

This is a postprint version of the following published document:

Muñoz-Romero, Sergio; Arenas-García, Jerónimo; Gómez-
Verdejo, Vanessa. (2015). Sparse and kernel OPLS feature
extraction based on eigenvalue problem solving, Pattern
Recognition, 48(5), pp.: 1797-1811.

DOI: https://doi.org/10.1016/j.patcog.2014.12.002

© 2014 Elsevier Ltd. All rights reserved.

This work is licensed under a Creative Commons

AttributionNonCommercialNoDerivatives 4.0 International License

https://doi.org/10.1016/j.patcog.2014.12.002
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Sparse and Kernel OPLS feature extraction

based on eigenvalue problem solving

Sergio Muñoz-Romero⇤, Jerónimo Arenas-Garćıa, Vanessa Gómez-Verdejo

Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés, Spain

Abstract

Orthonormalized partial least squares (OPLS) is a popular multivariate analysis method to perform

supervised feature extraction. Usually, in machine learning papers OPLS projections are obtained

by solving a generalized eigenvalue problem. However, in statistical papers the method is typically

formulated in terms of a reduced-rank regression problem, leading to a formulation based on a stan-

dard eigenvalue decomposition. A first contribution of this paper is to derive explicit expressions for

matching the OPLS solutions derived under both approaches and discuss that the standard eigenvalue

formulation is also normally more convenient for feature extraction in machine learning. More impor-

tantly, since optimization with respect to the projection vectors is carried out without constraints via a

minimization problem, inclusion of penalty terms that favor sparsity is straightforward. In the paper,

we exploit this fact to propose modified versions of OPLS. In particular, relying on the `1 norm, we

propose a sparse version of linear OPLS, as well as a non-linear kernel OPLS with pattern selection.

We also incorporate a group-lasso penalty to derive an OPLS method with true feature selection. The

discriminative power of the proposed methods is analyzed on a benchmark of classification problems.

Furthermore, we compare the degree of sparsity achieved by our methods and compare them with

other state-of-the-art methods for sparse feature extraction.

Keywords: Partial least squares, orthonormalized PLS, lasso regularization, feature extraction,

sparse kernel representation

1. Introduction

Most data analysis methods are able to deal e�ciently with data in one or a few dimensions.

However, when they are applied to real world problems that involve high-dimensional patterns, nu-

merical and overfitting problems easily emerge. In these cases, a previous feature extraction stage,

IThis work was partly supported by MINECO projects TEC2011-22480 and PRI-PIBIN-2011-1266.
⇤Corresponding author. Tel.: +34 91 624 6251; fax: +34 91 624 8749.
Email addresses: smunoz@tsc.uc3m.es (Sergio Muñoz-Romero), jarenas@tsc.uc3m.es (Jerónimo Arenas-Garćıa),

vanessa@tsc.uc3m.es (Vanessa Gómez-Verdejo)

which allows to reduce data dimensionality and to remove collinearity among variables, is crucial to

appropriately and e�ciently apply these data analysis techniques. For this reason, feature extraction

techniques, and in particular Multivariate Analysis (MVA) methods [1], have been successful in many

di↵erent applications of machine learning, such as biomedical engineering [2, 3], remote sensing [4, 5],

or chemometrics [6], among others.

Multivariate Analysis (MVA) aggregates a family of methods that build a new set of features by

extracting highly correlated projections of data representations in input and output spaces. Well-

known representatives of these methods are Principal Component Analysis (PCA) [7], Partial Least

Squares (PLS) approaches [1, 8], or Canonical Correlation Analysis (CCA) [9]. The PCA algorithm

creates a new data representation space by finding the directions of largest input variance, providing

an optimum set of features in terms of mean squared reconstruction error. Unlike other MVA methods,

PCA works in an unsupervised manner, i.e., it only considers the input data and does not take into

account any target data. The Partial Least Squares (PLS) approach refers to a family of techniques

which, in its general form, project both input and output variables to a new space, with the general

objective of maximizing the covariance of the projected expressions. In CCA, the aim is to find linear

projections of the input and output data to maximize correlation between the projected data sets.

Thus, in contrast to PLS, CCA is accounting for correlation rather than covariance.

In this paper, we focus on a fourth MVA method known as Orthonormalized PLS (OPLS) [10], that

has also been referred to in the literature as semipenalized CCA [6], multilinear regression (MLR) [11],

or reduced-rank regression (RRR) [12, 13]. OPLS is known to be optimum in the mean square error

sense for performing multilinear regression [14, 15]; thus, it is very competitive as a pre-processing step

in classification and regression problems [4, 15, 16].

Although MVA techniques allow to reduce the data dimensionality, making it easier to handle

large dimensional datasets when irrelevant or noisy features are present, the new projected data result

from a combination of all original features, including uninformative variables. This behavior is quite

undesirable, as it is stated in the bet-on-sparsity principle [17], and it would be desirable to obtain a

solution consisting only of relevant features. In this way, not only more accurate solutions are usually

achieved, but also more interpretable ones.

An direct way to perform feature selection is by favoring sparse solutions which automatically assign

null coe�cients to variables that are irrelevant for the task. For this reason, since Tibshirani proposed

the lasso method as a way to induce sparsity [18], many researchers have focused their work on `1-norm

minimization approaches. Lasso method includes an `1-norm regularization term in the minimization

problem to favor sparse solutions. The ease of this technique to remove irrelevant features has brought

on a large number of research papers on the topic during previous years, not only in classification and

regression problems [19, 20, 21], but also proposing sparse extensions of MVA techniques, such as, the

2

sparse PCA and CCA methods of [22, 23] and [24], respectively. A sparse OPLS has been introduced

in [2]; unfortunately, this method does not guarantee orthogonality of the projected input data, thus

convergence to the standard OPLS solution is not assured when the sparsity constraints are removed.

Despite the variety of MVA methods described above (both sparse and non-sparse), all of them

deal with linear projections, which prevents them from exploiting non-linear relationships among the

variables. To address this issue, several authors have proposed kernel variants [25, 27] where the input

and/or output data are mapped by a non-linear function into a high-dimensional space in which ordi-

nary linear MVA is performed on the transformed data. Most MVA methods have been reformulated

into a kernel framework: kernel PCA [28], kernel CCA [29], kernel PLS [30], and kernel OPLS [15].

The main advantage of these kernel extensions relies on the fact that one obtains the flexibility of

non-linear expressions while still solving only linear equations. For this reason, kernel MVA (kMVA)

methods have been applied to a wide variety of fields characterized by non-linear relations, including

remote sensing data analysis [4, 5], functional magnetic resonance imaging [31], or facial expression

recognition [32], among others. On the down side, direct formulations of kernel MVA scale quadrat-

ically with the number of training data, making them unfeasible (or at least impractical) for data

sets containing just a few thousands of patterns. Furthermore, unless appropriately regularized, these

methods can easily overfit the training data [25, 27]. To counter these undesired properties, several

sparse kMVA methods have been proposed, see e.g., [33, 34, 15, 16]. Note that when referring to sparse

kMVA methods, pattern selection instead of variable selection is generally assumed.

In this paper, we address the issue of sparsity in linear and kernel OPLS. We do so by recurring

to an OPLS formulation that places optimization constraints on the regression coe�cients instead

of the projection vectors, and leads to a standard eigenvalue decomposition (EVD) problem. This

formulation, to which we will refer as EVD-OPLS, is well-known in the statistics community [12] but

has not been so-widely applied in the machine learning field. The EVD formulation opens the door

to modified versions of OPLS that impose additional constraints on the projection vectors, a fact that

we will exploit to implement sparse versions of linear and non-linear OPLS.

More specifically, the main contributions of this paper are:

• We derive explicit expressions that show the equivalence between the EVD solution to OPLS

and the solution based on a generalized eigenvalue (GEV) problem, that is more common in the

machine learning field (see, e.g., [4, 13, 15, 35]). We will discuss that when the number of target

variables is less than the input data dimensionality, the EVD formulation is more e�cient in

computational terms.

• A sparse variation of linear OPLS, which is based on the EVD formulation and the addition of

an `1 regularization term. Although we can find in the literature attempts to use EVD to obtain

3

sparse OPLS solutions [36, 37], they are based on the Procrustes solution. We will show that

the schemes of [36, 37] present some convergence problems, and that they may fail to progress

at all if the `1 term is removed.

• In a similar way, we propose an OPLS extension that incorporates group-lasso penalty to enforce

sparsity in the projection matrix row-wise. As before, the solution we propose here avoids the

problems associated to methods that rely on the Procrustes solution [36], and leads to more

discriminative projections.

• Finally, we extend the EVD solution to the kernel framework. Previous proposals of `1 sparse

OPLS have only been proposed in the input space, so the proposed sparse Kernel OPLS approach

is, to the best of our knowledge, completely novel.

The rest of the paper is organized as follows: In the next section we review in detail the EVD and

GEV formulations of the OPLS problem, demonstrate that they lead to the same solution, and analyze

them in terms of computational e�ciency. Then, in Sections III and IV we exploit the flexibility

of the EVD-OPLS formulation to derive sparse extensions of OPLS in the linear and kernel cases,

respectively. In Section V, the experimental assessment of the new methods will be carried out in

a benchmark of classification problems and in a face recognition task, analyzing the discriminative

power of the extracted features and the degree of sparsity achieved by the solutions. Finally, Section

VI presents the main conclusions of our work.

2. Orthonormalized Partial Least Squares

In this section, we review two di↵erent implementations of OPLS and derive the expressions that

characterize the matching between these solutions. To the best of our knowledge, this connection has

not been established before, and is therefore a first contribution of the paper. Both OPLS formulations

will also be compared in terms of computational requirements. Before that, we briefly review the

notation that will be used in the paper.

Let us assume a supervised learning scenario, where the goal is to learn relevant features from

input data using a set of N training data {xi,yi}, for i = 1, . . . , N , where xi 2 <
n and yi 2 <

m are

considered as the input and output vectors, respectively. Therefore, n and m denote the dimensions of

the input and output spaces. In classification problems, yi will be used to denote the class membership

of the ith pattern, e.g., using 1-of-C encoding [38]. For notational convenience, we define the input

and output data matrices: X = [x1, . . . ,xN] and Y = [y1, . . . ,yN]. It will be assumed throughout the

paper that these matrices are centered to remove any correlation between variables produced by a shift

of their centers of mass [25]. Sample estimations of the input and output data covariance matrices,

4

as well as of their cross-covariance matrix, can be calculated as CXX = XX
>, CYY = YY

> and

CXY = XY
>, where we have neglected the scaling factor 1

N , and superscript > denotes vector or

matrix transposition.

The extracted input data features are calculated as X
0 = U

>
X, where U = [u1, . . . ,unf] is

a projection matrix with projection vectors arranged columnwise1, and nf < n is the number of

extracted features. The goal of OPLS is to find the projection vectors so that the projected data best

approximate the output data in a mean square error (MSE) sense; i.e., OPLS minimizes the following

loss function [14],

L(W,U) = kY �WU
>
Xk

2
F , (1)

where W is an m⇥ nf matrix of regression coe�cients that can alternatively be seen as a projection

matrix for the output data, kAkF = Tr{AA
T
} denotes the Frobenius norm of matrix A, and Tr{·}

is the trace operator. Note that the above problem is di↵erent from standard least squares regression

since matrix U imposes a representation bottleneck [14]. Note also that the solution to (1) is not

unique since, e.g., W can compensate any scaling of matrix U. In the next two subsections we will

pay attention to di↵erent constraints that can be used to make OPLS solution unique.

2.1. OPLS as a generalized eigenvalue decomposition problem

In this subsection we review the solution to the OPLS problem that is more frequently found in

the machine learning literature where OPLS is typically seen as a feature extraction method and the

goal is to find a solution for U (see e.g., [5, 10, 39]).

Developing the Frobenius norm in (1), the objective cost function can be written down as

L(W,U) = Tr{CYY}� 2Tr{W>
C

>
XYU}+Tr{U>

CXXUW
>
W}. (2)

As we have already said, the arguments that minimize this cost function are not unique. However, it

can be seen that the optimal W is uniquely determined for fixed U as the solution to the LS problem

stated in (1)

W = C
>
XYU

�
U

>
CXXU

��1
. (3)

Introducing this expression into (2), and after some algebraic manipulations, the objective cost function

can be expressed as a function of U only:

L(U) = Tr{CYY}� Tr{
�
U

>
CXXU

��1
U

>
CXYC

>
XYU}. (4)

1Note that U is not a projection operator in a rigorous mathematical sense, since it maps data from <n to <nf ,

and therefore does not satisfy the idempotent property of projection operators. However, the columns of U span the

subspace of <n where the data are projected, and it is in this sense that we refer to U and ui as projection matrix and

vectors respectively, and to X0 as projected data. This nomenclature has been widely used in the machine learning field,

particularly in works dealing with feature extraction methods.

5

The minimization of L(U) is equivalent to the maximization of the second trace in the above expression,

i.e., a ratio trace maximization problem (see, e.g., [40, 41]). Obviously, the optimizer of (4) is not

unique, since e.g., multiplying U by a constant does not a↵ect the value of L(U). The minimizer of

(4) can alternatively be found by solving the following constrained optimization problem:

max
U

Tr{U>
CXYC

>
XYU}

s.t.: U
>
CXXU = I

(5)

This solution to OPLS can be e�ciently obtained by solving the following generalized eigenvalue

decomposition problem:

CXYC
>
XYu = �CXXu (6)

We denote as ⇤GEV the diagonal matrix containing the nf largest generalized eigenvalues of (6)

arranged in decreasing order, whereas UGEV is a matrix whose columns are the corresponding nf

leading generalized eigenvectors. Note that any matrix UR = UGEVR, where R is a rotation matrix,

is also a solution to (5). However, UGEV has the nice property that any subset containing just the

first n0
f < nf columns of the matrix is also an OPLS solution for the selected number of dimensions.

In other words, by using UGEV the extracted features are ordered according to their relevance for the

regression problem (first feature accounts for the maximum information that can be summarized with

a single variable, and so on), whereas this is not true for the rotated matrix UR.

Once UGEV is obtained, it is straightforward to calculate the corresponding regression coe�cients

using (3)

WGEV = C
>
XYUGEV, (7)

where we have also used the fact that the columns inUGEV areCXX-orthonormal, i.e., U>
GEVCXXUGEV =

I (see (5)).

A further interesting property of the above OPLS solution can be obtained by first noting that for

UGEV it is satisfied

CXYC
>
XYUGEV = CXXUGEV⇤GEV (8)

Then, if we premultiply both terms of (8) byU
>
GEV, and sinceWGEV = C

>
XYUGEV andU

>
GEVCXXUGEV =

I, we arrive at W>
GEVWGEV = ⇤GEV, i.e., the columns of WGEV are orthogonal.

2.2. OPLS as an eigenvalue decomposition problem

In the statistics community, the minimization of (1) is usually seen as a reduced-rank regression

problem [12] leading to a standard eigenvalue decomposition that provides a solution for the regression

matrix W. However, this formulation has not been so often applied in the machine learning literature,

where the objective is to extract the most relevant features from the input data (i.e., to find the

projection matrix U).

6

To start with, we will express the optimal U associated to a given regression matrix in closed form.

We take first derivatives of (2) with respect to U

@L(U,W)

@U
= �2CXYW + 2CXXUW

>
W.

Setting the derivatives to zero, and solving out for U, we obtain the following closed-form expression

for computing the optimum projection matrix associated to any given W:

U = C
�1
XXCXYW

�
W

>
W

��1
(9)

Replacing this expression back in (2), and after some algebraic manipulations, it is possible to

express the OPLS cost function in terms of W only:

L(W) = Tr{CYY}� Tr{
�
W

>
W

��1
W

>
C

>
XYC

�1
XXCXYW}. (10)

The minimization of L(W) can be carried out by solving the following constrained maximization

problem:

max
W

Tr{W>
C

>
XYC

�1
XXCXYW}

s.t.: W
>
W = I

(11)

whose solution can be obtained via the standard eigenvalue problem

C
>
XYC

�1
XXCXYw = �w. (12)

In the following, we denote as ⇤EVD the diagonal matrix containing the nf largest eigenvalues of

C
>
XYC

�1
XXCXY sorted in decreasing order, whereas the columns of WEVD contain the corresponding

eigenvectors. As before, it should be noted that any rotated version of WEVD is also a minimizer of

(10), but WEVD has the property that any subset containing its n0
f < nf first columns is the OPLS

solution for the selected number of projections.

Using (9), we can obtain the projection vectors associated to the regression matrix WEVD as

UEVD = C
�1
XXCXYWEVD, (13)

where in simplifying we used the fact that W
>
EVDWEVD = I. As with the classical OPLS solution,

it is possible to show that the solution we have derived in this subsection leads also to orthogonal

projected data. To see this, let us first explicitly write down the eigenvalue problem satisfied by the

regression matrix

C
>
XYC

�1
XXCXYWEVD = WEVD⇤EVD. (14)

Now, we can premultiply both terms of (14) by W
>
EVD, which leads to

W
>
EVDC

>
XYC

�1
XXCXYWEVD = ⇤EVD (15)

7

where we have used again orthonormality of the columns of WEVD to simplify the right-hand-side

term. If we further note that, according to (13), CXYWEVD = CXXUEVD, we arrive at

U
>
EVDCXXUEVD = ⇤EVD. (16)

which demonstrates the orthogonality condition of the projected input data.

OPLS solution can be obtained in a batch manner (i.e., all projection vectors in UEVD are com-

puted at once) by solving the eigenvalue problem (14) followed by (13). We conclude this subsection by

presenting an algorithm that sequentially computes projection vectors ui (i.e., the columns of UEVD),

and that will be the basis for sequential OPLS versions with constraints that we will present in later

sections. The sequential algorithm works by iteratively going (for i = 1, . . . , nf) through the following

three steps:

S1) Obtain the leading eigenvector of the symmetric matrix C
>
XYC

�1
XXCXY, to produce the

regression coe�cients vector wi. Computation of wi can be e�ciently implemented, e.g.,

using the power method [42].

S2) Obtain the corresponding projection vector ui as the minimizer of cost function (1) partic-

ularized for nf = 1 and W = wi, i.e.,

ui = argminu L(wi,u) = argminu kY �wiu>
Xk

2
F

= argminu kw>
i Y � u>

Xk
2
F = C

�1
XXCXYwi

(17)

S3) Deflate the cross-covariance matrix CXY according to

CXY CXY �CXXuiw
>
i . (18)

This deflation scheme can be better understood by noticing that it is equivalent to deflating

the output data matrix, removing from it the best prediction (in the least-squares sense)

that can be achieved using the current projections of the input data, i.e.,

Y Y �wiu
>
i X. (19)

2.3. Equivalence between the GEV and EVD solutions to OPLS

It is easy to see that since the solutions to (5) and (11) are di↵erent minima of the same cost

function, they should both provide the same value of L(W,U). In this paper, we derive explicit ex-

pressions that show the equivalence between the OPLS solutions obtained using the GEV formulation,

{UGEV,WGEV}, or recurring to the EVD problem, {UEVD,WEVD}. To the best of our knowledge,

this connection has not been established before, and is therefore a first contribution of this work.

8

To simplify the presentation we provide below the existing relationships between the OPLS solutions

derived in the previous subsections (the proof is given in Appendix A):

⇤EVD, = ⇤GEV (= ⇤),

UEVD = UGEV⇤
1/2,

WEVD = WGEV⇤
�1/2.

(20)

Therefore, since ⇤ is diagonal, this implies that the columns of UGEV and UEVD have the same

direction, and di↵er only in a scaling factor.

Table 1 summarizes the main equations and properties of the two alternative solutions to OPLS

we have reviewed, to which we will refer in the following as GEV-OPLS and EVD-OPLS.

Table 1: Most relevant equations and properties of the GEV and EVD-OPLS solutions.

GEV-OPLS (Subsec. 2.1) EVD-OPLS (Subsec. 2.2)

Eigenvalue problem CXYC
>
XYUGEV = CXXUGEV⇤ C

>
XYC

�1
XXCXYWEVD = WEVD⇤

(dimension n) (dimension m)

Orthonormality conditions U
>
GEVCXXUGEV = I U

>
EVDCXXUEVD = ⇤

W
>
GEVWGEV = ⇤ W

>
EVDWEVD = I

U, W relationship WGEV = C
>
XYUGEV UEVD = C

�1
XXCXYWEVD

Although the GEV-OPLS formulation has been typically used in machine learning papers, it is

arguable that the EVD-OPLS formulation o↵ers some important advantages also in this context. In

particular, the main advantages of EVD-OPLS that we will exploit in subsequent sections are:

• The dimension of the eigenvalue problems (8) and (14) are n and m, respectively, meaning that

EVD-OPLS is computationally more e�cient for the common case m < n (i.e., the number of

target variables is smaller than the dimensionality of the input data).

• EVD-OPLS facilitates the introduction of constraints on the projection matrix. Indeed, since

UEVD is given as the solution to a least-squares problem, additional constraints can be easily

imposed by modifying (1). For instance, we could favor sparsity on the projection vectors by

adding a lasso penalization term. Constraining the GEV-OPLS projection vectors is not as

obvious, since UGEV is obtained as the solution to the generalized eigenvalue problem (8). Note,

that obtaining sparse projection vectors implicitly carries out feature selection on the original data

representation, whereas no obvious advantage is derived from sparsity on the model regression

coe�cient matrix W (that could be more easily implemented using the GEV-OPLS formulation).

In the next subsection, we compare the computational complexity of the GEV-OPLS and EVD-

OPLS formulations. Then, in subsequent sections of the paper, we will rely on the EVD-OPLS

9

formulation to derive sparse solutions both for the linear and non-linear cases.

2.4. Computational complexity

To compare the computational requirements of GEV-OPLS and EVD-OPLS, in this subsection

we carry out an empirical comparison of computational complexity of the two solutions. In order

to make the comparison fair, we compute first the least-squares solution of the regression problem,

WLS = C
�1
XXCXY , which has a computational complexity of O(n3). In this way, we can rewrite (8)

and (14) as the following eigenvalue decomposition problems:

GEV-OPLS : WLSC
>
XYU = U⇤ (21)

EVD-OPLS : C
>
XYWLSW = W⇤ (22)

As we have already discussed, the GEV and EVD formulations require matrices of size n ⇥ n and

m ⇥m, respectively, implying eigenvalue decomposition steps with complexity O(n3) and O(m3) for

GEV-OPLS and EVD-OPLS. Note that once the eigenvalue problem of EVD-OPLS is solved, the

projection matrix can be straightforwardly computed as UEVD = WLSWEVD.

To illustrate how computational requirements scale for both methods, we have created an artificial

problem according to the following regression model

Y = sin(⇡MX+ 1) +⌅,

where X and ⌅ are n ⇥ N and m ⇥ N matrices containing the input data and observation noise.

The elements of these matrices are independently drawn from Normal distributions with mean zero

and standard deviations 0.7 and 5 · 10�2, respectively for X and ⌅. Finally, M is an m ⇥ n matrix

that contains the parameters of the model, which are independently taken from a uniform distribution

between 0 and 1.

Fig. 1 displays the execution times of GEV-OPLS and EVD-OPLS for N = 5000 and di↵erent

values of m and n. All experiments have been carried out on an Intel Core i7 CPU 870, running at 2.93

GHz, and with 8 GB of RAM. As expected, GEV-OPLS computational time increases very fast with

n, whereas EVD-OPLS execution time shows just a slight increment, mostly because of the additional

time required for calculating WLS. The opposite behavior is observed as the output dimensionality

m increases. These results support our conclusion that EVD-OPLS is a more e�cient implementation

for the common case in which the input dimensionality exceeds the number of target variables (i.e.,

n > m).

3. Sparse OPLS

In this section, we propose a novel OPLS solution that imposes sparsity on the projection vectors.

In this way, the method will not just carry out feature extraction, but also a selection of the most

10

m = 50 m = 1000 m = 3000

50500 1k 2k 3k 4k 5k
0

20

40

60

80

100

120

140

160

180

n

t
LS

t
GEV

50500 1k 2k 3k 4k 5k
0

20

40

60

80

100

120

140

160

180

n

t
LS

t
EVD

50500 1k 2k 3k 4k 5k
0

50

100

150

200

250

n

t
LS

t
GEV

50500 1k 2k 3k 4k 5k
0

50

100

150

200

250

n

t
LS

t
EVD

50500 1k 2k 3k 4k 5k
0

50

100

150

200

250

n

t
LS

t
GEV

50500 1k 2k 3k 4k 5k
0

50

100

150

200

250

n

t
LS

t
EVD

(a) (b) (c)

Figure 1: Time in seconds required by the GEV-OPLS (21) and EVD-OPLS (22) implementations. The subplots show

the time required for the computation of the least-squares regression model (tLS) and for the solution of the generalized

and standard eigenvalue problems (tGEV and tEVD, respectively) for N = 5000 and di↵erent values of n and m.

relevant variables to solve the problem. This allows more interpretable solutions that involve only a

few of the original variables, which is a desirable property of machine learning algorithms in many

contexts. To derive our sparse OPLS method (SOPLS) we will rely on the EVD formulation, i.e., we

will use constraint W>
W = I along the derivations.

It is well-known that adding `1-regularization (known as lasso) yields sparse solutions by shrinking

to zero the most irrelevant coe�cients of the solution. In our approach, we will rely on the elastic net

[43] implementation that solves the LS problem subject to both `1 and `2-regularization. Thus, we

modify the OPLS problem (1) into the minimization of

Lreg(W,U) = kY �WU
>
Xk

2
F + �1kUk1 + �2kUk

2
F , (23)

subject to W
>
W = I. Here, �1 and �2 are parameters that control the amount of regularization, and

kUk1 is the `1-norm of matrix U, i.e., the sum of absolute values of all matrix components.

To solve this problem, we rely on an algorithm similar to those in [22, 36], based on the iterative

application of the two following steps:

1) W�step: For fixed U, minimize (23) subject to W
>
W = I.

When (23) is minimized with respect to W only, both regularization terms can be ignored.

Therefore, this step reduces to the minimization of the LS cost subject to constraint W>
W = I,

thus becoming similar to EVD-OPLS, with the di↵erence that W is optimized for a generic U,

i.e., without assuming (9). In Appendix B we show that the solution of this problem is given

by the eigenvalue decomposition

C
>
X0YCX0YW = W⇤, (24)

11

where CX0Y = U
>
CXY. Note that the dimension of the matrix that needs to be analyzed is m,

as for the standard EVD-OPLS problem.

2) U�step: For fixed W, minimize (23) with respect to U only.

There are several e�cient methods to solve this elastic net problem. We refer the reader to [44]

and [45] for good summaries on optimization methods under `1-regularization. In the experiments

section, we will use the implementation provided by MOSEK 6.02, although any other elastic

net implementation could also be considered.

Preliminar experiments showed us that initialization of the algorithm is not critical, and we simply

initialize U for the first iteration as the identity matrix. As a stopping mechanism, we use Tr{⇤(k)
�

⇤
(k�1)

}  �, where the superscripts denote the iteration index and � is a small constant. In plain words,

the algorithm stops when the di↵erence between the eigenvalues of the W�step of two consecutive

iterations is smaller than an arbitrary constant.

It is also worth mentioning that the U� step can be modified to impose sparsity constraints on

entire rows of U rather than on each isolated component, similarly to what is done in the group lasso

[46]. The latter approach requires more memory and is computationally more involved. However, it

o↵ers the additional advantage that all projection vectors are restricted to use the same variables from

the input data representation, and thus favors a real feature selection, since it forces that the same

original feature is either removed or retained from all projections.

An important di↵erence exists between our approach and the algorithm in [36]. Given the singular

value decomposition CX0Y = PDQ
>, where D is a diagonal matrix containing the singular values,

and P and Q contain the left and right singular vectors, respectively, the output of the W�step of

our algorihtm would be W = Q, whereas the orthogonal Procrustes solution of [36] would output a

rotated version W = QP
>. This means that in the absence of regularization (i.e., �1 = �2 = 0), the

algorithm in [36] does not in general converge to the OPLS solution, but to a rotated version of the

OPLS projection matrix. As we have already discussed, this is not an irrelevant issue because the true

OPLS solution guaranties that extracted projections are ordered according to their relevance, i.e., the

first n0
f < nf features contain as much information as possible for that number of variables in the sense

of minimizing (23). This property does not hold for rotated solutions. Furthermore, in Appendix C

we show that, unlike our solution, the algorithm in [36] strongly depends on initialization, and that in

the absence of regularization the algorithm may not progress at all.

2http://www.mosek.com.

12

3.1. Sequential implementation of sparse OPLS using deflation

Similar to the sequential implementation of EVD-OPLS, we can derive a sequential algorithm

that implements the sparse OPLS feature extraction scheme we have just described. The sequential

algorithm works by first extracting the pair {ui,wi} that minimizes (23) for nf = 1, and then deflating

the cross-covariance matrix. These two steps are repeated until the desired number of features is

reached. Extraction of the pair {ui,wi}, for i = 1, . . . , nf , is carried out by iterating the W� and

U�steps we have just described. Note that since at each step we are solving a unidimensional problem,

the solution to the W�step can be obtained simply as

wi =
C

>
x0Y

kCx0Yk
, (25)

where Cx0Y = u>
i CXY.

Table 2 provides the pseudocode for the sequential sparse algorithm that we have just described.

Note that, in the table, subscript i is used to index the projection vectors (i.e., i = 1, . . . , nf), whereas

superscript k indexes the iterative application of W� and U�steps that are needed to converge to

each projection vector. Di↵erent convergence criteria can be used for step 2.2.3 of the algorithm. In

the experimental section we will monitor the cosine distance

dcos

⇣
u(k)

i ,u(k�1)
i

⌘
=

u(k)>
i u(k�1)

i

ku(k)
i kku

(k�1)
i k

, (26)

and use as a stopping criterion dcos

⇣
u(k)

i ,u(k�1)
i

⌘
> 1 � �, where � is a tolerance parameter. Other

possibilities would consist of monitoring the cosine distance between the regression coe�cient vectors,

or the eigenvalue of the W�step.

Table 2: Pseudocode for the sequential SOPLS with deflation.

1.- Inputs: centered matrices X and Y, nf , �1, �2

2.- For i = 1, . . . , nf

2.1.- Initialize u(1)
i = 1. ⇤ �i

‡

2.2.- For k = 1, 2, . . .

2.2.1.- Update w(k)
i using (25)

2.2.2.- Update u(k)
i by solving the elastic net problem (23) for nf = 1

2.2.3.- If convergence criterion is met, output current values as {ui,wi}, otherwise back to 2.2.

2.3.- Deflate cross-covariance matrix: CXY CXY �CXYuiw>
i

3.- Outputs: U = [u1, . . . ,unf], W = [w1, . . . ,wnf]

‡ Projection vector ui is initialized as a vector with its ith component equal to 1, and all other components equal to 0.

13

3.2. Sparse OPLS with group lasso penalty

To conclude the section, we illustrate how the sparse OPLS method we have just proposed can

be easily extended to impose sparsity in the projection matrix in a row-wise manner. In this way,

the algorithm performs a true feature selection since when all elements of a row are set to zero, the

corresponding feature will not be used for any of the projection vectors.

In order to do so, we will incorporate a group lasso penalty to (1), leading to

Lreg(W,U) = kY �WU
>
Xk

2
F +

nX

i=1

�iku
i
k2, (27)

being ui the ith row of the matrix projection U and �i the penalization term associated to each input

variable. It can be easily seen that the optimization of this new regularized cost can also be carried out

iterating updates for W and U. In fact, only the U�step needs to be modified to account for the new

cost function (27). In [37] the solution of (27) is carried out relying on the Procrustes solution to solve

the W�step; thus, the proposed solution su↵ers from the same drawbacks than the approach in [36].

These problems, as well as the advantages of our formulation, will be analyzed in the experimental

section.

4. Sparse Kernel OPLS extensions

Since relationships among variables are usually non-linear, in this section we will also pay attention

to kernel extensions of the OPLS algorithm [5, 15], and show how this method can also benefit from an

eigenvalue decomposition formulation similar to the one proposed for EVD-OPLS. After describing the

straightforward kernel extension of the OPLS method (KOPLS), we will focus on a reduced KOPLS

(rKOPLS) approach proposed in [15], which forces sparsity of the solution a priori, and solves some

practical problems inherent to the standard KOPLS method. As for the linear case, our EVD-rKOPLS

formulation enjoys two main advantages: improved e�ciency with respect to CPU cost, and possibility

to impose additional constraints on the projection vectors. We exploit this second property to derive

a sparse formulation of rKOPLS at the end of the section.

Along this section, we consider that input data X are mapped into some Reproducing Ker-

nel Hilbert Space (RKHS) through a mapping function �(x) : Rn
! F , where the target space

is normally very high- or even infinite-dimensional. Training data are stacked together in matrix

� = [�(x1), . . . ,�(xN)], so that now the nf projections of the input data are given by �
0 = U

T
�̃,

where �̃ is the centered version of � and U is the projection matrix of size dim(F) ⇥ nf . Thereby,

the OPLS cost function (1) can be rewritten in the feature space as,

LF (W,U) = ||Y �WU
T
�̃||

2
F . (28)

In order to solve the above problem for the usual case in which dimension of F is infinite, we will

use the Representer’s Theorem [25], that states that projection vectors can be expressed as a linear

14

combination of the mapped input data, U = �̃A, with A = [↵1, . . . ,↵nf] and ↵i parameterizes the

ith projection vector. Introducing this expression in (28), we get

LF (W,A) = ||Y �WA
T
Kx||

2
F , (29)

whereKx = �̃
T
�̃ is the centered kernel matrix, that involves only inner products in F . Di↵erent kernel

functions to build up the kernel matrices and the centering process of these matrices are explained in

detail in [25].

We can see that (29) is formally equivalent to (1). Thus, KOPLS formulations based on generalized

and standard eigenvalue decompositions (GEV- and EVD-KOPLS, respectively) can be easily obtained

by replacing U by A and X by Kx in the linear formulations. We remark that the computational

savings of the EVD formulation can be even more important in this case, since the size the GEV-KOPLS

matrix decomposition problem increases with N , while EVD-KOPLS still involves the decomposition

of an m⇥m matrix.

KOPLS requires the inversion of matrix KxKx, which is usually ill-conditioned, so that some

sort or regularization is needed. Furthermore, when dealing with large data sets, computational and

memory requirements to handle kernel matrices usually make unfeasible to work with this method.

For these reasons, in the next subsection we turn our attention to the reduced complexity KOPLS

method (rKOPLS) of [15] that is able to overcome these limitations.

4.1. Reduced KOPLS as an eigenvalue decomposition problem

The rKOPLS formulation, which we borrow from [15], is given by U = �̃RB, where B =

[�1, . . . ,�nf
] is the coe�cient matrix of the reduced model and �̃R is a matrix containing a sub-

set of R training data (R < N) selected randomly3. Introducing the new expression for U into (29),

we get the following objective function:

LF (W,B) = ||Y �WB
>
KR||

2
F , (30)

where KR = �̃
>
R�̃ is a kernel matrix of size R⇥N . In other words, while KOPLS projection vectors

are obtained as a linear combination of all training data (U = �̃A), rKOPLS a priori enforces sparsity

by expressing the projection vectors as linear combinations of a reduced set of the training data. We

should emphasize the di↵erences between the ‘sparsity’ concept in the linear and kernel algorithms:

whereas for the linear case sparsity is induced over the original variables of the data, in KOPLS we

3Here we recur to the random selection strategy that was used in [15], but more sophisticated strategies, such as

Nyström subsampling, could be used [26] as well, both for rKOPLS and for the sparse version that we derive in the next

subsection. A more careful selection of the subset �̃R usually results in improved accuracy for a fixed value of R at the

cost of a more expensive training phase.

15

refer to the capability of the methods to express the solution in terms of a reduced set of training

data, and implies mostly a computational benefit (both during the train and test phases). It is also

important to note that since kernel matrix KR still involves all available training data, rKOPLS results

in a more powerful approximation than mere subsampling.

A solution to (30) based on a standard generalized eigenvalue decomposition (GEV-rKOPLS) was

given in [15]. Alternatively, in this paper we propose to reformulate the problem as a standard

eigenvalue decomposition problem. Again, derivation of the EVD-rKOPLS solution is straightforward

given the similarities between (1) and (30): we just need to replace U, ui, CXX and CXY respectively

by B, �i, KRK
>
R and KRY

>. Then, a batch EVD-rKOPLS algorithm can be obtained by going

through the following three steps:

1. WLS =
�
KRK

>
R

��1
KRY

2. YK
>
RWLSWEVD = WEVD⇤EVD

3. BEVD = WLSWEVD

Parameter R acts as a sort of regularizer, making KRK
>
R full rank. It also dictates the computa-

tional and memory requirements of the algorithm. In case of R = N , the KOPLS solution would be

recovered. Table 3 summarizes the main characteristics of KOPLS (see [5]), GEV-rKOPLS and EVD-

rKOPLS in terms of computational and memory requirements. Note that the proposed EVD-rKOPLS

approach is normally more e�cient than the other two solutions in time and storage terms.

Table 3: Computational time and memory requirements comparison.

GEV-KOPLS GEV-rKOPLS EVD-rKOPLS

Kernel matrix dimensions N ⇥N R⇥N R⇥N

Memory requirement O(N2) O(R2) O(R2)

GEV/EVD problem complexity O(N3) O(R3) O(m3)

4.2. Sparse rKOPLS

Standard KOPLS solution is usually given by a dense projection matrix A. Thus, to extract

features for new data, it is necessary to calculate the kernels between these new data and all the

training patterns. The rKOPLS algorithm alleviates this problem by imposing sparsity a priori on

the number of kernels to be computed, a fact which implies computational and memory savings; but

it randomly selects the vectors in F that span the solution. Therefore, rKOPLS does not guarantee

the selection of the most representative training data for the expansion, neither that the most sparse

representation is achieved.

16

Trying to provide a solution to this problem, in this subsection we add an `1-regularization term

in the rKOPLS objective function to further induce sparsity of the solution in terms of the �i vectors.

In this way, the method automatically selects the most representative patterns in �̃R and reduces the

number of kernels that need to be computed for projecting new data.

The novel sparse rKOPLS approach, to which we will refer as SrKOPLS, is given by the minimiza-

tion of

LF = ||Y �WB
>
KR||

2
F + �1kBk1. (31)

Imposing sparsity on matrix B has beneficial e↵ects with respect to generalization, as we will see in the

experiments section. Furthermore, more compact solutions can be expected, i.e., SrKOPLS solution

will reduce the number of kernels needed for feature extraction.

To minimize (31), we need to recur to an EVD formulation that imposes the usual constraint

W
>
W = I, so that minimization with respect to B can be done without constraints. Then, we can

use again the algorithms in Section 3, just replacing matrices U, ui, CXX and CXY, respectively by

B, �i, KRK
>
R and KRY

>.

A batch formulation of the SrKOPLS algorithm would consist in the iterative application of the

two following steps:

1) W�step: For fixed B, find W as the solution to the following eigenvalue decomposition problem

YK
>
R0KR0Y

>
W = W⇤, where KR0 = B

>
KR.

2) B�step: For fixed W, solve the elastic net problem to minimize (31) with respect to B only.

For this batch formulation, the same initialization and stopping mechanism as for the linear solution

can be used.

If a sequential implementation of SrKOPLS is preferred, at each step a unidimensional problem is

solved followed by deflation of matrix KRY
>. In this case, the solution to the W�step can be simply

computed as

wi =
Yk>

R0

kYk>
R0k

, (32)

where kR0 = �>
i KR. As for the stopping criterion, we use also the same criterion that was applied for

the linear SOPLS algorithm:

dcos

⇣
u(k)

i ,u(k�1)
i

⌘
=

�(k)>
i KRR�

(k�1)
i⇣

�(k)>
i KRR�

(k)
i

⌘ ⇣
�(k�1)>

i KRR�
(k�1)
i

⌘ , (33)

requiring dcos

⇣
u(k)

i ,u(k�1)
i

⌘
> 1��, where � is a tolerance parameter. Table 4 provides the pseudocode

for the sequential implementation that we have just described.

17

Table 4: Pseudocode for the sequential SrKOPLS with deflation.

1.- Inputs: centered matrices KR and Y, nf , �1

2.- For i = 1, . . . , nf

2.1.- Initialize �(1)
i = 1. ⇤ �i

‡

2.2.- For k = 1, 2, . . .

2.2.1.- Update w(k)
i using (32)

2.2.2.- Update �(k)
i to solve the elastic net problem (31)

2.2.3.- If convergence criterion is met, output current values as {�i,wi}, otherwise back to 2.2.

2.3.- Deflate cross-covariance matrix: YK
>
R YK

>
R �wi�

>
i KRK

>
R

3.- Outputs: B = [�1, . . . ,�nf
], W = [w1, . . . ,wnf]

‡ Projection vector �i is initialized as a vector with its ith component equal to 1, and all other components equal to 0.

5. Experiments

In this section, we analyze the discriminative power of both sparse linear (SOPLS) and sparse

non-linear (SKOPLS and SrKOPLS) solutions. For this purpose, we are going to evaluate the perfor-

mance of these approaches over nine multi-class classification problems from the UCI machine learning

repository4. Table 5 summarizes their main characteristics, being Ntrain and Ntest the number of

samples in both train and test datasets, respectively. To complete this study, we will also analyze

the convergence of the proposed SOPLS solution to that of the OPLS when the sparsity constraint is

removed. Finally, we also show the advantages of sparse solutions in a face recognition task.

Table 5: Main properties of the selected benchmark problems.

Ntrain/Ntest n m

arrhythmia 315 / 135 276 16

letter 10000 / 10000 16 26

mfeatures 1400 / 600 649 10

optdigits 3823 / 1797 64 10

pendigits 7494 / 3498 16 10

satellite 4435 / 2000 36 6

segment 1310 / 1000 18 7

vehicle 500 / 346 18 4

yeast 1038 / 446 8 10

4http://archive.ics.uci.edu/ml

18

Table 6: Overall Accuracy (OA) achieved by OPLS, P-SOPLS and SOPLS algorithms. Sparsity rates (SR) of P-SOPLS

and SOPLS also are included.

OPLS P-SOPLS SOPLS
OA(%) OA(%) SR(%) OA(%) SR(%)

arrhythmia 50,37 69,63 77.63 69,63 76.06

letter 84,89 84,85 11,33 85,05 10,94

mfeatures 97,83 98,33 38.64 98,33 31.55

optdigits 94,21 94,27 42,47 95,05 29,93

pendigits 92,08 91,68 39,58 92,22 43,06

satellite 85,7 85,90 17,22 86,10 27,22

segment 92,8 95,60 90,74 94,90 93,52

vehicle 78,32 77,17 25,93 78,03 1,85

yeast 58.52 58.74 35.94 58.27 23.44

5.1. Sparse Linear Feature Extraction

This subsection analyzes the capability of the proposed SOPLS approach against the standard

OPLS method and the sparse OPLS algorithm proposed in [2], which is based on the Procrustes

problem solution; for this reason, we will denote it as P-SOPLS (Procrustes Sparse OPLS).

To compute the solutions of the di↵erent approaches under study, OPLS method follows the steps

described in Eqs. (13) and (14), P-SOPLS follows the procedure described in [36], and the proposed

SOPLS approach uses the formulation detailed in Table 2, stopping its iterative process when either the

cosine distance (26) achieves a tolerance level of � = 10�12 or 500 iterations have been completed. To

test the discrimination capability of the set of features provided for each feature extraction approach, a

linear C-SVM has been trained using as inputs the maximum number of projections (r = rank{CXY}).

The regularization parameter �1 of SOPLS and P-SOPLS approaches and the empirical cost parameter

C of the SVM have both been adjusted by a 10-fold Cross Validation (CV) process over the training

data. We have explored a rectangular grid taking 40 values logarithmically spaced between 10�4 and

10�1 for �1 and selecting C from the set of values {1, 10, 100, 1000}. We have checked that these

intervals are su�ciently large to assure that the limits were not selected as a result of the CV.

It is important to note that problem segment is ill-conditioned (rank{CXX} < n) preventing the

application of OPLS; for this reason, PCA has been applied as preprocessing step to reduce the input

data dimension to rank{CXX}, after which OPLS algorithm can be applied. This was not necessary

for the sparse approaches (P-SOPLS and SOPLS) since the included `1-regularizer makes possible to

solve ill-conditioned problems without any preprocessing step.

19

OPLS P-SOPLS SOPLS

le
tt

e
r

1 4 7 10 13 16

5

10

15

1 4 7 10 13 16

5

10

15

1 4 7 10 13 16

5

10

15
0

0.05

0.1
s
a
te

ll
it

e

1 2 3 4 5

10

20

30

1 2 3 4 5

10

20

30

1 2 3 4 5

10

20

30

0

0.05

0.1

s
e
g
m

e
n

t

1 2 3 4 5 6

5

10

15

1 2 3 4 5 6

5

10

15

1 2 3 4 5 6

5

10

15

0

0.1

0.2

Figure 2: Representation of the projection matrix U (n ⇥ nf) in OPLS, P-SOPLS, and SOPLS for three representative

problems.

Table 6 shows the overall accuracy (OA) provided by these three feature selection techniques and

the sparsity rate (SR) of the projections vectors, defined as the ratio between the number of zero

coe�cients and the total number of coe�cients. When SOPLS features are used to train the C-SVM,

OPLS is outperformed in all the datasets, whereas it improves or ties the P-SOPLS method in terms

of OA.

Apart from its increased discrimination capability, the main advantage of the proposed SOPLS

method relies on its sparse formulation that makes it easier to analyze which features do not contribute

to the new projected ones. To carry out this analysis, Figure 2 depicts the projection matrices U

obtained by OPLS, SOPLS, and P-SOPLS solutions in three representative problems. Looking at these

figures, one can see that in problems presenting a high SR, such as segment, the feature extraction

becomes close to feature selection, since most features are associated with just one of the original

variables. In satellite, features 8, 31, 32 and 36 are removed from the first projection vectors (the most

important ones) of the SOPLS algorithm.

Regarding the computational burden, implementation of the SOPLS and P-SOPLS methods involve

basically the same operations, and di↵erences in time should be mostly due to initialization and

stopping criteria. In practice, we have observed that both methods require quite similar training times

in all problems, whereas OPLS is obviously a more e�cient solution (it solves just one EVD problem).

20

5.2. Convergence of sparse methods to the OPLS solution for �1 = 0

In this section, we compare the convergence of both SOPLS and P-SOPLS solutions to the standard

OPLS if the sparsity constraint tends to zero (�1 ! 0). To carry out this analysis, we analyze

the orthogonality of the projected data for block implementations of both SOPLS and P-SOPLS

algorithms, being also a property which ease the selection of subsets of variables.

Figure 3 depicts the Frobenius distance between the covariance matrix of the projected data (when

either SOPLS or P-SOPLS algorithms are used) and matrix ⇤ (the covariance of the projected data

when using the OPLS algorithm).

As we expected, when �1 is close to zero, the projection matrix provided by the SOPLS method is

orthogonal, tending its solution to that of OPLS; when �1 increases, the SOPLS solution drops most of

their coe�cients to zero, making SOPLS and OPLS solutions di↵erent. However, P-SOPLS algorithm

does not present this desired behavior (as it is proved in Appendix C). Despite the addition of the

`1-penalty reduces the orthogonality of the solution, if we pay attention to �1 values selected by the

CV process (marked with an asterisk in Figure 3 curves), we can observe that the proposed SOPLS

algorithm tends to select working points with more orthogonal solutions than those of P-SOPLS.

The advantage of these orthogonal features can be clearly seen in Fig. 4, where the overall accuracy

against the number of used projections (1  nf  r) is displayed for the three methods under study:

OPLS, SOPLS, and P-SOPLS. As we expected, the proposed SOPLS approach outperforms the P-

SOPLS results when a bottleneck (nf < r) is applied, showing significant advantages in eight out of

the nine problems. This increased performance is due to the fact that the projections obtained by

SOPLS are more orthogonal than those of P-SOPLS, as we discussed in Fig. 3.

5.3. OPLS with group-lasso penalty

This subsection analyzes the performance of the method proposed in Subsection 3.1 that incorpo-

rates a group-lasso penalty in the objective function (G-OPLS method). The method will be compared

to the SRRR method from [37] that relies on the Procrustes solution and the standard OPLS, both

from the point of view of discriminative power of the selected projections and with respect to the

number of features that are selected by the method. Unlike in the previous subsections, these meth-

ods guarantee that unnecessary features are simultaneously removed from all projection vectors, thus

carrying out a more practical feature selection.

Experimental settings for the G-OPLS and SRRR methods are as follows: a common penalty term

is used for all features (�1 = · · · = �n), and its value has been adjusted by a 10-fold CV process

exploring 40 logarithmically spaced between 10�4 and 10�1. As before, a linear C-SVM was used to

test the discrimination power of any set of features.

21

10
−10

10
−5

10
0

0

20

40

60

80

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

arrhythmia

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

200

400

600

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

letter

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

50

100

150

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

mfeatures

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

200

400

600

800

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

optdigits

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

500

1000

1500

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

pendigits

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

500

1000

1500

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

satellite

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

100

200

300

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

segment

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

50

100

150

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

vehicle

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

10
−10

10
−5

10
0

0

20

40

60

80

100

||
(U

T
C

xx
U

)−
Λ

||
F

λ
1

yeast

SOPLS
P−SOPLS
λ

1
(CV) SOPLS

λ
1
(CV) P−SOPLS

Figure 3: Frobenius distance between the covariance matrix of the projected data when either SOPLS or P-OPLS

algorithm are used and matrix ⇤ (the covariance of the projected data when using the OPLS algorithm). Markers show

the `1-norm penalty parameter (�1) selected by CV for both algorithms.

Fig. 5 displays the overall accuracy against the number of used projections for the three methods

under study. It can be easily seen that G-OPLS outperforms SRRR when a bottleneck (nf < r) is

applied, showing significant advantages in most of the problems under consideration. This gain is a

direct consequence of our solution imposing orthogonality of the projected data. The removed features

rate (%) of the G-OPLS and SRRR methods is indicated in brackets in the legends of Fig. 5. In

this case, both methods achieve exactly the same solution for nf = r, and therefore the number of

selected features is the same for both methods. For some of the problems, these methods were able to

remove a good amount of the original features without any performance degradation, thus allowing us

22

0 5 10
45

50

55

60

65

70

75

O
A

(%
)

n
f

arrhythmia

P−SOPLS (78%)
SOPLS (76%)
OPLS (0%)

0 5 10 15

20

40

60

80

O
A

(%
)

n
f

letter

P−SOPLS (11%)
SOPLS (11%)
OPLS (0%)

0 2 4 6 8 10
20

40

60

80

100

O
A

(%
)

n
f

mfeatures

P−SOPLS (39%)
SOPLS (32%)
OPLS (0%)

0 2 4 6 8 10

40

60

80

100

O
A

(%
)

n
f

optdigits

P−SOPLS (42%)
SOPLS (30%)
OPLS (0%)

0 2 4 6 8 10
40

60

80

100

O
A

(%
)

n
f

pendigits

P−SOPLS (40%)
SOPLS (43%)
OPLS (0%)

0 2 4 6

60

70

80

90

O
A

(%
)

n
f

satellite

P−SOPLS (17%)
SOPLS (27%)
OPLS (0%)

0 2 4 6

40

60

80

100

O
A

(%
)

n
f

segment

P−SOPLS (91%)
SOPLS (94%)
OPLS (0%)

0 1 2 3 4
50

60

70

80

O
A

(%
)

n
f

vehicle

P−SOPLS (26%)
SOPLS (1.9%)
OPLS (0%)

0 2 4 6 8
35

40

45

50

55

60

O
A

(%
)

n
f

yeast

P−SOPLS (36%)
SOPLS (23%)
OPLS (0%)

Figure 4: Overall Accuracy (OA) (%) provided by OPLS, SOPLS, and P-SOPLS algorithms for di↵erent number of

features nf . Sparsity rates (SR) achieved when all projections (nf = r) are used is shown in the legend.

to identify irrelevant features that can be safely ignored.

5.4. Feature Extraction for Kernel Framework

This subsection studies the performance provided by non-linear OPLS extensions using kernel

methods and the EVD formulation. To avoid computational problems of these formulations, their

reduced versions (rKOPLS and SrKOPLS) will be also included in this analysis to be able to study the

performance of these methods when they are dealing with large datasets. For this reason, we will test

SKOPLS and KOPLS performances over seven medium and low size problems: arrhythmia, mfeatures,

optdigits, satellite, segment, vehicle, and yeast ; their reduced formulations (rKOPLS and SrKOPLS)

will be analyzed over the same problems than the linear versions, except for problem arrhythmia where

its reduced number of training samples prevents the application of the subsampling process.

For all methods under study, a Gaussian kernel with dispersion parameter �,

k(xi,xj) = exp

✓
�
||xi � xj ||

2
2

2�2

◆
,

23

0 5 10 15
45

50

55

60

65

70

O
A

(%
)

n
f

arrhythmia

SRRR (68%)
FS−OPLS (68%)
OPLS (0%)

0 2 4 6 8 10
20

40

60

80

100

O
A

(%
)

n
f

mfeatures

SRRR (75%)
FS−OPLS (75%)
OPLS (0%)

0 2 4 6 8 10
20

40

60

80

100

O
A

(%
)

n
f

optdigits

SRRR (26%)
FS−OPLS (26%)
OPLS (0%)

1 2 3 4 5
40

50

60

70

80

90

O
A

(%
)

n
f

satellite

SRRR (11%)
FS−OPLS (11%)
OPLS (0%)

1 2 3 4 5 6
20

40

60

80

100
O

A
(%

)

n
f

segment

SRRR (50%)
FS−OPLS (50%)
OPLS (0%)

1 1.5 2 2.5 3
40

50

60

70

80

O
A

(%
)

n
f

vehicle

SRRR (5.6%)
FS−OPLS (5.6%)
OPLS (0%)

Figure 5: Overall Accuracy (OA) (%) provided by OPLS, G-OPLS, and SRRR algorithms for di↵erent number of features

nf . Removed features rate (%) achieved when all projections (nf = r) are used is shown in the legend.

has been used. Once the new features of each method have been extracted, a linear C-SVM has been

trained to measure the discriminative capability of each subset of projected features.

As in the previous subsection, free parameters have been adjusted by a 10-fold CV process, se-

lecting parameter C of the SVM from the set of values {1, 10, 100, 1000} and sweeping � in the set

{0.5, 1, 1.5, 2}⇥ �0, being �0 the median distance among all input data. In sparse methods (SKOPLS

and SrKOPLS), regularization parameter �1 is cross-validated in the set of values {10�7, 10�6, 10�5
}

and the iterative process has fixed a stop criterion of � = 10�12 with a maximum of 500 iterations.

Due to kernel matrices are usually ill-conditioned (rank{Kx} < N), KOPLS needs to include an

`2-regularization term to compute its solution. For this reason, an `2-penalty has been included in

both KOPLS and SKOPLS methods, where the regularization parameter is selected by CV among the

set of values {10�9, 10�9, . . . , 10�1
} and {10�12, 10�9, 10�7, 10�5

} for KOPLS and SKOPLS methods

respectively.

Table 7 compares the performance of the proposed SKOPLS algorithm with those of KOPLS. It can

be seen that SKOPLS presents improved or, at least, similar performance than the KOPLS method in

all the problems, but optdigits. Moreover, due to sparse formulation of SKOPLS is intended to remove

data from the projection vectors, this method has the additional advantage of reducing the complexity

of the solution, providing SRs around 40% in optdigits and satellite or, even, 80% in mfetures, segment

and yeast. These high sparsity rates can be translated into significant computational load reductions

since in problems such as yeast only the 20% of the kernels has to be computed to obtain the projected

data.

24

Table 7: Comparison between KOPLS and SKOPLS algorithms in terms of overall Accuracy (OA). In SKOPLS algorithm,

the sparsity rate (SR) and the number of useful samples (Nu) to total training samples (N) rate are also displayed.

KOPLS SKOPLS
OA(%) OA(%) SR(%) Nu/N (rate %)

arrhythmia 71.85 73.33 27.88 315/315 (100%)

mfeatures 96.33 96.67 86.03 878/1400 (62.71%)

optdigits 98.33 98.16 42.52 3809/3823 (99.63%)

satellite 91.45 91.45 44.86 4114/4435 (92.76%)

segment 95.5 95.5 75.78 847/1310 (64.65%)

vehicle 82.08 83.53 65 362/500 (72.4%)

yeast 58.3 60.54 94.31 244/1038 (23.51%)

Table 8: Overall Accuracy of rKOPLS and SrKOPLS algorithms for di↵erent training data subset sizes (R = 250, 500

and 1000).

250 500 1000
rKOPLS SrKOPLS rKOPLS SrKOPLS rKOPLS SrKOPLS

letter

OA 90.9 91.44 93.14 93.38 94.52 94.55

SR – 6.79% – 9.35% – 3.27%

mfeatures

OA 98.31 98.05 97.97 98.53 – –
SR – 18.89% – 13.92% – –

optdigits

OA 97.45 97.40 97.77 98.01 98.15 98.17

SR – 6.74% – 18.13% – 37.82%

pendigits

OA 97.76 97.81 98.17 98.22 98.14 98.16

SR – 10.90% – 19.74% – 10.73%

satellite

OA 89.91 89.78 90.59 90.42 91 91.22

SR – 18.24% – 10.64% – 24.91%

segment

OA 95.98 96.11 95.58 95.75 – –
SR – 29.75% – 50.77% – –

vehicle

OA 80.58 81.96 80.26 81.56 – –
SR – 57.41% – 76.39% – –

yeast

OA 56.93 60.04 56.77 60.11 – –
SR – 44.20% – 44.93% – –

25

Table 8 compares the e�cient solutions of KOPLS (rKOPLS) and SKOPLS (SrKOPLS); due to the

solution of these approaches depends on the subsampling process, Table 8 includes the overall accuracy

(OA) resulting from averaging 10 independent runs. This e�cient technique allows us to fix a priori

sparsity rate or a initial randomly selected subset of training data (R). For this experiment, we display

the solutions obtained with R = 250, R = 500 and R = 1000; for instance, in vehicle dataset, a priori

sparsity rate of 50% is fixed for R = 250.

Results show, for any value of R, that SrKOPLS approach tends to outperform rKOPLS in almost

all the problems, leading us to the conclusion that SrKOPLS projections are more discriminative than

those of the rKOPLS. Even in the case where the most aggressive subsampling is applied (R = 250),

SrKOPLS improves rKOPLS accuracy in five out of eight problems and it is able to reduce, even more,

the solution complexity; note that it provides SR around 30% in segment and close to 60% in vehicle.

We should emphasize that solving the KOPLS problem is not practical when dealing with large

datasets of just a few thousands of patterns. As discussed for the linear sparse algorithms, our solution

and the one based on Procrustes both required very similar CPU time, and the di↵erences are mostly

due to initialization and stopping criteria. Both solutions are considerably more computationally

demanding that the rKOPLS method, since the latter does not need to iterate over several EVD

problems.

5.5. Sparse Feature Extraction for Face Recognition

In order to show the advantages of SOPLS over OPLS in a real problem, in this section we analyze

the performance of these algorithms over a database of face images. In particular, this dataset is a

preprocessed excerpt of “Labeled Faces in the Wild” (LFW)5. The complete dataset contains more

than 13,000 images of faces from 1680 people. However, in order to work with a well-defined dataset,

we have selected just the people with at least 20 available images. This results in a reduced dataset

with 62 people, consisting of 2276 training images and 756 for testing purposes. The image size is

50⇥ 37 pixels, which are rearranged as a row vector of 1850 variables.

To study the advantages of the sparsity induced by the SOPLS approach, we train the algorithm

with 3 di↵erent values of the penalty parameter, �1 2 {0.1, 0.5, 1}, in order to obtain solutions with

di↵erent degrees of sparsity. As SOPLS stopping criterion, we have fixed the maximum number of

iterations to 50 and the tolerance parameter � to 10�5. As in previous subsections, C-SVM is trained

on the extracted features to evaluate the accuracy of the OPLS and SOPLS algorithms.

Figure 6 depicts the overall accuracy (OA, left) and sparsity rate (SR, right) of the OPLS and

SOPLS solutions as a function of the number of extracted features. As expected, the sparsity rate

5http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

26

0 10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

n
f

O
A

(%
)

λ
1
=0 (OPLS)

λ
1
=0.1

λ
1
=0.5

λ
1
=1

0 10 20 30 40 50 60
65

70

75

80

85

90

95

100

n
f

S
R

(%
)

λ
1
=0.1

λ
1
=0.5

λ
1
=1

a) Overall Accuracy b) Sparsity Rate

Figure 6: Evolution of OA and SR according to the number of projection vectors (nf) obtained by OPLS (�1 = 0) and

SOPLS. The behavior of SOPLS is analyzed for di↵erent values of �1.

grows for increasing �1. More importantly, we can also see that the introduction of `1 regularization

leads to significantly higher accuracies. This advantage is due to the fact that in this application the

original data representation has many redundant and irrelevant features, causing overfitting in the

standard OPLS solution, a problem that is not su↵ered by sparse versions.

To analyze the advantage of the SOPLS solution from a point of view of its interpretability, Figure

7 displays the first 6 projection vectors obtained by the OPLS approach and SOPLS for di↵erent values

of �1. We can observe that OPLS solution does not provide any useful information about the most

relevant regions to classify the di↵erent faces; however, if we focus on the projection vectors provided

by the SOPLS approach, mainly when a large value of �1 is used (�1 = 1), we can see how the non-zero

coe�cients are mostly concentrated on the eyes and mouth regions. For small values of �1 (�1 = 0.1),

the location of the non-zero coe�cients is not very informative; nevertheless, even in this case SOPLS

avoids the overfitting problem and performs much better than standard OPLS.

6. Conclusions

Implementations of OPLS and KOPLS algorithms that are more frequently used in machine learning

are based on the solution to a generalized eigenvector decomposition problem. In this paper, we have

reviewed a formulation of OPLS that imposes constraints on the regression coe�cients, leading to

standard eigenvalue decomposition problems. We have argued in favor of these implementations for

two main reasons: 1) the resulting algorithms require less memory and CPU resources, and 2) they

allow the implementation of sparse OPLS and KOPLS algorithms by adding `1-regularization terms.

Exploiting this second advantage, we have proposed batch and sequential implementations of linear

OPLS (SOPLS algorithm), as well as of non-linear extensions by means of kernel methods (SrKOPLS

27

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

�
1
=

0

(O
P
L
S
)

�
1
=

0.
1

�
1
=

0.
5

�
1
=

1

Figure 7: Six first projection vectors for di↵erent values of �1, with �1 = 0 corresponding to the OPLS algorihtm and

�1 > 0 for the SOPLS algorithm.

algorithm). Numerical results on a benchmark of UCI datasets and in a face recognition task confirm

the e�ciency of our algorithms. Discriminative power superiority for iterative SOPLS is empirically

proved and highly sparse projections are obtained, favoring interpretability of the solution. Regarding

the SrKOPLS algorithm, it normally outperforms standard rKOPLS in most of the problems, with the

additional advantage of obtaining even sparser solutions.

Further research is currently being carried out to incorporate group lasso concepts, to impose

sparsity on entire rows of matrices U or B, so that all projection vectors become dependent on the

same group of original variables (linear case) or training data (kernel case).

Appendix A. Proof of Equations in (20)

We start by noting that since the columns of UEVD and UGEV span the same subspace of <n, they

should verify UEVD = UGEVA, for some square and invertible matrix A of size nf . Inserting this

expression in (14), and taking into consideration that the columns in UGEV are CXX-orthonormal, we

28

get

A
>
U

>
GEVCXXUGEVA = A

>
A = ⇤EVD. (A.1)

Since ⇤EVD admits a Cholesky factorization, and this is unique, we necessarily have that A = A
> =

⇤
1/2
EVD and

UEVD = UGEV⇤
1/2
EVD. (A.2)

Next, we work towards showing the relationship between regression coe�cient matrices. To this

end, we can insert (13) into (14), obtaining C
>
XYUEVD = WEVD⇤EVD. Also, if we use (A.2) with

(7), we can easily show that WGEV⇤
1/2
EVD = C

>
XYUEVD. Using jointly these two last equations, it is

straightforward to arrive at

WEVD = WGEV⇤
�1/2
EVD . (A.3)

To conclude the proof, we need to show that ⇤EVD = ⇤GEV = ⇤, for which it is enough to use

(A.3) together with condition W
>
GEVWGEV = ⇤GEV for the classical OPLS solution. Recurring also

to the orthonormality condition of the columns of WEVD we have

W
>
GEVWGEV = ⇤

1/2
EVDW

>
EVDWEVD⇤

1/2
EVD = ⇤EVD = ⇤GEV. (A.4)

Appendix B. Proof of Eq. (24)

Since the minimization of (23) is taken with respect to W only, we start by deleting regularization

terms. Expanding the Frobenius norm of the least squares term, and exploiting the orthonormality

constraint on the columns of W, the objective function becomes

Lreg(W) = Tr{CYY}+Tr{X0>
X

0
}� Tr{W>

YX
0>
}

c
= �Tr{W>

YX
0>
},

where X
0 = U

>
X is the projected data matrix and symbol

c
= means equal but for a constant term

which does not depend on W.

We can next incorporate the constraints on W using Lagrange multipliers:

L⇤(W) = �Tr{W>
YX

0>
}+Tr{

�
W

>
W � I

�
⇤},

which needs to be minimized with respect to W and maximized with respect to the Lagrange multi-

pliers. To find the solution, we take derivatives of L⇤(W) with respect to W:

@L⇤

@W
= �C>

X0Y +W⇤.

29

Finally, setting this result to zero, we know that C>
X0Y = W⇤ holds at the solution. Multiplying both

sides from the right by their transpose and by W, and using the fact that W
>
W = I, allows us to

conclude that the optimal W is given by the solution to the following eigenvalue problem

C
>
X0YCX0YW = W⇤

0, (B.1)

where CX0Y = U
>
CXY and ⇤

0 = ⇤
2.

Appendix C. Proof of initialization dependency by applying orthogonal Procrustes so-

lution

We base this proof on the discussion from [22], where it is claimed that one of the properties a good

sparse method should achieve is to reduce to the non-sparse solution (in our case, standard OPLS) when

sparsity constraints are removed. Here, we prove the solution presented in [36] does not progress in the

iterative process and thus it does not converge to the OPLS solution when we set to zero the `1-norm

penalization and matrix W is initialized with an unitary matrix (i.e. W
>(0)

W
(0) = W

(0)
W

>(0) = Im

and thus W
�1(0) = W

>(0), implying m < n and nf = m) as it is the case in [36] which initializes the

algorithm with the eigenvectors of CYY. Note that, since the orthonormality of W is required (i.e.

W
>
W = I), an unitary matrix is a reasonable choice for initialization. It should be noticed that the

identity matrix is a classical initialization in these cases.

To start with, [36] performs a U�step that provides U
(0) = C

�1
XXCXYW

(0), from which W
(1) is

updated according to the Procrustes solution, i.e. W(1) = QP
>, where Q and P are the left and right

eigenvector of C>
XYU

(0):

C
>
XYU

(0) = QDP
>. (C.1)

Replacing the value of U(0), (C.1) can be rewritten as

CW
(0) = QDP

>, (C.2)

where C = C
>
XYC

�1
XXCXY is a symmetric matrix.

With this result, we will show next that W
(1) = W

(0), and therefore that the algorithm does not

progress to the standard OPLS solution when sparsity constraints are removed. Before that, we make

some linear algebra to facilitate the derivations.

Multiplying both sides of (C.2) from the right by their transposes, we obtain

QD
2
Q

> = CW
(0)

W
>(0)

C.

If we premultiply from the left instead, we get

PD
2
P

> = W
>(0)

CCW
(0),

30

so that the following equalities hold:

Q = CW
(0)

W
>(0)

CQD
�2, (C.3)

P = W
>(0)

CCW
(0)

PD
�2. (C.4)

Now, introducing (C.3) and (C.4) into the expression for W
(1), and using the fact that W

�1(0) =

W
>(0), we obtain

W
(1) = QP

>

= CW
(0)

W
>(0)

C(QD
�4

P
>)W

>(0)
CCW

(0)

= CW
(0)

W
>(0)

C(CW
(0))�4

W
>(0)

CCW
(0)

= CCC
�4

CCW
(0)

= W
(0),

and the demonstration concludes.

References

[1] H. Wold, “Estimation of principal components and related models by iterative least squares,” in

Multivariate Analysis. Academic Press, 1966, pp. 391–420.

[2] M. A. J. van Gerven, Z. C. Chao, and T. Heskes, “On the decoding of intracranial data using

sparse orthonormalized partial least squares,” Journal of Neural Engineering, vol. 9, no. 2, pp.

26 017–26 027, 2012.

[3] L. K. Hansen, “Multivariate strategies in functional magnetic resonance imaging,” Brain and

Language, vol. 102, no. 2, pp. 186–191, 2007.

[4] J. Arenas-Garćıa and G. Camps-Valls, “E�cient kernel orthonormalized PLS for remote sensing

applications,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 2872–2881, 2008.

[5] J. Arenas-Garćıa and K. B. Petersen, “Kernel multivariate analysis in remote sensing feature ex-

traction,” in Kernel Methods for Remote Sensing Data Analysis, G. Camps-Valls and L. Bruzzone,

Eds. Wiley, 2009.

[6] M. Barker and W. Rayens, “Partial least squares for discrimination,” Journal of Chemometrics,

vol. 17, no. 3, pp. 166–173, 2003.

[7] K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philosophical

Magazine, vol. 2, no. 6, pp. 559–572, 1901.

31

[8] H. Wold, “Non-linear estimation by iterative least squares procedures,” in Research Papers in

Statistics. Wiley, 1966, pp. 411–444.

[9] H. Hotelling, “Relations between two sets of variates,” Biometrika, vol. 28, pp. 321–377, 1936.

[10] K. Worsley, J. Poline, K. Friston, and A. Evans., “Characterizing the response of pet and fMRI

data using multivariate linear models (MLM),” Neuroimage, vol. 6, pp. 305–319, 1998.

[11] M. Borga, T. Landelius, and H. Knutsson, “A unified approach to PCA, PLS, MLR and CCA,”

Institutionen för Systemteknic, Linköping, Sweden, Tech. Rep. LiTH-ISY-R-1992, 1997.

[12] G. C. Reinsel and R. P. Velu, Multivariate reduced-rank regression: theory and applications. New

York, NY: Springer, 1998.

[13] F. D. Torre, “A least-squares framework for component analysis,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 34, no. 6, pp. 1041–1055, 2012.

[14] S. Roweis and C. Brody, “Linear heteroencoders,” Gatsby Computational Neuroscience Unit, UK,

Tech. Rep. GCNU TR 1999-002, 1999.

[15] J. Arenas-Garćıa, K. B. Petersen, and L. K. Hansen, “Sparse kernel orthonormalized PLS for

feature extraction in large data sets,” Advances in Neural Information Processing Systems 19,

Cambridge, MA: MIT Press, 2007.

[16] C. Dhanjal, S. R. Gunn, and J. Shawe-Taylor, “E�cient sparse kernel feature extraction based

on partial least squares,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 8, pp. 1347–1361,

2009.

[17] J. Friedman, T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “[consistency in boosting]: Discus-

sion,” The Annals of Statistics, vol. 32, no. 1, pp. 102–107, 2004.

[18] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society, Series B, vol. 58, pp. 267–288, 1994.

[19] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, “Dimensionality reduction via

sparse support vector machines,” Journal of Machine Learning Research, vol. 3, pp. 1229–1243,

2003.

[20] Z. J. Xiang and P. J. Ramadge, “Fast lasso screening tests based on correlations,” in IEEE Intl.

Conf. on Acoustics, Speech and Signal Process. (ICASSP). IEEE, 2012, pp. 2137–2140.

32

[21] M. Dyar, M. Carmosino, E. Speicher, M. Ozanne, S. Clegg, and R. Wiens, “Comparison of partial

least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy

of geological samples,” Spectrochimica Acta Part B: Atomic Spectroscopy, 2012.

[22] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,” Journal of Compu-

tational and Graphical Statistics, vol. 15, pp. 265–286, 2006.

[23] D. Meng, Q. Zhao, and Z. Xu. “Improve robustness of sparse PCA by L1-norm maximization,”

Pattern Recognition, vol. 45, no. 1, pp. 487-497, 2012.

[24] D. Hardoon and J. Shawe-Taylor, “Sparse canonical correlation analysis,” Machine Learning,

vol. 83, no. 3, pp. 331–353, 2011.

[25] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge University

Press, 2004.

[26] C. Williams and M. Seeger, “Using the Nyström method to speed up kernel machines,” Advances

in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2001.

[27] J. Arenas-Garcıa, K. B. Petersen, G. Camps-Valls, and L. K. Hansen, “Kernel multivariate analysis

framework for supervised subspace learning,” IEEE Signal Process. Mag., pp. 16–29, 2013.

[28] B. Scholkopf, A. Smola, and K.-R. Muller, “Non linear component analysis as kernel eigenvalue

problem,” Neural Computation, vol. 10, pp. 1299–1319, 1998.

[29] P. L. Lai and C. Fyfe, “Kernel and nonlinear canonical correlation analysis,” International Journal

of Neural Systems, vol. 10, no. 5, pp. 365–377, 2000.

[30] R. Rosipal and L. J. Trejo, “Kernel partial least squares regression in reproducing kernel hilbert

space,” Journal of Machine Learning Research, vol. 2, pp. 97–123, 2001.

[31] D. Hardoon, J. Mourao-Miranda, M. Brammer, and J. Shawe-Taylor, “Unsupervised analysis of

fMRI data using kernel canonical correlation,” NeuroImage, vol. 37, no. 4, pp. 1250–1259, 2007.

[32] W. Zheng, X. Zhou, C. Zou, and L. Zhao, “Facial expression recognition using kernel canonical

correlation analysis (KCCA),” IEEE Trans. Neural Networks, vol. 17, no. 1, pp. 233–238, 2006.

[33] L. Hoegaerts, J. A. K. Suykens, J. Vandewalle, and B. De Moor, “Primal space sparse kernel

partial least squares regression for large scale problems,” in Proc. 2004 IEEE International Joint

Conference on Neural Networks, 2004.

[34] K. B. M. Momma, “Sparse kernel partial least squares regression,” in Proc. of Conference on

Learning Theory (COLT 2003), 2003, pp. 216–230.

33

[35] D. Huang and F. D. Torre, “Bilinear kernel reduced rank regression for facial expression synthesis,”

in Proc. European Conf. Computer Vision (ECCV), 2010. pp.364–377.

[36] M. Gerven and T. Heskes, “Sparse orthonormalized partial least squares,” in Proc. Benelux Conf.

on Artificial Intelligence, 2010.

[37] L. Chen and J. Z. Huang, “Sparse Reduced-Rank Regression for Simultaneous Dimension Reduc-

tion and Variable Selection,” Journal of American Statistical Association, vol. 107, no. 500, pp.

1533–1545, 2012.

[38] C. Bishop, Neural Networks for Pattern Recognition. New York, NY: Oxford University Press,

1995.

[39] L. Sun, S. Ji, S. Yu, and J. Ye, “On the equivalence between canonical correlation analysis and

orthonormalized partial least squares,” in Proc. of the 21st International Joint Conference on

Artificial Intelligence, 2009. pp. 1230–1235.

[40] T. T. Ngo, M. Bellalij, and Y. Saad, “The trace ratio optimization problem,” SIAM Rev., vol. 54,

pp. 545–569, 2012.

[41] Y. Jia, F. Nie, and C. Zhang, “Trace ratio problem revisited,” IEEE Trans. Neural Networks,

vol. 20, pp. 729–735, 2009.

[42] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012.

[43] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the

Royal Statistical Society, Series B, vol. 67, pp. 301–320, 2005.

[44] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Convex optimization with sparsity-inducing

norms,” in Optimization for Machine Learning, MIT Press, 2011, pp. 19–53.

[45] G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin, “A comparison of optimization methods

and software for large-scale L1-regularized linear classification,” Journal of Machine Learning

Research, vol. 11, pp. 3183–3234, 2010.

[46] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso and a sparse group lasso,”

arXiv preprint arXiv:1001.0736, 2010.

34

