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Abstract

Integration is a crucial step in the reconstruction of complete 3D surface

model from multiple scans. Ever-present registration errors and scanning

noise make integration a nontrivial problem. In this paper, we propose a

novel method for multi-view scan integration where we solve it as a label-

ing problem. Unlike previous methods, which have been based on various

merging schemes, our labeling-based method is essentially a selection strat-

egy. The overall surface model is composed of surface patches from selected

input scans. We formulate the labeling via a higher-order Markov Random

Field (MRF) which assigns a label representing an index of some input scan

to every point in a base surface. Using a higher-order MRF allows us to

more effectively capture spatial relations between 3D points. We employ be-

lief propagation to infer this labeling and experimentally demonstrate that

this integration approach provides significantly improved integration via both

qualitative and quantitative comparisons.
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1. Introduction

Reconstructing the 3D surface of an object from multi-view datasets is a

classical problem in computer vision and graphics. It usually consists of two

major steps: registration and integration. Registration estimates transforma-

tion parameters that align multi-view datasets in a single global coordinate

system and often establishes the geometric and/or optical correspondences

between overlapping datasets as a byproduct. Integration uses these reg-

istered multi-view datasets to produce a single dataset, which on one hand

should preserve surface details, and on the other, reduce the redundant infor-

mation within these overlapping datasets. For example, if the input datasets

are a set of scans, we need to first align them in the same coordinate system

through pairwise and global registrations and then integrate them to output

a single 3D point cloud. Usually, the final step will be to triangulate this

point cloud to output a watertight rendered surface. Here, albeit a nontrivial

step for surface reconstruction, triangulation is out of the scope of this paper.

3D surface reconstruction from multiple datasets can be divided into pas-

sive and active methods, according to the means of data capture [1]. Passive

methods typically use 2D images as input, with the advantage of low cost.

However, because the 3D information used for reconstructing the 3D surface

model is indirectly acquired (often through depth estimation using image-

based multi-view stereo methods), it typically cannot achieve the accuracy

of active 3D laser scanning. Active laser scanners have been expensive. Re-

cently, cheap hardware has also become available which can provide depth

data based on active lighting, such as the Microsoft Kinect, albeit with lower

accuracy than laser scanning. Generally, the cheaper the scanner, the less
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accurate and more noisy the captured scans. Whichever input device is used,

there remains a need for a reconstruction method which works well in the

presence of data errors. To achieve this, naturally, we require both registra-

tion and integration to be robust.

Because of scanning errors, and because registration is a difficult global

optimisation problem, registration errors must remain even when using state-

of-the-art 3D registration algorithms [2, 3, 4, 5, 6, 7, 8, 9]. For some chal-

lenging input data, such as the range scans in the Minolta Database [10], the

reported average registration error is almost as high as half of the scanning

resolution of the input range scans [5, 7]. Registration errors and scanning

noise make integration a difficult problem, if we are to avoid loss of details

or artifacts in the integrated surface. In this paper, we focus on the robust

integration of a collection of scans acquired by active laser scanners with

unknown registration errors and scanning noise.

1.1. Related work

Existing methods for scan integration can be classified into four main cat-

egories: volumetric, mesh-based, clustering-based and Bayesian approaches.

Volumetric methods [11, 12, 13, 14] integrate data by voxelising them

and then merging them in each voxel using data fusion algorithms. These

methods require highly accurate alignment. In practice, volumetric methods

work poorly or even fail due to their high sensitivity to registration errors, a

problem demonstrated both theoretically and experimentally in [15, 16].

Mesh-based methods [17, 18, 19] detect overlapping regions between tri-

angular meshes. Then, the most accurate triangles in the overlapping regions

are kept, and all remaining triangles are reconnected. This is computation-
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Figure 1: Registration merely seeks to minimise registration errors, but the effects on inte-
gration depend not only on the magnitude of registration error, but also its direction. Left:
a registration error Rp in the direction of the surface normal Np. Right: a registration
error in a different direction. A surface formed by averaging the input surfaces (a simple
merging approach to integration) gives good results in the first case but not the second.

ally expensive as triangles outnumber the points and are more geometrically

complex. Some mesh-based methods thus just use a 2D triangulation for

efficiency, but the projection from 3D to 2D leads to ambiguities if it is not

injective. Such methods can fail for highly curved regions where no suitable

single projection plane exists. Mesh-based methods also lack a mechanism

to cope with registration errors.

Clustering-based methods [15, 16] first initialises a set of cluster cen-

troids. Then different clustering methods are employed to optimally find the

corresponding points of these centroids and integrate them to produce new

cluster centroids. This scheme is iteratively performed till convergence and

finally the output points are triangulated to produce a watertight surface.

Clustering-based methods are generally superior to previous methods, being

more robust to scanning noise and registration errors. While Euclidean dis-

tances are used to allocate points to the closest cluster centroid, local surface

geometry and neighbourhood consistency are not considered. This leads to

errors in highly curved areas. Note carefully that, from the viewpoint of

integration, registration errors have both a magnitude and a direction. See
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Fig. 1, which shows that integration is harder to do correctly if the registra-

tion error vector and local surface normal have different directions: in the

right hand example, the merged surface has incorrect local shape, as well as

being over-smoothed.

Bayesian methods [20, 21, 22, 23, 24] formulate the integration problem

as probabilistic models and employ local or global optimisation methods to

minimise different energy functions related to integration error or some other

predefined statistics. However, existing methods typically suffer from three

limitations: (i) the input data must be parameterised (e.g. depth maps or

2D sweep patterns), (ii) many rely on the assumption that the distribution of

the noise is known (e.g. i.i.d. Gaussian) when designing the energy function,

and (iii) energy functions based only upon pairwise random fields do not

adequately capture 3D information.

1.2. The proposed work

Due to inevitable registration errors and scanning noise, correct point

correspondences are difficult, if not impossible, to establish. For a merging-

based integration method, unfortunately, a tiny mismatch caused by regis-

tration errors can provoke strong artifacts in the integrated surface [25], in

particular, in the areas of high curvature as shown in Fig. 1.

Instead of establishing correct correspondence, we select the most rep-

resentative points from different input scans for the integration. From the

integration point of view, we believe that the data from a single input scan

is usually more accurate and reliable, than those from the integrated scans,

since the integration process will unavoidably introduce more or less errors.

Note that this is not in contradiction with super-resolution from multiple
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scans. The main target of super-resolution is to reduce the errors generated

within the scanning process (i.e., scanning noise or systematic error) and

typically the registration error is regarded as trivial. For instance, in [26], a

model is scanned from similar but randomly perturbed viewpoints. Conse-

quently, the transformations between scans are very small and the registra-

tion is not challenging. In [27], the transformation is fully controlled, which

also eases the problem of registration since the transformation parameters

are entirely or partly known. For super-resolution methods, as mentioned in

[27], high-quality registration is important for preserving sharp edges. How-

ever, in integration, although scanning noise is inevitable, the major concern

is large registration errors. As illustrated by the right figure in Fig. 1, sharp

edges cannot be easily preserved when the registration error is not trivial.

In this case, the local geometry is more reliably represented by a single scan

than by the merged one. In addition, for scanning control purposes and some

other applications, it is always quite rewarding to be able to see exactly what

has been scanned [25]. In [25], a single scan is used as the ground truth for

visual comparison.

Given a set of registered scans, there are usually several raw points repre-

senting the same ground truth position on the object surface due to the fact

of overlaps. The proposed integration method is designed to select the best

raw point and put it in the final integration to represent this position. In

other words, we try to solve such a labeling problem: which candidate raw

point should be used to label this position?

The labeling is formulated using a higher-order Markov Random Field

(MRF). We first develop an iterative scheme to produce a graph composed
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Figure 2: The workflow of the proposed method

of a set of base positions as well as the edges connecting them. This graph

enables the following MRF labeling process.

Then, intuitively, we should use a point set as the label set which cor-

responds to all possible states (candidate raw points) of each base position.

However, doing so will make the inference of the labeling intractable (see

Section 3). Instead, in our method, the label set is a set of scan indices. For

each base position, we find its closest point from the input scan with a cer-

tain index. Such a closest point acts as a candidate raw point in the labeling.

Using scan indices as labels also facilitates the design of the compatibility

term of the energy function. If the base positions in a neighbourhood are all

labeled with the same scan index, they will be represented by a set of raw

points from the same input scan in the output point cloud. Local surface

details within this neighbourhood can thus be well preserved.

We employ belief propagation (BP) to infer the labeling which assign a

label (scan index) to each base position. In this step, we also utilise the

sparseness of the label set to reduce the computational complexity.

Fig. 2 illustrates the workflow of our integration method, which we explain

in the rest of this paper. In Section 2, we first produce a graph by point
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s the set of base positions
i the index of a base position
L the set of labels
xi a label corresponding to the base position i

Ci(xi) the closest point in the input scan with index xi to i

m the number of input scans (the number of labels)
n the number of base positions
N (i) the neighbourhood of i
P a point set
P a 3D point vector
N a normal vector
F the truncation parameter
T the iteration number of belief propagation
mji the message that i receives from j in a two-point clique
mlkji the message that i receives from j, k and l in a four-point clique

Table 1: List of some frequently-used notations

shifting and triangulation, and then build a higher-order MRF on this graph.

Section 3 discusses the BP algorithm. We give and evaluate experimental

results in Section 4, followed by conclusion and discussion in Section 5.

2. Labeling using a higher-order MRF

To pose scan integration as a labeling problem, let s = {1, . . . , n} be used

to index base positions. We define a label assignment x= {x1, . . . , xn} to

all positions. We also denote a label set L = {1, . . . ,m}, where each label

corresponds to the index of a particular input scan (we assume that the

input scans have already been registered at this stage). Thus xi ∈ L, i ∈ s.

The basic idea is to employ an MRF to find an optimal label assignment as

illustrated in Fig. 3. Table 1 lists the notations frequently used in this paper.
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Figure 3: Label assignment. Left: A mesh (a base surface composed of base positions
and edges connecting them) used as the graph for MRF labeling. Middle: A two-point
neighbourhood relation (dashed) is defined between positions (blue dots) in the graph,
and normals (red arrows) of the triangular facets are computed for calculating the cost of
a four-point clique. Right: The output integration is composed of points from different
input scans where we show them in different colours. In the labeling, each point i can take
one of m different labels (given m input scans).

Our labeling model includes three terms operating on one-point, two-

point and four-point cliques respectively. The first term Ei(xi) measures

how much a point is in agreement with being assigned a particular label.

The second term is modeled through a symmetric neighbourhood relation

N and a compatibility cost function Eij(xi, xj). This term measures how

compatible the label assignments of any two neighbouring points are. The

third, higher-order term, has cost Ec(xc) where a clique c ∈ C contains four

neighbouring points. It is used to capture spatial relations between 3D points

in a larger, asymmetric, neighbourhood. The cost of other types of cliques

is set to zero. The reason that we do not consider larger cliques in our

computational model is that the complexity of MRF is very sensitive to the

clique size (see Section 3.3 for details). The posterior energy E(x) of such

an MRF is thus given by

E(x)=
∑

i∈s

Ei(xi) + λ1

∑

(i,j)∈N

Eij(xi, xj) + λ2

∑

c∈C

Ec(xc) (1)
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Figure 4: The routines to find corresponding points for base positions where the red
points denote the base positions and the green points denote the raw points of the input
scan. Left: Just finding the closest points might result in some holes or artifacts in the
integration as some green points are not selected. Right: If we find the 3 closest points for
each base position, the method will be more robust and probably avoid holes and artifacts.

where λ1 and λ2 are weighting parameters.

If a group of base positions p = {i, j, ...} in a neighbourhood are assigned

the same label x′, we use the following routine to find their corresponding

points from the input scan with index x′. For each point in p, we find its k

closest points in the input scan with index x′. Then we put all these closest

points together to produce a point set. And we delete the duplicate points

from this set. The remaining points are the corresponding points of the

points in p. We usually set k = 3. This routine is a robust strategy which

avoids holes or artifacts in the integration as illustrated in Fig. 4. In the

integrated surface, the positions in p are replaced with their corresponding

points. Therefore, the final output of the integration is a single point cloud

completely composed of some selected points from the input scans.

The following subsections discuss how to define the graph which offers

two-point and four-point neigbhourhood relations, as well as the three terms

of the energy function in detail.

2.1. Graph construction for labeling

In this work, we do not require that input scans must be parameterised

since we intend to generalise our method to input datasets with various
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modalities. [15] proposes a two-view point shifting method to produce a

collection of points for initialising the k-means clustering. We extend this

method to multiple views and produce a collection of points representing a

base surface used as a graph for labeling.

1) Overlapping area detection Given a set of consecutive scans P1, P2,

. . . , Pm, we employ the pairwise registration method from [5] to map P1 into

the coordinate system of P2. To integrate the transformed point cloud P ′
1

and the reference point cloud P2, the overlapping and non-overlapping areas

of each have to be detected. To do so, a point in one point cloud is deemed

to belong to the overlapping area if its distance to the nearest point in the

other point cloud (its corresponding point) is within a threshold; otherwise

it belongs to the non-overlapping area. The threshold is set to 3R, where R

is the scanning resolution of the input scans. Such a threshold is generally

large enough not to miss any real correspondence between the overlapping

scans to be integrated when their registration is reasonably accurate [15].

2) Iterative merging After detecting the overlap, we set S1 and S2 to

the points in the non-overlapping areas belonging to P ′
1 and P2 respectively,

and initialise the point set P in the graph as:

P = Snon−overlap = S1 + S2. (2)

Next, we employ a point shifting strategy to compute a point set Soverlap. To

bring the corresponding points closer to each other, each point P in both

overlapping areas is shifted along its normal N towards its corresponding
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point P∗ by half of its distance to P∗:

P → P+ 0.5d ·N, d = ∆P ·N, ∆P = P∗ −P (3)

A sphere with radius r = 1.5R is defined, centered at each such shifted point

of the reference point cloud P2. If other points fall into this sphere, then

their original unshifted points are retrieved. The average position of these

unshifted points is then computed and returned to form the point set Soverlap.

Then the point set P is updated as:

P = Snon−overlap + Soverlap (4)

This strategy (i) compensates for pairwise registration errors as correspond-

ing points are closer to each other and (ii) leaves the surface topology unaf-

fected, as the shift is along the normal.

We now consider the third input point cloud P3. We map P into the

coordinate system of P3 and detect the overlap between P ′ transformed from

P and the current reference point cloud P3. We then update P based on

Eq. (4). In this update, Snon−overlap contains the points from P ′ and P3 in

non-overlapping areas and Soverlap is produced by the point shifting strategy.

We iteratively apply this updating scheme to all input scans.

3) Triangulation Finally, we triangulate P to construct the graph us-

ing the power crust method [28]. Fig. 5 shows an example of the graph

construction for two registered scans. The constructed graph, the base sur-

face is oversmoothed and the more scans, the smoother the base surface (see

Fig. 3). But the following formulation of the MRF energy function in Eq. (1)

12



Figure 5: An illustration of graph
construction for two registered
scans

is based on it. The vertices of the neighbouring triangles of a point i in

the graph are denoted as N (i). This approach has advantages over defin-

ing neighbourhoods using the k-nearest neighbours method: it facilitates the

computation of normals and does not need an estimate for k.

2.2. One-point clique cost

Wemeasure the one-point clique cost, or the data term of the MRF energy

function, in order to select the point which best represents the surface locally:

Ei(xi) =
∑

yi∈L\xi

min(Di(yi, xi), F ) (5)

where F is a truncation parameter and L \ xi denotes the members of the

label set L other than the label xi. And,

Di(yi, xi) = ‖Ci(yi)− Ci(xi)‖ (6)

is a distance function where Ci(l) denotes the closest point in the input scan

with index l to the base position i. This converts the one-point clique cost of

different labels at i into a measurement of the distances between i’s closest
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Figure 6: (a) & (b) illustrate the one-point clique cost where different colours represent
different scans. (a) The truncation parameter can distinguish the scans covering the area
around i (the black point) from the ones not covering it. (b) The sum of the lengths of
the gray dash lines is the one-point clique cost of the blue scan for the base position i (the
black point). (c) A four-point clique (i, j, k, l) uniquely determined by the point pair (i, j)
in our graph. These four points determine the change in normals. (d) Two points cannot
not uniquely determine a four-point clique in a lattice graph as the positions of the other
two clique members k and l are not unique.

points in different input scans. F eliminates the effects of input scans which

do not cover the area around i. The idea is illustrated in Fig. 6(a) and (b).

In Fig. 6(a), the black circle represents the base surface. 6 arcs in different

colours represent 6 input scans. Due to registration errors, adjacent scans

are not superimposed. After finding the 6 closest points of the black point

(the base position i) from the 6 scans separately, it can be seen that only the

red and the yellow ones cover the area around i. From Eq. (5), the cost of

labeling i as red is Di(red, yellow) + 4F (the sum of the truncated lengths

of the black dash lines). The cost of labeling it as blue is 5F (note the gray

dashed lines). Hence, by setting F significantly larger than Di(red, yellow),

we can distinguish the scans covering the area around i from the ones not

covering it. Generally, we have more than 6 input scans and several scans may

cover the area around i. For these scans, the one-point clique cost function

tends to select the one with the lowest summed distance to all the others as

illustrated in Fig. 6(b) where for the point i (the black point), labeling it as
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blue produces the lowest cost.

2.3. Two-point clique cost

The two-point clique cost considers pairs of neighbouring points {(i, j) ∈

N}. This two-point term is used to strengthen consistency of labeling of

neighbouring points, meaning that they are more likely to be represented in

the output by points from the same input scan. This increases the likelihood

that the integrated surface is made up of surface patches each taken from a

single input scan. The aim is to select pieces of ‘good input’ as the output.

This is different from most existing techniques based on volumetric merging,

mesh fusion or point clustering, where the output is formed as a weighted

merging of the inputs. The two-point clique cost function is defined as below

to measure the label compatibility of two neighbouring points:

Eij(xi, xj) =

⎧

⎨

⎩

1 xi �= xj

0 otherwise
. (7)

2.4. Higher-order clique cost

The two-point clique cost in Eq. (7) often directly achieves good results in

2D vision applications. However, for 3D problems, richer spatial information

is needed to represent surface details accurately. Pairwise MRFs cannot

capture such rich statistics, and typically lead to an oversmooth integrated

surface (see Fig. 12). Hence, we need a higher-order prior term which better

describes local surface geometry to enhance features such as edges. We also

need to make sure that the higher-order MRF is tractable as the number of

points involved in surface integration is usually quite large.
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We take into account how normals vary across the surface: At least three

points are needed for a normal estimate, so four points are needed to de-

termine changes in normals. While usually a larger number of neighbouring

points are required for accurate normal estimate, we only consider three

points here for efficiency. Too large clique will make the MRF intractable

(see Section 3.3 for details). In many cases, minimising the higher-order term

based on the rough normal estimate is enough to rule out some large errors

(i.e., artefacts). As the MRF is based on an undirected graph, we simply

have {k, l} = {l, k} = N (i)
⋂

N (j) where the adjacent points i, j, k, l com-

pose a four-point clique as shown in Fig. 6(c). The sum of the higher order

term in Eq. (1) can be computed as

∑

c∈C

Ec(xc) =
∑

i

∑

j∈N (i)

Eijkl(xi, xj, xk, xl) (8)

Please note that if the graph is a general regular lattice, N (i)
⋂

N (j) will

be a set of four points rather than a unique point pair (Fig. 6(d)). In that

case, we have to sum over i, j, k and l (rather than just i and j in Eq. (8))

for computing the four-point clique energy. The proposed MRF graph thus

elegantly reduces the computational cost of the algorithm. And,

Eijkl(xi, xj, xk, xl) = ‖N−N′‖2 =
√

(N−N′)T · (N−N′) (9)

where N and N′ are adjacent normals, given by

N =
(Pj −Pi)× (Pk −Pi)

‖(Pj −Pi)× (Pk −Pi)‖
, N′ =

(Pj −Pi)× (Pl −Pi)

‖(Pj −Pi)× (Pl −Pi)‖
(10)
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Figure 7: A comparison of different priors

and Pi=Ci(xi),Pj=Cj(xj),Pk=Ck(xk),Pl=Cl(xl).

Feature retention arises because grows sublinearly in its arguments. So it

tends not to distribute curvature over multiple vertices, as does a quadratic

cost function. Fig. 7 illustrates a comparison for different prior terms using

a noisy test model. It can be seen that the Gaussian prior, widely used in

Bayesian surface reconstruction methods, oversmooths the edges and fails to

retain fine features. The Gaussian with heavy tails tends to better retain

the features but the reconstructed edges are often geometrically flawed. The

higher-order prior achieves the best reconstruction result.

2.5. Robust strategy

We also use a threshold β in order to make the algorithm more robust to

noisy points and clutters. It is essentially a voting process. A base position

must receive votes from enough input scans to demonstrate that it does not

correspond to a noisy point or is not in an area belonging to a clutter.

When we compute the one-point clique cost Ei(xi), we do the following.

If Ei(xi) < β, we go through the MRF labeling process, but otherwise, we

terminate the calculation of Ei(xi) and delete the point i from the list s. We

set β = (m − q) × F where m is the number of input scans (as well as the

number of labels) and F is the truncation parameter defined in Section 2.2.

Generally, we set q = 2 which is effective in reducing random noisy points
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Figure 8: A two-view in-
tegration based on the la-
beling where I1 and I2 de-
note the two input scans
with index 1 and 2 respec-
tively. IP represents the
base surface.

and clutters; but it can be changed by the user. If the integrated surface has

undesirable noise, q should be increased; if it has holes, q should be reduced.

2.6. Illustration and summary of the labeling

Fig. 8 illustrates the labeling for a two-view integration. I1 and I2 are

already registered but not superimposed in the overlapping area due to reg-

istration errors. Point A (a base position) is closer to a red point in I1

(Label=1) but is still represented by a blue point in I2 (Label=2) in the inte-

grated surface as the two-point compatibility term encourages neighbourhood

consistency. A clustering method would tend to lead to an integrated surface

which zigzags frequently between red and blue points, which is inconsistent

with the real geometry here (both I ′1 and I2 are smooth surfaces). As can be

seen, in a relatively smooth surface area, label changes usually occur where

the input scans intersect (or are well-registered). This is because, here, the

one-point clique cost is small according to Eqs. (5) and (6), allowing the MRF

routine to tolerate larger two-point clique cost caused by the label change.

But in feature-rich areas of high curvature, scans may frequently intersect

each other due to registration errors. In such cases, an MRF labeling based

only on one-point and two-point terms is usually unable to deliver the correct

surface details, destroying the geometry of features, and leading to an over-
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smooth surface. In such areas, normals usually vary greatly, the higher-order

term ‖N−N′‖2 in Eq.(9) will be large, providing feature retention. On the

other hand, in a flatter area, this term is small and will have little effect.

3. Energy minimisation via Belief Propagation

Several methods exist for minimising posterior energy. The comparative

study in [29] recommends two approaches, graph-cuts (GC) [30] and message

passing, e.g. belief propagation (BP) [31], as efficient and powerful. Since our

energy function is neither metric nor semi-metric, GC is not applicable.

We employ max-product (equivalent to min-sum) BP to find a solution.

For pairwise MRF, its computational complexity is O(nm2T ), where n is the

number of points in the graph, m is the number of labels and T is the number

of iterations. If we used a point set as the label set, the number of labels

would be too large and the BP would be intractable. Instead, our labeling

uses scan indices as labels making it feasible to employ BP. BP operates by

passing messages between points. Because the two-point belief is independent

of the four-point belief, each iteration uses two types of message updates.

3.1. Two-point message passing

The first type of message mji(xi) is sent from a point j to its neighbour

i in a two-point clique:

mji(xi) = min
xj

(λ1Eji(xj, xi) + g(xj)) (11)

where g(xj) = Ej(xj) +
∑

h∈N (j)\i mhj(xj). Then we consider two cases:

(1) If xj = xi, Eji(xj, xi) = 0, so mji(xi) = g(xi).
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(2) otherwise, Eji(xj, xi) = 1, so mji(xi) = minxj
g(xj) + λ1.

These can be combined to give:

mji(xi) = min (g(xi),min
xj

g(xj) + λ1). (12)

Eq.(12) shows that the minimisation over xj need to be performed only

once, independent of the value of xi. In other words, Eq.(11) needs two nested

loops to determine the messages while Eq.(12) just needs two independent

loops, reducing the computational cost from O(m2) to O(m).

3.2. Four-point message passing

Note that our anisotropic MRF graph with four-point cliques is different

from an isotropic MRF graph with 2×2 cliques, which can easily be converted

to a factor graph [32]. This is because the four points in one clique play

unequal roles in message passing. As shown in Fig. 6(c), i and j are directly

connected while there is no edge linking k and l. Thus, i, j, k, l compose a

four-point clique for i and j but not for k and l.

The four-point message sent to a point i is written as mlkji(xi) with

{l, k, j} ∈ Nt(i), where Nt(i) denotes the point trifold set in which each

point trifold forms a four-point clique with i as shown in Fig. 6(c). Let bi(xi)

denote the one-point belief and blkji(xi, xj, xk, xl) denote the four-point belief.

Then energy associated with the four-point cliques (we write it as Elkji to

distinguish it from the four-point clique cost Eijkl
1) can be defined as

1Please note that most of the subscripts used in this paper are not just placeholders
but do have an order. For example, mji denotes the message sent from j to i and a
four-point clique cost Eijkl implies that i and j are directly linked by an edge but k and
l are not. Here, such a notation will not cause any confusion or conflict. If Eijkl is valid
for representing a four-point clique cost, Elkji must be invalid for that because there is no
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Elkji = Ei(xi) + Ej(xj) + Ek(xk) + El(xl) + λ2Eijkl(xi, xj, xk, xl), (13)

and the Bethe free energy [33] is

E =
∑

ijkl

∑

xixjxkxl

e−blkji(xi,xj ,xk,xl)(Elkji(xi, xj, xk, xl)

−bljki(xi, xj, xk, xl))−
∑

(qi − 1)
∑

xi

e−bi(xi)(Ei(xi)− bi(xi))

where qi is the number of points neighbouring i. Therefore the Lagrangian

multipliers that enforce the normalisation constraints are:

rlkji :
∑

xixjxkxl

e−blkji(xi,xj ,xk,xl) − 1 = 0, ri :
∑

xi

ebi(xi) − 1 = 0.

The multiplier that enforces the max-marginalisation constraints is

λlkji(xi) : e
−bi(xi) = max

xlxkxj

e−blkji(xi,xj ,xk,xl).

The Lagrangian L is the summation of the E and the multiplier terms. To

maximise L, we set

∂L

∂e−blkji(xi,xj ,xl,xk)
= 0, and hence

−blkji(xi, xj, xl, xk) = Elkji(xi, xj, xk, xl) + 1 + λlkji(xi) + λilkj(xj)

+λjilk(xk) + λkjil(xl) + rlkji,

∂L

∂e−bi(xi)
= 0, and hence

−bi(xi) = −Ei(xi) +
1

qi − 1

∑

(j,k,l)∈Nt(i)

λlkji(xi) + r′i, .

where r′i is the rearranged constant. By change of variable, defining

edge linking l and k (see Fig. 6(c)).
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λlkji(xi) = −
∑

(h,g,f)∈Nt(i)\(l,k,j)

mhgfi(xi), (14)

we obtain the following equations

bi(xi) = Ei(xi) +
∑

(l,k,j)∈Nt(i)

mlkji(xi); (15)

blkji(xi, xj, xl, xk) = Ei(xi) + Ej(xj) + Ek(xk) + El(xl) + λ2Eijkl(xi, xj, xk, xl)

+
∑

(h,g,f)∈Nt(i)\(l,k,j)

mhgfi(xi) +
∑

(h,g,f)∈Nt(j)\(i,l,k)

mhgfj(xj)

+
∑

(h,g,f)∈Nt(k)\(j,i,l)

mhgfk(xk) +
∑

(h,g,f)∈Nt(l)\(k,j,i)

mhgfl(xl). (16)

We now consider the following three constraints:

(i) the min-sum constraint arising from the max-marginalisation (max-product)

constraint: bi(xi) = minxlxkxj
blkji(xi, xj, xk, xl),

(ii) that the terms V (yi|xi),
∑

(l,k,j)∈Nt(i)
mlkji(xi) and

∑

(h,g,f)∈Nt(i)\(l,k,j)

mhgfi(xi) are not related to the values of xj, xk and xl, and

(iii) Nt(k)\(j, i, l) = Nt(k) and Nt(l)\(k, j, i) = Nt(l) as the point trifold

(j, i, l) /∈ Nt(k) (for comparison, (j, i,m) ∈ Nt(k) in Fig. 6(c)) and (k, j, i) /∈

Nt(l). This leads to

mlkji(xi) = min
xlxkxj

(

Ej(xj) + Ek(xk) + El(xl) + λ2Eijkl(xi, xj, xk, xl)

+
∑

(h,g,f)∈Nt(j)\(i,l,k)

mhgfj(xj) +
∑

(h,g,f)∈Nt(k)

mhgfk(xk) +
∑

(h,g,f)∈Nt(l)

mhgfl(xl)
)

. (17)

3.3. Label assignment and complexity analysis

All entries in the messages are initialised to zero. We update the two

kinds of message in each iteration, and after T iterations, a belief vector is

22



computed for each point in the graph:

Bi(xi) = Ei(xi) +
∑

j∈N (i)

mji(xi) +
∑

(l,j,k)∈Nt(i)

mlkji(xi) (18)

The label x∗
i that minimises Bi(xi) individually at each point is selected. In

most of our experiments, the BP converged within 10 iterations.

Computing mlkji is extremely costly: O(m4), as the message vector has

m elements which are computed by minimising Eq. (17) over 3 variables each

of which has m possible states (labels). Most existing efficient higher-order

MRF optimisation methods are just applicable to specific families of energy

functions or specific (small) cliques such as the P n model [34], quadratic

functions [35] truncated functions [36] and 2 × 2 cliques [32], etc. None of

these methods work for the complicated structure of our energy function.

Instead, we utilise sparseness of the higher-order function to reduce the

costs. In [32], the authors discretized the label set for three of the four mem-

ber pixels into h bins and only considered those h3 different combinations, de-

creasing the complexity for one message update to O(m ·h3). Here, we record

the three labels that minimise the two-point message mji at each point i.

When we calculate the four-point message mlkji in the same iteration, we just

consider these three labels as possible states for each member point l, k, j. As

we place more importance on two-point neighbourhood consistency, the four-

point cliques becomes ‘sparse’ (i.e. many labelings of the four-point cliques

are unlikely) and the cost for each four-point message update is reduced to

O(27m), and the cost for the whole BP is O(n(m + 27m)T )=O(28nmT ).

Clearly, such an algorithm is still intractable if both n and m are large. As
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Figure 9: Real scans used in our tests. We show here 4 scans selected from each dataset
as representatives of each dataset.

noted, n must be large enough to sufficiently represent surface details, so

we use a point-to-scan labeling framework to bypass this problem. We label

each point in the graph with a scan index and make use of the uniqueness

of closest point in one scan (scan-to-point) to finally determine the point-

to-point label assignment (our final aim is to select one point from all input

points to represent each base point). In this way, we significantly reduce

the size of label set which largely determines the computational cost of the

algorithm as explained above. In essence, our point-to-scan-to-point labeling

is a coarse-to-fine scheme which greatly speeds up the algorithm.

4. Experiments

In our experiments, we use range scans downloaded from three databases

(the Minolta database [10], the Stanford 3D Scanning Repository and the

Farman database [37]). In Fig. 9, we show some original range scans from
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Figure 10: L: Joint meshes of 10 Bunny scans without integration; M: Joint meshes of 17
Bird scans without integration; R: Joint meshes of 17 Frog scans without integration

the Minolta database and the Stanford 3D Scanning Repository for an in-

tuitive visual understanding of the objects. The Standford Bunny dataset

(362230 points, 10 scans) is captured at high scanning resolution and highly

accurate alignment parameters are given. The other 6 sets of Minolta scans

are captured at much lower resolutions with more noise and the alignment

parameters are not given. We thus employed the algorithms proposed in [5]

and [38] to perform pairwise and global registration for these scans. The reg-

istered multi-view scans were then used as the input data for the experiments

of the integration methods.

Fig. 10 visualises the different scales of registration errors within differ-

ent datasets by showing joint meshes of all (registered) input scans without

integration. It can be seen that the Bunny scans contain much smaller reg-

istration and scanning errors than other scans. The registration errors and

some other quantitative statistics of these scans are shown in Table. 2. Note

that existing integration methods usually require that the registration error

is an order of magnitude less than the measurement error. However, in prac-

tice, this assumption is often not satisfied. As demonstrated in Table. 2, the

average registration error is about 1/3 to 1/2 of the scanning resolution. In
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Dataset Scans Points RE(mm) SDRE(mm) MRE/RE SR(mm)

Bird 17 156094 0.29 0.12 6.46 0.66
Frog 17 174097 0.30 0.15 9.73 0.63

Lobster 18 178653 0.30 0.18 10.62 0.68
Teletubby 17 90848 0.25 0.12 8.00 0.61

Duck 18 252509 0.28 0.19 13.71 0.60
Dinosaur 11 87736 0.54 0.61 34.61 1.25

Table 2: RE: average registration error (RE) over reciprocal correspondences; SDRE:
average standard deviation of registration errors; MRE/RE: average of the ratios between
the maximum registration error and the mean registration error); SR: average scanning
resolution.

Figure 11: Left: Integration of
the Bunny scans using the pro-
posed method; Right: Integra-
tion using the SFK method [16]

Table. 2, the ratio between the maximum registration error and the aver-

age registration error is very meaningful for integration. It denotes possible

visually-poor local reconstruction. In addition, in our experiments, the pa-

rameter settings are closely related to the scanning resolution of the input

scans to better balance the weights of the three terms of the MRF energy

function. For the Bird, the Frog, the Lobster, the Teletubby and the Duck

datasets, the truncation parameter F was set to 4 and the weighting parame-

ters λ1 and λ2 were set to 5 and 1 respectively. For the Dinosaur dataset, the

parameter settings are F = 6, λ1 = 10 and λ2 = 2 as its scanning resolution

is significantly different from other datasets.
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Figure 12: Rows: Integration results of 17 Bird scans, 17 Frog scans, 18 Lobster scans,
17 Teletubby scans, 18 Duck scans and 11 Dinosaur scans. From left to right: volumetric
method[12], mesh-based method[18], SFK[16], k-means[15], pairwise MRF[22], our method

Most integration methods can produce a good surface model for the

well-registered Bunny scans. For example, Fig. 11 compares our integra-

tion method with the segmentation-based method [16] (we call it SFK for

short as it first performs a segmentation and then employs fuzzy-c means

and k-means clustering to integrate points). Although both deliver good re-

sults, our method still performs slightly better, especially on preserving local

surface details (see the eye of the bunny).
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Figure 13: Integration results of the bird’s neck and eyes. From left to right: one input
scan used as the local ground truth for the surface area of the neck, integration using k-
means clustering [15], integration using pairwise MRF [22], integration using our method,
another input scan used as the ground truth for the surface area of the eyes

The integration of the other 6 datasets from the Minolta database are

more challenging and they are widely used for comparing methods [15, 16].

We hence test different integration methods on these datasets for a direct

comparison. As shown in Fig. 12, our method produces clear and geometri-

cally realistic eyes, mouth and wings for the bird, eyes, fingers and pocket (on

the chest) for the teletubby, and toes, eyes, mouth for the frog and tail for

the dinosaur, etc. In general, the volumetric method fails to produce a clean

surface model (also demonstrated by [15]). The mesh-based method and

the k-means clustering produce improved surface models but also sometimes

generate fragments (see the bird’s neck in Fig. 13, the frog’s toes in Fig. 14,

the teletubby’s ears, the lobster’s eyes and the duck’s neck and mouth). The

pairwise MRF and the SFK suffer from oversmoothing although they usually

produce a clean surface.

On one hand, if noisy points are spatially not far from the real surface,

wrong clustering will produce incorrect local surface geometry, resulting in
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Figure 14: Integration results of the frog’s feet. From left to right: one input scan used
as the ground truth for the surface area of the feet, integration using k-means clustering
[15], integration using pairwise MRF [22], integration using our method

the loss of detail. On the other hand, if enough noisy points are spatially

far from the real surface, they will be grouped together and form fragments.

Integration methods based on merging, where each point from the input data

has a weighted contribution to the output, are generally not robust to such

noise. In contrast, our method is based on a selection scheme where outliers

have no contribution to the output, leading to an improved integration.

Compared to pairwise MRF-based methods, our higher-order MRF-based

method has the advantage of preserving surface details particularly where the

local surface geometry is complicated (e.g. for thin protrusions and deep con-

cavities). A detailed comparison of two recent pairwise MRF-based methods

with our higher-order MRF method, using the Dinosaur dataset, is shown in

Fig. 16, which scrutinises the tail of the dinosaur. The first pairwise MRF-

based method [39] fails to reconstruct a geometrically realistic surface while

the second [22] suffers from oversmoothing. This is because pairwise MRF

can only capture first-order features; its energy functions cannot model some

complicated second-order features such as normal vectors and curvatures. A

similar phenomenon is also illustrated by the bird’s eyes in Fig. 13, the frog’s
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Figure 15: Integration results of the teletubby’s chest. From left to right: one input
scan used as the ground truth for the surface area of the chest, integration using k-means
clustering [15], integration using pairwise MRF [22], integration using our method

Figure 16: Integration results of the dinosaur tail. Left: The pairwise MRF-based method
[39] produced holes; Middle: The pairwise MRF-based method [22] delivered an over-
smooth surface; Right: Our method produced a geometrically realistic surface.

face, the lobster’s back, the teletubby’s face and chest in Fig. 15 and the

dinosaur’s back.

In general, Fig. 12 qualitatively demonstrate that the proposed method,

the pairwise MRF [22], the k-means clustering [15] and the SFK[16] are

most successful. Therefore, we conduct quantitative comparisons for these

four methods. We quantitatively measures the integration error between each

input scan (taken as partial ground truth) and its corresponding surface re-

gion in the integration via the highly cited MESH method [40], an efficient

technique to estimate the distance between 3D surfaces. The correspond-
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Figure 17: Integration error of different methods based on different datasets. Top left:
Bird. Top right: Frog. Bottom left: Teletubby. Bottom right: Dinosaur. AIE: average
integration error of all scans

ing surface region of one input scan can be found by searching the nearest

points of each point in the registered input scan from the integration, which

is similar to the overlapping area detection in Section 2.1. The smaller the in-

tegration error, the more similar the input scan with its corresponding region

of the integrated surface. Overall integration quality is given by averaging

integration errors. The smaller the average integration error, the better the

integration. We also measure the root mean square error (RMSE) between

each input scan (taken as partial ground truth) and its corresponding surface

region in the integration and then compute the average. Consequently, the

smaller the average RMSE, the better the overall integration.
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Figure 18: Root mean square error (RMSE) of different methods based on different
datasets. Top left: Bird. Top right: Frog. Bottom left: Teletubby. Bottom right:
Dinosaur. ARMSE: average root mean square error of all scans

The results of the comparisons through integration error and RMSE are

shown in Fig. 17 and 18. In most cases, the errors increase with the number

of integrated scans increasing due to the accumulation of registration errors.

Some exceptions are possibly caused by large local scanning noise or a sig-

nificant amount of outliers. With the proposed method, both the integration

errors and the RMSEs are usually minima. According to the average integra-

tion error and the average RMSE, our method usually improves the overall

quality of the integrations of different datasets by 15%–40% compared to the

pairwise MRF [22], the k-means clustering [15] and the SFK [16].

We also perform the proposed integration method using the Farman
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Figure 19: Integration results of the mask scans. Left: without integration; Middle:
pairwise MRF-based integration [22]; Right: our integration

Figure 20: Integration results of the Nefertiti scans. Left: without integration; Middle:
high fidelity scan merging [25]; Right: our integration

datasets. Note that the Farman scans are captured by accurately calibrated

last generation laser scanners and thus the registration error is very small.

As reported in [25], the average registration error for the Farman datasets

is 0.081mm with standard deviation 0.012 (see Table. 2 for a comparison

with the Minolta datasets). Figs. 19-22 present the integration results on

these data. For comparison, we display the renderings produced by directly

triangulating the registered raw scan points without any integration. Our

observations of the results are listed as below.

In general, compared to the Minolta data, the Farman scans are less chal-

lenging due to accurate registration. Even so, directly triangulating the scan

points without integration always creates some local artifacts such as the
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Figure 21: Integration of the
pyramid scans. Left: without
integration; Middle: Poisson
reconstruction [41]; Right:
our integration

aliasing visible as grid or tiling effects. The aliasing effect is usually caused

by locally inaccurate registration where the overlapping surfaces are not su-

perimposed. In contrast, our integration method removes these undesirable

effects almost completely.

In Fig. 19, like its performance on the Minolta scans, the pairwise MRF-

based method [22] introduces an important smoothing and loses surface de-

tails in comparison to our integration result. In Fig. 20, we observe that

the merging method [25] significantly attenuates the aliasing compared with

the results produced by directly triangulating the raw scan points without

integration. However, the artifact seam is still visible. Such seams often ap-

pear at the scan boundaries due to the scan offsets. In contrast, our method

produces a seamless integration.

In Figs. 21 and 22, we also compare our method with the widely-used

Poisson reconstruction [41]. In Fig. 21, the aliasing effect is not fully removed

on the surface produced by Poisson reconstruction. As mentioned above,

registration error is a major challenge for integration. But as a level set

reconstruction method, Poisson reconstruction does not have a particular
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Figure 22: Integration of the Dame de Brassempouy scans. (a) Without integration (b)
Poisson reconstruction (c) Integration using λ1 = 5 and λ2 = 1 (d) Integration using
λ1 = 5 and λ2 = 3

mechanism to deal with such errors. It effectively smooths the surface in a

global manner, which could therefore cause a loss of sharpness or a loss of

local details as shown in Fig. 22 (b). And in most cases, the distribution

of registration error is not globally even. As a result, we can see that in

Fig. 21, even with the smoothing, the result of Poisson reconstruction still

keeps many vertical artifact lines in the upper part while the smoothing is

just appropriate for removing the artifacts in the lower part. Similarly, in

Fig. 22 (b), even with the degradation caused by oversmoothing on the facial

region of the Dame de Brassempouy, artifacts remain on the chin although the

seam across the face which is obvious in Fig. 22 (a) has been removed. The

reasons of the visual success of our method, as shown in Fig. 21 and Fig. 22

(c), are that (1) our labeling-based method is essentially a selection strategy:

the overall surface model is composed of surface patches from selected input

scans, which thus preserves local surface details; (2) as mentioned in Section

2.6, in a relatively smooth surface area, label changes usually occur where

the scans are well registered (superimposed), which significantly attenuates

artifacts such as the aliasing effect and the integration seams. These two
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Figure 23: Integration of the Ar-
madillo scans. Left: Integration
using λ1 = 5 and λ2 = 1; Right:
Integration using λ1 = 5 and λ2 =
1.5

reasons can be explained by the one-point and two-point terms of the MRF

as summarised in Section 2.6. The effect of the higher-order term can be

investigated via Figs. 22(d) and Fig. 23 where we also vary an important

parameter λ2.

It is worth noting the parameters involved in this algorithm. Apparently,

there are 6 parameters k, F, q, β, λ1, λ2. But k and q can be fixed to 3 and

2 respectively in most cases; F is actually related to the average interpoint

distance of the input scans and Section 2.2 gives a clue how to set it; β is

determined by q, F and the number of input scans as mentioned in Section

2.5. Therefore only the two MRF weighting parameters λ1 and λ2 need to be

selected empirically. In Figs. 22(d), it can be seen that a larger λ2 leads to a

smoother surface since the higher-order term which computes the difference

of adjacent normals gains more weight. Although such smoothing can remove

some artifacts (see the toes of the Armadillo in Fig. 23), it inevitably results

in the loss of surface details or geometrical features (see the facial region in
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Figs. 22(d) and the teeth of the Armadillo).

All experiments used a dual core, 2.4GHz, 3.25GB RAM PC. The inte-

gration of each Minolta dataset took 15–30 minutes, mainly depending on

the number of the points in the datasets and the number of iterations that

the BP used to reach convergence or an acceptable solution. Please refer to

Fig.24 in [15] for the computational time of other methods tested using the

same datasets. It can be seen that our method is comparable with the most

efficient ones.

5. Conclusion and discussion

Existing methods for integrating multiple scans can fuse non-corresponding

points and blur the integrated surface or generate artifacts if the point cor-

respondence cannot be correctly established. Unfortunately, this is just the

case because inevitable registration errors and scanning noise make the es-

tablishment of correct correspondence difficult, if not impossible. In this

paper, we solve the integration as a labeling problem.

Compared to the clustering method which only considers the Euclidean

distances between points and the pairwise MRF-based method which only

considers the two-point spatial interactions, the proposed method delivered

more accurate integration and an integrated surface of higher quality due

to a more sufficient utility of the 3D spatial information within the input

datasets. Be aware that the proposed higher-order MRF model is configured

on a specific graph which can also handle 3D unstructured point clouds. The

MRF energy function consists of three terms. The one-point term is also

the data term which is directly determined by the known input data. The
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Figure 24: The limitation of our
method. Although the proposed
method is more robust to registra-
tion error than other methods, it
fails to retain surface details when
the registration error is excessively
large. Left: the integration of
18 Buddha scans produced by our
method. Right: one input scan
used as the ground truth

compatibility term is modeled as a two-point clique cost. We formulate the

four-point higher-order term as the difference between neighbouring normals

to better capture local surface details. We solve the MRF via belief prop-

agation which is modified to speed up the inference. And the experiments

demonstrate that the proposed method produces geometrically realistic sur-

face models with well preserved surface details robustly.

The experiments also demonstrate that our method has a significant de-

gree of robustness to registration errors. This is because (i) we incorporate

an error compensation scheme into the proposed graph construction scheme,

and (ii) our MRF-based method is essentially a selection scheme rather than

a merging. This scheme works because registration errors are not evenly dis-

tributed across points. Global registration [42, 38, 43, 44, 45] is often used

with the aim of evenly distributing registration errors between scans, but

within a single scan, different points suffer from different registration errors.

In our final integration, a certain surface patch is derived directly from the

corresponding surface area of some selected input scan. Boundaries, where

we change from selecting one scan to another, usually occur in places where

points are well registered, allowing the selected surfaces patches to be pieced

together seamlessly to form a complete 3D surface model of the object.
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However, we have to admit that the quality of the integration is still de-

pendent on the registration. In Fig. 24, the average registration error for the

Buddha scans is almost doubled compared with the datasets with similar res-

olutions listed in Table. 2. We consequently observe the failure of retaining

local surface details for the Buddha’s bumpy hair region in the integration

although for the flat surface regions, our method still deliver a good integra-

tion. In our method, the difference between neighbouring normals is used as

a feature descriptor to capture local surface geometry. Nonetheless, Fig. 24

indicates that normal information is not reliable when the registration is rela-

tively poor. We thereby believe that further improvements may be gained by

using different higher-order priors based on more reliable geometric feature

descriptors such as the invariant feature descriptor proposed in [46].
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