconditional Expectation of 

We consider the unconditional expectation of  under Bayesian-Kolmogorov asymptotics.
The proof of the following theorem is presented in the Appendix.

Theorem 2—Consider the sequence of Gaussian discrimination problems defined by (11).
Then

(27)

so that
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(28)

where

(29)

Theorem 2 suggests the finite-sample approximation

(30)

where

(31)

From (19) we can get the Raudys-type approximation:

(32)

Some algebraic manipulations yield (Suppl. Section B)

(33)

where

(34)

It is straightforward to see that

(35)

with H0 defined in Theorem 2. Hence, the approximation obtained in (33) is asymptotically
exact and both (30) and (33) are asymptotically equivalent.
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5. Second Moments of 
Here we employ the Bayesian-Kolmogorov asymptotic analysis to characterize the second
and cross moments with the actual error, and therefore the MSE of error estimation.

5.1. Conditional Second and Cross Moments of 
Defining two i.i.d. random vectors, z and z′, yields the second moment representation

(36)

where z and z′ are independent of Sn, and Ψi is a multivariate Gaussian,

, and Ui(x̄0, x̄1, z) being defined in (20).

We have the following theorem, with the proof presented in the Appendix.

Theorem 3—For the sequence of Gaussian discrimination problems in (9) and for i, j = 0,
1,

(37)

so that

(38)

where , and D are defined in (16).

This theorem suggests the finite-sample approximation

(39)

which is the square of the approximation (17). Corresponding approximations for 

and  are obtained similarly.

Similar to the proof of Theorem 3, we obtain the conditional cross moment of

ε̂B.

Theorem 4—Consider the sequence of Gaussian discrimination problems in (9). Then for
i, j = 0, 1,
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(40)

so that

(41)

where  and D are defined in (16) and Gi is defined in (47).

This theorem suggests the finite-sample approximation

(42)

This is a product of (17) and the finite-sample approximation for ESn[ε0|μ] in [16].

A consequence of Theorems 1, 3, and 4 is that all the conditional variances and covariances
are asymptotically zero:

(43)

Hence, the deviation variance is also asymptotically zero, limb.k.a.c. . Hence,
defining the conditional bias as

(44)

the asymptotic RMS reduces to

(45)

To express the conditional bias, as proven in [16],

(46)

where

(47)

It follows from Theorem 1 and (46) that
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(48)

Recall that the MMSE error estimator is unconditionally unbiased: BiasU,n[ε̂B] = Eμ,Sn[ε̂B −
ε] = 0.

We next obtain Raudys-type approximations corresponding to Theorems 3 and 4 by utilizing
the joint distribution of U0(x̄0, x̄1, z) and U0(x̄0, x̄1, z′), defined in (20), with z′ and z′ being
independently selected from populations Ψ0 or Ψ1. We employ the function

(49)

which is the distribution function of a joint bivariate Gaussian vector with zero means, unit
variances, and correlation coefficient ρ. Note that Φ(a, ∞; ρ) = Φ(a) and Φ(a, b; 0) = Φ(a)
Φ(b). For simplicity of notation, we write Φ(a, a; ρ) as Φ(a; ρ). The rectangular-area
probabilities involving any jointly Gaussian pair of variables (x, y) can be expressed as

(50)

with μx = E[x], μy = E[y], , and correlation coefficient ρxy.

Using (36), we obtain the second-order extension of (21) by

(51)

Using (51), some algebraic manipulations yield

(52)

with  and  being presented in (23) and (24), respectively, and

(53)

The proof of (53) follows by expanding U0(x̄0, x̄1, z) and U0(x̄0, x̄1, z′) from (20) and then
using the set of identities in the proof of (33), i.e. equation (S.1) from Suppl. Section B.
Similarly,
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(54)

where , and  are obtained by exchanging n0 and n1, ν0 and ν1, m0 and m1,

and μ0 and μ1, in (24), in  obtained from (18), and in (53), respectively.

Having  together with (26) shows that (52) is asymptotically exact, that is,

asymptotically equivalent to  obtained in Theorem 3. Similarly, it can be
shown that

(55)

where, after some algebraic manipulations we obtain

(56)

Suppl. Section C gives the proof of (56). Since , (55) is asymptotically exact, i.e.
(55) becomes equivalent to the result of Theorem 3. We obtain the conditional cross moment
similarly:

(57)

where

(58)

where superscript “C” denotes conditional variance. Algebraic manipulations like those
leading to (53) yield

(59)

where
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(60)

and  and  having been obtained previously in equations (49) and (50) of [16], namely,

(61)

Similarly, we can show that

(62)

where  and  are obtained as in (54), and , and  are obtained by

exchanging n0 and n1 in , and , respectively. Similarly,

(63)

where

(64)

and

(65)

where  is obtained by exchanging n0 and n1, ν0 and ν1, m0 and m1, and μ0 and μ1 in

.

We see that , and . Therefore, from (26) and the fact

that  and , we see that expressions (59), (62), and (63),
are all asymptotically exact (compare to Theorem 4).

5.2. Unconditional Second and Cross Moments of 
Similarly to the way (36) was obtained, we can show that
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(66)

Similarly to the proofs of Theorem 3 and 4, we get the following theorems.

Theorem 5—Consider the sequence of Gaussian discrimination problems in (11). For i, j =
0, 1,

(67)

so that

(68)

where H0, H1, and F are defined in (29).

Theorem 6—Consider the sequence of Gaussian discrimination problems in (11). For i, j =
0, 1,

(69)

so that

(70)

where H0, H1, and F are defined in (29).

Theorems 5 and 6 suggest the finite-sample approximation:

(71)

A consequence of Theorems 2, 5, and 6 is that

(72)

In [30], it was shown that ε̂B is strongly consistent, meaning that ε̂B(Sn) − ε(Sn) → 0 almost
surely as n → ∞ under rather general conditions, in particular, for the Gaussian and discrete
models considered in that paper. It was also shown that MSEμ[ε̂B|Sn] → 0 almost surely as n
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→ ∞ under similar conditions. Here, we have shown that  under
conditions stated in (12). Some researchers refer to conditions of double asymptoticity as
“comparable” dimensionality and sample size [20, 22]. Therefore, one may think of

 meaning that MSEμ,Sn [ε̂B] is close to zero for asymptotic and
comparable dimensionality, sample size, and certainty parameter.

We now consider Raudys-type approximations. Analogous to the approximation used in

(51), we obtain the unconditional second moment of :

(73)

Using (73) we get

(74)

with  and  given in (31) and (34), respectively, and

(75)

Suppl. Section D presents the proof of (75). In a similar way,

(76)

where , and  are obtained by exchanging n0 and n1, ν0 and ν1, m0 and m1, and

μ0 and μ1, in (34), in  obtained from (31), and (75), respectively.

Having  together with (35) makes (74) asymptotically exact. We similarly obtain

(77)

where
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(78)

Suppl. Section E presents the proof of (78). Since , (77) is asymptotically exact
(compare to Theorem 5). Similar to (57) and (59), where we characterized conditional cross
moments, we can get the unconditional cross moments as follows:

(79)

where

(80)

the superscript “U” representing the unconditional variance,  and  being presented in
(31) and (34), respectively, and

(81)

The proof of (81) is presented in Suppl. Section F. Similarly,

(82)

where,

(83)

See Suppl. Section G for the proof of (83). Having  and  along with
(35) makes (79) and (82) asymptotically exact (compare to Theorem 6).

5.3. Conditional and Unconditional Second Moment of εi

To complete the derivations and obtain the unconditional RMS of estimation, we need the
conditional and unconditional second moment of the true error. The conditional second
moment of the true error can be found from results in [16], which for completeness are
represented here:
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(84)

with  and  defined in (61),

(85)

and

(86)

where

(87)

Similar to obtaining (79), we can show that

(88)

with  and  given in (31) and (34), respectively, and

(89)

Similarly,

(90)

with  obtained from  by exchanging n0 and n1, and ν0 and ν1. Similarly,

(91)

with  and  given in (31) and (34), respectively, and
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(92)

6. Monte Carlo Comparisons
In this section we compare the asymptotically exact finite-sample approximations of the
first, second and mixed moments to Monte Carlo estimations in conditional and
unconditional scenarios. The following steps are used to compute the Monte Carlo
estimation:

1. Define a set of hyper-parameters for the Gaussian model: m0, m1, ν0, ,ν1, and Σ.
We let Σ have diagonal elements 1 and off-diagonal elements 0.1. m0 and m1 are

chosen by fixing  ( , which corresponds to Bayes error 0.1586). Setting 
and Σ fixes the means μ0 and μ1 of the class-conditional densities. The priors, π0
and π1, are defined by choosing a small deviation from μ0 and μ1, that is, by setting
mi = μi + aμi, where a = 0.01.

2. (unconditional case): Using π0 and π1, generate random realizations of μ0 and μ1.

3. (conditional case): Use the values of μ0 and μ1 obtained from Step 1.

4. For fixed Π0 and Π1, generate a set of training data of size ni for class i = 0, 1.

5. Using the training sample, design the LDA classifier, ψn, using (2).

6. Compute the Bayesian MMSE error estimator, ε̂B, using (5) and (7).

7. Knowing μ0 and μ1, find the true error of ψn using (3).

8. Repeat Steps 3 through 6, T1 times.

9. Repeat Steps 2 through 7, T2 times.

In the unconditional case, we set T1 = T2 = 300 and generate 90, 000 samples. For the
conditional case, we set T1 = 10, 000 and T2 = 1, the latter because μ0 and μ1 are set in Step
2.

Figure 1 treats Raudys-type finite-sample approximations, including the RMS. Figure 1(a)
compares the first moments obtained from equations (22) and (33). It presents ESn[ε̂B|μ] and
Eμ,Sn[ε̂B] computed by Monte Carlo estimation and the analytical expressions. The label
“FSA BE Uncond” identifies the curve of Eμ,Sn[ε̂B], the unconditional expected estimated
error obtained from the finite-sample approximation, which according to the basic theory is
equal to Eμ,Sn[ε]. The labels “FSA BE Cond” and “FSA TE Cond” show the curves of
ESn[ε̂B|μ], the conditional expected estimated error, and ESn[ε|μ], the conditional expected
true error, respectively, both obtained using the analytic approximations. The curves
obtained from Monte Carlo estimation are identified by “MC” labels. The analytic curves in
Figure 1(a) show substantial agreement with the Monte Carlo approximation.

To obtain the second moments, Vard[ε̂] and RMS[ε̂B] as defined in (1), we use equations
(52), (54), (55), (59), (63), (84), (85), (86) for the conditional case and (74), (76), (77), (79),
(82), (88), (90), (91) for the unconditional case. Figures 1(b), 1(c), and 1(d) compare the
Monte Carlo estimation to the finite-sample approximations obtained for second/mixed
moments, Vard[ε̂], and RMS[ε̂B], respectively. The labels are interpreted similarly to those
in Figure 1(a), but for the second/mixed moments instead. For example, “MC BE×TE
Uncond” identifies the MC curve of Eμ,Sn[ε̂Bε]. The Figures 1(b), 1(c), and 1(d) show that
the finite-sample approximations for the conditional and unconditional second/mixed
moments, variance of deviation, and RMS are quite accurate (close to the MC value).
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While Figure 1 shows the accuracy of Raudys-type of finite-sample approximations, figures
in the Supplementary Materials show the the comparison between the finite-sample
approximations obtained directly from Theorem 1–6, i.e. equations (29), (57), (70), (73),
(76), (102), and (103), to Monte Carlo estimation.

7. Examination of the Raudys-type RMS Approximation
Equations (18), (24), (53), (56), and (63) show that RMSSn[ε̂B|μ] is a function of 14

variables: p, n0, n1, β0, β1, , ηm0,μ1, ηm0,μ0, ηm1,μ0, ηm1,μ1, ηm0,μ0,μ0,μ1, ηm0,μ0,m1,μ0,
ηm1,μ1,m0,μ1, ηm1,μ1,μ1,μ0. Studying a function of this number of variables is complicated,
especially because restricting some variables can constrain others. We make several
simplifying assumptions to reduce the complexity. We let , β0 = β1 = β and assume
very informative priors in which m0 = μ0 and m1 = μ1. Using these assumptions, RMSSn[ε̂B|

μ] is only a function of p, n, β, and . We let p ∈ [4, 200], n ∈ [40, 200], β ∈ {0.5, 1, 2},

, which means that the Bayes error is 0.158 or 0.022. Figure 2(a) shows plots of

RMSSn[ε̂B|μ] as a function of p, n, β, and . These show that for smaller distance between

classes, that is, for smaller  (larger Bayes error), the RMS is larger, and as the distance
between classes increases, the RMS decreases. Furthermore, we see that in situations where
very informative priors are available, i.e. m0 = μ0 and m1 = μ1, relying more on data can
have a detrimental effect on RMS. Indeed, the plots in the top row (for β = 0.5) have larger
RMS than the plots in the bottom row of the figure (for β = 2).

Using the RMS expressions enables finding the necessary sample size to insure a given
RMSSn[ε̂B|μ] by using the same methodology as developed for the resubstitution and leave-
one-out error estimators in [16, 26]. The plots in Figure 2(a) (as well as other unshown

plots) show that, with m0 = μ0 and m1 = μ1, the RMS is a decreasing function of  .
Therefore, the number of sample points that guarantees

 being less than a predetermined value τ

insures that RMSSn[ε̂B|μ] < τ, for any . Let the desired bound be

. From equations (52), (54), (55), (59), (63), (84), (85),
and (86), we can find κε̂(n, p, β) and increase n until κε̂(n, p, β) < τ. Table 1 (β = 1:
Conditional) shows the minimum number of sample points needed to guarantee having a

predetermined conditional RMS for the whole range of  (other β shown in the
Supplementary Material). A larger dimensionality, a smaller τ, and a smaller β result in a
larger necessary sample size needed for having κε̂(n, p, β) < τ.

Turning to the unconditional RMS, equations (34), (75), (78), (83), (89), and (92) show that

RMSμ,Sn[ε̂B] is a function of 6 variables: p, n0, n1, ν0,ν1, . Figure 2(b) shows plots of

RMSμ,Sn[ε̂B] as a function of p, n, β, and , assuming , β0 = β1 = β. Note that
setting the values of n and β fixes the value of ν0 = ν1 = ν in the corresponding expressions
for RMSμ,Sn[ε̂B]. Due to the complex shape of RMSμ,Sn[ε̂B], we consider a large range of n

and p. The plots show that a smaller distance between prior distributions (smaller )
corresponds to a larger unconditional RMS of estimation. In addition, as the distance

between classes increases, the RMS decreases. The plots in Figure 2(b) show that, as 
increases, RMS decreases. Furthermore, Figure 2(b) (and other unshown plots) demonstrate
an interesting phenomenon in the shape of the RMS. In regions defined by pairs of (p, n), for
each p, RMS first increases as a function of sample size and then decreases. We further
observe that with fixed p, for smaller β, this “peaking phenomenon” happens for larger n. On
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the other hand, with fixed β, for larger p, peaking happens for larger n. These observations
are presented in Figure 3, which shows curves obtained by cutting the 3D plots in the left
column of Fig. 2(b) at a few dimensions. This figure shows that, for p = 900 and β = 2,
adding more sample points increases RMS abruptly at first to reach a maximum value of
RMS at n = 140, the point after which the RMS starts to decrease.

One may use the unconditional scenario to determine the the minimum necessary sample
size for a desired RMSμ,Sn[ε̂B]. In fact, this is the more practical way to go because in
practice one does not know μ. Since the unconditional RMS shows a decreasing trend in

terms of , we use the previous technique to find the minimum necessary sample size to
guarantee a desired unconditional RMS. Table 1 (β = 1: Unconditional) shows the minimum

sample size that guarantees  being less than

a predetermined value τ, i.e. insures that RMSμ,Sn[ε̂B] < τ for any  (other β shown in the
Supplementary Material).

To examine the accuracy of the required sample size that satisfies κε̂(n, p, β) < τ for both
conditional and unconditional settings, we have performed a set of experiments (see
Supplementary Material). The results of these experiments confirm the efficacy of Table 1
in determining the minimum sample size required to insure the RMS is less than a
predetermined value τ.

8. Conclusion
Using realistic assumptions about sample size and dimensionality, standard statistical
techniques are generally incapable of estimating the error of a classifier in small-sample
classification. Bayesian MMSE error estimation facilitates more accurate estimation by
incorporating prior knowledge. In this paper, we have characterized two sets of performance
metrics for Bayesian MMSE error estimation in the case of LDA in a Gaussian model: (1)
the first, second, and cross moments of the estimated and actual errors conditioned on a
fixed feature-label distribution, which in turn gives us knowledge of the conditional
RMSSn[ε̂B|θ]; and (2) the unconditional moments and, therefore, the unconditional RMS,
RMSθ,Sn[ε̂B]. We set up a series of conditions, called the Bayesian-Kolmogorov asymptotic
conditions, that allow us to characterize the performance metrics of Bayesian MMSE error
estimation in an asymptotic sense. The Bayesian-Kolmogorov asymptotic conditions are set
up based on the assumption of increasing n, p, and certainty parameter ν, with an arbitrary
constant limiting ratio between n and p, and n and ν. To our knowledge, these conditions
permit, for the first time, application of Kolmogorov-type of asymptotics in a Bayesian
setting. The asymptotic expressions proposed in this paper result directly in finite-sample
approximations of the performance metrics. Improved finite-sample accuracy is achieved via
newly proposed Raudys-type approximations. The asymptotic theory is used to prove that
these approximations are, in fact, asymptotically exact under the Bayesian-Kolmogorov
asymptotic conditions. Using the derived analytical expressions, we have examined
performance of the Bayesian MMSE error estimator in relation to feature-label distributions,
prior knowledge, sample size, and dimensionality. We have used the results to determine the
minimum sample size guaranteeing a desired level of error estimation accuracy.

As noted in the Introduction, a natural next step in error estimation theory is to remove the
known-covariance condition, but as also noted, this may prove to be difficult.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1
We explain this proof in detail as some steps will be used in later proofs. Let

(93)

where  is defined in (8). Then

(94)

For i, j = 0, 1 and i ≠ j, define the following random variables:

(95)

The variance of yi given μ does not depend on μ. Therefore, under the Bayesian-

Kolmogorov conditions stated in (10),  and  do not appear in the

limit. Only  matters, which vanishes in the limit as follows:
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(96)

To find the variance of zi and zij we can first transform zi and zij to quadratic forms and then
use the results of [34] to find the variance of quadratic functions of Gaussian random
variables. Specifically, from [34], for y ~ N(μ, Σ) and A being a symmetric positive definite
matrix, Var[yT Ay] = 2tr(AΣ)2 + 4μT AΣAμ′, with tr being the trace operator. Therefore,
after some algebraic manipulations, we obtain

(97)

From the Cauchy-Schwarz inequality

, and

 for i, j, k = 0, 1, i ≠ j, Furthermore,  and

. Putting this together and following the same approach for  yields

. In general (via Chebyshev’s inequality), limn→∞Var[Xn] = 0 implies

convergence in probability of Xn to limn→∞ E[Xn]. Hence, since , for i, j
= 0, 1 and i ≠ j,

(98)

Now let

(99)

where δ̂2 = (x̄0 − x̄1)T Σ−1(x̄0 − x̄1). Similar to deriving (97) via the variance of quadratic
forms of Gaussian variables, we can show

(100)

Thus,

(101)

As before, from Chebyshev’s inequality it follows that
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(102)

By the Continuous Mapping Theorem (continuous functions preserve convergence in
probability),

(103)

The Dominated Convergence Theorem (|Xn| ≤ B, for some B > 0 and Xn → X in probability
implies E[Xn] → E[X])), via the boundedness of ϕ(.) leads to completion of the proof:

(104)

Proof of Theorem 2

We first prove that  with  defined in (94). To do so we use

(105)

To compute the first term on the right hand side, we have

(106)

For i, j = 0, 1 and i ≠ j define the following random variables:

(107)

The variables defined in (107) can be obtained by replacing x̄i’s with μi’s in (95) and x̄i ~
N(μi, Σ/ni) and μi ~ N(mi, Σ/νi). Replacing μi with mi and ni with νi in (96) and (97) yields

(108)

By Cauchy-Schwarz, , and .

Hence, 

Now consider the second term on the right hand side of (105). The covariance of a function
of Gaussian random variables can be computed from results of [35]. For instance,
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(109)

From (109) and the independence of x̄0 and x̄1,

(110)

Via (108), (109), and (110), the inner variance in the second term on the right hand side of
(105) is

(111)

Now, again from the results of [35],

(112)

From (111) and (112), some algebraic manipulations yield

(113)

From (113) we see that . In sum,  and similar to
the use Chebyshev’s inequality in the proof of Theorem 1, we get

(114)

with Hi defined in (29).

On the other hand, for D̂i defined in (99) we can write

(115)

From similar expressions as in (112) for , we get . Moreover,

 is obtained from (100) by replacing ni with νi, and  with . Thus, from (99),
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(116)

Furthermore, since , from (101),

(117)

Hence,  and, similar to (114), we obtain

(118)

with F defined in (29). Similar to the proof of Theorem 1, by using the Continuous Mapping
Theorem and the Dominated Convergence Theorem, we can show that

(119)

and the result follows.

Proof of Theorem 3
We start from

(120)

which was shown in (36). Here we characterize the conditional probability inside ESn [.].
From the independence of z, z′, x̄0, and x̄1,

(121)

where here N (. , . ) denotes the bivariate Gaussian density function and  and D̂ are
defined in (94) and (99). Thus,

(122)

Similar to the proof of Theorem 1, we get
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(123)

Similarly, we obtain , and the results follow.
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Figure 1.
Comparison of conditional and unconditional performance metrics of ε̂B using
asymptotically exact finite setting approximations, with Monte Carlo estimates as a function
of sample size. (a) Expectations. The case of asymptotic unconditional expectation of ε is
not plotted as ε̂B is unconditionally unbiased; (b) Second and mixed moments; (c)

Conditional variance of deviation from true error, i.e.  and, unconditional

variance of deviation, i.e. ; (d) Conditional RMS of estimation, i.e. RMSSn[ε̂B|μ]
and, unconditional RMS of estimation, i.e. RMSμ,Sn[ε̂B]; (a)–(d) correspond to the same
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scenario in which dimension, p, is 15 and 100, ν0 = ν1 = 50, mi = μi + 0.01μi with μ0 = −μ1,
and Bayes error = 0.1586.
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Figure 2.
(a) The conditional RMS of estimation, i.e. RMSSn[ε̂B|μ], as a function of p < 200 and n <
200. From top to bottom, the rows correspond to β = 0.5, 1, 2, respectively. From left to

right, the columns correspond to , respectively. (b) The unconditional RMS of
estimation, i.e. RMSμ,Sn[ε̂B], as a function of p < 1000 and n < 2000. From top to bottom,
the rows correspond to β = 0.5, 1, 2, respectively. From left to right, the columns correspond

to , respectively.
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Figure 3.
RMSμ,Sn[ε̂B]-peaking phenomenon as a function of sample size. These plots are obtained by

cutting the 3D plots in the left column of Fig. 2(b) at few dimensionality (i.e. ). From
top to bottom the rows correspond to β = 0.5, 1, 2, respectively. The solid-black curves
indicate RMSμ,Sn[ε̂B] computed from the analytical results and the red-dashed curves show
the same results computed by means of Monte Carlo simulations. Due to computational
burden of estimating the curves by means of Monte Carlo studies, the simulations are
limited to n < 500 and p = 10, 70.
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