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Abstract—Recognition is the fundamental task of visual cog-
nition, yet how to formalize the general recognition problem
for computer vision remains an open issue. The problem is
sometimes reduced to the simplest case of recognizing matching
pairs, often structured to allow for metric constraints. However,
visual recognition is broader than just pair matching – especially
when we consider multi-class training data and large sets of
features in a learning context. What we learn and how we
learn it has important implications for effective algorithms. In
this paper, we reconsider the assumption of recognition as a
pair matching test, and introduce a new formal definition that
captures the broader context of the problem. Through a meta-
analysis and an experimental assessment of the top algorithms on
popular data sets, we gain a sense of how often metric properties
are violated by good recognition algorithms. By studying these
violations, useful insights come to light: we make the case that
locally metric algorithms should leverage outside information to
solve the general recognition problem.

I. Introduction

Recognition is a term everyone in computer vision and
machine learning understands – or at least we think we do.
Despite multiple decades of research, it may be somewhat
surprising to learn that a very basic question remains unre-
solved: is recognition metric? Familiar distance metrics used
in vision include Euclidean distance and Mahalanobis distance,
both computed in feature space. Given one of these metrics,
the task of recognizing an unknown object can be approached
by finding the class label of its nearest neighbor under that
distance metric in a set of training samples. Clearly such an
approach provides a recognition function, so some level of
recognition can be accomplished with a metric. However, at
a more fundamental level, we would like to know if distance
truly captures all that is meant by the term recognition, and if
metrics are good approaches to solving complex recognition
tasks in computer vision. In this paper, we adopt the convention
that a problem is metric if the best solutions to that problem can
be achieved by directly applying a distance metric to compute
the answer.

An important observation with implications for recognition is
that in separable metric space, using a distance metric and the
nearest neighbor (NN) algorithm provides useful consistency.
As the number of i.i.d. samples from the classes approaches
infinity, the NN algorithm will converge to an error rate no
worse than twice the Bayes error rate, i.e. no worse than twice
the minimum achievable error rate given the distribution of
the data [11]. To many, this convergence theorem suggests that
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Fig. 1: Assumptions are often made about the underlying
nature of recognition in computer vision that do not hold true
in practice. A common constraint placed upon recognition
algorithms is that they must be metric, meaning their distance
scores adhere to the properties of non-negativity, identity,
symmetry and the triangle inequality. At first glance, the
scores from many recognition algorithms appear to satisfy these
constraints. However, violations can be subtle. For example,
the distance scores produced by the top-performing Tom-vs-
Pete algorithm [1] for these images from LFW [18] violate the
triangle inequality.

recognition can always be formulated as NN matching with
an appropriate distance metric. However, having to double the
error of the optimal algorithm over the same data often does not
lead to a particularly good algorithm. This becomes apparent
when actual error rates are considered during experimentation.

With the recent popularity of metric learning [8], [13], [20],
[25], [37], [58], [60] for various recognition tasks, where a
metric is learned over given pairs of images that are similar or
dissimilar, one might infer that recognition is always a metric
process. We note that the NN convergence theorem [11] is
true for any metric – hence any improvements from the choice
of metric, or metric learning, are not about the asymptotic
error, but something else such as the error for finite samples
and/or the rate of convergence. This paper will show that while
metric learning can produce reasonable results, enforcing metric
properties leaves out information, often limiting the quality of
recognition with finite data.

If the convergence theorem itself is about recognition, then
the recognition problem is assumed to be formulated in an
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asymptotic sense with infinite i.i.d. samples. We argue that
visual recognition does not rely on either of those assumptions,
but rather focuses on maximizing the accuracy for finite,
and, unfortunately, opportunistic and hence potentially biased
sampling.

Recall that a function d : X × X → R is metric over a set X
if it satisfies four properties for {x, y, z} ⊆ X:

1) d(x, y) ≥ 0 (non-negativity)
2) d(x, y) = 0⇔ x = y (identity)
3) d(x, y) = d(y, x) (symmetry)
4) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality)

Metric functions have useful properties that allow one to
show that a particular problem leads to a convex minimization
problem, or that various types of sequences converge in the
limit. There are also several cases where one of the properties
is excluded. Functions that do not satisfy the triangle inequality
are called semimetrics, those that violate symmetry are called
quasimetrics, and those missing one or both halves of the
identity requirement are called pseudometrics1. While the term
“distance measure” is sometimes used to mean a distance
metric, it is more appropriate to use this term to mean a
measurement that provides information about dissimilarity, but
may be formally non-metric (our use of the term follows this
convention).

A natural place to begin examining if recognition is metric
is to consider its formulation. Is it reasonable to assume that
a distance metric d maps pairs of elements from X into R
during recognition? When a person recognizes an object, do
they refer to an actual image of the object of interest? A
more likely alternative is a comparison to a stored model with
a more complex internal representation, not a direct copy of
some prior trained input. This view is consistent with prototype
theory [40] in cognitive psychology. Thus, at a structural level,
recognition in this mode takes an input x ∈ X, and a model
M, and hence cannot be metric because it is not even of the
proper functional form. It is possible to build a model using just
x, and then consider the distance between models. However,
for many commonly used recognition algorithms, e.g. support
vector machines, one cannot induce a proper model from a
single input. Thus, the general problem of recognition cannot
be restricted to just metrics, even though it must include them.

To structure the recognition problem in a form consistent
with directly using a distance metric, various approaches
formulate it as a pair matching task. This is a specific case
of recognition: given a pair of images, an algorithm must
indicate whether or not they match (the popular face recognition
challenge problem Labeled Faces in the Wild [18] is of this
form). While it is convenient to build a binary classifier for this
type of problem and easier to evaluate this type of data, pair
matching itself cannot be considered the general recognition
problem, where n number of known classes might be candidates
during matching, represented by complex models incorporating
information from potentially thousands of training images.

1Note that without the property of identity, the theorem of NN conver-
gence [11] does not hold. It has also been shown [33] that the optimal distance
measure, in the sense of minimal Bayes risk always violates the identity
property and therefore is not metric.

It is also natural to ask if the human mind, a most successful
recognition system, operates in a way that satisfies the key
metric properties of symmetry and the triangle inequality. The
consensus in the cognitive psychology community is a definitive
no. In seminal work, Tversky [47] showed that human analysis
of “similarity” is non-symmetric and is context dependent. One
of the visual experiments conducted by Tversky was a simple
pair matching task, where subjects were asked if two block
letters were the same or not. A similarity function S(p, q)
indicated the frequency at which subjects noted letter p to
be the same as q. The experiment showed that the order of
presentation of the letters mattered in a statistically significant
way: S(p, q) , S(q, p). This result, along with others for
matching faces, abstract symbols, and the names of countries
led Tversky to conclude that “similarity is not necessarily a
symmetric relation.”

In subsequent work, Tversky and Gati [48] examined if
the triangle inequality is satisfied by humans when assessing
similarity. Because the triangle inequality can always be
satisfied by adding a large constant to the distances between
individual points when measuring dissimilarity on an ordinal
scale, Tversky and Gati proposed a test that assumes segmental
additivity: d(x, z) = d(x, y) + d(y, z). Over numerous pair
matching trials across stimuli, human similarity judgments
were found to violate the triangle inequality in a statistically
significant manner. Even without the triangle inequality for
additive functions, it is still possible to induce metric models
with subadditive metrics. However, in experiments where
subjects provided subjective probability estimates, Tversky and
Koehler [49] showed that the reported scores are, in general,
not subaddative2.

If humans are employing non-metric, non-symmetric similar-
ity measures, do we really want to constrain our recognition
algorithms in computer vision to be metric? Addressing this
notion, we present the following contributions:
• A new general definition of recognition that is not

restricted to pair matching, and which includes provisions
for complex models trained over sets of images and
assumptions.

• An extensive meta-analysis of metric learning on vision
problems, along with experiments that give an indication
of how often metric constraints are violated for top
performing algorithms and common data sets.

• A series of useful recommendations, based on our results,
for recognition algorithm designs in metric and non-metric
spaces.

II. A General Definition of Recognition

Surprisingly, a canonical definition of recognition for com-
puter vision has yet to emerge. Many different definitions of
recognition can be found in the literature, each addressing
particular aspects of the problem. The familiar distance-based
approach to recognition [13], [20], [25] compares feature

2It is possible to work around the constraint of segmental additivity using
a subadditive metric based on Shepard’s universal law of generalization to
induce a metric from finite sets of data [22], but the result is still not consistent
with the human perception findings of Tversky and Koehler [49].
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vectors from a test image to one or more feature vectors
from known images using a distance measure to indicate
similarity. More compatible with recent machine learning-based
approaches, statistical learning theory [50] casts recognition
as risk minimization over a given loss function and joint
probability distribution for a class. Other definitions include
the probabilistic formulation described by Shakhnarovich et
al. [44], where recognition maximizes the probability that
an input distribution matches a probability rule for a single
known class, as well as the ubiquitous nearest neighbor decision
rule [11] discussed above.

With many possibilities for class sampling, modeling for
training, and strategies for matching, a concise definition that
captures all of these aspects is an open issue. The above defini-
tions tend to satisfy the definition of a particular subproblem in
recognition, such as pair matching (1:1 matching), verification
(1:1 matching with any claimed class), identification (1:n
matching), or search (1:n matching returning multiple results).
However, no current definition captures the general problem
encompassing all of them. Further, each definition is missing
necessary detail with respect to the information available
during matching. For a given class, there is a possibility
that assumptions outside any given training examples have
been made, which should be incorporated into the overall
definition. These assumptions can include side-information [54],
regularization terms [42], score normalization [41], or more
fundamentally, data used to train a detector that is applied
when pre-processing the training and testing images. Another
consideration is the possibility of nested or hierarchical classes,
where it is necessary to return multiple class labels for a
given input. With all of these issues in mind, we introduce the
following more comprehensive definition:

Definition 1: (The General Recognition Problem) Given
image(s) I ∈ Rν, where ν is the number of pixels, let
F : Rν → RD extract a D-dimensional feature vector x under
a set of feature extractor-specific assumptions φF :

x = F(I, φF), x ∈ RD (1)

The task of a recognition system is to find a ranked set of
integer class labels considered to be the best matches to a given
input feature vector x0. For a class labeled c ∈ N, let Xc be a set
of training data {x1, . . .} composed of m feature vectors, where
m ≥ 1. A class model Mc represents the information learned
from Xc, incorporating a set of modeling-specific assumptions
φM . Let R be a matching function that produces a similarity
score s by comparing x0 to Mc, taking into account a set of
matching-specific assumptions φR:

sc = R(x0,Mc(Xc, φM), φR), sc ∈ R (2)

For any input x0, let S be a set of similarity scores {s1, . . .}
from n matching instances of R, where n ≥ 1. Let L be a
labeling function that maps S to a ranked set of k class labels
C = {c∗1, . . .}, where k ≥ 1, taking into account any labeling-
specific assumptions φL:

C = L(S , φL),C ( N (3)

where c∗1 = 0 is reserved for the non-match label.

Def. 1 is consistent with the four modes of recognition
described above:

1) For pair matching, Mc can consist of just features from a
single training image Xc = x1, with R a distance measure
between vectors and |C| = 1, c∗ ∈ {0, 1} (non-match and
match). φL contains matching criteria (e.g. an estimated
threshold). Mc can also be a complex model over many
images, matching against the image pair as x0 (see the
discussion of LFW in Sec. III).

2) For verification, we seek to check if an input image
belongs to a class c specified a priori, with training data
defined as above for pair matching. R could be applied
n times in a multi-view setting with multiple models,
matching against the set {Mc1 , . . .} for class c, where
n ≥ 1. In all cases, ∀c∗ ∈ C, c∗ ∈ {0, c} and φL contains
matching criteria.

3) Identification can also make use of the same training
strategies as pair matching, but always applies R over a
set of n different classes, where n ≥ 2. It returns at most
one best answer with k = 1.

4) Search is similar to identification, but returns multiple
labels, i.e. k > 1.

III. Meta-Analysis of Algs. for LFW

Our first case study is Labeled Faces in the Wild [18], a pop-
ular data set among face recognition researchers. LFW is ideal
for testing pair matching algorithms because it is inherently
a pair matching problem. Using the terminology of Def. 1,
each algorithm selects an appropriate feature representation
F, a model representation Mc, and a matching function R.
Each input is a pair of feature vectors. For consistency with
Def. 1, we express this as the concatenation of the two fixed-
length input vectors; thus, x0 = F(I1, φF) ‖ F(I2, φF) where ‖
denotes concatenation. Likewise, each algorithm may train on
X =
{
x+

1 , . . . , x
+
m, x

−
m+1, . . . x

−
2m

}
, a set of m matching pairs and m

nonmatching pairs of features. The labeling function L(S , φL)
usually checks some likelihood against a threshold τ to decide
whether the pair matches, returning c∗ = 1 if s1 > τ and c∗ = 0
otherwise, but certain algorithms may instead define something
more complicated.

In this analysis, we consider only recent results for the
“Image-restricted” setting where outside data was used for
feature extraction and in the recognition system. We chose
this set of results because it represents several algorithms that
are both metric and non-metric, allowing us to compare the
performance of both. To avoid confirmation bias, we only
investigate the 20 results listed on the official LFW results web
page at the time of writing [19]. How well do metric learning
algorithms perform on this slice of LFW? By graphing the
accuracy of these results over time, some interesting trends
become apparent; see Fig. 2.

First, with the exception of [60], the non-metric algorithms
perform better than the algorithms that constrain themselves
to be completely metric. We investigate specific cases below.
Second, the first results reported on LFW are from metric
learning algorithms, but more recent results are not metric and
do not claim to be metric. Note that in Fig. 2, we only consider
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an algorithm to be “metric” if the scoring function R completely
satisfies all four properties of distance metrics outlined in Sec. I.
Though many of the papers claim to be metric, upon closer
investigation, some of them have a non-metric R or only use
metric learning as a part of their overall computation. For
example, some techniques define an R that combines locally
metric information over different neighborhoods, making R
globally non-metric.

One example of an algorithm that turns out to be non-
metric is [16], which uses a custom logistic discriminant-
based metric learning (LDML) approach. The algorithm
specifies a nearest-neighbor-like (MkNN) normalization strat-
egy: during testing time, each pair’s score is influenced by
neighborhoods of matching pairs around the two images being
compared. In our words, they define a recognition function
RMkNN(x0,Mc(Xc, φM(x0)), φR). Note that Mc(Xc, φM(x0)) now
changes at test time: instead of RMkNN being fixed on a
particular global model, each model’s assumptions φM(x0)
depend on the input testing pair. From this, it is easy to see
that LDML-MkNN is not globally metric: RMkNN no longer
satisfies the triangle inequality because it depends on a model
with assumptions that change as a function of the image pair
being classified.

Year Accuracy Metric? Citation
2012 93.30% ± 1.28% No, w/ sideinfo [1]
2012 93.10% ± 1.35% No, w/ sideinfo [1]
2011 90.57% ± 0.56% No, w/ sideinfo [59]
2011 88.13% ± 0.58% No [39]
2010 88.00% ± 0.37% No [37]
2009 86.83% ± 0.34% No [53]
2009 85.65% ± 0.56% Yes [60]
2010 85.57% ± 0.52% No [37]
2009 85.29% ± 1.31% No, w/ sideinfo [27]
2011 85.10% ± 0.59% No [43]
2010 84.45% ± 0.46% No, w/ sideinfo [8]
2009 84.14% ± 1.31% No, w/ sideinfo [27]
2009 83.98% ± 0.35% No [16]
2009 83.62% ± 1.58% No, w/ sideinfo [27]
2009 81.27% ± 2.30% Yes [60]
2010 81.22% ± 0.53% Yes [8]
2010 80.73% ± 1.34% Yes [36]
2009 79.27% ± 0.60% Yes [16]
2008 76.18% ± 0.58% Yes [17]
2008 70.52% ± 0.60% Yes [17]

TABLE I: A table of accuracy from LFW results

Even without the MkNN step, we can make the case that the
implementation of LDML is non-metric. According to Sec. 2
of [16], the R defined by the base algorithm is R(x0,Mc, φR) =

σ(b − dW(F(I1, φF), F(I2, φF))), where b is a bias term, σ is
the sigmoid function, and dW is the Mahalanobis-like measure.
Rather than actual covariance, W ∈ RD×D is a learned matrix,
part of model Mc. If W was symmetric and positive-definite,
it would result in a metric. However, in Sec. 2.3 of [16], it
is stated that no such constraints are placed on W. Thus, this
learned distance may not be even pseudometric.

Another example of an algorithm that turns out to be non-
metric is Cosine Similarity Metric Learning as presented in [37].

According to Sec. 1.2 of [37], R is defined as

RCSML(x0,Mc(Xc, φM), φR) =
(an)T (bn)
‖an‖ ‖bn‖

= cos θ (4)

where an and bn are A(F(In,1, φF)) and A(F(In,2, φF)) for some
matrix A, part of model Mc that is learned to minimize the
distance between positive pairs and maximize the distance
between negative pairs. The algorithm’s labeling assumption
φL is a threshold τ over cos θ, where θ is the angle between
an and bn. However, cos is not a distance metric since it only
satisfies one of the four properties outlined in Sec. I. First, note
that cos is bounded by -1 and 1, but distances must not be
negative. Second, cos may be 0 if an and bn are perpendicular,
so sc = 0 does not imply that an and bn are the exact same input.
This also means cos does not satisfy the triangle inequality.
The only metric property that CSML satisfies is symmetry.

A significant advantage of CSML is that the boundedness of
RCSML between -1 and 1 allows for a fast coarse-to-fine search
for optimal parameters. In fact, many algorithms use metric
learning precisely for this reason. Here, CSML has found one
way to use this property while still performing better than other
learning techniques, even though it is not actually metric.

Another system that incorporates metric learning as part
of a pipeline that is not completely metric is [45], which
uses multiple one-shot similarity (OSS). In standard OSS,
two models are trained at test time from canonical “negative”
examples with each image in the image pair as positives:

M̂c(Xc, φM) = {M1(F(I+
1 , φF), x−1 , . . .),

M2(F(I+
2 , φF), x−1 , . . .)}

(5)

Then, the scoring function ROSS(x0, M̂c(Xc, φM), φR) uses each
model to classify its respective input and averages the two
scores. However, when labeled information is available, there
is no clear way for OSS to take advantage, and thus OSS may
be biased toward pose, lighting, etc. To get around this, another
algorithm Multi-OSS is defined, which computes multiple one-
shot scores for multiple labels at test time, increasing the
generality of the classifier. Note that neither OSS nor Multi-
OSS are metric because each score depends on models created
at testing time, each using different assumptions/examples.
However, [45] shows that OSS and Multi-OSS are more
effective than a variety of metric techniques. The improvement
is attributed to the extra information provided by the class labels
– something that the metric techniques cannot take advantage
of.

According to Fig. 2, we see that the top scores come from
non-metric algorithms, whether the authors intended them to
be metric or not. What makes non-metric algorithms better?
We emphasize that treating all samples alike may unnecessarily
handicap an algorithm. For example, if one classifier is more
invariant to pose, that classifier may be better than a generic
classifier at handling samples with differing pose. This approach
is embraced in [8], where several SVM classifiers are trained
across different subsets of the gallery for each pose combination
to create a pose-adaptive classification system. Similarly, the
top performing algorithm on the LFW unrestricted set [29] uses
a probabilistic model based on the observation that features
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Fig. 2: Recognition accuracy of algorithms on LFW. Horizontal axis is year of publication; some cluttered years are slightly
separated along the horizontal axis for clarity. “Side-info” refers to algorithms that use outside data in the recognition system
beyond feature extraction/alignment. Even for “pair matching,” pure metric algorithms are not very competitive. Numbers inside
each point correspond to bibliography entries. A table of raw scores is shown in Table I

extracted from an image can change with respect to irrelevant
variables such as pose, expression, and illumination, which
may dwarf the variation created by the actual change in identity
in the image pair [29]. A perfect metric system must filter out
such unwanted variation completely, which is impossible if all
variables can influence score distances.

Year Accuracy Metric? Citation
2010 74.70% No [28]
2012 74.50% No [56]
2010 73.95% ± 1.13% No [24]
2012 73.70% Yes [20]
2012 73.09% No [38]
2008 73.00% No [4]
2008 72.00% No [46]
2007 70.40% ± 0.70% No [6]
2009 70.00% No [14]
2011 68.60% No [34]
2009 67.00% No [57]
2009 65.00% No [15]
2008 65.00% Yes [4]
2007 63.20% No [13]
2008 61.00% Yes [21]
2012 61.00% Yes [20]
2006 59.05% ± 0.56% No [62]
2012 52.20% Yes [20]
2006 51.00% No [35]

TABLE II: A table of accuracy of results on Caltech 101, for
15 training samples.

IV. Meta-Analysis of Algs. for Caltech 101

Our second case study examines the Caltech 101 data set [12].
Whereas LFW is ideal for analyzing pair matching algorithms,
Caltech 101 is the most well known object recognition set
for identification and search scenarios, making it a useful
subject of study for these other classes of recognition. We
performed a meta-analysis of the top performing algorithms
using the most possible training samples (30), as well as those
that used 15 training samples. To avoid confirmation bias, we
report on the results of work organized by Lim [30] for the 30
training samples as well as the algorithms compared in Yang et
al. [56] and Jain et al. [20]. We also report results for the top
performing algorithms utilizing 15 training samples, as listed
by Lim [30]. Like our analysis of LFW, we can draw some
interesting conclusions by considering the plots in Fig. 3.

Notably, there is a general absence of metric methods in
Fig. 3. For the algorithms making use of 30 training samples,
only [21] & [10] are metric—and they rank 23rd and 25th
on the top results [30]. The top 22 algorithms for 30 training
samples are non-metric. For 15 training samples, although
several non-metric algorithms [24], [28], [56] do outperform
it, the technique of Jain et al. [20] is metric and performs
well. Specifically, Eq. 6 in [20] is the matching function
that corresponds to R in Def. 1, which is metric when the
chosen kernel function κ0(x, y) is metric. However, the lack of
metric approaches with larger amounts of training data suggests
that good performance is achieved by exploiting relationships
beyond pairs of samples. A common strategy for Caltech 101
is to learn a model for multiple classes (often using an SVM
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Fig. 3: Recognition accuracy of algorithms on Caltech 101, with 15 training images on the top plot and 30 on the bottom plot.
The horizontal axis is year of publication; some cluttered years are slightly separated along the horizontal axis for clarity. Note
the metric algorithms are generally not as accurate, but are more competitive when fewer images can be used for training.
Numbers inside each point correspond to bibliography entries. Note that because not all algorithms reported error bars, we do
not show any error bars in this plot. A table of raw scores is available in Table II for 15 samples and Table III for 30 samples.

with a non-metric kernel) in a 1-vs-All configuration, which
violates the constraint of symmetry.

Analyzing a couple of specific cases that approach the
problem from a metric perspective, we again find clear
violations of metric assumptions. Instead of learning a global
distance metric, the technique of Frome et al. [13] learns a
local distance measure for every feature vector in Xc for all
classes c (resulting in a set of assumptions φM(X1, . . . , Xm) that
help build Mc) using sets of image triplets incorporating a
reference image, matching image, and non-matching image.
This approach is clearly non-metric because it intentionally
maintains asymmetry; Sec. 3 of [13] states “Let f j,m be the mth
feature vector from image j. We assume a basic asymmetric
distance from a single feature vector f j,m from one image to
the set of features Fi from another.” The asymmetry is inherent
in computing distance within image triplets that are specific to
each reference image f j,m.

As another example, Yang et al. [56] refer to kernel metrics
throughout their article and while they do use kernel metrics
to build models, the overall recognition system is non-metric
at a structural level. Like the algorithm of Frome et al. [13],
this approach makes use of data dependent local models of
groups, as opposed to global models over all of the training
data. Relating this back to Def. 1, R includes group-sensitive
kernel weights βg

i (Sec. IV.A.3 of [56]) as part of its matching-

specific assumptions φR(g) = {β
g
i , . . . , β

g
M}, where M is the total

number of kernels, and g is a specific group. Asymmetry is
again inherent in this formulation – by changing the selected
group g, there is no guarantee that different weights will yield
the same classification result.

V. Experimental Results
To gain a sense of how often the metric conditions are

violated by good algorithms on pair matching tasks that appear
to be metric in form, we conducted a series of experiments.
Here we consider three different algorithms applied to data from
LFW. The first algorithm is the “Tom-vs-Pete” classification
approach of Berg and Belhumeur [1], which learns a large
set of identity classifiers, each trained over images for just
two people. As of this writing, the “Tom-vs-Pete” algorithm
is the best algorithm on the LFW Image-Restricted Training
protocol. The second algorithm is the “Multi-Attribute Spaces”
approach of Scheirer et al. [41], where the statistical extreme
value theory is leveraged to normalize scores across large sets
of attribute classifiers for recognition tasks. The third algorithm
is the “Probabilistic LDA” approach of Li et al. [29], which
uses a probabilistic generative model to determine if two faces
have the same underlying identity cause. It is the best algorithm
on the LFW Unrestricted Training protocol [19].

Violations of the triangle inequality are subtle, requiring
us to perform a large-scale search of the LFW image space.
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Year Accuracy Metric? Citation
2009 84.30% No [55]
2010 81.90% No [28]
2008 81.90% No [46]
2007 81.30% ± 0.80% No [6]
2012 80.02% ± 0.36% No [38]
2008 79.23% No [4]
2009 78.20% ± 0.40% No [51]
2007 77.80% ± 0.80% No [5]
2009 77.80% ± 0.40% No [14]
2011 77.78% ± 0.56% No [9]
2011 77.50% No [2]
2012 77.20% No [26]
2010 76.40% ± 0.70% No [3]
2011 76.00% ± 0.90% No [34]
2010 75.70% ± 0.90% No [7]
2012 75.30% ± 0.70% No [23]
2011 75.00% ± 0.80% No [31]
2010 73.44% No [52]
2009 73.20% No [57]
2009 73.14% No [61]
2009 73.10% No [15]
2011 72.60% Yes [10]
2008 70.38% No [32]
2008 69.60% Yes [21]

TABLE III: A table of accuracy of results on Caltech 101,
for 30 training samples.
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Fig. 4: Results showing the violations of the triangle inequality
for three recent face recognition algorithms [1], [29], [41]
applied over triplets of images drawn from the LFW [18] data
set. Note that in some cases, it does not take a large sampling
of triplets to find violations (PLDA), while in other cases, the
occurrences are rare (Tom-vs-Pete), requiring a much larger
evaluation.

Triplets of images, such as the one shown in Fig. 1, are
generated by sampling image combinations from the LFW
set, including cases where matches and non-matches occur.
Using each algorithm, we calculated the match score for each
unique image pair in the triplet, and then checked if the scores
satisfied the triangle inequality. To ensure a proper evaluation of
distance, the scores s1, . . . , sn from the algorithms are processed
with a simple transform T that forces a “smaller is better”
result: T (si) = s` − si, where s` is the largest score in the
set {s1, . . . , sn}. We were able to find multiple violations for
each algorithm, which is highlighted in Fig. 4. Note that the
frequency of violations is a function of the algorithm. In some
cases, it does not take a large sampling of triplets to find
violations (PLDA), while in other cases, the occurrences are
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Fig. 5: Violations in symmetry for the Multi-Attribute Spaces
algorithm [41] applied over the Image-Restricted Training
Protocol of LFW. For each image pair, we calculated the
score for image A matching against image B, and vice versa. If
the scores subtracted from one another do not equal 0, they are
considered a violation. Here we see all instances of violation,
organized by value of difference.

quite rare (Tom-vs-Pete), requiring a much larger evaluation.
Understanding why these violations occur in a seemingly

metric scenario is important. Similar to the MkNN algorithm
discussed in Sec. III, the Multi-Attribute Spaces algorithm
makes use of a local neighborhood of scores around one
particular image (bounded from below by a parameter α,
and from above by β) during a match, in order to build a
good model for its normalization [41]. Thus, if image x , y,
symmetry is violated in the general case: φM(αx, βx) ⊆ {∀s ∈
R : αx ≤ s ≤ βx} , φM(αy, βy) ⊆ {∀s ∈ R : αy ≤ s ≤ βy}.
Fig. 5 shows the prevalence of symmetry violations in the
Image Restricted Training protocol of LFW. This also means
there is no guarantee that the triangle inequality will be
satisfied: the local neighborhood considered when matching
(x, y) & (x, z) will differ from (y, z), often resulting in sets
of distances that cause a violation. Even under the weaker
constraints of quasimetrics and semimetrics, the algorithm
still does not satisfy what is necessary to be considered
either. Since the Multi-Attribute Spaces algorithm intentionally
exploits similarity around single image targets, it is unclear
what advantage, if any, would be provided by enforcing the
constraints of symmetry and the triangle inequality.

VI. Discussion

Our meta-analysis, which often required digging very deeply
into papers that at first glance had titles and terminology
suggesting a metric algorithm, revealed that many such cases
are in fact non-metric in their final scoring. Def. 1 and a
clear specification of where to test for metric properties should
help resolve such ambiguity going forward. In some of the
truly metric cases, we cannot actually tell if enforcing metric
properties helped or hurt performance. When approaching
recognition, it is important that we understand what leads
to improvement, and what is tangential.

During the course of this work, we found that some problems
and their corresponding solutions do not even have the structural
form necessary to be metric – they compare input features to
more complex models. Similar observations have been made.
In [4] it is proved “that under the Naive-Bayes assumption,
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the optimal distance to use in image classification is the
KL “Image-to-Class” distance, and not the commonly used
“Image-to-Image” distribution distances.” Moreover, even for
the restricted recognition problem of matched pairs, which
at least initially looks as if it is metric, the best performing
algorithms have a model for “matched pairs” that is non-
metric. Metric properties allow some powerful mathematical
machinery to be employed and, with effort, any recognition
problem’s solution can be “made” metric – the real question is if
employing metric constraints improves recognition performance.
Our meta-analysis and experimental analysis of top-performing
algorithms show violations of symmetry for some and violations
of the triangle inequality for others. With so many cases where
performance improves as metric conditions are relaxed, we
conclude that, in general, good recognition is non-metric.

However, this paper should not be interpreted as suggesting
that metrics have no role in computer vision or that metric
learning is not useful for recognition. On the contrary, our
analysis has shown that metric learning has provided interest-
ing first cut solutions. Furthermore, many good recognition
algorithms use local metrics as the core of an overall non-
metric algorithm. Learning metrics, at least locally, appears to
be an effective way to incorporate various type of constraints.
In many cases, the original feature space (Eq. 1) is transformed
into another locally normalized/metric feature space, before
combining data, yielding a non-metric but effective scoring
process.

One observation, which can be exploited in other vision work,
is why we believe the problem is inherently non-metric. General
recognition problems need to capture and model the uncertainty
in the data and in the class definitions. They must handle local
variations in features, in sample density and in labeling. If, as
is true in the general setting, the data is not uniformly sampled
with uniform error, good recognition algorithms develop local
distance measures in a way that may result in asymmetric
measures and/or measures that violate the triangle inequality.
Thus, even if one chooses to use local metric learning to
help normalize the data, one should also look for models
that integrate multiple sources of information (including side-
information and other assumptions) and use them to model the
regional variations and errors.

A good metric-based recognition algorithm would need
to have approximately uniform error. If its “learning” could
transform an inherently non-uniform biased sampling and errors
into a single representation with uniform errors, it would
provide a near perfect “whitening” filter correcting the per-class
biases and errors. While it is true that in the limit, assuming
i.i.d. samples, a metric + nearest neighbor classification has
an error rate no more than twice the Bayes error rate, we note
that “in the limit’ the infinite i.i.d. sampling requirement is
effectively removing any sampling bias and providing uniform
error. Most recognition problems do not have the luxury of i.i.d.
sampling nor can they wait for the limit of infinite samples.
Thus we believe it is important that computer vision researchers
develop robust features and models of uncertainty/error to
design more effective recognition algorithms. Finally, we should
not stray far from the observations of Tversky, who states that
metrics, “which enhance the interpretability and appeal of

spacial representations, cannot always be accepted as valid
principles of psychological similarity” [48].
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