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Abstract

This paper proposes a sliding window approach, whose length and time shift are dynamically adaptable in order to improve model
confidence, speed and segmentation accuracy in human action sequences. Activity recognition is the process of inferring an action
class from a set of observations acquired by sensors. We address the temporal segmentation problem of body part trajectories in
Cartesian Space, in which features are generated using Discrete Fast Fourier Transform (DFFT) and Power Spectrum (PS). We pose
this as an entropy minimization problem. Using entropy from the classifier output as a feedback parameter, we continuously adjust
the two key parameters in a sliding window approach, to maximize the model confidence at every step. The proposed classifier is a
Dynamic Bayesian Network (DBN) model where classes are estimated using Bayesian inference. We compare our approach with
our previously developed fixed window method. Experiments show that our method accurately recognizes and segments activities,
with improved model confidence and faster convergence times, exhibiting anticipatory capabilities. Our work demonstrates that
entropy feedback mitigates variability problems, and our method is applicable in research areas where action segmentation and
classification is used. A working demo source code is provided online for academical dissemination purposes.

c© 2013 Elsevier Ltd. All rights reserved
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1. Introduction1

Action recognition is an active research topic within the scientific community, with several applications, which2

include human-machine interfaces, intelligent video surveillance, video indexing and analysis, to name just a few. The3

action segmentation problem is a key issue in action recognition and may be divided into two stages: (1) Learning4

and (2) Classification. The learning stage often involves a data preprocessing step to find alternative, discriminant5

representations for different properties of the input signal. In this work, we consider a data driven probabilistic6

representation for the action model, which is learned from a set of training data. This action model is posteriorly used7

to identify to which action class each observable feature belongs.8
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A popular applied method to this problem is the sliding window approach. The window is used to progress9

sequentially through the input signal, creating data segments from which features are extracted. This method is10

popular because of its direct integration with the majority of classification algorithms. However, fixed parameter11

values are a significant cause of classifier under-performance: slow convergence and/or borderline decisions (e.g.[ 1]).12

Choosing the ideal parameter values is not a trivial task and an optimal selection may differ for different performers13

and/or actions. Thus in this paper, we present a dynamically adaptive sliding window, where classification entropy is14

used to adjust the window length and time shift parameters at every step.15

1.1. Action Segmentation Issues16

The execution of actions differs from person to person. Factors like rigidly defined performance instructions, mo-17

bility restrictions introduced by the experimental set-up, cultural or anatomical characteristics are known to introduce18

variability. The majority of action models usually rely on a set of assumptions, which interfere with the classification19

of live executions and present some challenges. In our work, we are addressing the following problems:20

• Frameworks can present high classification accuracy and the majority of the correct decisions are of low confi-21

dence. This is specially true as the number of different actions grows.22

• The time it takes for a model to make a decision is highly dependent on the generated features, whereas being23

able to anticipate a decision is an issue of interest for an accurate temporal segmentation.24

Approaches within action segmentation somehow try to address these factors. In this research, we are focused on25

extending our previous work using a fixed length sliding window approach [ 2, 3], improving our segmentation solution26

to cope with classification performance issues. A survey on action segmentation [ 4] identifies other works which also27

use fixed length sliding windows [5, 6, 7, 8]. In some of these works, the classification framework is augmented with28

multiple concurrent classifiers using windows of different lengths at the expense of increasing computational cost.29

Supported by examples in literature, the following paragraphs summarize the main key problems in fixed parameter30

sliding window approaches.31

A sliding window approach with fixed parameters is used in [9] to detect events in long video sequences. They32

analysed the delay (measured in frames) between ground truth annotations and the output of a classifier using the33

following parameters: a window size of 64 frames and a 8 frame time shift. Since an event temporal duration is34

variable, the fixed sliding window caused sample misclassification. In [10], the size of the sliding window is given35

in seconds (4 seconds) and it was used to detect unusual activities in video sequences. Result analysis shows that36

segmentation is not perfect and the reason for such large window size was to make sure that the buffer had enough37

signal information. Consequently, these large data samples contained higher rates of outlier information, which38
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increases the number of borderline decisions. In [11] a sliding window was tested with two different sized, 48 and 2439

frames. These were applied to video segmentation in the classification of human actions. Experimental results were40

presented without including classification decisions which contain transition from one action to another. Despite the41

application of this strategy, excluding transition frames did not prevent segment misclassification.42

In other works, sliding window approaches are integrated with other techniques. For example, they can be inte-43

grated with Dynamic Time Warping [12, 13], or Grammars [14, 15]. However, methods that allow to dynamically44

adjusting the sliding window parameters in action segmentation are rarely explored. In [ 16], the window parame-45

ters are adjustable from sensor based events and dependent on the signal processing techniques. However, authors46

conclude that their approach is restricted by the application of the selected algorithms and sensors. In [ 17], a new47

type of self-adaptive sliding window is proposed for data mining. The parameters are adjustable based on the signal48

properties. While results show to be satisfactory, the success of the proposed technique depends on the existence of49

specific signal properties. We were not able to find in the literature sliding approaches with dynamic parameters that50

are independent of the type of signal properties or processing algorithms.51

1.2. Other Works Related on Action Segmentation52

A recent survey by Weinland et al. [4], has identified three major action segmentation categories: Sliding Window53

, Boundary detection and Grammar Concatenation. The already reviewed Sliding windows are used to divide a mo-54

tion sequence into multiple overlapping segments, which are bounded by the window limits. The information within55

the window may or may not be processed for alternative representations. Each candidate segment (or equivalent repre-56

sentation) is then used for sequential classification. The success of this approach strongly depends on the discriminant57

abilities of the generated representations. As mentioned this technique is easily integrated with the majority of static58

and dynamic classifiers. The major drawbacks of this technique are computational burden, and the need of multiple59

window sizes to overcome the variability problem. Boundary detectionmethods generally identify discontinuities or60

local extrema in observed motion signals. The boundaries usually define an implicit basic action taxonomy, without61

however depending on specific class definitions. A branch of works identify boundary at the cost of the dynamics of62

the observed signal, such as [18, 19]. Others depend on geometric property changes observed through techniques like63

Principal Component Analysis [20] or piecewise arc fitting models [21, 22]. A related research addresses the segmen-64

tation problem from the subspace separation perspective, exploring the so called Agglomerative Lossy Compression65

[23]. In [24], the authors apply Singular Value Decomposition (SVD) to a long sequence of optical flow images in66

order to detect trajectories discontinuities within SVD component trajectories. Ogale et al. [ 25] also explore optical67

flow of body silhouettes, performing segmentation by detecting minima and maxima values of the absolute value68

sequence. A method using features from visual hulls is developed in [ 26]. This category of approaches is very sen-69
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sitive to noise and other related errors (e.g. camera perspectives). Additionally, it allows generic segmentation, but70

is not particularly suitable for labelling purposes. The focus is on boundary identification rather than interpretation71

of intermediate data. Lastly, Weinland et al. [4] identify Grammars as another category. The common approach is72

to model state transitions between actions, where Hidden Markov Models (HMM) are a popular approach. Multiple73

methods can be used to generate features. Some examples are curvature scale space and centroid distance function74

[27], joint angles alone [28, 29], or together with velocity profiles [30], dynamic system representations [31, 32, 33]75

and geometrical property encoding [34]. These are applied to segment and label action sequences, at the expense of76

computing a minimum-cost path through the model using techniques like Viterbi path, Conditional Random Fields or77

Markov Models. However, these methods rely on the comprehensiveness of state grammars, which may jeopardize78

the model effectiveness and the generalization purpose, if large amount of training data is not available.79

We can say that temporal action segmentation is implicitly addressed in most problems of action classification at80

some point of their research. The majority of research is done in computer vision and applied to image sequences,81

where each frame is classified consequently generating a temporal sequence of associated action labels, such as in82

[35, 36]. More classical vision-based approaches only consider data from the current image frame, attempting to83

find a class that represents the acquired data more closely. There are in fact other works that consider collections84

of multiple images, as it happens in a sliding window paradigm. But again, these also use a pre-defined number of85

images and time shifts (e.g. [37]).86

1.3. Definitions and Problem Statement87

A motion instance is defined as a contiguous sequence of human body movements, which is composed of a88

concatenation of different actions. Let motion instance Ω be a sequence of 3-D Cartesian coordinates Y, defining a89

discrete trajectory of random duration T (measured in frames), for a body part such that:90

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

...

YT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y ∈ R

3 and T ∈ N (1)

In the processing stage, Ω is divided into multiple, overlapping segments δ, generated upon using a sliding window91

of length ωt frames and each δ is separated in time by a time shift ∆ t, such that:92

δt ⊂ Ω : δt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yt−ωt

...

Yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ωt < T (2)
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At this point, let us introduce the following two key definitions in sliding window approaches:93

Definition 1 ωt (Window Length). Also known as window size, it corresponds to the number of contiguous sensor94

readings (in our work, Cartesian Coordinates Y) that are contained within the window, i.e. how much of the95

captured trajectory is used to generate a segment δ. The length ω t is implicitly defined in equation (2) and is96

measured in frames;97

Definition 2 ∆t (Time Shift). Corresponds to the displacement between two consecutive windows, measured in98

frames, which is equal to the difference between the index of the first frame in each window. More specifically,99

let it be a δ1 =
[
Y1

t−ωt
, · · · , Y1

t
]tr

and δ2 =
[
Y2

t′−ωt
, · · · , Y2

t′
]tr

such that the time shift ∆t = t′ − t; The subscript tr100

represents the transpose of a matrix. Please note that the time shift can be defined in either frames or seconds,101

where the time shift in seconds is given by the ratio between the time shift in frames and the acquisition frequency102

, i.e. ∆t[seconds] = ∆t[ f rames]
f [Hertz] .103

To avoid using the raw segment data, each δ t is transformed into a representative feature vector V, of lower di-104

mension, for which a transformation function exists, such that δ �→ V : {v 1, · · · , vi} ∈ V = g(δ). Our framework uses105

two different class layers for analysing motion instances. One corresponds to a set C of motion descriptors defined106

upon Laban Movement Analysis (LMA) [38], where cn ∈ C is a variable representing the nth Laban component.107

These components are defined and used in LMA to characterize human motion in its different geometrical, kinematic108

and expressive properties. The other layer emerges as a combination of variables c n, and defines the action space109

Λ = {β1, · · · , βa} Consider a movement sequence which is a concatenation of N action segments β, where each β110

is a non-overlapping sub-set of Ω. A single state of each ci, i = 1, · · · , n is assigned to each segment β during a111

supervised learning approach. The challenge is devising an association process to learn the action model, envision-112

ing its separability capabilities. The model is posteriorly used in a classification process, from which the temporal113

segmentation of Ω is derived.114

β j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Y
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cn←− C , β j ∈ Ω (3)

Consider a new action β, for which applying a sliding window approach generates multiple segments δ. Most mis-115

classified samples have their errors emerging from the incorrect selection of the fixed window parameters. Therefore,116

we hypothesize that adapting these parameters at each step will improve classification, thus coping with the variability117

of different performances of the same action. In fact, rather than selecting a method to optimize the fixed window118

parameters, our main challenge is to formulate a model, which iteratively readjusts the length and the time shift based119

on entropy feedback and knowledge of previous parameter definitions. Table 1 summarizes the relevant variables,120
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which are used throughout this article.121

Problem - Given an activity sequence Ω, find the current window length ω t that best fits the current segment δ and122

minimizes the classification entropy h over the variables cn ∈ C.123

ωt+1 = g(ht, ωt)⇒ min(ht) (4)

Additionally, when uncertainty is high (e.g. on class transition), adjust the time step so the classifier can adapt to124

changes without diverging to misclassified samples.125

∆t+1 = g(ht, ωt,∆t)⇒ min(ht) and ↓ errors (5)

Consider sequences to be subject to noise and instance variability for the same actions performed at different instants126

of time.127

Ω′ = Ω + η (6)

where η is a source of additive white noise.128

1.4. Our Approach129

In our work, we are addressing temporal action segmentation of body part trajectories generated upon random130

human activity performances, as an extended solution to our fixed sliding window classifiers in action recognition131

[2, 3]. To acquire 3-D trajectories from different body parts, we are using a Motion capture (Mo-Cap) device, which132

is synchronized with a video sequence I of activity performances. Feature vectors are computed upon application of a133

Discrete Fast Fourier Transform (DFFT) to the acceleration signals generated from the acquired body part trajectories.134

This feature approach has been previously applied with success in human motion analysis problems [ 39]. To learn135

the action model, we apply a mixture model based approach, a popular methodology in action segmentation and136

recognition, for which we have past experience [2, 3]. The sliding window approach requires the learning process to137

Table 1: Summary of relevant variables.
Variable Set Space

v V Low-level Features
cn C Laban Descriptors
β Λ Action

ωt (or ω) Window Length
∆t (or ∆) Time Shift

h Classification Entropy

6
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Figure 1: Simplified Block Diagram providing an overview of the proposed approach.

be supervised, as it plays a crucial role for the success or failure of the model [ 4]. The learned conditional models138

are integrated in a Dynamic Bayesian Network classifier, which applies Bayesian inference and is used to segment an139

activity sequence using a maximum a posteriori (MAP) approach.140

In our experimental set-up, two different parameters are adapted, both independently and simultaneously. One141

strategy adapts the window length ω t and is referred to, using the acronyms Adapt-ω (ωmin, ωmax) or Fix-ω, consid-142

ering whether we are using the adaptive or fixed approach respectively. The other is concerning the time shift ∆ t. The143

acronyms for this approach are Adapt-∆ or Fix-∆ for adaptive and fixed strategies. Acronyms are then combined, so144

to allow identifying the applied strategies. Our proposed adaptive sliding window methodology (illustrated in Figure145

1), is presented as an improvement to classic fixed sliding window classification methods which:146

• shows increased classification confidence;147

• increases the classifier speed therefore anticipating the decision;148

• dynamically adapts to different sources of performance variability.149

Figure 2 encompasses the proposed concept illustration, of the adaptive parameter based on entropy feedback and150

knowledge of previous parameters.151

1.5. Paper Structure152

We first introduce the feature generation within the fixed parameter sliding window paradigm (Section 2.1), show-153

ing how different parameter values affect the learning distributions in Section 2.2, testing separability criteria and other154

relevant metrics. The classification framework is presented in Section 3.2, where our proposed method for adapting155

the sliding window parameters is explained in Sections 3.3 and 3.4. The action segmentation experiments are present156

in Section 3.5, where the experimental set-up is explored using both fixed and adaptive parameter approaches. We157

complement our research with a discussion of how our approach allows to anticipate classification decisions on Sec-158

tion 3.5.1. This work concludes with a discussion over experimental results (Section 4), future work and the expected159

impact in related research area.160
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Figure 2: Scheme of the proposed concept along with the block diagram which formally describes our framework.
An activity is segmented using a sliding window, whose parameters are adaptive based on entropy feedback. We learn
body Laban and Action model, which are manually annotated within a supervised learning approach. To segment an
activity in different actions, we select the most probably action Λ from our hierarchical classifier.

2. Learning the Action Model161

In this section, the trajectory feature generation process is presented and also how different window size values162

influence the resulting probability distributions, upon application of the learning strategy.163

2.1. Preprocessing164

Our work emerges as an improved classification strategy to our previously developed research in action recog-165

nition, where features are represented in the frequency domain. An acceleration time series is computed from the166

Cartesian trajectories. Then, the Discrete Fast Fourier Transform (DFFT) and signal Power Spectrum (PS) are ap-167

plied. Let the segment δ be bounded by a sliding window of length l, such that:168

δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1
...

Yl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y ∈ R

3 (7)

Given the segment trajectory δ we compute acceleration a t =
∆v
∆t , where vt =

∆Y
∆t . The generated acceleration sequence169

a(t) = a1, ..., at will be decomposed using DFFT algorithm, generating the list of coefficients x of a finite combination170
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of complex sinusoids, ordered by their frequency.171

a(t) =
l−1∑
n=0

xneκ, with κ =
−i2πkn

l
(8)

We can then calculate the PS of the acceleration signal, knowing that a(t) is a finite energy signal, as:172

Φ(ω) =

∣∣∣∣∣∣∣
1√
2π

−∞∑
∞

a(t)eiωt

∣∣∣∣∣∣∣
2

(9)

The continuous approach can be generalized to discrete, for which we are able to compute the energy spectral density.173

Feature variables are generated upon dividing the PS coefficient value ranges into four distinct classes as depicted in174

(10).175

V = {no, low,medium, high} (10)

Further details on the presented feature generation process can be found in [ 2, 38].176

2.2. Learning177

The learning method follows a Mixture Model approach, in which feature vectors are clustered according to a178

class of cn they belong, for example, grouping all segments labelled with c 1 = sudden. This process is done through179

supervised learning methodology (which has been conducted offline). The mixture obeys the following Gaussian180

decomposition:181

P(V|C) =
n∑

i=1
φi g(ci|µi, σi) (11)

where class ci is represented by an average vector µ i and a covariance matrix σi. To evaluate the action model,182

we assess class variance (an indicator of dispersion,) and a separability criteria for measuring inter-class distances.183

Variance σi is estimated directly from the solution of the Mixture Model formulated in equation ( 11), using an Ex-184

pectation Maximization approach. To measure the separability between two classes, a popular measure is the Fisher’s185

Discriminant (FD) [40]. Rao [41] generalized the FD to more than two classes, using an extended formulation to find186

the subspace containing all class variability. First we define the class scatter as:187

S c =
1
ni

n∑
j=1

(x j − µi)(x j − µi)T (12)

where ni is the number of samples for a given class ci, while µi represents the mean of that same class ci. From188

the class scatter, we can compute the within class scatter S W = ni/n
∑c

j=1 S j, with n the total number of samples.189

9



L. Santos, Khoshhal K. and J. Dias / Pattern Recognition 00 (2014) 1–27 10

100 101 102 103 104
100

101

102

103

104

First feature of left foot

Fi
rs

t f
ea

tu
re

 o
f l

ef
t h

an
d

Clustering 2 features of 4 classes by sliding window (0.75 second)

Standing
Walking
Running
Falling
Mean(Standing)
Mean(Walking)
Mean(Running)
Mean(Falling)

(a) ω = 90 f rames (0.75 s)
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(b) ω = 120 f rames (1.00 s)
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(c) ω = 150 f rames(1.25 s)

Figure 3: Class clusters for 4 different actions: standing, walking, running and falling. The images represent clusters
computed upon a fixed window approach of: 90 ; 120 and 150 frames (sampled at 120Hz). The points correspond to
the features generated from the trajectories captured from the left foot of the acting person, during the different trials
of each action.

Considering the Gaussian Mixture Model defined in (11), the between class variability can be defined for each class190

as:191

S B =

c∑
i=1

ni

n
(µi − µ)(µi − µ)T (13)

where µ is the mean of class means µc. The class separability will be given by192

J =
det(VT S BV)
det(VT S WV)

(14)

Vector V is computed by solving the eigenvalue problem S BV = λS WV, where V is the eigenvector corresponding to193

the largest eigenvalue.194

2.3. Experimental Learning Results195

We now demonstrate how different lengths have direct impact in the supervised learning process. The presented196

results aim to show that selected values for length ω t have consequences which are reflected in the action model, both197

visually and through adequate metrics. This impact of parameter selection naturally propagates to the classification198

algorithm (as is demonstrated in several works such as [9] or [10]), and thus, in the entropy. The class clusters for199

the 2 dimensions of the feature vector are presented in Figure 3 using three different fixed window sizes. When using200

ω = 0.75 seconds, we observe an overlap between class pairs standing-walking and running-falling. In the 1 second201

case, class running is completely inside falling, whereas with ω = 1.25 seconds, there are multiple overlapping202

regions. Let us recall that the DFFT is being applied to the acceleration signal, therefore falling and running fall203

in the high acceleration signals while standing is mostly a static activity and walking is situated in between. Most204

importantly, we can visually verify that changes in the length of the window size are reflected in the class learning205

10
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process. We extend our analysis using the quantitative metrics presented in Table 2. Variables S i represent scatter206

measures for each class. S B refers to interclass average covariance, which can be interpreted as a dispersion measure,207

since it reflects the weighted distance from the class centres to their average value. From the generalized Fisher’s

Table 2: Generalized Linear Discriminant Analysis coefficients for the cases presented in Figure 3, where si, i ∈ {x, y}
are the interclass average variance along each axis.

Window size (ω)
0.75 s 1.00 s 1.25 s

Sc
at

te
rV

al
. S 1 [sx, sy] [1187,2657] [904,1493] [1859,3632]

S 2 [sx, sy] [2273,1671] [533,572] [5731,4138]
S 3 [sx, sy] [443,114] [245,93] [465,202]
S 4 [sx, sy] [1185,643] [609,548] [794,148]

J 7.191 14.279 29.594
208

discriminant definition, we know that the higher the value of J, the better defined and separated are the learned class209

distributions. The analysis of Table 2 visibly shows that small changes on ωt have high impact on class dispersion.210

The number of points do affect the calculation of the value of S and thus the factor J, however this impact is mitigated211

as the number of points increases. In fact, the parameters of the Gaussian distributions will tend to converge as the212

number of samples increases. Thus, the impact of each new point will be 1/ni (as equation 12 intuitively demonstrates),213

where ni is the total number of points belonging to a given distribution.214

3. Action Classification215

Our framework aims to segment actions in different abstraction symbolic levels, by means of a Bayesian classifier.216

Those levels are:217

• Laban Movement Analysis: a set of activity invariant descriptors based on the LMA’s components. For example,218

LMA’s component Effort Time has two states, sudden and sustained, while component Shape is associated to219

states such as reaching or retreating.220

• Action: a variable whose states represent different movements as a combination of Laban variables. These221

correspond to actions like walking or sitting.222

3.1. Experimental Set-up223

As already mentioned, the input signal in our experiments is a contiguous sequence of 3-D Cartesian coordi-224

nates, acquired at a fixed sampling rate of f = 120Hz. These are acquired for different body parts and stationary225

object positions, generating three-dimensional trajectories and object relative poses. Body part data is acquired us-226

ing the Inertial Measuring Units of the XSENS Moven Suit (http://www.xsens.com/products/xsens-mvn/),227
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whereas object pose information is retrieved using magnetic sensors from the Polhemus Liberty magnetic tracker228

(http://polhemus.com/motion-tracking/all-trackers/liberty/). The experimental sessions contain long229

sequences of human body movement, which are composed of different actions: standing, walking, falling, sitting, ris-230

ing and no move (absence of movement). The total number of different action performances contained within all231

sequences sum up to around 100 segments, executed by different persons in a set-up that has been previously used in232

[2] (For reference, please check http://mrl.isr.uc.pt/experimentaldata/public/uc-3d). Actors perform233

their movements naturally, whereas the only restriction is that they had to perform a certain sequence of different234

actions, e.g. an actor will get up (rising), then will start running and will fall on the floor at the end of the sequence.235

The generated spatial and frequency-based features are used as evidence in the Bayesian Classifier Model towards236

action segmentation.237

The results obtained from this research are compared with our previous work mainly because we have privileged238

access to the data at every step of the process. More concretely we are interested in the frame by frame decisions,239

which allow an accurate measurement about the temporal improvement of our approach and also the classification240

confidence measured through the entropy value. However, as it will be demonstrated in the following sections, our241

approach is not restricted to this experimental set-up. In fact, sliding window approaches are known to be applied to242

different types of data. The information that we use to adapt the window parameters is completely independent from243

the type of input signal, making this approach applicable to a wide variety of scenarios.244

3.2. Action Classification Model245

The action model is a hierarchical framework, in which inference occurs sequentially. To learn the model two246

strategies are assumed. To associate Laban variables to the frequency based features, we use Gaussian distributions.247

While learning the action model, a statistical approach is applied, where occurrences of c n are accounted for and248

normalized, generating histogram probabilistic distributions. The first layer of the action model is parametrized as:249

P(laban| f eature) = P(laban)
∏i

q=1 P( f eatureq|laban)∏i
q=1 P( f eatureq)

(15)

We will be focusing our attention at this level, because it is where the window parameters will have most of the impact.250

In fact, the Laban model is learned based on the data bounded by the window. The entropy used to get feedback from251

the window’s parameters is computed from the output P(laban| f eature). The action variable states are inferred as a252

combination of previously estimated laban variables. An action is inferred based on:253

P(action|laban) = P(action)
∏n

q=1 P(labanq|action)∏n
q=1 P(labanq)

(16)
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The estimation occurs using Bayesian inference algorithms, where a Maximum A Posteriori (MAP) approach is ap-254

plied, which is done using numerical approach, given that our formulation poses a closed-form solution. The most255

probable state for a variable θ upon knowledge from observations x is given by:256

Θ̂(x) = argΘmaxP(θ)P(x|θ) (17)

The variable states for each abstraction level which present the maximum probability value, are selected as the ones257

describing the corresponding segment δ, thus segmenting a sequence Ω, as illustrated in Figure 2.258

3.3. Adaptive Sliding Window259

The classification inference algorithms usually apply fixed parameter sliding windows. However, selecting optimal260

parameters is not easy. In fact, what can be a good parameter selection for a sequence, might fail to show correct261

segmentation when using a different performer. Contrary to this classic sliding window approaches, we propose a262

method which continuously adapts the window parameters. Let us assume the following definitions:263

• h = Entropy value.264

• H = Entropy time series.265

• ω =Window size.266

• ωd = Default window size.267

• W =Window size time series.268

Consider that for a distribution p = {x1, · · · , xn}, the maximum value for h is given by max(h) = log(n). Bear in mind,269

entropy is a normalized value, upon the max(h), such that h ∈ [0, 1].270

3.3.1. Window Size271

The size of the sliding window is adjusted upon the following parameters: previous window lengths and the272

classification entropy. The trends for each of these parameters are also analysed. More specifically, we analyse273

whether the window size has previously increased or decreased (which is here referred as scale direction). The same274

pattern is checked for the classification uncertainty (given by the entropy value). A numerical representation about275

the trend of each of these parameters is given by the first and second order backward differences. Using entropy as an276

example, if ht−1 > ht, then the first order backward difference is negative, meaning that the entropy value is decreasing277

and that our classifier decisions are becoming more accurate. By combining the implicit information about these278
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Table 3: Summary of implicit signal rules. N/R = Not relevant.
dH h dW ω d2H h ω̂

+ Worst + Increasing N/R N/R (-) Shrink
0 Stable + Increasing + Increasing Tendency (-) Smaller Shrinkage
0 Stable + Increasing - Decreasing Tendency (+) Smaller Growth
- Good + Increasing N/R N/R (+) Growth
+ Worst - Decreasing N/R N/R (+) Growth
0 Stable - Decreasing + Increasing Tendency (+) Smaller Growth
0 Stable - Decreasing - Decreasing Tendency (-) Smaller Shrinkage
- Good - Decreasing N/R N/R (-) Shrinkage

parameters, we establish a set of rules which are used to determine the new window size. The rationale behind our279

approach is summarized in Table 3.280

Let us further reinstate our approach. Assume now the case where the entropy value h t−1 < ht, which means281

that our previous decision lead the model to become more uncertain. We analyse this phenomenon in light of the282

immediate past window sizes ωt−1. Whichever has been our previous decision of increasing or decreasing the window283

size, it has led to a decreasing model confidence, therefore the window size needs to be corrected in the opposite284

direction. In the cases where our decision has led to an increase of model certainty, we define that the last decision285

about the window length is correct and should be maintained.286

There are however cases where consecutive instants have equal values for h, i.e. h t−1 = ht, for which the back-287

ward difference is zero. When such event occurs, we replace the first order backward difference by its second order288

counterpart, which represents the growth tendency. Equivalent to analysing the second derivative for a continuous289

time series, we assume that upwards concavity represents tendency to increase and vice-versa. Bear in mind that by290

analysing a tendency, the scaling factor needs to be constrained when compared to using the first order difference.291

3.3.2. Formulation292

In light of the presented rationale, the basic definition for the window length obeys the following equation:293

ωt = (1 + α)ωt−1 (18)

where ωt is the window length at instant t, and the variable α = [αmin, αmax] a scaling factor such that:294

(1 + αmin)ωd︸���������︷︷���������︸
ωmin

≤ ωt ≤ (1 + αmax)ωd︸����������︷︷����������︸
ωmax

(19)
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The scaling direction �α according to the aforementioned rationale, is formulated mathematically as:295

−dH
dt

dW
dt

(20)

For the special cases where dH
dt = 0, this argument is replaced by the second order backward difference d2H

dt2 .296

−d2H
dt2

dW
dt

(21)

However, when dH
dt = 0, the second order difference is considered a weak indicator. Therefore, we propose two297

constraints a and b, such that dH
dt ≥ d2H

dt2 . From equations 20 and 21, we obtain:298

−dW
dt

(
a

dH
dt
+ b

d2H
dt2

)
(22)

We must also consider the specific case where dW
dt = 0, which leads to �α = 0. Our solution is making this factor to299

converge to the default window size, for which equation 22 is rewritten as:300

(ωd − ω)
∣∣∣∣∣∣a dH

dt
+ b

d2H
dt2

∣∣∣∣∣∣ (23)

where the derivatives no longer control the scaling direction. In these cases, the direction is controlled by the difference301

between the current window size and the selected default value. The scaling direction �α can then be summarized as:302

�α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− dW

dt

(
a dH

dt + b d2H
dt2
)

, dW
dt � 0

(ωd − ω)
∣∣∣∣a dH

dt + b d2H
dt2

∣∣∣∣ , dW
dt = 0

(24)

This latter formulation addresses only the scaling direction. The issue of how much (scale) should the window grow303

or shrink is addressed in the following paragraphs. The goal is to obtain a normalized factor that can be put as a304

percentage value of the previous window size. This factor should be proportional to the margins between the current305

and maximum/minimum values for window size. In addition, the selected function should be symmetric to the origin,306

meaning that the sigma of α is defined upon �α. The function in equation ( 25) encompasses both of these properties.307

α =
1
k

√
(1 + 4�α2) − 1

2�α
(25)

where k is an inverse proportional factor which may limit growth (default k = 1). Figure 4 illustrates equation (25)308

for a clearer visualization. One should note that the window size must not scale beyond the limits defined in equation309
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Figure 4: Envelope function for the growth percentage. When α→ ∞ then �α→ 100%

(19). Hence, the following formulation is proposed:310

ωt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ωt−1 + α|ωmax − ωt−1| i f �α > 0

ωt−1 + α|ωmin − ωt−1| i f �α < 0
(26)

which means that we are growing only a percentage of what is left within the window limits, assuring the window311

will never grow beyond them.312

3.4. Time Shift313

The time shift is a relevant parameter in sliding window approaches, as it defines two relevant properties: segment314

overlap and the time between each classification. Selecting an appropriate value might present itself as an easier315

task than with the size parameter. However, as previously stated, we hypothesize that adjusting the time shift can316

optimize the segmentation process, speeding up the classifier and reducing the redundancy and adjusting segment317

overlap accordingly. Let us consider the time shift ∆ limits as defined in equation ( 27), which is a function of the318

acquisition frequency f .319

1
f︸︷︷︸
∆min

< ∆ < f︸︷︷︸
∆max

(27)

We will explore three different approaches, which are tested separately and are again based on the values of the320

entropy:321

1. Adapt1-∆: When entropy is high, we want to apply short time shifts. This approach aims at an exhaustive322

exploration of the data, by augmenting the number of analysed samples per second. Although we recognize that323

increasing the number of samples in degenerate data samples will naturally increase the number of misclassified324

samples, we expect true positive results to be in greater number, resulting in a better overall accuracy ratio. The325
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proposed formulation for this first approach, is as follows:326

�t+1 =
ωt − (ht ∗ ωt)

f
(28)

where f stands for the sampling frequency, h t the entropy at instant t and wt the current window size measured327

in samples.328

2. Adapt2-∆: During action class state transitions, entropy values tend to be higher. In this case, we hypothesize329

that forwarding the window to a time period where the new action is already well defined can reduce the number330

of false positive results. Hence, we want to extend the time shift to its maximum value, thus yielding a minimum331

successive window overlap. Therefore, we propose the following formulation, which reflects our idea:332

∆t+1 =
ωt − ((1 − ht) ∗ ωt)

f
. (29)

3. Adapt3-∆: We also consider interesting to study another approach when in the presence of action transitions,333

but addressing entropy when it becomes a volatile signal, i.e. when it experiences big differences in consecutive334

computed values, which is reflected in its first derivative, as is illustrated in Figure 6. Hence, to overcome this335

volatility effect, we consider the formulation in equation (29), integrating the 1 st order backward difference for336

the entropy signal, which results in:337

∆t+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωt−((1−�H)∗ωt )

f , �H ≥ ρ
ωt−((1−ht)∗ωt )

f , �H < ρ
(30)

where �H = ht−ht−1 corresponds to the 1 st order backward difference, and ρ a pre-defined numerical threshold.338

3.5. Experimental Results339

To evaluate the effects of the two mentioned parameters (Window size and time shift), with respect to the pro-340

posed approaches, the classification results of different combinations are presented using two different measurements.341

Precision measures the number of correctly classified samples, i.e. the model accuracy, and is given by:342

precision =
true positive

true positive + f alse positive
(31)
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Figure 5: (a) Precision and (b) Recall measures for the different scenarios, (c) classification confidence improvement
ratio (%) with respect to fixed approach and (d) per-frame classification accuracy for the approach showing the highest
precision, Adapt-ω (80,140)-Fix-∆ 10.
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Precision is mostly used together with Recall, which represents the number of relevant classifications within all the343

results yielding a given class, such that:344

recall =
true positive

true positive + f alse negative
(32)

We have essayed different values for the adaptive parameter approach, where combinations are enumerated as345

defined in Section 1.4. As the bar charts in Figure 5a and Figure 5b show, adapting the window size while maintaining346

the time shift improves result precision when compared to the fully fixed parameter approach. Within the same347

strategy, modifying the thresholds for the window size does not affect precision significantly, converging to about348

95% in all tested value ranges.349

In the scenarios where the time shift is adaptable, the average precision is lower when compared to the previous350

case. The observed precision results have different justifications. For Adapt1-∆, action transitions are characterized351

by small windows and time shifts, which favours a high number of misclassified samples. Small amounts of data352

somehow represent partially visible segments which are likely to generate confusion and contribute negatively to the353

classifier precision. In the Adapt2-∆, we try to avoid transition segments by forwarding the window. Despite reducing354

the amount of false positives during these transition periods (because of the fast forwarding to greater confidence355

regions), they do exist and while the window parameters do not stabilize, the classifier may take a little longer to356

re-converge to the correct action. During this re-convergence procedure, misclassified samples accumulate negatively357

in the precision indicator. The third approach Adapt3-∆ attempts to mitigate the volatility in the entropy time series,358

but interestingly it contains a little of each effect of the previous two approaches. However, these effects are not so359

strongly visible as they are in each of their original approaches.360

The window size exhibits some advantages when analysing the precision indicators, while adjusting different time361

shifts showed to have a more positive impact in terms of decision confidence. Figure 5c presents the improvement362

in classification decision confidence. The vertical axis values represent the ratio between the average confidence in363

each of the adaptive approaches, when compared with the fixed strategy. It is visible that all approaches are successful364

in improving model confidence, but the ones using an adaptive time shift improved further than the remaining. This365

shows that the adaptive strategy allows the classifier to estimate more confidently. The main reason for the adaptive366

time shift to be better than a fixed approach, is justified because when the classifier uncertainty is increasing, the time367

shift increases allowing the classifier to skip those areas where the outlier samples are dominant.368

To complement the presented precision results in Figure 5a, Table 5d shows the confusion table with the per-369

frame classification amongst all available classes. Adapting the sliding window parameters has shown highly precise370
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results, with an overall ratio of 95%, which is an improvement with respect to our previous fixed approach [ 2], which is371

depicted in a red bar in Figures 5a and 5b. We conclude the section with Figures 7 and 8 (at the end of this manuscript),372

where we can see an action sequence, the ground truth annotation and the corresponding delay and classified classes.373

3.5.1. Anticipating the Recognition of Actions374

One other relevant factor is the convergence speed, i.e. how long it takes for the classifier to detect the correct375

event after it actually started. In these experiments we count the number of missed frames in the classification process376

until the correct decision is achieved, i.e. the number of misclassified frames between the ground truth annotation and377

the actual model classification. This effect is specially felt on action transitions, where the model needs to re adjust378

the classified state from one action class to a different one. Figure 6 illustrates the differences between using fixed379

and the adaptive time shift approach. We can see that without adaptive time shift in Figure 6a the correct decision380

is achieved around frame no. 210, whereas when using the proposed approach, that decision is anticipated to frame381

no. 170, where the ground truth is marked about frame no. 155. With this example we aim to demonstrate that382

we can anticipate the convergence to the correct class with respect to ground truth annotation. The Bayesian nature383

of the classifier will show some resistance to this change, due to the effect of the prior probability, which naturally384

delays the state transition. Figure 6c shows that most of the approaches improve the convergence speed particularly385

the approaches belonging to adaptive window size with fixed time shift. We can see that some variations reduce386

the delay in almost 70% with respect to fixed width approach, whereas our best approach (Adapt-ω (80,140)-Fix-387

∆ 10) in terms of precision and recall, also reveals itself to be the best in terms of speed improvement. In terms388

of segmentation accuracy, it means that segments will be labelled much more accurately, due to the fact that model389

classification decisions tend to be closer to their ground truth markers.390

3.5.2. Result Discussion391

The results present in the previous sections allow us to observe that the different approaches have a different impact392

in the model precision, confidence and speed with which the model decides with respect to a given action class. The393

Table 4 presents a summary of the effects that both window parameters have in the different analysed indicators.

Table 4: Comparison of how the window parameters are affected amongst the different proposed approaches.
Measure Description
Precision adaptive ωs with fixed shorter ∆t , ωs’s thresholds have less effect

Confidence adaptive ∆t, especially 2nd and 3rd ∆t approaches
Anticipation speed adaptive ω s with fixed shorter ∆t, ωs’s thresholds have less effect

394

The adaptive behaviour of the sliding window shows that it can improve all mentioned important classification395
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(c) Convergence speed ratio improvement.

Figure 6: A sample results of adaptive sliding window approach using fixed and adaptive time shift approach (The
coloured top bar of the frames show the ground truth, the black line shows the entropy signal). Convergence speed
Improvement (Percentage) with adaptive approaches when compared to fixed approach delays.
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indicator outputs. However, the selection of the most appropriate strategy is highly dependent on the main goal we396

want our classification framework to achieve. Adapting the window size is more beneficial to the precision and recall397

indicators. On the other hand, adapting the time shift has higher impact on confidence and in the anticipation of the398

decision of the classifier, bringing the correct decision closer to the ground truth instant, consequently providing a399

more accurate temporal segmentation. Although it is clear that different parameters impact indicators differently, our400

experimental results also show that it is possible to find a good compromise between all indicators, as we demonstrate401

with the approach Adapt-ω (80,140)-Adapt1-∆.402

It is also relevant to mention that having shorter time shifts tends to increase the computational cost of the classi-403

fication process because of the higher rate of classifications per second. Thus, there is a trade off between the amount404

of time shift and the computational cost, which is where the adaptive time shift approach can also play a relevant role.405

When comparing our work with other approaches, we can point the following main advantages: 1) our approach406

does not rely on the type of signal, devices or processing algorithms [ 16]; 2) it is applied beyond data mining pro-407

cesses [17]; 3) the adaptable parameter approach is applied to classification processes beyond the selection of good408

learning segments, and the adaptive process demonstrates to improve classifier performance [ 16, 17]; 4) Because of its409

complete abstraction, it can be easily integrated with any classification process which uses a sliding window approach.410

4. Conclusions and Future Work411

In this paper we propose a solution to action classification, an adaptive approach to continuously adjust the two key412

parameters in sliding windows: size and time shift. We have demonstrated that changes in these parameters have a high413

impact in the model learning. We have posed this as an entropy minimization problem, formulating a feedback model,414

which based on entropy and previous sliding window parameters, allowed the window to continuously adapt itself415

to the classification process. We have tested numerous scenarios, which used different values for the limits of each416

parameter, and successfully demonstrated our approach to improve results, verified through adequate classification417

metrics: precision, recall, confidence and convergence time (measured in frames). Moreover, our formulation is418

generalizable, i.e. it can be applicable to abstract classification frameworks, as long as they are based on the sliding419

window paradigm and values for entropy and window parameters are available.420

Our future work encompasses the extension of our research to an accurate selection of window parameter limits.421

We expect to obtain generalizable limit selection, which can be applied in general classification problem in which a set422

of variables is known. We will also direct our attention into the development of an abstract classification framework,423

based on the proposed adaptive paradigm, for MatLAB platform.424
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(a) Example1
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(b) Trajectory for Example 1

Figure 7: Sample sequence: a person starts in a rest position, rises and walks around, and returns to the initial state.
Gray areas in the classification bar symbolize the delay between ground truth and classified action states. The output
distribution with each action probability at a given instant is presented in the graph. The bottom graph represents the
trajectory of the performed activity sequence. The sequence is classified using the proposed adaptive sliding window
approach and samples at a frequency of 120Hz. The body models presented on top of figure (a) belong to the XSENS
Software Development Kit.
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(a) Example2
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(b) Trajectory for Example 2

Figure 8: Sample sequence: a person starts in a rest standing position and makes a stretch run until (s)he stops. The
image structure and conditions are the same as the previous Figure 7. The body models presented on top of figure (a)
belong to the XSENS Software Development Kit.
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