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Abstract

Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classifica-

tion by keeping only the most profitable prototypes of the training set. In turn,

these schemes typically lowers the performance accuracy. In this work a new

strategy for multi-label classifications tasks is proposed to solve this accuracy

drop without the need of using all the training set. For that, given a new in-

stance, the PS algorithm is used as a fast recommender system which retrieves

the most likely classes. Then, the actual classification is performed only con-

sidering the prototypes from the initial training set belonging to the suggested

classes. Results show this strategy provides a large set of trade-off solutions

which fills the gap between PS-based classification efficiency and conventional

kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the

performance of conventional kNN with barely a third of distances computed,

but it does also outperform the latter in noisy scenarios, proving to be a much

more robust approach.
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1. Introduction

Since its first proposal in 1951 [1], the k-Nearest Neighbor rule (kNN) con-

stitutes one of the most well-known algorithms in Pattern Recognition (PR) for

supervised non-parametric classification [2], case in which statistical knowledge

of the conditional density functions of the classes involved is not available. Most5

of the kNN popularity in classification tasks comes from its conceptual simplic-

ity and straightforward implementation, which can be described as a distance

comparison between elements. More precisely, given an input x, the NN (kNN)

rule assigns to x the label of the nearest (k-nearest) prototypes of the training

set. An interesting theoretical property of this rule is that its probability of10

error is bounded above by twice the Bayes error rate [3]. kNN algorithm is

usually described as a lazy learner which, in opposition to eager learners, does

not build a classification model out of the training data until a new element

has to be classified. Inside this lazy learning family, kNN is an example of

instance-based method, meaning that no classification rules are obtained out of15

the training data, being part or the total amount of training information itself

used for the classification task [4].

Despite the commented kNN popularity in PR, this method suffers from sev-

eral drawbacks, out of which three clearly limit its application [5]: the first one

is that, as an instance-based classifier, storage memory requirements tend to be20

high for keeping all the training data; the second limitation is its low computa-

tional efficiency since, each time new data has to be classified, many distance

computations are repeated due to the lack of a model; the third disadvantage

is that this method is sensitive to noisy instances, especially for low k values.

Prototype Selection (PS) is one of the most common techniques for over-25

coming the commented drawbacks [6]. This family of methods reduces the size

of the initial training set so as to decrease the aforementioned computational

cost and sensitiveness to noise by removing both redundant and noisy instances

from the initial training set. However, although this process is expected to ei-

ther maintain or even increase the classification results, in practical situations30
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the accuracy obtained tends to be lower than with the initial set.

In this paper, in order to tackle the commented issue, we propose a strategy

which aims to combine the classification accuracy of retaining all the training set

with the time efficiency PS methods provide in kNN classification. Our proposal

first reduces the training set by using a PS algorithm; on that reduced set, we35

perform the classification of the new element but, instead of retrieving the most

convenient class, a rank of classes is proposed according to their suitability; these

proposals are then used for classifying the new element on a filtered version of

the initial training data in which only the elements belonging to the previously

ranked classes are considered for the classification task. This scheme is expected40

to provide a profitable way of approaching a multi-label classification scenario

as a large quantity of prototypes could be discarded.

The rest of the paper is structured as follows: Section 2 introduces some

related proposals to this topic; Section 3 thoroughly develops our proposed

approach; Section 4 explains the evaluation methodology proposed; Section 545

shows the results obtained as well as a thorough discussion about them; finally,

Section 6 explains the general conclusions obtained from the work and discusses

about possible future work.

2. Related work

Among the different stages which comprise the so-called Knowledge Dis-50

covery in Databases (KDD), Data Preprocessing (DP) is the set of processes

devoted to provide the information to the Data Mining (DM) system in the

suitable amount, structure and format. Data Reduction (DR), which consti-

tutes one of these DP possible tasks, aims at obtaining a reduced set of the

original data which, if provided to the DM system, would produce the same55

output as the original data [7].

DR techniques are widely used in kNN classification as a means of over-

coming its previously commented drawbacks, being the two most common ap-

proaches Prototype Generation (PG) and Prototype Selection (PS) [8] Reply 2.1. Both
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methods focus on reducing the size of the initial training set for lowering the60

computational requirements and removing noisy instances while keeping, if not

increasing, the classification accuracy. The former method creates new artificial

data to replace the initial set while the latter one simply selects certain elements

from that set. The work presented here focuses on PS techniques, which are less

restrictive than PG as they do not require extra knowledge to merge elements65

from the initial set. However, reader is referred to [9] for a detailed introduction

and thorough study of PG techniques. On the other hand, below we introduce

the basics of PS methods due to its relevance in the present paper.

As aforementioned, PS methods aim to reduce the size of the initial training

set to lower the computational cost and remove noisy instances which might70

confuse the classifier. Given its importance, many different approaches have

been proposed throughout the years to carry out this task. Due to this large

range of possible strategies, many different criteria have been posed in order

to establish a taxonomy for these methods. However, in this paper we restrict

ourselves to a criterion which basically divides them into three different families:75

• Condensing: The idea followed by these methods is to reduce as much as

possible the data set size by focusing on keeping only points closer to class

decision boundaries. While accuracy on training set is usually maintained,

generalization accuracy is lowered.

• Editing: This approach eliminates instances which produce some class80

overlapping, typical situation of elements located close to the decision

boundaries or noisy data. Data reduction rate is lower than in the previous

case but generalization accuracy is higher.

• Hybrid: These algorithms look for a compromise between the two pre-

vious approaches, which means seeking the smallest data set while im-85

proving, or at least maintaining, the generalization accuracy of the former

set.

For a thorough explanation regarding taxonomy criteria for PS algorithms,
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the reader may check [5] in which an extensive introduction to this topic as

well as a comprehensive classification taxonomy for the different methods are90

discussed.

Even though PS methods are expected to keep the same accuracy as with

the initial training set, in practice it becomes difficult to fulfill this requirement,

reason why much research has been recently devoted to enhance these tech-

niques through data reduction and learning techniques [7]. Some explored lines95

to improve accuracy results have been the use of ensembles together with PS

[10] or hybridizing Feature Selection (FS) schemes with PS using Evolutionary

Algorithms (EA) [11, 12]. On the other hand, and in order to solve the scalabil-

ity issue these algorithms show for very large datasets, some common methods

have been the use of stratification [13] and distributed approaches [14].100

In this paper it is proposed a scheme that tries to overcome the aforemen-

tioned drawbacks of PS algorithms in a very different way. Here, PS is used just

as a preprocessing stage for selecting the most promising labels, which will be

used for the actual classification in the original data set. It should be noted that

this approach does not constrain the development of PS algorithms as its per-105

formance, as a second stage process, is highly influenced by the initial PS step.

In fact, the better the underlying PS algorithm used, the better performance

expected to be achieved with our scheme.

3. Improving Prototype Selection k-Nearest Neighbor Classification

Let T be a training set which consists of pairs {(xi, yi)|xi ∈ X , yi ∈ Y}|T |i=1110

drawn from an unknown function f : X → Y. Typically, X is a feature space and

Y is a discrete set of labels or classes. The main goal in supervised classification

is to approximate this function f .

Given an input x ∈ X , the k-Nearest Neighbor rule hypothesizes about f(x)

by choosing the most frequent label within its k nearest prototypes of T based115

on a dissimilarity function d : X × X → R+ ∪ {0}.

Similarly, a PS method takes T and gives a reduced set R ⊆ T following
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some criteria (see Section 2). Due to the reduction of the original set, the

approximation of the function may be different.

Considering the operation of kNN, a misclassification with R that is correctly120

classified with T has to be produced because of prototypes of the set T \R. If we

assume that PS is carried out due to time execution, then a profitable procedure

is to recover the prototypes of T \R that play a key role in the approximation

of f(x). Obviously, finding out which ones of the whole set of prototypes must

be reconsidered is not a trivial matter. In this work we propose a strategy that125

provides a heuristic solution to this situation.

Our classification strategy is based on a three-phase algorithm, which ba-

sically consists of the following steps (see Fig. 1 to find an illustration of the

process):

1. A given PS algorithm is applied to the whole training set, producing a130

reduced set. This process is done just once in a preprocessing stage.

2. A new input x is given to the classification system. A reduced set of labels

is selected as possible hypotheses for the input x taking into account only

the reduced set. Specifically, we propose to select the c (parameter) nearest

classes of input x.135

3. The final hypothesis is decided using the kNN rule with the part of the

initial training set restricted to the c labels proposed in the previous step

(kNNc search).

The main idea is to use the reduced set as a fast recommending system, which

only has to propose some of the possible labels. After that, the prototypes of140

those proposed labels are recovered and the final decision is then computed with

them, thereby speeding-up the original NN classification.

Let us define NN(x, k, T ) as kNN rule for input x and training set T . Let

nearestLabels(c, x,R) denote the c-nearest labels of x, defined as a set C such

that

C ≡ {y ∈ Y| min
(x′,y′)∈R:y′=y

d(x, x′) < min
(x′,y′)∈R:y′∈Y\C

d(x, x′)}, s.t |C| = c
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Figure 1: General scheme of our classification strategy.

That is, the first c labels that appear if we query the prototypes of the set

R in ascendant order to the distance to x.

Let Tw = {(x, y) ∈ T |y = w} be the prototypes of the training set with label145

w. Then, kNNc search can be performed following Algorithm 1. Note that the

algorithm receives the reduced set R since PS can be performed offline, before

the test stage.

Algorithm 1 kNNc search

Require: k, c ∈ N;R
C ← nearestLabels(c, x,R)
T ′ ← ∅
for all w ∈ C do
T ′ ← T ′ ∪ Tw

end for
h← NN(x, k, T ′)

Our strategy requires an extra parameter: the scalar value c, which deter-

mines how many classes are recommended. This parameter allows tuning the150

classification since it is expected to affect inversely the accuracy and the com-

putational time. In the experimentation section these two parameters will be

analyzed in depth. Additionally, it is required some dissimilarity d(·, ·) measure

over the sample space since it is needed for both the kNN rule and nearestLabels

function.155
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4. Experimental setup

This section presents the evaluation methodology for the assessment of the

proposed approach, for which the most relevant issues are the classification

strategies, the datasets utilized and the performance measurement. These three

aspects are described in the following subsections.160

4.1. Classification strategies

Our main goal is to compare the performance of our strategy against classical

PS-based classification. To this end, we selected a representative set of PS

algorithms published in the literature:

• Condensing Nearest Neighbor (CNN) [15]: obtains a subset S out of the165

training set T such that every member of T is closer to a member of S of

the same class than to a member of a different class. Prototypes of T are

consulted randomly so different computations may give a different subset

S.

• Editing Nearest Neighbor (ED) [16]: selects a set S that starts equal to170

the original training set T . Each element of S which does not agree with

its neighborhood is removed. As it happens with CNN, its result depends

on the order the prototypes are consulted. A common extension to this

technique is Multi-Editing (MED) [17], which computes repeatedly the

ED algorithm until no more prototypes are removed.175

• Multi-Edit Condensing Nearest Neighbor (MCNN) [18]: applies ED algo-

rithm and then applies CNN. The process is repeated until convergence is

achieved.

• Fast Condensing Nearest Neighbor (FCNN) [19]: computes a fast, order-

independent condensing strategy based on seeking the centroids of each la-180

bel. We also add a Multi-Edit Fast Condensing Nearest Neighbor (MFCNN)

technique which combines the ideas of MCNN and FCNN.
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• Farther Neighbor (FN) and Nearest to Enemy (NE) rank methods [20]:

give a probability mass value to each prototype following a voting heuris-

tic. Then, prototypes are selected according to a parameter specified by185

the user that indicates the probability mass desired for each class in the

reduced set.

• Decremental Reduction Optimization Procedure 3 (DROP3) [21]: this

algorithm applies an initial noise filtering step so as to eliminate the de-

pendency on the order of presentation of the instances; after that, these190

instances are ordered according to the distance to their nearest neighbors

and then, starting from the furthest ones, instances which do not affect

the generalization accuracy are removed.

• Iterative Case Filtering Algorithm (ICF) [22]: approach which bases its

performance on the coverage and reachability premises to select the in-195

stances subset able to maximize the prototypes classification accuracy

following the NN rule.

• Heterogeneous recombination and cataclysmic mutation algorithm (CHC)

[23]: evolutionary algorithm commonly used as a representative of Genetic

Algorithms in PS. The configuration of this algorithm has been the same200

as in [24], that is α = 0.5, Population = 50 and Evaluations = 10000.

All these algorithms will be confronted experimentally in order to measure

its performance as PS base strategy of a kNNc search compared to the results

obtained with the retrieval step proposed. Several values of k (1, 3, 5 and 7) and

c (2 and 3) will be analyzed. Furthermore, kNN rule with the whole training205

set (no previous PS performed) will also be included.

4.2. Datasets

Our experiments are carried out with two different isolated character datasets:

the NIST SPECIAL DATABASE 3 (NIST3) of the National Institute of Stan-

dards and Technology, from which a subset of the upper case characters was210
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randomly selected (26 classes, 6500 images); and The United States Postal Of-

fice (USPS) handwritten digit dataset [25] (9298 images). In both cases, contour

descriptions with Freeman Chain Codes [26] are extracted and the edit distance

[27] is used as dissimilarity measure. Additionally, we include experiments with

the Handwritten Online Musical Symbol (HOMUS) dataset [28]. This dataset215

is specially interesting for our work because it contains 15200 prototypes of 32

different classes. Due to its good results in the baseline experimentation with

this data, we will use Dynamic Time Warping [29] as dissimilarity measure.

We focused on datasets with many class labels since we consider that the

main idea of kNNc is expected to provide interesting results in such data.220

4.3. Performance measurement

In order to analyze the impact of our strategy in the PS-based classification,

we take into account the following metrics of interest: accuracy of the strategy,

the number of distances computed during the classification and the time in

milliseconds. These last provide theoretical and empirical efficiency measure,225

respectively, of each strategy. Additionally, we provide an accuracy upper bound

for kNNc classification measured as the percentage of times for which the correct

label is within the c-classes proposals. Another interesting property of PS-

classification is the tolerance to noise. In order to analyze this metric, we will

add synthetic noise to our data by swapping the labels of pairs of prototypes230

randomly chosen. The noise rates (percentage of prototypes that change their

label) considered are 0.1, 0.2, 0.3 and 0.4 since these are the common values in

this kind of experimentation [30].

Given some PS algorithms, the previous metrics are measured for both val-

ues considered for c as well as for PS-based classification without the c-classes235

retrieval step (except for the upper bound).

These measures allow us to analyze the performance of each considered strat-

egy. Nevertheless, no comparison between the whole set of alternatives can be

established so that we can determine which is the best one. The problem is

that PS algorithms try to minimize the number of prototypes considered in240
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the training set at the same time they try to increase classification accuracy.

Most often, these two goals are contradictory so improving one of them implies

a deterioration of the other. From this point of view, PS-based classification

can be seen as a Multi-objective Optimization Problem (MOP) in which two

functions want to be optimized at the same time: minimization of prototypes in245

the training set and maximization of the classification success rate. The usual

way of evaluating this kind of problems is by means of non-dominance concept.

One solution is said to dominate another if, and only if, it is better or equal in

each goal function and, at least, strictly better in one of them. Therefore, the

best solutions (there may be more than one) are those that are non-dominated.250

Thus, the considered strategies will be compared by assuming a MOP sce-

nario in which each of them is a 2-dimensional solution defined as (acc, dist)

where acc is the accuracy obtained by the strategy and dist is the number of

computed distances during its classification process. To analyze the results, the

pair obtained by each scheme will be plotted in 2D point graphs where the non-255

dominated set of pairs will be enhanced. In the MOP framework, the strategies

within this set can be considered the best without defining any order between

them.

5. Results

This section shows the results obtained using the approach presented in260

Section 3 with the experimentation described previously.

In sight of the large amount of experimentation carried out because of the

number of possible combinations of schemes, noise scenarios and data sets con-

sidered, it is unpractical to present all the obtained results due to space lim-

itations. Thus, figures presented actually constitute the average values of the265

three considered evaluation data sets.

For the sake of clarity, we are showing the obtained results in two different

sections: a first one in which the considered data sets are evaluated in their

current form and a second one in which the same evaluation is carried out with
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synthetic noise added to the data.270

5.1. Non-added noise scenario

Results presented in this first subsection are obtained without adding artifi-

cial noise to the data sets. They can be checked in Table 1.

An initial remark to begin with is that, as no information is discarded, con-

ventional kNN achieves the highest accuracy for all k values when only consid-275

ering PS. However, the amount of distances computed is the maximum among

all the algorithms.

ED and MED algorithms do not significantly reduce the size of the set,

maintaining the accuracy in relation to the scores achieved by the kNN imple-

mentations. Due to this fact, the introduction of the kNNc approach does not280

produce a remarkable improvement over the simple PS implementation: accu-

racy is slightly increased as well as the amount of distances to be computed.

On the other hand, CNN and its extensions exhibit an interesting behavior:

all of them achieve a great reduction rate, especially MCNN and MFCNN,

as well as a great performance in terms of accuracy (for instance, the latter285

performs roughly a 10 % of the distances kNN does but obtaining only a 4 % less

in terms of accuracy). On top of that, the introduction of kNNc does improve

results in this case. Let us take the 3NN3 with CNN case: although the number

of calculated distances is increased with respect to the PS classification, the

accuracy is improved to the point of reaching performance of kNN with barely290

a third of distances to be computed.

EN and FN methods obtain some of the highest reduction rates (roughly

ranging from 1 % to 13 % of the distances computed by kNN), also depending

on its parameterization (the probability mass selected), though accuracy figures

are noticeably affected: results get to achieve 15 % points less in terms of295

accuracy with respect to the best result. As in the previous case, the inclusion

of kNNc seems to come with some overall upturn: setting c = 3, the accuracy

is improved, in the best case scenario, to just 1 % lower than the best score,

despite being the number of distances to be computed around the 29 % of the
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maximum.300

Hybrid algorithms DROP3 and ICF achieve great reduction rates as well

(around 6 % to 14 % of the total of distances with respect to kNN), but they

also experiment a significant decrease in their accuracies, with figures of about

10 % and 20 % lower than the maximum score. However, as in the previous

cases, when using the proposed approach, there is a remarkable improvement:305

for instance, in the 3NN3 case, DROP3 increases its accuracy in a 10 %, result

roughly 1 % lower than the kNN figure and obtained computing just a fourth

of the maximum number of distances.

The CHC evolutionary algorithm, just as the EN and FN methods when set

to 0.1, performs one of the highest reduction rates as depicted in the 1NN case,310

in which the number of distances is reduced to just the 2 % of the maximum,

obtaining an accuracy close to an 82 % of the total. As in the other selection

algorithms, when applying the kNNc method to CHC there is a general accuracy

improvement of about 6 % and 8 % for c = 2 and c = 3 respectively, together

with a 10 % and 15 % increase in the number of distances for the same cases.315

On average, the accuracy improvement is more significant when passing from

the basic PS scheme to the kNNc one than the gain obtained by increasing the

number of proposals c, contrasting with the noticeable accuracy rise in the

upper bounds in the same situation. This fact clearly points out that the major

issue remains at the classification stage since, although the kNNc step is able to320

give highly-accurate recommendations, the overall performance is not capable

of reaching these upper limits.

The upper bound ratio does improve as the c value increases since a larger

number c of classes are recommended. An increase in this c parameter causes

a fixed rise in the number of distances to be computed since the classes in the325

data sets proposed are balanced. However, as it can be checked in the results,

there is not such a linear relation between the upper bound figure and the

number of distances computed: for instance, in MFCNN with k = 5, the upper

bounds are 94.9 % for c = 2 and 97 % for c = 3 with 21.9 % and 26.9 % of

distances respectively, depicting that this 2 % improvement is around a 5 %330
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increase in terms of computational cost but, in order achieve a 100 % upper

bound (the remaining 3 %), almost an additional figure of a 73 % of distances

has to be computed. This non-linear behavior, which can be checked in all the

other configurations as well, shows a clear dependency with the PS strategy

used: a certain PS algorithm with an outstanding performance would require335

an elevated number of distances to show an improvement whereas an algorithm

with a poor performance might exhibit a remarkable accuracy upturn without

such distances increase. As a consequence, as the commented upper bounds

are the ones which depict the maximum theoretical classification figures which

can be expected, the obtained accuracy does also show this non-linearity with340

respect to the number of distances.

Finally, the increase in the k value does not have any noticeable effect on

the accuracy obtained by each algorithm, possibly due to the fact that the data

sets are hardly noisy.

As aforementioned, the PS-based classification can be seen as a MOP prob-345

lem in which accuracy and distances computed have to be simultaneously opti-

mized despite being typically opposed goals. Results of the strategies considered

are shown in Fig. 2 facing these two metrics. Optimal solutions, defined using

the non-dominance criterion described in Section 4, are remarked in this figure

as well as being highlighted in Table 1. Since most of the algorithms gather in350

a small area, this particular region has been widened for a better visualization.

A first interesting outcome withdrawn from applying this criterion is that

the kNN algorithm (with no PS) does not belong to the optimal set of solutions

since kNN3 CNN scheme achieves the same accuracy with a lower number of

distances computed.355

Moreover, it can be also observed that, except for editing approaches, each

main scheme –PS, kNN2 and kNN3, drawn in red, green and blue points respectively–

entail a cloud of points in different regions of the space. Therefore, kNNc scheme

is providing a great range of new options in the trade-off between distances and

accuracy not explored in previous works. Furthermore, many kNN2 and kNN3360

strategies are found within the optimal set of solutions. This provides the user
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Figure 2: Distances computed (%) against accuracy achieved by the algorithms. Average
results when no noise is added to the samples. The non-dominated front is remarked.

with a wide range of options from which to choose depending on the metric to

emphasize (distances or accuracy). For example, let us assume a scenario like

that depicted in Fig. 2 in which we are restricted to perform at maximum a 25 %

of the distances. Thanks to 3NN2 scheme with MFCNN prototype selection, we365

could achieve an accuracy of 90.3 % (just 0.6 % below the best accuracy) with

around a 22 % of distances computed.

5.2. Noisy scenario

In this subsection the figures obtained when synthetic noise is added are

presented. Experimentation was carried out for each of the noise configurations370

considered in Section 4. As results show a qualitatively similar trend along these

noise possibilities, remarks will not focus on a particular configuration but on

the general behavior. In addition, and due to space limitations, results of only

two of the noise scenarios tackled are shown: an intermediate situation (20 %

noise rate scenario), for which results can be verified in Table 2, and one for the375

most adverse situation considered (40 % of synthetic noise rate), whose results
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can be checked in Table 3.

Synthetic noise addition to the samples changes the previous situation dras-

tically. kNN, which scored the best results for each single k value, now exhibits

a remarkable decrease in accuracy, becoming more noticeable as the noise rate is380

increased. As expected, the use of different k values does improve the accuracy,

especially in the case of k = 7, in which kNN scores the maximum classification

rate, drawing in these terms with ED.

ED and MED algorithms are able to manage this noisy situation: the size

reduction is sharper than in the previous case since the elements removed are the385

ones leading to confusion. As it happened in the non-added noise scenario, the

use of kNNc with these algorithms does not carry a remarkable improvement

in accuracy, though it does in the classification upper bounds, getting even

to the point of decreasing the performance when low k values are used. This

particular effect is likely to happen since the samples added by our second step390

are, theoretically, the noisy ones discarded by the PS algorithm, thus confusing

the classifier when low k values are used.

CNN and FCNN show some of the worst accuracies obtained in these ex-

periments in terms of PS as they are very sensitive to noise: as stand-alone PS

algorithms, they are not able to discard the noisy elements, thus leading to a395

situation in which there is neither an important size reduction nor a remarkable

performance. Furthermore, the use of different k values does not upturn the

accuracy results. On the other hand, the use of the second kNNc step does

improve their accuracy, but still the results remain far from the classification

bounds. However, as with ED and MED, introducing high k values enhances400

the obtained accuracy with respect to the low k values with the c class recom-

mendation.

MFCNN and MCNN are not as affected as CNN and FCNN are at PS stage

since they introduce an ED phase in the process: whereas the latter approaches

obtained around 50 % and 60 % in terms of accuracy with around a 60 % and405

70 % of computed distances, the former algorithms do achieve precision rates

around 80 % with roughly 10 % of the distances. The improvement obtained
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when using kNNc with these strategies is also noticeable with high k values.

Moreover, as it happened in the non-added synthetic noise configuration, kNNc

schemes are able to score results not significantly different to the ones achieved410

by the best performing algorithms (for instance, ED and MED with k = 7) with

just around 25 % of the maximum distances computed.

EN and FN methods demonstrated to be interesting algorithms in the non-

added noise scenario as they both obtained good accuracies while achieving

some of the highest reduction rates. Attending now to the results obtained in415

the proposed noisy situations, these methods do also stand as an interesting

alternative for PS as they behave amazingly well in both terms of accuracy and

size, especially the 2-EN and 2-FN configurations: whereas, on average, hardly

any of these algorithms score lower accuracies than 80 %, the 2-EN and 2-FN

ones are always able to score precision results above that mark, in some sit-420

uations with distance ratios in the range from 3 % to 10 %. Including kNNc

does improve the performance (as in the other cases, for the most part when

using high-enough k values) and in spite of not outperforming other strategies

(an exception to this assertion is the 2-NE0.30 case with k = 7 and c = 3 in Ta-

ble 3), accuracies obtained are not significantly different to the best performing425

algorithms. In addition, distances computed roughly range from 10 % to 30 %

of the maximum, constituting a remarkable trade-off result. It is important to

highlight that, in sight of the results obtained, these particular algorithms stand

as an attractive alternative to some of the other studied methods for any noise

situation as they do not perform any editing operation.430

Hybrid algorithm DROP3 and ICF, just as CNN and FCNN, are not capable

of coping with noisy situations either since accuracy results are similar or even

lower (for instance, the ICF method in which with a 40 % of synthetic noise

is not able to reach a 50 % of accuracy in any of the proposed PS schemes).

However, it must be pointed out that, despite achieving similar accuracy rates,435

hybrid algorithms do it with a lower amount of distances: as an example, check

the 7NN case with 40 % of noise in which CNN achieves an accuracy of 52.8 %

with 73.8 % of the total of distances while DROP3 gets a 56.6 % with just a 6.6 %
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of distances. On the other hand, adding the kNNc scheme remarkably enhances

the accuracy achieved by these algorithms (in the 7NN3 configuration of ICF,440

the accuracy is improved in almost a 30 % with respect to the PS situation)

but it also noticeable increases the number of distances to be computed up to,

on average, a 15 % more.

Regarding the CHC evolutionary algorithm when tackling noisy situations,

although it still shows one of the highest reduction figures amongst the studied445

methods (rates around 2 % to 5 %), its classification performance is significantly

affected as no result is higher than 70 %. In this case, the inclusion of kNNc

has a similar effect to the hybrid algorithms as it shows a notorious accuracy

increase (fixing c = 3, classification figures improve around 20 % and 25 % for

noise rates of 20 % and 40 % respectively) paired with a rise in the number450

of distances of about 10 % and 15 % points when setting c = 2 and c = 3

respectively.

In terms of the classification upper bounds defined with kNNc, as in the

scenario without synthetic noise, bounds get higher as the number c of class

proposals is increased. On average, and as already commented, there is not455

such a significant increase between c = 2 and c = 3 as the one observed when

comparing PS and c = 2. An exception to this remark can be observed, though,

in both CNN and FCNN strategies as well as with the hybrid (DROP3 and

ICF) and the evolutionary (CHC) algorithms in which, as they are not capable

of coping with the noise effects, a high number c of class proposals is required.460

As in the non-added noise scenario, it is possible to check the non-linear

relation between the upper bound and the number of distances to be computed.

For instance, for a figure noise of 40 %, the 2-FN0.10 algorithm with k = 1

retrieves upper bounds of 90.6 % for c = 2 and 93.9 % for c = 3 with distance

figures of 15.1 % and 20.5 % respectively, which shows that there is a 3.3 % of465

improvement with just a 5.4 % increase in the total of distances to be computed.

These last figures clearly contrast with the 79.5 % increase in the distances

required so as to be able to improve the 93.9 % bound figure to the maximum

(barely, a 6 %). Also, as in the scenario without synthetic noise, the accuracy
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follows the same non-linear trend of the upper limits but with the remarkable470

influence of the noise, which might seriously affect the performance: for instance,

in the same case of the 2-FN0.10 algorithm with k = 1 and a noise figure of 40 %,

there is an accuracy improvement from the initial 81.8 % to 84.3 % when going

from the initial PS to the c = 2 scheme by computing close to an 11 % more

of distances; however, the use of c = 3 takes an additional cost of 5 % in the475

distances but, instead of improving results, there is an actual accuracy decrease

of almost a 0.5 %. This clearly shows that the non-linear behavior is not only

dependent on the PS algorithm but also on the noise the system is dealing with.

On the other hand, Fig. 3 and Fig. 4 show the results of the strategies consid-

ered facing accuracy and distances computed. Note that the optimal strategies480

(non-dominated solutions) are remarked. As occurred in the scenario without

noise, PS and kNNc schemes are present within this optimal set. Following

the MOP scenario no order can be established within the non-dominated so-

lutions. Nevertheless, it can be checked that now the kNNc strategies are the

most numerous.485
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Figure 3: Distances computed (%) against accuracy achieved by the algorithms. Average
results when 20 % of noise is added to the samples. The non-dominated front is remarked.
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results when 40 % of noise is added to the samples. The non-dominated front is remarked.

As it happened in the previous situation in which no noise was added, the

basic kNN algorithm is again out of the optimal set of solutions as now kNN3

is not only able to reach its performance with a lower number of distances

computed, but it also does obtain a better classification accuracy. Specially

interesting are the cases of 5NN3 MFCNN and 5NN3 MCNN, for 20 % of noise,490

and 7NN3 MFCNN and 7NN3 2-NE0.30, for 40 % of noise, which achieve better

performance with just around a 25 % to 30 % of distances computed.

5.3. Statistical significance test

The aim of this section is to assess whether the inclusion of the second step

of the kNNc scheme leads to significantly better classification accuracies. We495

shall therefore use the KEEL [31] software, which contains statistical tools that

allow us to quantify the difference between the results with and without this

step. Specifically, a Wilcoxon 1 × 1 test was performed between PS and each

kNN2 configuration for the same algorithm as well as between kNN2 and kNN3.

The first one checks whether there is a significant accuracy upturn between the500
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kNN2 approach and the basic PS scheme, which is the main contribution of this

paper. The second one is performed to assess whether the accuracy in kNN3 is

significantly better than the one obtained in kNN2, which may justify providing

more class proposals.

The significance (asymptotic) p-values considering all the experiments are505

shown in Table 4. These values represent the overlap between the two distribu-

tions, assuming that kNNc accuracy is better. We can consider the p-values as

a confidence measure for the comparison. The significance of a low value is a

high probability that the distributions compared are different.

As is shown in the first column, all the values are lower than 0.05, depicting510

that the inclusion of our second step leads to a significant accuracy improvement

at a confidence level of 95 %. Moreover, the second column shows that, except

for the two particular configurations of k=1 with synthetic noise rates of 20 %

and 40 %, proposing an additional label does lead to higher accuracy as the rest

of the confidence values are also lower than 0.05.515

6. Conclusions

k-Nearest Neighbor (kNN) classification is one of the most common, easy and

simple algorithms for supervised learning which usually achieves an acceptable

performance. Within this context, Prototype Selection (PS) algorithms have

demonstrated their utility by improving some kNN issues such as computational520

time, noise removal or memory usage. Nevertheless, PS often leads to a decrease

of the classification accuracy. To this end, we propose a two-step strategy in

which the PS algorithm is exploited by using its reduced set to select the c

nearest classes for a given input. Afterwards, only these c classes are taken

into account in the classification stage with the original set. Therefore, some525

misclassification produced by using the reduced set can be corrected with neither

increasing the computation too much nor requiring the whole training set to be

stored in the memory at the same time.

Experimentation in which our strategy was faced against conventional PS-
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based classification was conducted. A representative set of PS algorithms was530

chosen and several metrics of interest were collected in classification experiments

with some multi-label datasets.

Results showed that our proposal provides a new range of solutions in the

trade-off between accuracy and efficiency. In the best cases, our strategy equals

the accuracy of kNN classification with just a 30 % of distances computed.535

In addition, in the presence of noisy data, our search achieves a remarkably

profitable performance since, in combination with the appropriate PS algorithm,

it improves the kNN classification with a higher efficiency. Furthermore, in all

cases considered, statistical tests revealed that kNNc accuracy is significantly

better than the one obtained with just PS.540

Some interesting conclusions were also drawn with respect to the tuning

parameter c. The profitability of increasing c did show a non-linear tendency

with respect to both the maximum achievable classification rate and the actual

accuracy obtained. The improvement gain decreases as the number of recom-

mendations c gets higher, depicting an asymptotic behavior. Therefore, an545

optimal c value may be found on the trade-off between accuracy and efficiency

depending on the conditions of the considered scenario.

This work has opened some promising future work lines when computing a

hypothesis in the second step. Results showed that there is a great gap between

the upper bound of the classification (rate in which the correct label is within550

the c classes proposal) and the empirical classification rate. Therefore, other

kind of search could be performed in this second step instead of resorting again

to the kNN classification.

Acknowledgements

This work was partially supported by the Spanish Ministerio de Educación,555

Cultura y Deporte through FPU Fellowship (AP2012–0939), the Spanish Minis-

terio de Economı́a y Competitividad through Project TIMuL (TIN2013-48152-
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[9] I. Triguero, J. Derrac, S. Garćıa, F. Herrera, A Taxonomy and Experimen-585

tal Study on Prototype Generation for Nearest Neighbor Classification,

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on 42 (1) (2012) 86–100. doi:10.1109/TSMCC.2010.2103939.
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k Algorithm Red. set size
Accuracy (%) Upper Bound (%) Distances (%) Time (%)

PS kNN2 kNN3 kNN2 kNN3 PS kNN2 kNN3 PS kNN2 kNN3

1

ALL 6898.7 90.6 90.6 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 6231.2 89.4 90.2 90.4 95.5 97.4 90.6 91.6 92.0 90.7 103.4 107.7

MED 6231.7 89.4 90.2 90.4 95.5 97.4 90.5 91.5 92.1 91.6 103.4 109.9
MCNN 849.0 86.9 89.9 90.2 94.6 96.8 11.8 22.4 26.6 12.8 25.6 30.8

CNN 1589.3 87.0 90.2 90.5 95.9 98.0 22.7 31.5 36.1 24.1 36.0 42.8
MFCNN 830.9 86.8 90.0 90.4 94.9 97.0 11.7 21.9 26.9 12.1 24.8 29.4
FCNN 1537.9 87.0 90.2 90.5 95.8 98.0 22.0 30.8 35.3 22.9 35.2 40.9

1-FN0.10 233.8 79.6 86.1 88.1 89.9 93.8 3.5 14.4 19.9 3.1 14.5 20.5
1-FN0.20 539.0 84.1 88.2 89.3 92.6 95.4 7.9 18.4 23.7 7.4 19.6 24.9
1-FN0.30 928.8 85.9 89.1 89.8 93.8 96.3 13.7 23.6 28.6 13.1 25.5 30.6
1-NE0.10 106.6 75.3 83.4 85.7 87.1 91.1 1.6 12.8 18.4 1.4 13.3 19.3
1-NE0.20 271.5 81.4 87.0 88.2 91.2 94.2 4.1 15.0 20.4 3.6 15.6 21.1
1-NE0.30 512.9 84.9 88.4 89.3 93.0 95.8 7.7 18.2 23.4 7.0 18.7 24.7
2-FN0.10 228.2 79.1 86.0 87.9 89.9 93.5 3.4 14.4 19.9 3.1 14.4 21.1
2-FN0.20 522.8 83.4 88.1 89.2 92.6 95.5 7.8 18.3 23.6 7.3 19.7 24.3
2-FN0.30 896.7 85.5 89.0 89.8 93.7 96.4 13.3 23.3 28.2 12.8 25.2 30.3
2-NE0.10 102.5 74.2 82.9 85.3 86.6 90.8 1.6 12.8 18.3 1.3 13.3 19.5
2-NE0.20 255.4 80.7 86.6 88.1 90.8 94.1 3.9 14.8 20.3 3.4 15.2 21.7
2-NE30 480.0 84.4 88.3 89.3 93.0 95.7 7.3 17.8 23.1 6.7 18.9 25.4
DROP3 759.8 81.6 88.1 89.3 92.8 95.9 10.5 20.8 26.0 9.3 19.0 23.7

ICF 987.3 71.8 81.8 85.0 85.9 91.0 14.2 24.2 29.2 14.1 23.7 27.9
CHC 158.1 81.7 86.9 88.6 90.5 94.1 2.3 13.4 19.0 2.0 11.5 16.1

3

ALL 6898.7 90.9 90.9 90.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 6232.0 89.4 90.4 90.6 95.4 97.4 90.6 91.6 92.1 93.8 106.7 111.7

MED 6231.9 89.4 90.4 90.6 95.5 97.4 90.5 91.5 92.1 93.6 106.2 111.6
MCNN 813.3 85.8 89.8 90.2 94.2 96.6 10.9 21.2 26.1 11.8 24.1 30.1
CNN 1611.5 87.1 90.5 90.9 96.0 98.1 23.0 31.9 36.1 25.4 38.8 43.6

MFCNN 831.3 86.8 90.3 90.6 94.9 97.1 11.7 21.9 26.9 12.7 25.5 30.9
FCNN 1537.7 87.0 90.3 90.8 95.8 98.0 22.0 30.9 35.3 23.3 35.6 41.8
1-FN0.10 233.9 79.7 86.4 88.3 90.0 93.7 3.5 14.4 19.9 3.2 15.3 21.1
1-FN0.20 540.0 83.8 88.3 89.5 92.5 95.4 8.0 18.4 23.7 7.6 19.9 25.7
1-FN0.30 930.8 85.8 89.2 90.0 93.7 96.3 13.7 23.6 28.6 13.5 26.0 31.6
1-NE0.10 106.7 75.2 83.4 85.7 86.9 91.0 1.6 12.8 18.4 1.4 14.0 19.7
1-NE0.20 270.8 81.4 87.1 88.3 91.3 94.2 4.1 15.0 20.4 3.7 15.9 22.5
1-NE0.30 512.5 84.9 88.7 89.6 93.1 95.8 7.7 18.2 23.4 7.3 19.7 25.9
2-FN0.10 227.9 79.5 86.2 88.1 89.9 93.5 3.4 14.4 19.9 3.1 15.1 21.0
2-FN0.20 522.5 83.4 88.2 89.5 92.6 95.5 7.8 18.3 23.6 7.4 19.2 25.2
2-FN0.30 896.5 85.4 89.1 90.0 93.7 96.3 13.3 23.3 28.2 12.9 25.0 31.4
2-NE0.10 102.4 74.3 83.2 85.5 86.7 90.8 1.6 12.8 18.3 1.3 13.1 19.4
2-NE0.20 255.2 80.7 86.7 88.2 90.8 94.1 3.9 14.8 20.3 3.5 16.0 22.4
2-NE0.30 479.2 84.4 88.6 89.6 93.0 95.8 7.3 17.8 23.1 6.6 19.0 25.3
DROP3 513.1 78.3 86.2 88.3 90.2 94.2 7.0 17.6 23.0 6.4 16.3 21.0

ICF 917.4 73.0 82.3 85.2 86.0 90.7 13.4 23.5 28.5 13.4 22.6 27.9
CHC 236.3 81.2 86.8 88.4 90.5 93.9 3.6 14.6 20.1 3.2 12.7 17.6

5

ALL 6898.7 90.7 90.7 90.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 6231.2 89.4 90.1 90.5 95.5 97.4 90.6 91.5 92.1 90.6 103.2 107.9

MED 6231.4 89.4 90.1 90.5 95.5 97.4 90.5 91.5 92.1 91.4 102.6 110.3
MCNN 799.0 85.5 89.2 90.0 93.9 96.5 10.6 20.9 25.9 11.3 23.3 29.5

CNN 1599.1 87.1 90.2 90.7 96.0 98.1 22.8 31.7 36.0 24.0 36.4 42.0
MFCNN 832.9 86.8 89.8 90.4 94.9 97.0 11.7 21.9 26.9 12.3 24.2 30.6
FCNN 1538.1 87.1 90.0 90.6 95.8 98.0 22.0 30.9 35.3 23.0 35.4 40.7

1-FN0.10 233.5 80.1 86.3 88.2 90.1 93.7 3.5 14.4 19.9 3.2 15.2 21.2
1-FN0.20 539.9 84.0 88.2 89.4 92.6 95.4 8.0 18.5 23.7 7.6 19.7 25.7
1-FN0.30 929.8 85.9 89.0 89.8 93.8 96.2 13.7 23.6 28.6 13.1 25.2 30.8
1-NE0.10 106.5 75.2 83.3 85.7 86.9 91.1 1.6 12.8 18.4 1.3 13.2 19.0
1-NE0.20 271.0 81.5 86.9 88.2 91.2 94.3 4.1 15.0 20.4 3.7 16.1 21.8
1-NE0.30 512.8 84.9 88.5 89.5 93.0 95.8 7.7 18.2 23.4 7.0 19.1 25.0
2-FN0.10 227.7 79.5 86.1 88.0 90.0 93.5 3.4 14.4 19.9 3.0 14.7 20.6
2-FN0.20 523.1 83.4 88.1 89.3 92.6 95.5 7.8 18.3 23.6 7.4 19.2 25.2
2-FN0.30 897.4 85.4 88.9 89.8 93.7 96.4 13.3 23.3 28.2 12.6 24.5 31.1
2-NE0.10 102.5 74.2 83.0 85.3 86.7 90.7 1.6 12.8 18.3 1.3 13.1 19.4
2-NE0.20 255.5 80.9 86.6 88.1 90.9 94.1 3.9 14.8 20.3 3.4 15.7 20.8
2-NE0.30 480.0 84.4 88.3 89.4 93.0 95.8 7.3 17.8 23.1 6.4 18.5 24.0
DROP3 466.4 77.6 85.4 87.7 89.3 93.6 6.3 17.1 22.5 5.7 15.3 20.0

ICF 898.7 73.2 82.3 85.1 86.1 90.8 13.2 23.3 28.3 13.1 22.4 26.9
CHC 265.2 80.9 87.0 88.6 90.8 94.3 4.1 15.1 20.6 3.6 13.2 17.8

7

ALL 6898.7 90.3 90.3 90.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 6227.0 89.4 89.7 90.1 95.5 97.4 90.5 91.6 92.0 92.0 103.9 110.4

MED 6231.6 89.4 89.7 90.1 95.5 97.4 90.5 91.5 92.1 92.2 103.1 111.8
MCNN 796.6 85.2 88.9 89.6 93.8 96.5 10.6 20.8 25.9 11.2 23.2 29.2
CNN 1608.8 87.2 89.9 90.2 95.9 98.0 22.9 31.7 36.2 24.1 36.5 41.8

MFCNN 831.0 86.8 89.6 90.0 94.9 97.1 11.7 21.9 26.9 12.3 24.9 30.5
FCNN 1539.2 87.1 89.8 90.2 95.8 98.0 22.0 30.9 35.3 23.2 35.4 41.5

1-FN0.10 233.8 79.7 85.9 88.0 89.9 93.9 3.5 14.4 19.9 3.2 16.0 21.1
1-FN0.20 539.5 84.0 88.0 89.0 92.6 95.4 8.0 18.5 23.7 7.6 19.7 25.7
1-FN0.30 929.8 85.9 88.7 89.5 93.8 96.3 13.7 23.6 28.6 13.5 26.3 31.3
1-NE0.10 106.7 75.0 83.2 85.4 86.9 91.1 1.6 12.8 18.4 1.4 13.4 19.9
1-NE0.20 271.4 81.4 86.8 88.0 91.3 94.3 4.1 15.0 20.4 3.7 15.8 21.8
1-NE0.30 513.3 84.9 88.3 89.2 93.0 95.8 7.7 18.2 23.4 7.1 19.2 25.3
2-FN0.10 228.0 79.0 85.9 87.7 89.9 93.4 3.4 14.4 19.9 3.1 14.9 20.8
2-FN0.20 522.2 83.4 87.9 89.0 92.6 95.5 7.8 18.3 23.6 7.5 19.3 26.1
2-FN0.30 895.5 85.5 88.7 89.6 93.8 96.4 13.3 23.3 28.2 12.5 24.3 30.5
2-NE0.10 102.2 74.4 82.7 85.1 86.6 90.8 1.6 12.8 18.3 1.3 13.2 19.5
2-NE0.20 255.0 80.8 86.5 87.8 90.9 94.1 3.9 14.8 20.3 3.4 15.6 21.6
2-NE0.30 479.2 84.4 88.1 89.0 93.0 95.8 7.3 17.8 23.1 6.6 18.4 25.3
DROP3 478.9 79.2 86.5 88.4 90.7 94.7 6.6 17.3 22.6 5.9 15.7 20.5

ICF 887.9 73.6 82.2 84.8 86.0 90.6 13.0 23.1 28.2 13.1 22.4 26.8
CHC 293.2 79.9 86.7 88.2 90.6 94.2 4.5 15.4 20.9 4.0 13.6 18.3

Table 1: Average results obtained when no noise is added to the datasets. Bold elements
correspond to the non-dominated points. Normalized results (%) of the different algorithms
are obtained referring to the ALL method with the same k value.
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k Algorithm Red. set size
Accuracy (%) Upper Bound (%) Distances (%) Time (%)

PS kNN2 kNN3 kNN2 kNN3 PS kNN2 kNN3 PS kNN2 kNN3

1

ALL 6898.7 73.1 73.1 73.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 4329.4 88.1 88.3 87.8 94.6 96.8 62.8 66.9 69.0 63.0 76.1 80.1

MED 4338.1 88.1 88.1 87.8 94.6 96.8 63.0 67.0 69.1 63.7 76.5 81.3
MCNN 713.6 84.2 87.7 87.5 93.8 96.1 10.0 20.6 25.0 10.2 22.7 27.9
CNN 4094.3 64.4 70.9 72.4 87.4 94.6 59.2 63.8 66.4 60.6 73.0 79.3

MFCNN 673.5 84.6 87.6 87.6 93.6 96.2 9.6 19.8 25.0 9.8 22.3 27.4
FCNN 3953.2 63.9 70.7 72.3 87.2 94.4 57.1 61.9 64.3 57.7 68.8 77.4

1-FN0.10 288.5 81.6 85.6 86.2 90.5 93.8 4.2 15.0 20.5 3.8 15.8 21.8
1-FN0.20 683.9 84.5 87.4 87.4 92.9 95.7 9.9 20.1 25.2 9.2 21.8 26.8
1-FN0.30 1157.0 85.2 87.4 87.4 93.6 96.3 16.8 26.2 30.9 15.5 27.3 33.9
1-NE0.10 233.3 80.9 84.9 85.7 89.8 93.2 3.4 14.3 19.7 2.9 14.8 20.3
1-NE0.20 574.6 84.4 87.2 87.1 92.8 95.4 8.2 18.6 23.8 7.4 19.3 25.3
1-NE0.30 1022.7 85.6 87.7 87.4 93.8 96.2 14.7 24.3 29.1 13.3 25.4 31.1
2-FN0.10 257.5 81.6 85.5 86.2 90.4 93.9 3.8 14.7 20.1 3.3 14.9 20.6
2-FN0.20 609.8 84.5 87.2 87.1 92.7 95.5 8.9 19.3 24.4 8.1 20.0 26.1
2-FN0.30 1061.7 85.0 87.6 87.3 93.8 96.2 15.5 25.1 29.9 14.2 26.0 32.6
2-NE0.10 186.9 80.2 84.6 85.6 89.5 93.0 2.8 13.7 19.2 2.4 14.5 20.5
2-NE0.20 472.5 84.0 87.0 86.9 92.4 95.2 6.9 17.3 22.6 6.2 18.1 24.8
2-NE0.30 864.5 85.2 87.7 87.3 93.6 96.2 12.5 22.4 27.3 11.5 24.0 29.9
DROP3 759.8 68.7 80.6 83.4 86.2 92.2 10.5 20.8 26.0 9.3 18.9 23.7

ICF 987.3 57.5 71.8 76.6 77.3 86.3 14.2 24.2 29.2 14.0 23.4 28.1
CHC 160.5 67.8 79.2 81.7 84.3 89.8 2.4 13.4 19.0 1.9 11.4 16.1

3

ALL 6898.7 82.9 82.9 82.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 4321.9 88.1 89.5 89.4 94.7 96.8 62.7 67.1 68.7 62.7 74.7 80.8

MED 4334.9 87.7 89.5 89.6 94.6 96.8 62.9 66.9 69.1 62.9 74.9 81.1
MCNN 679.1 82.8 88.6 89.3 93.2 96.0 9.2 19.6 24.7 9.6 21.5 28.0
CNN 4081.8 64.3 82.4 82.7 87.3 94.6 59.1 63.8 66.2 59.4 71.5 77.8

MFCNN 675.5 84.5 88.8 89.3 93.5 96.2 9.6 19.8 25.0 9.8 21.7 28.0
FCNN 3951.3 63.9 82.1 82.6 87.2 94.4 57.0 61.9 64.3 57.4 69.7 75.7

1-FN0.10 288.4 81.6 86.7 87.9 90.7 93.8 4.2 15.0 20.5 3.7 15.8 21.7
1-FN0.20 682.6 84.5 88.3 89.1 92.9 95.8 9.9 20.1 25.2 9.0 20.4 26.9
1-FN0.30 1155.8 85.1 88.8 89.2 93.7 96.3 16.7 26.2 30.9 15.7 27.7 34.0
1-NE0.10 233.5 80.9 85.9 87.2 89.9 93.2 3.4 14.3 19.7 2.9 14.4 21.2
1-NE0.20 575.0 84.3 88.2 88.9 92.8 95.4 8.3 18.6 23.8 7.5 19.3 26.0
1-NE0.30 1023.3 85.5 88.8 89.3 93.7 96.2 14.7 24.3 29.1 13.6 25.8 31.8
2-FN0.10 257.9 81.5 86.5 87.7 90.5 93.9 3.8 14.7 20.1 3.4 15.4 21.1
2-FN0.20 610.3 84.5 88.2 88.9 92.8 95.5 8.9 19.3 24.4 8.2 20.1 26.1
2-FN0.30 1061.6 85.0 88.9 89.2 93.8 96.3 15.5 25.1 29.9 14.1 26.0 32.2
2-NE0.10 187.6 80.3 85.6 87.0 89.6 93.0 2.8 13.7 19.2 2.3 13.9 20.3
2-NE0.20 472.7 84.1 88.0 88.7 92.4 95.1 6.9 17.3 22.6 6.1 18.2 23.9
2-NE0.30 864.4 85.4 88.8 89.3 93.6 96.2 12.5 22.4 27.3 11.5 24.1 29.8
DROP3 513.1 65.5 79.7 83.5 83.7 90.1 7.0 17.6 23.0 6.2 15.9 20.5

ICF 917.4 58.8 74.1 79.3 77.8 86.1 13.4 23.5 28.5 13.1 22.4 27.1
CHC 238.8 68.8 82.0 85.5 84.9 90.4 3.6 14.6 20.1 3.0 12.4 16.8

5

ALL 6898.7 87.6 87.6 87.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 4331.0 87.7 89.3 88.8 94.6 96.8 62.9 67.0 68.9 63.6 75.8 82.1

MED 4325.3 87.9 89.1 89.7 94.6 96.8 62.8 66.8 69.0 63.3 74.9 81.9
MCNN 669.4 82.8 88.2 89.3 93.1 96.1 9.0 19.4 24.4 9.6 22.2 28.1

CNN 4102.3 64.4 82.9 87.0 87.3 94.6 59.3 63.9 66.5 59.8 72.0 78.3
MFCNN 676.3 84.5 88.6 89.4 93.5 96.3 9.6 19.9 25.0 9.8 21.9 27.9

FCNN 3953.7 63.9 82.6 86.9 87.2 94.4 57.1 61.9 64.3 58.3 71.7 76.2
1-FN0.10 288.6 81.7 86.5 87.9 90.7 93.8 4.2 15.0 20.5 3.8 15.8 21.5
1-FN0.20 683.2 84.5 88.0 89.1 92.9 95.8 9.9 20.1 25.2 9.3 21.5 27.6
1-FN0.30 1156.4 85.2 88.5 89.3 93.6 96.3 16.7 26.2 30.9 15.7 28.0 33.7
1-NE0.10 233.0 80.9 85.6 87.3 89.8 93.2 3.4 14.3 19.7 2.9 15.1 20.9
1-NE0.20 574.7 84.4 87.9 88.9 92.8 95.4 8.2 18.6 23.8 7.5 19.6 25.7
1-NE0.30 1022.5 85.7 88.6 89.4 93.7 96.2 14.7 24.3 29.1 13.6 26.1 31.5
2-FN0.10 257.7 81.5 86.3 87.8 90.5 93.9 3.8 14.7 20.1 3.4 15.3 21.4
2-FN0.20 609.9 84.5 88.0 89.0 92.7 95.5 8.9 19.3 24.4 8.2 20.6 26.0
2-FN0.30 1061.2 85.0 88.6 89.3 93.7 96.2 15.5 25.1 29.9 14.2 25.5 32.9
2-NE0.10 187.2 80.3 85.4 87.1 89.5 93.1 2.8 13.7 19.2 2.4 15.0 20.9
2-NE0.20 472.2 84.0 87.8 88.7 92.5 95.2 6.9 17.3 22.6 6.1 17.9 24.1
2-NE0.30 863.9 85.4 88.6 89.3 93.6 96.2 12.5 22.4 27.3 11.6 24.1 29.9
DROP3 466.4 65.3 79.2 83.6 83.1 89.5 6.3 17.1 22.5 5.7 15.4 19.9

ICF 898.7 58.9 74.2 79.7 77.8 86.1 13.2 23.3 28.3 13.2 22.6 27.4
CHC 269.0 67.9 81.3 84.9 85.2 90.9 4.2 15.1 20.6 3.6 13.2 17.8

7

ALL 6898.7 88.1 88.1 88.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 4335.3 88.1 89.0 89.5 94.6 96.8 62.9 66.9 69.0 63.2 76.2 80.3

MED 4335.1 87.2 89.0 89.5 94.6 96.8 62.9 67.0 69.1 62.5 74.3 80.9
MCNN 673.3 82.0 88.0 89.0 93.1 96.0 9.0 19.4 24.4 9.4 21.9 27.6
CNN 4092.4 64.3 82.7 87.2 87.3 94.5 59.2 63.9 66.3 59.2 71.1 78.0

MFCNN 678.7 84.3 88.4 89.2 93.5 96.2 9.6 19.9 25.0 9.9 21.6 28.3
FCNN 3949.4 63.9 82.5 87.2 87.2 94.4 57.0 61.8 64.3 56.9 69.6 74.6

1-FN0.10 288.8 81.7 86.3 87.6 90.6 94.0 4.2 15.1 20.5 3.7 15.6 21.4
1-FN0.20 683.2 84.6 87.9 88.9 92.9 95.8 9.9 20.1 25.2 9.1 21.3 26.6
1-FN0.30 1156.7 85.2 88.3 89.1 93.6 96.3 16.7 26.2 30.9 15.6 27.7 33.6
1-NE0.10 233.1 81.0 85.5 87.1 89.8 93.2 3.4 14.3 19.7 2.9 14.6 20.8
1-NE0.20 574.0 84.4 87.8 88.6 92.8 95.4 8.2 18.6 23.8 7.4 19.2 25.6
1-NE0.30 1021.9 85.6 88.5 89.2 93.7 96.2 14.7 24.3 29.1 13.7 25.8 32.6
2-FN0.10 257.8 81.6 86.1 87.6 90.4 93.9 3.8 14.7 20.1 3.4 15.4 21.7
2-FN0.20 609.4 84.5 87.9 88.7 92.7 95.5 8.9 19.3 24.4 8.1 19.7 26.3
2-FN0.30 1060.6 85.0 88.5 89.0 93.7 96.2 15.5 25.1 29.9 14.1 25.9 32.7
2-NE0.10 187.3 80.3 85.2 86.8 89.6 93.1 2.8 13.7 19.2 2.3 14.4 19.9
2-NE0.20 472.8 84.1 87.5 88.5 92.3 95.1 6.9 17.4 22.6 6.2 18.2 24.4
2-NE0.30 864.4 85.4 88.4 89.1 93.6 96.2 12.5 22.4 27.3 11.4 23.9 29.5
DROP3 478.9 66.4 80.6 85.0 83.6 89.9 6.6 17.3 22.6 5.7 15.3 19.9

ICF 887.9 59.3 74.2 79.7 77.9 86.2 13.0 23.1 28.2 12.9 22.1 26.9
CHC 296.2 67.8 81.7 85.7 84.7 90.7 4.5 15.5 20.9 3.9 13.5 18.0

Table 2: Average results obtained when 20 % of noise is added to the datasets. Bold elements
correspond to the non-dominated points. Normalized results (%) of the different algorithms
are obtained referring to the ALL method with the same k value.
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k Algorithm Red. set size
Accuracy Upper Bound Distances Time

PS kNN2 kNN3 kNN2 kNN3 PS kNN2 kNN3 PS kNN2 kNN3

1

ALL 6898.7 60.4 60.4 60.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 3037.8 85.1 85.4 83.9 93.4 96.1 44.1 50.2 53.5 44.0 55.1 63.2

MED 3026.8 85.2 85.2 84.0 93.5 96.1 44.0 50.2 53.3 44.8 57.0 63.5
MCNN 639.1 80.6 84.2 83.4 92.1 95.1 8.9 19.6 24.1 9.0 21.3 27.0
CNN 5096.7 52.8 57.5 59.2 78.5 89.5 73.9 76.9 78.6 75.5 87.3 94.5

MFCNN 596.3 80.4 83.7 83.7 92.2 95.6 8.4 18.7 24.0 8.5 20.8 26.9
FCNN 4989.8 52.4 57.3 59.1 78.4 89.4 72.2 75.4 76.9 71.8 84.0 89.6

1-FN0.10 332.7 81.5 84.2 83.7 90.5 93.9 4.8 15.6 21.0 4.5 16.5 22.7
1-FN0.20 789.9 82.7 84.9 84.1 92.3 95.3 11.4 21.4 26.4 10.7 23.1 28.9
1-FN0.30 1342.9 78.1 81.1 81.9 91.4 95.1 19.4 28.5 33.1 18.3 30.4 36.7
1-NE0.10 304.6 81.6 84.4 83.7 90.6 93.9 4.4 15.2 20.6 3.9 16.0 21.7
1-NE0.20 740.8 83.2 85.0 84.1 92.4 95.5 10.7 20.7 25.8 9.8 22.4 27.5
1-NE0.30 1280.8 78.9 81.5 82.3 91.9 95.3 18.4 27.7 32.2 17.4 29.5 35.8
2-FN0.10 291.4 81.8 84.3 83.9 90.6 93.9 4.3 15.1 20.5 3.7 15.4 21.6
2-FN0.20 700.3 82.6 84.8 84.1 92.2 95.3 10.2 20.3 25.4 9.1 20.9 27.1
2-FN0.30 1187.9 81.1 83.7 83.1 92.4 95.5 17.2 26.6 31.3 15.3 27.1 33.4
2-NE0.10 246.9 81.5 84.2 83.5 90.3 93.4 3.6 14.5 19.9 3.0 14.4 20.2
2-NE0.20 613.4 83.4 85.2 84.1 92.6 95.6 8.9 19.1 24.3 7.7 18.7 25.7
2-NE0.30 1087.8 82.0 84.1 83.4 92.7 95.8 15.7 25.2 30.0 13.5 25.5 30.6
DROP3 759.8 56.6 70.8 74.9 77.5 86.9 10.5 20.8 26.0 9.3 19.0 23.7

ICF 987.3 47.3 62.7 69.6 68.3 80.7 14.2 24.2 29.2 14.0 23.6 28.1
CHC 157.5 54.5 69.1 73.5 73.2 81.5 2.3 13.4 19.0 1.9 11.6 16.2

3

ALL 6898.7 72.5 72.5 72.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 3043.8 85.5 87.8 87.7 93.5 96.1 44.2 50.4 53.5 45.3 57.9 64.2

MED 3038.8 85.1 86.8 87.7 93.5 96.1 44.1 50.2 53.5 45.0 56.7 64.6
MCNN 613.2 78.9 85.3 87.0 91.4 95.0 8.3 18.8 23.8 8.8 20.9 28.2
CNN 5088.0 52.8 73.5 71.9 78.6 89.5 73.8 76.9 78.4 75.7 87.9 94.5

MFCNN 596.9 81.2 86.8 87.4 92.2 95.6 8.4 18.8 23.9 8.8 21.5 27.7
FCNN 4989.2 52.4 73.1 71.7 78.3 89.4 72.1 75.4 76.9 73.7 85.9 92.4

1-FN0.10 333.1 81.5 85.8 86.6 90.5 93.8 4.9 15.6 21.0 4.5 17.1 22.6
1-FN0.20 790.3 82.7 87.2 87.4 92.4 95.4 11.4 21.4 26.4 10.8 23.2 29.3
1-FN0.30 1343.0 78.4 86.2 86.5 91.5 95.1 19.4 28.5 33.1 18.6 31.2 37.1
1-NE0.10 304.7 81.6 86.0 86.7 90.5 94.0 4.4 15.2 20.6 3.8 15.8 21.6
1-NE0.20 741.3 83.2 87.3 87.5 92.4 95.6 10.7 20.7 25.8 9.9 21.8 29.6
1-NE0.30 1281.6 79.5 86.9 86.7 91.9 95.2 18.4 27.7 32.2 17.3 29.6 35.8
2-FN0.10 291.3 81.8 86.0 86.9 90.6 94.0 4.3 15.1 20.5 3.8 16.1 22.1
2-FN0.20 700.6 82.5 86.9 87.4 92.1 95.2 10.2 20.3 25.4 9.2 21.3 27.6
2-FN0.30 1188.2 81.0 87.1 87.0 92.5 95.5 17.2 26.6 31.3 16.1 28.8 34.7
2-NE0.10 247.3 81.5 85.8 86.4 90.4 93.5 3.6 14.5 19.9 3.0 14.8 20.8
2-NE0.20 614.0 83.3 87.2 87.5 92.5 95.5 8.9 19.1 24.3 8.0 20.2 26.0
2-NE0.30 1088.3 82.0 87.2 87.4 92.7 95.8 15.7 25.2 30.0 13.6 25.8 31.1
DROP3 513.1 55.0 72.3 78.5 74.9 84.0 7.0 17.6 23.0 6.3 15.9 20.8

ICF 917.4 48.2 66.3 74.3 69.1 81.0 13.4 23.5 28.5 13.3 22.7 27.8
CHC 237.4 55.9 73.2 79.2 75.3 83.5 3.6 14.6 20.1 3.1 12.7 17.6

5

ALL 6898.7 82.8 82.8 82.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 3038.8 85.3 87.8 88.4 93.5 96.1 44.1 50.3 53.4 44.1 56.3 62.7

MED 3030.2 85.2 87.8 88.1 93.5 96.0 44.0 50.3 53.3 44.6 57.4 62.6
MCNN 611.4 79.0 86.0 87.6 91.1 94.8 8.3 18.6 23.8 8.7 21.3 27.2
CNN 5086.4 52.7 74.5 81.2 78.4 89.4 73.8 76.9 78.4 74.8 87.3 92.9

MFCNN 594.1 81.3 87.3 88.2 92.3 95.6 8.4 18.7 24.0 8.6 20.8 27.4
FCNN 4988.3 52.3 74.2 81.1 78.3 89.3 72.1 75.3 76.9 73.1 85.9 91.0

1-FN0.10 333.3 81.6 85.9 87.1 90.5 93.9 4.9 15.6 21.0 4.3 16.3 21.9
1-FN0.20 790.3 82.5 87.3 88.0 92.4 95.3 11.4 21.4 26.4 10.5 22.6 28.8
1-FN0.30 1342.9 78.7 86.7 88.0 91.5 95.1 19.4 28.5 33.1 18.5 30.7 37.0
1-NE0.10 304.9 81.7 86.0 87.3 90.5 94.0 4.4 15.2 20.6 3.9 16.0 21.6
1-NE0.20 741.0 83.1 87.4 88.0 92.4 95.6 10.7 20.7 25.8 9.6 21.7 28.0
1-NE0.30 1281.0 79.7 87.1 88.1 91.9 95.3 18.4 27.7 32.2 16.9 29.2 34.8
2-FN0.10 291.4 81.8 86.0 87.3 90.6 94.0 4.3 15.1 20.5 3.7 15.4 21.6
2-FN0.20 700.4 82.3 87.1 88.0 92.1 95.3 10.2 20.3 25.4 9.2 20.9 27.7
2-FN0.30 1187.6 81.2 87.5 88.3 92.5 95.5 17.2 26.6 31.3 15.5 27.4 33.8
2-NE0.10 247.4 81.6 85.8 86.8 90.5 93.5 3.6 14.5 19.9 3.0 14.5 20.7
2-NE0.20 613.5 83.4 87.4 88.1 92.6 95.5 8.9 19.1 24.3 7.7 19.6 25.6
2-NE0.30 1087.6 82.1 87.7 88.3 92.8 95.8 15.7 25.2 30.0 13.6 25.9 31.4
DROP3 466.4 56.0 72.8 79.4 75.0 83.5 6.3 17.1 22.5 5.7 15.3 19.9

ICF 898.7 48.3 66.8 75.5 69.1 81.2 13.2 23.3 28.3 13.1 22.6 27.2
CHC 271.4 53.7 72.9 80.6 75.2 84.8 4.2 15.1 20.6 3.7 13.3 17.9

7

ALL 6898.7 85.5 85.5 85.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ED 3045.2 85.5 87.9 88.4 93.5 96.1 44.2 50.5 53.4 43.9 56.9 61.3

MED 3046.1 84.5 87.9 88.4 93.5 96.1 44.2 50.5 53.4 43.7 56.7 60.3
MCNN 604.8 78.6 86.4 87.7 91.1 94.9 8.2 18.6 23.7 8.1 19.7 25.4
CNN 5087.0 52.8 74.7 82.6 78.6 89.5 73.8 76.8 78.5 73.4 85.8 90.3

MFCNN 593.5 81.2 87.2 88.3 92.2 95.5 8.4 18.7 23.9 8.3 20.7 25.8
FCNN 4989.3 52.4 74.4 82.3 78.4 89.4 72.1 75.3 76.9 70.9 85.9 85.0

1-FN0.10 333.2 81.6 85.8 87.1 90.5 93.9 4.9 15.6 21.0 4.2 15.8 20.2
1-FN0.20 789.9 82.7 87.3 88.1 92.3 95.3 11.4 21.4 26.4 10.5 23.0 27.9
1-FN0.30 1343.1 78.4 86.5 87.9 91.5 95.1 19.4 28.5 33.1 17.4 29.3 33.7
1-NE0.10 304.8 81.7 85.9 87.2 90.6 94.0 4.4 15.2 20.6 3.9 16.8 20.8
1-NE0.20 741.0 83.2 87.4 88.2 92.5 95.6 10.7 20.7 25.8 9.0 20.5 25.1
1-NE0.30 1280.5 79.3 86.6 88.1 91.9 95.3 18.4 27.6 32.2 16.1 28.3 31.9
2-FN0.10 291.9 81.7 85.9 87.2 90.6 94.0 4.3 15.1 20.5 3.6 15.4 20.2
2-FN0.20 701.2 82.6 87.0 88.0 92.1 95.3 10.2 20.3 25.4 9.2 21.5 25.8
2-FN0.30 1188.6 81.1 87.1 88.3 92.5 95.6 17.2 26.6 31.3 15.3 28.5 31.2
2-NE0.10 246.8 81.6 85.7 86.7 90.3 93.4 3.6 14.5 19.9 2.9 15.1 18.2
2-NE0.20 613.3 83.4 87.3 88.1 92.5 95.5 8.9 19.1 24.3 7.6 18.8 24.5
2-NE0.30 1087.9 81.9 87.4 88.4 92.9 95.8 15.7 25.2 30.0 12.6 24.0 28.3
DROP3 478.9 56.6 73.6 80.2 76.8 85.4 6.6 17.3 22.6 5.7 15.3 20.0

ICF 887.9 48.8 67.1 75.6 69.4 81.1 13.0 23.1 28.2 12.9 22.4 26.9
CHC 293.4 56.5 74.8 81.8 77.1 86.2 4.5 15.4 20.9 3.7 13.2 17.5

Table 3: Average results obtained when 40 % of noise is added to the datasets. Bold elements
correspond to the non-dominated points. Normalized results (%) of the different algorithms
are obtained referring to the ALL method with the same k value.
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Noise k kNN2 vs PS kNN3 vs kNN2

0 %

1 0.000032 0.000035
3 0.000044 0.000038
5 0.000051 0.000038
7 0.000044 0.000044

20 %

1 0.00007 0.117066
3 0.000035 0.00001
5 0.000038 0.000047
7 0.000048 0.000011

40 %

1 0.000065 0.86278
3 0.000048 0.005203
5 0.000044 0.000032
7 0.000021 0.00001

Table 4: Asymptotic p-value obtained in Wilcoxon 1 vs. 1 statistical significance test. First
column assumes that accuracy of kNN2 is better than accuracy of PS. Second column assumes
that accuracy of kNN3 is better than accuracy of kNN2. Bold values represent a level of
significance higher than α = 0.95.
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