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Abstract

The waterfall transform is a hierarchical segmentation technique based on the
watershed transform from the field of mathematical morphology. Watershed-
based techniques are useful in numerous fields ranging from image segmenta-
tion to cell-and-portal generation for games. The waterfall helps mitigate the
problem of over-segmentation that commonly occurs when applying the basic
watershed transform. It can also be used as a core part of a method for con-
structing image partition forests, a tree-based, multi-scale representation of an
image. The best existing method for the waterfall is fast and effective, but our
experience has been that it is not as straightforward to implement as might be
desired. Furthermore, it does not deal consistently with the issue of non-minimal
plateaux. This paper therefore proposes two new tree-based methods for the
waterfall. Both are easier to implement than the existing state-of-the-art, and
in our implementations were both faster by a constant factor. The Simplified
Waterfall (SW) method focuses on simplicity and ease of implementation; the
Balanced Waterfall (BW) method focuses on robust handling of non-minimal
plateaux. We perform experiments on both 2D and 3D images to contrast the
new methods with each other and with the existing state-of-the-art, and show
that both achieve a noticeable speed-up whilst producing similar results.
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1. Introduction

The waterfall transform is a hierarchical segmentation technique based on
the well-known watershed transform [1, 2]. Given an entity (most commonly,
an image), it produces a stack of nested partitions of the entity at different
scales (see Figure 1). It was originally introduced by Beucher [3] as a way
of improving upon the often over-segmented output of the watershed (see §2).
Watershed-based techniques see use in numerous fields, including image seg-
mentation [4, 5, 6, 7, 8, 9, 10, 11], 3D mesh segmentation [12, 13, 14], automatic
navigation mesh generation [15], cell-and-portal generation [16] and roadmap
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Figure 1: A stack of nested partitions produced by the watershed and waterfall for an example
image. The input image (a slice from a CT scan of the abdomen) is the lowest image in the
stack. It was subjected to a gradient magnitude filter and smoothed using anisotropic diffusion
filtering [21] before performing the watershed.

generation [17]. It is also possible (e.g. see [18]) to make use of the water-
shed and waterfall transforms to construct image partition forests (IPFs), a
tree-based representation of an image created by treating each partition as an
adjacency graph (with image regions as nodes) and adding parent/child links
between nodes in consecutive partitions. This representation is useful for feature
identification in that it provides a helpful space in which to search for image
features of different sizes.

There are various existing ways of implementing the waterfall. The initial
paper by Beucher [3] presented three methods: a slightly intricate graph-based
method that works on the gradient of the mosaic image, a method based on
checking for symmetric waterfalls, and a more efficient reconstruction method
that works by filling in catchment basins. A fast waterfall method was presented
by Marcotegui in [19]: this returns to the idea of a graph-based waterfall (using a
different graph) and works on a minimum spanning tree (MST) of the graph for
improved efficiency. Marcotegui’s waterfall method is fast and effective, but it
is somewhat fiddly to implement [20] and its handling of non-minimal plateaux
in the MST is not well-specified and depends on precisely how the method is
implemented.

This paper therefore presents two new tree-based methods for the water-
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fall. The Simplified Waterfall (SW) method is especially simple to implement
and performs well, even though it does not deal consistently with non-minimal
plateaux. The Balanced Waterfall (BW) method is somewhat harder to imple-
ment (although still easier to implement than Marcotegui’s method) but deals
consistently with non-minimal plateaux. We perform experiments to contrast
the results of these methods with those of Marcotegui’s approach, and time
them to compare their performance.

This paper is organised as follows: in §2, we briefly review the watershed
and waterfall transforms and take a detailed look at Marcotegui’s approach to
the waterfall; in §3 and §4, we present our new waterfall methods; in §5, we
perform experiments on both 2D and 3D images to contrast our new methods
with Marcotegui’s approach; and in §6, we discuss the results of our experiments.

2. Background

2.1. The Watershed Transform

At a very abstract level, the watershed transform involves dividing a land-
scape into its catchment basins, where a catchment basin is an area of the land-
scape from which water runs down to the same point (namely one of the land-
scape’s local minima). A watershed is a boundary between adjacent catchment
basins. In each domain in which the watershed transform is used, a conceptual
mapping needs to be made to allow the entity being segmented to be viewed as
a landscape: for example, 2D greyscale images can be viewed as a height map,
where the grey value of the image at coordinates (x, y) gives the height of the
‘landscape’ at that point. In order to produce meaningful segmentations, the
watershed is often performed on the gradient magnitude of an input landscape,
on the basis that in many domains, features of interest can be expected to have
similar heights throughout their extent. Methods that implement the watershed
transform fall into two categories:

1. Rainfalling methods [22, 23, 24] work by finding a path of steepest descent
from each point in the landscape and following it until a local minimum
is found (see Figure 2). Most of the difficulty involved in this approach
is associated with how to handle non-minimal plateaux in the landscape
(flat areas that are not the base of a catchment basin).

2. Flooding (or immersion) methods [25, 26] simulate a process of flooding
from all the local minima simultaneously and conceptually add watersheds
where the pools of water from adjacent catchment basins meet. The flood-
ing process can be visualised as taking the landscape surface, poking holes
through its local minima and lowering it perpendicularly into a body of
water (see Figure 3).

Image-based watershed methods produce a partition of their input into regions
(see Figure 4). This can then be used for further processing.

2.2. The Waterfall Transform

In contexts where its input is not smooth, the watershed has a well-known
tendency to produce an over-segmented output (again, see Figure 4). This is
due to the presence of large numbers of spurious local minima in the input –
in conceptual terms, we are effectively segmenting a pock-marked landscape. A
wide variety of approaches exist to mitigate this problem:
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(a) (b)

Figure 2: The rainfalling concept of the watershed transform: (a) finding a path of steepest
descent from each point; (b) the division of the landscape into catchment basins.

(a) (b) (c) (d)

Figure 3: The flooding concept of the watershed transform: (a) beginning the flooding; (b)
two catchment basins meet; (c) building a watershed at the join point; (d) the division of the
landscape into catchment basins.

(a) The input image (b) The watershed of the (gradient
magnitude of the) image

Figure 4: The effects of the watershed transform. Note that the output is heavily over-
segmented because the input is not smooth.
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• Pre-processing methods [27, 28, 29, 30, 31, 32] transform the input to
the watershed to reduce the number of spurious local minima. Various
authors achieve this using noise reduction techniques, e.g. anisotropic dif-
fusion filtering [21], Gaussian blurring, median filtering or variants of the
wavelet transform [27]. Noise reduction is rarely enough to actually solve
the problem on its own, but is often a helpful pre-cursor to applying hierar-
chical segmentation approaches – note that this was done when producing
Figure 1, which is why the lowest partition of the image appears less over-
segmented there than in Figure 4. Other authors make use of different
definitions of the gradient that give greater weight to the main edges in
the image, e.g. [28] uses the topological gradient. Another popular ap-
proach is watershed-from-markers [29], whereby the input is segmented
into catchment basins associated with a fixed set of markers rather than
with all of its local minima. Manual marker specification can directly
tackle the oversegmentation problem by effectively specifying the desired
number of output regions, but imposes a significant input burden on the
user. As an alternative, various ways of automatically generating markers
have been devised, e.g. [30] describes two approaches based on quadtrees
and centroidal Voronoi diagrams and [31] describes an approach that gen-
erates markers by clustering the output regions of an initial, unconstrained
watershed. Lotufo et al. [32] describe an algorithm that implicitly raises
the image by a fixed amount, erodes it to remove insignificant minima
(those whose catchment basins would have a smaller depth than the rais-
ing amount) and then passes the result (known as a morphological sup-
reconstruction of the original image) through a normal watershed.

• Post-processing methods [33, 34, 35, 36, 37, 38] directly reduce overseg-
mentation by merging together some of the regions output by the wa-
tershed, e.g. [36] describes a statistical approach to merging regions, [37]
groups similar regions using the composition of fuzzy relations and [38]
merges regions using graph cuts. Bieniecki [33] describes a hybrid method
that classifies the input image using a k-nearest neighbour approach and
then removes watershed boundaries whose pixels all have the same class.
Some post-processing methods (including, as we will see, the waterfall
transform) merge regions in the output iteratively so as to construct a
hierarchy of partitions of the input image. This does not reduce the over-
segmentation of the lowest partition, but means instead that higher par-
titions may contain regions that are useful for later processing, e.g. fea-
ture identification. (An interesting comparison can be drawn here with
Felzenszwalb’s algorithm [39], a non-watershed approach that works by
iteratively merging pairs of regions whose mutual difference is small com-
pared to the amounts by which they differ internally. This is designed
to run on a graph of the input image itself rather than the output of an
initial watershed, and it takes more account of the internal properties of
regions than the waterfall, but in many other ways the two share much in
common.)

The waterfall transform itself is a multi-pass, hierarchical post-processing method
for the watershed. Its hierarchical nature is an advantage for the purposes of
later feature identification, because the hierarchy it produces provides a help-
ful space in which to search for image features at different scales. As shown
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(a) (b)

(c) (d)

(e)

Figure 5: A conceptual view of the waterfall transform: (a) the initial partition output by
the watershed; (b) after transforming it into a stepped landscape; (c) after performing a
watershed transform on the stepped landscape; (d) after the second step transformation; (e)
after performing another watershed transform.

in Figure 1, it generates a sequence of partitions of a landscape, each coarser
(i.e. containing fewer regions) than the one preceding it. Conceptually, each
pass of the waterfall takes its input partition (Figure 5(a)) and transforms it
into a ‘stepped’ landscape, where there is a step corresponding to each wa-
tershed boundary, with the height of a lowest pass point along that boundary
(Figure 5(b)). It then performs a watershed transform on this stepped landscape
and outputs a coarser partition of the landscape as its result (Figure 5(c)). This
process can be repeated as long as the most recent partition has more than one
catchment basin (Figures 5(d) and (e)).

2.3. Marcotegui’s Method

Whilst it is possible to perform the waterfall using the conceptual approach
just described, repeatedly transforming the landscape can potentially be costly
– e.g. image-based methods for the waterfall have to process all of the pixels
in each region rather than just processing the region itself. This militates for
alternative approaches to the waterfall based on graphs – these can be more
efficient because an entire region can be represented by a single node.

Marcotegui’s method [19] is a fast and effective example of such an approach.
It works on a minimum spanning tree (MST) of the (weighted) region adjacency
graph (RAG) of its input partition3. The nodes of this graph correspond to
regions in the input partition; its edges join adjacent nodes, and each edge is
weighted with the height of a lowest pass point on the boundary between the

6



nodes it joins.
At the start of Marcotegui’s method, the first input partition (produced from

the gradient magnitude of the input using the watershed transform) is converted
into its RAG representation and an MST is built from the RAG (see §A.2 of
[18] for implementation details). This MST is then subjected to a sequence of
waterfall passes. Each waterfall pass performs a flooding-based watershed on
the MST to decide which regions should be merged and contracts appropriate
edges in the MST to effect this (contracting an edge means combining the nodes
at either end of the edge and removing the edge itself from the MST)4. In detail,
this involves the following steps:

1. Determination of the local minima of the MST. A local minimum of a
weighted graph G is a connected subgraph of G whose edges have equal
weight and whose adjacent edges in G have strictly higher weights. Fig-
ure 6(a) shows an example graph and its local minima. Algorithmically,
we iterate over the edges in the MST and flood out from each one to de-
termine (i) whether it’s part of a local minimum and (ii) the extent of the
minimum if so.

2. Contraction of the local minima. This is equivalent to merging minimal
plateaux in a landscape into single points to which water runs down. See
Figure 6(b). For clarity, we represent contraction in the figures by as-
signing the nodes at the ends of a contracted edge the same colour/shape
rather than removing the edge itself.

3. Propagation. We flood out from the nodes that now represent the local
minima (‘marker nodes’) along the edges, in non-decreasing order of edge
weight, starting from the edges directly adjacent to the marker nodes.
Each edge will either join a marker to another marker, in which case
it should be ignored (since contracting it would merge two catchment
basins), or it will join a marker to a non-marker, in which case it should
be contracted. See Figure 7.

It is important to note that the order in which edges should be processed during
the propagation step is not well-defined (note that multiple edges can have
the same weight and thus be candidates for contraction simultaneously). A
straightforward implementation of the propagation step would use a priority
queue and pop a lowest adjacent edge for consideration each time: thus the next
edge to be considered ends up depending fundamentally on the way the priority
queue is implemented. The consequence of this is that non-minimal plateaux
in the MST are handled in a rather arbitrary way. This is not necessarily a
problem in practice – there tend to be only a small number of non-minimal
plateaux in most realistic MSTs, so it doesn’t seriously affect the end result –
but it still seems undesirable to have the segmentation output depend so closely
on the implementation of an internal data structure which may in principle be
subject to change. This issue is dealt with in §4.

3The justification for why an MST is sufficient can be found in [19].
4It should be noted that the use of edge contraction to merge regions in graph-based

image segmentation algorithms is a ubiquitous technique that is by no means restricted to
the waterfall (e.g. see [40]), since it is more efficient to simply merge together two nodes in a
graph than to combine the two regions they represent by e.g. unioning sets of pixels.
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(a) (b)

Figure 6: Finding and contracting a graph’s local minima for Marcotegui’s method: (a) the
graph from [19] and its local minima (drawn in red/dashed); (b) contracting the local minima
(the edges to be contracted are drawn in blue/dotted).

(a) Initial state (b) Contract the 3 edge (c) Contract a 4 edge

(d) Contract another 4 edge (e) Contract the 5 edge (f) Contract another 5 edge

Figure 7: The propagation step of Marcotegui’s method, illustrated on the graph in [19]:
blue/dotted edges have already been contracted, green/dashed edges are under consideration,
and red/bold edges will not be contracted.
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3. The Simplified Waterfall (SW) Method

Despite the speed and effectiveness of Marcotegui’s method, it can be some-
what intricate to implement [20] because it is defined as a general graph method
even though it operates on a tree. A simpler, tree-based method can be devised
by observing that if an edge is not contracted by a waterfall pass, it is because
it is a highest edge separating two adjacent catchment basins (alternatively, it
is a highest edge on the MST path between two adjacent local minima in the
MST). Instead of explicitly finding the local minima in the graph and flooding
out from them, it therefore suffices to root the MST somewhere and then work
recursively up from the bottom of the tree, carefully maintaining a highest edge
(‘guard edge’) guarding each local minimum encountered on the way.

The Simplified Waterfall (SW) method initially roots the MST (see Fig-
ure 8), adding a dummy ‘root edge’ with a weight strictly greater than the
weights of the edges descending from the root node (we will henceforth – with-
out ambiguity – call edges descending from a node children of the edge ascending
from that node). The weight chosen is unimportant, but ∞ or 1 greater than
the maximum weight on a child edge are sensible choices (we use ∞ here for
clarity of presentation).

To specify the method, let T = (N,E) be the rooted MST on which the
method is to operate, with node set N = (ni) and edge set E = {(np, nc)} such
that np is the parent of nc. We define C(e) to be the children of edge e in some
unspecified but fixed order, i.e.

C(e) = (c1, ..., ck) = ((nc, n
′) ∈ E | e = (np, nc))

Each edge e has an immutable weight w(e) ∈ N+ and a mutable flag f(e) ∈
{G,NG}, where f(e) = G denotes that e is a guard edge and f(e) = NG denotes
that it is a non-guard. The root edge is denoted er and satisfies w(er) =∞, as
mentioned above.

Each pass of the method is then invoked on er and proceeds recursively as
follows (in which we denote the current edge, initially er, as e):

1. If e is a leaf edge (i.e. C(e) = ∅), then it is marked as a non-guard edge
(i.e. f(e)← NG).

2. Otherwise:

(a) We recurse on all the children of e (i.e. the edges in C(e)).
(b) A child edge cmin with minimum weight is chosen (if one or more of

the children with minimum weight is a guard edge, one of those is
chosen in preference to a non-guard). Formally, let SC(e) be a possi-
ble result of sorting C(e) first by weight (in non-decreasing order) and
then by flag (G before NG), and let π1, ..., πk be the corresponding
permutation of 1, ..., k, i.e.

SC(e) = (cπ1 , ..., cπk
)

Then cmin is chosen to be cπ1
. Note that cmin is not uniquely specified

because there may be more than one possible way of sorting C(e) to
produce SC(e).

(c) There are now two possibilities. If w(e) ≤ w(cmin)5, i.e. the current
edge e = (np, nc) is one of the lowest edges leading out of its child
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(a) Before rooting the MST (b) After rooting it

Figure 8: The SW method starts by picking a node at which to root the MST

(a) The considered edge is a lowest edge

(b) The considered edge is not a lowest edge

Figure 9: Case analysis for step 2(c) of the SW method: black edges are non-guards, red/bold
edges are guards, blue/dotted edges are those which have been contracted and the green/-
dashed edge is e = (np, nc), the edge under active consideration. The arrow (on the node nc)
indicates the direction in which the method presumes water to flow.
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(a) Level 7 (b) Level 6 (c) Level 5 (d) Level 4

(e) Level 3 (f) Level 2 (g) Level 1 (h) Result

Figure 10: The SW method in action (considering all the edges in each level at a time for
space reasons): black edges are non-guards, red/bold edges are guards, blue/dotted edges are
those which have been contracted and green/dashed edges are ones under active consideration.
Note that in this example, the SW method’s treatment of non-minimal plateaux has resulted
in a 5 edge being retained when it would have been contracted by Marcotegui’s method.
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node nc, then at least part of the implied flow from nc is along e (see
Figure 9(a)), in which case we mark e as a non-guard edge (i.e. f(e)←
NG). Conversely, if w(e) > w(cmin) then none of the implied flow
from the node is along e and at least part of it is along cmin (see
Figure 9(b)), in which case we mark e as a guard (i.e. f(e)← G) and
cmin as a non-guard (i.e. f(cmin) ← NG). Note that in both cases,
the method arbitrarily assumes that all of the implied flow is along
a single edge leading out of nc, even though there may be multiple
edges leading out of nc that share the same lowest weight.

(d) All non-guard children (i.e. {c ∈ C(e) | f(c) = NG}) are then con-
tracted.

Figure 10 illustrates how the method works on the same graph used to illus-
trate Marcotegui’s method above (particular attention is drawn to the handling
of the non-minimal plateau containing two edges with weight 5). The assump-
tion that all of the implied flow from a node is along a single edge is this
method’s way of dealing with non-minimal plateaux in the MST. As with the
Marcotegui method’s dependence on a priority queue implementation, this is
a slightly arbitrary way of handling non-minimal plateaux: in particular, the
selected direction of implied flow from a particular node depends on both where
the MST is rooted and the way in which C(e) is sorted when choosing cmin.
All of this affects which specific edges are contracted. As with Marcotegui’s
method, this tends not to significantly degrade the end result, but it still in
principle seems desirable to devise a method that does not depend on such
implementation details. In the following section, we therefore present an aler-
native tree-based method that handles non-minimal plateaux in the MST more
robustly.

4. The Balanced Waterfall (BW) Method

In order to account for non-minimal plateaux in the MST, we adopt an idea
from Meijster and Roedink’s image watershed algorithm [22]: if we transform the
landscape to make it ‘lower-complete’ (that is, we transform it into a landscape
in which there is a unique path of steepest descent from each point), then the
direction of flow is clear at every point and there is no ambiguity about how to
assign non-minimal plateau points to catchment basins. The method for making
the image lower-complete described in [22] has the effect of treating pixels that
are further from the border of a plateau as being in some sense ‘higher’ than
those on the boundary. The same sort of idea can be applied in the context of
a waterfall pass (although it is not necessary to actually transform the MST to
make it lower-complete): where there are non-minimal plateaux in the MST,
we can arrange to treat the nodes further from the border of the plateaux as
being ‘higher’ than their boundary counterparts. As we will see, this enables a
robust decision to be made about which edges to contract.

5As an interesting aside, we also investigated the use of the condition w(e) < w(cmin) here
as an alternative. This leads to a different version of the Simplified Waterfall that is in general
less robust in its treatment of non-minimal plateaux than the version described in this paper.
We focus on the primary version here since it yields more reliable results.

12



The Balanced Waterfall (BW) method is a tree-based, rainfalling approach
and works in three recursive sub-passes. The first sub-pass works up the tree
from the leaf nodes, marking initial path(s) of steepest descent from each node
whilst allowing for the fact that they may need to be refined later. The second
sub-pass works down the tree from the root, updating the path(s) for each
node to take account of routes via parent edges and marking edges for later
contraction as necessary. The final sub-pass works up the tree again to actually
contract the marked edges (this cannot be done on a down pass for technical
reasons). The MST can be rooted anywhere in order to form the input tree –
the results are the same for any choice of root.

To specify the method, let T = (N,E) again be the rooted MST on which the
method is to operate (this time without the dummy root edge added by the SW
method). We define CN (n) to be the child nodes of node n, i.e. {nc | ∃(n, nc) ∈
E}, CE(n) to be the child edges of n, i.e. {(n, nc) | nc ∈ CN (n)} and pN (n) and
pE(n) to be the corresponding parent functions, e.g. nc ∈ CN (n)⇔ n = pN (nc).
Edges have immutable weights in N+, as for the previous method. Each node
n has a distance value d(n), a set of arrows A(n) (each element of which is
a node n′ indicating an arrow from n to n′) and a flag checkParent(n) (false
by default), indicating whether or not to check for an upwards route from n
in step 2 of the method. We additionally define the following helper func-
tions: adjacentEdges(n) determines the set of edges that have n as an endpoint,
farEnd(e, n) determines the node at the far end of edge e from node n, and
reverseArrow(e, n) determines whether or not there is an arrow on the node at
the far end of e from n that points towards n, i.e. n ∈ A(farEnd(e, n)). For
brevity, we also define a function farEnds(E′, n) that maps farEnd over the
edge set E′.

For each waterfall pass, the three sub-passes of the method are invoked
sequentially on the root node nr of T as follows (in which we consistently denote
the current node, initially nr for each sub-pass, as n):

1. Up Sub-Pass.

(a) We recursively process any children of the node (i.e. any nodes in
CN (n)). The fact that the children are processed first is why this is
called an ‘up’ sub-pass.

(b) If n has a unique edge of steepest descent (i.e. a unique lowest-
weighted edge leading out of it, which can be the parent edge), add
an arrow on the node pointing along the edge (see Figures 11(a) and
(b)). Formally, we define a set containing the lowest-weighted edges
leading out of n:

steepestEdges(n) = argmin{w(e) | e ∈ adjacentEdges(n)}

Then if steepestEdges(n) = {e}, we set A(n) to be {farEnd(e, n)}.
(c) Otherwise, consider all the lowest-weighted child edges (i.e. ignore

the parent for now, even if it is also a lowest-weighted edge) that
satisfy the condition that there is no arrow on the node at the other
end of the edge pointing along the edge towards n. Formally, we
define the set escapableChildEdges(n) of such edges as:

{e ∈ steepestEdges(n)\{pE(n)} | ¬reverseArrow(e, n)}
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Case analysis for the first sub-pass of the BW method: (a) the node has a unique
path of steepest descent down a child edge; (b) the node has a unique path of steepest descent
up the parent edge; (c) there is no flow out of the node; (d) there is no downwards flow out of
the node (but the parent edge still needs to be considered); (e) the node has more than one
path of steepest descent (and the parent edge is not one of them); (f) the node has more than
one downwards path of steepest descent (but the parent edge still needs to be considered).

If there are no such child edges (i.e. escapableChildEdges(n) = ∅),
then n is unescapable along a child edge and its distance value d(n)
should be set to∞ (see Figures 11(c) and (d)). Otherwise, we assign
to each edge e ∈ escapableChildEdges(n) a temporary distance value
d′(e) = 1 + d(farEnd(e, n)), i.e. a value 1 greater than the value on
the node at the other end of the edge. (The value on the far node will
be 0 for nodes from which there is a unique path of steepest descent,
and non-zero otherwise.) We pick all the escapable child edges whose
distance value is minimal and add arrows from n pointing along them
(these indicate the initial paths of steepest descent from n). We also
store the minimum distance value as d(n) (see Figures 11(e) and (f)).
Formally, we write

A(n)← farEnds(argmin{d′(e) | e ∈ escapableChildEdges(n)}, n)

14



(a) The arrow from the parent
node points towards us

(b) There is a better route via the parent
node

(c) There is an equally good route via the
parent node

(d) There is no flow from the
parent node

Figure 12: Case analysis for step 2(a) of the BW method (the circled node is the one currently
under consideration in each case)

and
d(n)← min{d′(e) | e ∈ escapableChildEdges(n)}.

(d) Finally, if the parent edge of n was a lowest-weighted edge (i.e. pE(n) ∈
steepestEdges(n)), then we set checkParent(n) to true to mark the
parent edge as a potential path of steepest descent for further pro-
cessing in the second sub-pass (see Figures 11(d) and (f), in which
an open-headed arrow is used to mark the parent edge).

2. Down Sub-Pass.

(a) Check upwards route. If n was marked as having a potential upwards
path of steepest descent (i.e. checkParent(n) is true), we first check
whether or not there is an arrow on the parent node pN (n) pointing
down the edge to this node (given by reverseArrow(pE(n), n)). If
there is such an arrow (see Figure 12(a)), then n is unescapable via
its parent; otherwise, there is a possible route upwards with distance
value d′ = 1 + d(pN (n)). This is compared to the cost of the best
existing routes downwards from n via child edges (stored as d(n)).
If, as in Figure 12(b), the upwards route is strictly better (i.e. d′ <
d(n)), then it replaces the downwards routes (i.e. A(n) ← {pN (n)})
and we update the distance value on the node to reflect the better
route (i.e. d(n) ← d′). If, as in Figure 12(c), the upwards route is
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(a) UI/UI (b) UI/UO (c) UI/AO (d) UI/NF (e) NF/NF

(f) UO/UO (g) UO/AI (h) UO/AO (i) UO/NF

(j) AO/AI (k) AO/AO (l) NF/AI (m) NF/AO

Figure 13: Case analysis for step 2(b) of the BW method (a blue/dashed edge indicates that
the edge would be contracted; a red/solid edge indicates that it wouldn’t). The labels are AI
= ambiguously in, AO = ambiguously out, NF = no flow, UI = unambiguously in and UO =
unambiguously out.
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(a) The initial tree (b) After step 1 (c) After step 2

Figure 14: The BW method running on a real example: the arrows on the nodes indicate the
flow direction, blue/dashed edges are those that will be contracted and red/bold edges are
those that won’t be.

equally good (i.e. d′ = d(n)), the parent edge is marked (i.e. A(n)←
A(n)∪{pN (n)}) but no other changes are made. If the upwards route
is worse (i.e. d′ > d(n)), it is simply ignored. An extreme example
of this case, when there is no flow at all out of the parent node, is
shown in Figure 12(d).

(b) Check whether the parent edge pE(n) (if any) should be contracted.
The decision on whether or not to contract an edge is based on a
classification of its two end nodes with respect to the edge itself (this
is why it can only be done at this point in the method). Nodes
can be classified into one of five types with respect to the edge: un-
ambiguously in (the flow from the node goes only along this edge),
ambiguously in (part, but not all, of the flow from the node goes
along this edge), unambiguously out (the flow from the node goes
along precisely one of the other edges leading out of it), ambiguously
out (the flow from the node goes along at least two of the other edges
leading out of it) and no flow (there is no flow from the node at all).
Based on these classifications, the parent edge is either marked for
contraction or not according to the case analysis shown in Figure 13.
Note that there are only 13 cases possible, rather than the expected
15: {ambiguously in, ambiguously in} and {ambiguously in, unam-
biguously in} can never occur due to the way the method works.

(c) Recurse on any children.
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3. Up Sub-Pass. Walk back up the tree to contract the marked edges.

Figure 14 illustrates how the method works on the now familiar graph used to
demonstrate the workings of the previous two waterfall approaches.

5. Experiments

We implemented all three methods (Marcotegui, SW and BW) in millipede
[41], our software for 3D abdominal CT image segmentation, feature identifica-
tion and visualisation. The way in which we implemented Marcotegui’s method
in millipede was a refinement of our initial approach that we described in [20] –
in particular, the new implementation of the step that finds the local minima in
the MST uses the first two passes of the BW method as an edge classifier (the
local minima are those edges classified as either {unambiguously in, unambigu-
ously in}, {unambiguously in, no flow} or {no flow, no flow}). This is a more
efficient way of finding the local minima than the flooding approach described
in [20].

We performed three experiments to compare the methods: the first quanti-
fies the extent to which the results produced by the new methods are similar to
those produced by the existing state-of-the-art, the second investigates the per-
formance and scalability of the methods, and the third highlights the differences
in non-minimal plateaux behaviour between the methods.

5.1. Similarity of Results

In order to demonstrate that our new methods produce results that are simi-
lar to those of the existing state-of-the-art, we quantitatively compared the par-
tition hierarchies output by all three methods on the publicly-available dataset
of 151 images proposed by Gulshan et al. [42] (see Figure 15 for an example re-
sult). This dataset was chosen because it was of a suitable size and provided an
interesting variety of different images (it was originally compiled using images
from the GrabCut dataset [43], the PASCAL VOC’09 segmentation challenge
[44] and the alpha-matting dataset [45]). Since the images in the dataset are in
colour, we first converted them to greyscale using the ImageMagick [46] com-
mand6:

convert <colour filename> -separate -average <greyscale filename>

Each of the three methods was then used to produce a hierarchy of partitions
for each greyscale image. In each case, the gradient magnitude of the input
image was initially smoothed using anisotropic diffusion filtering [21] and the
first output partition was produced using our implementation of Meijster and
Roerdink’s watershed algorithm [22].

The partition hierarchies produced for each image were compared pairwise
by extending the global consistency error (GCE) measure proposed in [47] from
pairs of partitions to pairs of hierarchies. The original measure was specifically

6It bears noting in passing that there are many different ways of converting colour images
to greyscale. Whilst the choice makes little difference for our purposes here, we chose this
method, which computes (r + g + b)/3, because it is intuitive and avoids biasing the result in
favour of any particular colour channel.
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Figure 15: The results of the three waterfall methods for the sheep 2007 003593 image from
the dataset of Gulshan et al. [42]. Starting from the top, the rows show partitions 0, 2, 3, 4
and 5 of the image for each method (partition 1, i.e. the watershed result, is irrelevant and
therefore not shown). The first column shows the results of Marcotegui’s method, the second
column shows the results of the SW method and the third column shows the results of the
BW method. Note that the Marcotegui and BW results are closer to each other than to the
results of the SW method.

designed to compare partitions of the same image and be tolerant of one par-
tition refining the other (e.g. by splitting regions or merging them together),
so it is a good fit for comparing partitions at the same level output by the
various waterfall methods. We chose it over the local consistency error (LCE)
measure proposed in the same paper because it is a stricter test of similarity
and thus can be used to more effectively demonstrate the similar outputs of the
three waterfall methods. Both the GCE and the LCE produce a real number in
the range [0..1] signifying the extent to which the two compared partitions are
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‘similar’ (with 0 being ‘most similar’ and 1 being ‘most different’).
We initially follow [47] and define the GCE between partitions in terms of

the local refinement error at each pixel. Let S1 and S2 be two partitions of
the same input image I (with n pixels), and for any given pixel pi, let R(S,pi)
be the set of pixels corresponding to the region in partition S that contains pi.
The (directed) local refinement error E between partition S1 and partition S2

at pixel pi is then defined to be:

E(S1, S2,pi) =
|R(S1,pi)\R(S2,pi)|

|R(S1,pi)|

The GCE between partitions can be defined in terms of this as follows:

GCE(S1, S2) =
1

n
min

{∑
i

E(S1, S2,pi),
∑
i

E(S2, S1,pi)

}
To compare two waterfall partition hierarchies using the GCE, we compare the
corresponding partitions (excluding the input image and the initial partition
output by the watershed) at each level of the hierarchy using the partition-
based GCE and then seek to find a suitable way of summarising the pairwise
GCEs to produce a single similarity value for the two hierarchies. That is,
for two hierarchies H1 = (S1

0 , S
1
1 , ..., S

1
k1

) and H2 = (S2
0 , S

2
1 , ..., S

2
k2

), we want
to choose a suitable summarising operator Φ in the following definition of a
hierarchy-based GCE:

GCE(H1, H2) = Φ
min(k1,k2)
`=2 GCE(S1

` , S
2
` )

To choose Φ, we observe that it is possible to add additional copies of existing
partitions to the two hierarchies to produce segmentation results that are not
fundamentally any different from the originals. Any reasonable definition of Φ
should therefore produce the same similarity value for the two hierarchies after
such a modification as before it, i.e. we require that:

GCE((..., S1
i , S

1
i , ...), (..., S

2
i , S

2
i , ...)) = GCE((..., S1

i , ...), (..., S
2
i , ...))

A suitable Φ that satisfies this requirement is the max operator, since the simi-
larity value it produces will not change as a result of adding additional copies of
existing partitions; moreover, because the produced value represents an upper
bound on the dissimilarity between partitions at the same level in the hierar-
chies, a low result provides an effective means of showing that two hierarchies
in general are suitably similar (a downside of using max is that high results
become harder to interpret, but our results were similar enough for this not to

be an issue here). We refer to the hierarchy-based GCE with Φ
∆
= max as the

MaxGCE in what follows.
Using the MaxGCE, we compared the results of both the SW and BW meth-

ods to those of Marcotegui’s method, using the latter as a ‘ground truth’ result.
As shown in Figure 16(a), the vast majority of the results for both methods
have a MaxGCE of less than 0.1 with respect to Marcotegui’s method, which is
roughly comparable to the GCE values for different human segmentations of the
same images in the original paper [47]. As shown in Figure 16(b), the results
for the BW method are almost always closer to the Marcotegui results than are
those for the SW method.
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(a) (b)

Figure 16: A quantitative comparison of the hierarchies output by the waterfall methods using
the MaxGCE measure defined in §5.1, with Marcotegui’s method as a ‘ground truth’ result:
(a) the vast majority of the hierarchies produced by the SW and BW methods are very similar
(MaxGCE < 0.1) to those produced by Marcotegui’s method; (b) the hierarchies produced
by the BW method are closer to the Marcotegui results than are those produced by the SW
method.

As expected, the outputs of all three methods were very similar: what dif-
ferences there are are due to the ways in which the different methods handle
non-minimal plateaux. The greater relative similarity between the results of
the BW and Marcotegui methods in comparison to those of the SW method
is an indication that our implementation of Marcotegui’s method is somewhat
less arbitrary in its handling of non-minimal plateaux than is our implementa-
tion of the SW method (bearing in mind that the BW method was deliberately
designed to handle non-minimal plateaux fairly).

5.2. Performance

In order to evaluate how well the methods scale with increasing input size,
we timed each of them when used to segment increasingly large sub-images
from a 3D abdominal CT scan7. The overall scan was of size 512× 512 × 132,
and we tested the methods on sub-images of size 512 × 512 × n, for various
different values of n. There was an upper bound of n ≤ 40 due to memory
constraints. The experiment was run on a single 2.4GHz Pentium 4 CPU. Unlike
in the output experiments, in this experiment the input image was not smoothed
(since smoothing is time-consuming and affects each method equally). The first
output partition was again produced using the Meijster/Roerdink watershed.
The results are shown in Figure 17.

Each of the three methods is linear in n (minor variations are accounted for
by the fact that the abdominal CT slices themselves differ), but their constant
factors vary. Both of the new methods presented in this paper (SW and BW)
consistently outperformed our implementation of Marcotegui’s method: the BW
method by around 16% and the SW method by around 32%. In the interests of
fairness, it is important to note that this comparison is evidently subject to the
quality of our implementation of Marcotegui’s method. We have attempted to
make the comparison as fair as possible by implementing Marcotegui’s method

7Specifically, this was the ‘BT’ scan we obtained from the Churchill Hospital, Oxford.
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Figure 17: Timing results for the three methods on sub-images of an abdominal CT scan.
The experiment was run on a single 2.4GHz Pentium 4 CPU. The overall scan was of size
512 × 512 × 132, and each point on the graph represents how long (in seconds) a specific
method took to run on a sub-image of size 512× 512× n.

efficiently, but given that the difference comes down to constant factors, the
comparison is bound to be somewhat dependent on implementation detail. It
does however seem plausible that a simple, tree-based approach such as the SW
method might outperform a more complicated graph-based one; as such, the
results as presented seem reasonable, if in no way conclusive.

5.3. Non-Minimal Plateaux Behaviour

In order to demonstrate the differences in non-minimal plateaux behaviour
exhibited by the three methods, we ran each of them on a manually-constructed
test image (see Figure 18(a)). The expectation was that the first partition in
each case (the watershed result, not shown) would contain the 7 thin bars in
the image, and that the second partitions of the three methods (the results
of the first waterfall passes) would exhibit interesting differences with respect
to the 3 light grey bars in the image. Indeed, as shown in Figures 18(b)–(d),
the BW method avoids merging the light grey bars into surrounding regions,
in contrast to the Marcotegui and SW methods, which arbitrarily merge them
in one direction or the other. It should be noted that the precise decisions
made by the Marcotegui and SW methods regarding the way in which to merge
the bars depends on implementation details, as previously noted. As such, the
results for those methods here should only be considered illustrative, in that
other implementations may produce slightly different (but still biased) results.

6. Discussion

Our first experiment (see §5.1) showed that all three methods produce broadly
similar results, and in particular results that are all acceptable as the input to

22



(a) Input Image (b) Partition 2 (BW)

(c) Partition 2 (M) (d) Partition 2 (SW)

Figure 18: An example highlighting the differences in the non-minimal plateaux behaviour
of the three waterfall methods (M ≡ Marcotegui). Note that the BW method deliberately
avoids merging the regions corresponding to the light grey bars, whereas both of the other
two methods arbitrarily choose to merge them into the surrounding regions.

further processing steps such as feature identification algorithms. As shown in
our second experiment (see §5.2), the SW method was > 30% faster than our
implementation of Marcotegui’s method; moreover, it is a simple, tree-based
approach that can be implemented as a single recursive function. However, on
average the dissimilarity between the SW and Marcotegui results was greater
than that between the BW and Marcotegui results, which might be significant
in some contexts (Figure 15 provides an illustrative example of the effect this
greater dissimilarity can have in practice). It should be noted that for our pur-
poses in millipede, we found these differences to have negligible impact. The BW
method was > 15% faster than our implementation of Marcotegui’s method, and
is fairly straightforward to implement (although not as easy as the SW method).
It produces results that are much closer to the Marcotegui approach, although
the more consistent handling of non-minimal plateaux causes slight (expected)
differences in the results, as highlighted by our final experiment in §5.3.

Overall, we believe that all three of the methods discussed are fast, effective
ways of implementing the waterfall. The primary advantages offered by our
new methods are that they are both somewhat faster and easier to implement
than Marcotegui’s method. The BW method also handles non-minimal plateaux
more consistently than either of the other methods. Based on our experiments,
we would recommend the SW method in situations where speed and ease of
implementation are the primary considerations, and the BW method if it is
important to obtain results that are close to the original Marcotegui approach
but that treat non-minimal plateaux in a more consistent way.
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7. Conclusions

In this paper, we have presented two new, tree-based methods for the clas-
sical waterfall transform from mathematical morphology and compared them
with both the existing state-of-the-art and each other. The Simplified Waterfall
(SW) method is single-pass and is significantly easier to implement than the
existing state-of-the-art: indeed, it can be implemented using a single, short,
recursive function. The Balanced Waterfall (BW) method is slightly harder to
implement (although still easier than previous methods), but deals consistently
with the problem of non-minimal plateaux in the MST, something neither of
the two other methods attempts. (It can also be used to optimise the existing
state-of-the-art method.) Based on our implementations, both methods seem
noticeably faster than the existing approach, with the SW method being espe-
cially efficient.
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