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Abstract

Multi-modal image registration is becoming an increasingly powerful tool

for medical diagnosis and treatment. The combination of different image

modalities facilitates much greater understanding of the underlying condi-

tion, resulting in improved patient care. Mutual Information is a popu-

lar image similarity measure for performing multi-modal image registration.

However, it is recognised that there are limitations with the technique that

can compromise the accuracy of the registration, such as the lack of spatial

information that is accounted for by the similarity measure. In this paper,

we present a two-stage non-rigid registration process using a novel similarity

measure, Feature Neighbourhood Mutual Information. The similarity measure

efficiently incorporates both spatial and structural image properties that are

not traditionally considered by MI. By incorporating such features, we find

that this method is capable of achieving much greater registration accuracy

when compared to existing methods, whilst also achieving efficient compu-

tational runtime. To demonstrate our method, we use a challenging medical

image dataset consisting of paired retinal fundus photographs and confocal

scanning laser ophthalmoscope images. Accurate registration of these image

pairs facilitates improved clinical diagnosis, and can be used for the early

detection and prevention of glaucoma disease.
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1. Introduction

Image registration is the task of finding the spatial transformation that
gives correct matching correspondence between two images. Registration is
widely used in many application areas, including medical imaging, computer
vision, and satellite imagery. In particular, registration of images from dif-
ferent modalities has become increasingly common to combine signals from
multiple sensors, where the registered images can be used to examine or
explain a particular observation further, for example in patient diagnosis.
However, the difficulty is that by their very nature, multi-modal image pairs
may have no clearly defined relation between corresponding image intensi-
ties. Mutual Information (MI) has become a popular similarity measure for
registering images of different modalities. The algorithm was simultaneously
proposed by Viola and Wells [25] and Maes et al. [13]. MI differs from earlier
registration methods as it is derived from information theory and is based
on a statistical comparison of the images. Given two images, A and B, MI
can be defined as:

I(A;B) = H(A) +H(B)−H(A,B)

where H(A) is the entropy of A, H(B) is the entropy of B and H(A,B) is
the joint entropy of A and B. The transformation that maximises I(A,B)
should give the correct registration of the images. Entropy gives a measure
of the amount of information that a given signal may contain, and forms the
basis of MI. For a signal X consisting of n elements, Shannon’s entropy [22]
is defined as:

H(X) = −

nX

i=0

p(i) log
2
p(i)

where p(i) is the probability of value i occurring within the data set. The
amount of information for a given value is inversely related to its probability,
meaning that if the probability of a particular value occurring is low then this
returns a greater amount of information than if the probability of the value is
high. It can be thought of that the more rare the occurrence of an event, the
more important it is when that event does occur. Despite the wide adoption
of MI, it is recognised that the method is not without limitations [12], nor
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can it accurately register all varieties of image modalities, and so alternative
methods have since been proposed ([18, 9, 20, 1, 4, 15, 21, 24, 27, 11]).

For our study, we are particularly interested in the registration of a chal-
lenging dataset comprised of multi-modal retinal image data, in order to
improve clinician diagnosis and treatment of glaucoma. Glaucoma is the
second most common cause of blindness in the West and the most common
cause of irreversible blindness worldwide [23]. The affects of glaucoma are ir-
reversible, meaning that it is crucial to detect it in the early stages in order to
prevent any further progression of the condition [19]. As shown in Figure 1,
the image modalities that are to be registered together are colour fundus pho-
tographs (shown on the right) and confocal scanning laser ophthalmoscope
(SLO) images (shown on the left). Both modalities capture high quality im-
ages from the eye of the optic nerve head (ONH), with the fundus photograph
recording the clinical appearance and the SLO image providing quantitative
information such as the retinal surface reflectivity and topographic struc-
ture [14]. From Figure 1, it is apparent to see that there is corresponding
structure present in both modalities, however the two modalities present this
structure differently due to the acquisition techniques. For example, the sur-
face reflectivity of vessels and the ONH result in a different representation
compared to the colour photograph, such as the dark ring of nerve fibres at
the ONH in the SLO, and the hollow appearance of large vessels in the SLO.
Currently it is not typical practice to register these two modalities, however
since the ONH boundary appears much clearer in the fundus photograph
it seems a logic step to utilise both images effectively. Registration would
provide correspondence between topographic and visible ONH damage, and
early detection of glaucoma would result in better prognosis and treatment.

Figure 1 shows an example colour fundus photograph and SLO reflectivity
image captured from a patient’s eye, taken from our image data set. The data
set used in this study consists of 135 matching image pairs captured from
the human eye. The original size of each fundus photograph is 752 × 490
pixels, with a resolution of 72 pixels per inch. The SLO images are captured
using the Heidelberg Retinal Tomograph II (HRT II) [6] device. The field of
view for each SLO image is 15× 15 degrees and the original size is 384× 384
pixels, with a resolution of 96 pixels per inch. The data set consists of both
left and right eyes and shows various stages of the glaucoma disease ranging
from no sign of infection to highly glaucomatous. The data set provides an
interesting challenge for the image processing community, since there may
be regions of non-uniform lighting, regions that lack textural appearance,
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Figure 1: A patient’s eye captured by two different image modalities, showing the retina

surface and blood vessels. Left: Confocal SLO image. Right: Fundus colour photograph.

physical changes in structure and colour over time due to degradation, and
also distortion introduced by the various changes in curvature from the retina
surface. In addition, whilst the SLO images are of a high clinical standard,
there are some cases where slight blurring occurs in the image due to subtle
movement in the eye (known as microsaccades) during acquisition. The data
set comprises of a wide variety of cases that a clinician would encounter when
capturing these two image modalities. All images were taken by an expert
clinician, who also provided ground truth data using a manual alignment
tool that was developed specifically for this task. The anonymised data set
is available from the authors upon request.

This paper provides a extension of our preliminary report given in [11].
Here, we now incorporate a two-stage non-rigid registration to provide greater
registration accuracy, in addition to exploring a much wider set of multivari-
ate features that can be utilised by the Feature Neighbourhood Mutual In-
formation (FNMI) algorithm. In addition, we also provide a novel analysis of
registration convergence in the transformation space to examine why different
methods fail to provide accurate registration. This highlights a key consid-
eration, in that a successful similarity measure not only needs to maximise
the correct registration, but would also need to provide a results across the
complete transformation space that converges towards the correct registra-
tion so that transformation optimisation can be performed without failure.
The remainder of the paper is as follows: Section 2 provides a literature
review of Mutual Information and different techniques that have extended
upon the original algorithm. Section 3 describes our proposed algorithm,
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Feature Neighbourhood Mutual Information (FNMI). Section 4 presents the
application of rigid registration. Section 5 discusses the issue of registration
convergence and explores how this impacts on the different similarity mea-
sures. Section 6 extends our method for non-rigid registration and presents
our final results, followed by our conclusion given in Section 7.

2. Literature Review

As has already been introduced, Mutual Information (MI) is a popular
similarity measure for registering images of different modalities. The algo-
rithm was simultaneously proposed by Viola and Wells [25] and Maes et al.
[13]. MI relies on the computation of entropy, which gives a measure of un-
certainty for a random variable. It can be observed that by reducing the un-
certainty within the joint distribution of the images, we obtain the strongest
correspondence between them whilst the entropy of each individual image
ensure that the image overlap contains meaningful information (rather than
registering regions of little interest such as background).

One recognised issue with MI is that there is little spatial information
incorporated into the measure, which means that if there is a complex cor-
respondence between the image modalities then the standard approach can
often fail [12]. Many methods have been proposed to overcome this by in-
cluding additional information as part of registration. Pluim et al. [18]
suggested integrating gradient information into the MI measure by multi-
plying MI by a gradient term. Similarly, Kubecka and Jan [9] suggested
using gradient-image MI whereby MI is computed for both the original im-
ages (after performing illumination correction) and also for the corresponding
gradient images. With higher-order MI, Rueckert et al. [20] compute entropy
for intensity pairs rather than just individual intensities to introduce spatial
information into MI. Beijing et al. [1] modified higher-order MI to use values
such as mean and median pixel neighbourhood, neighbouring pixel intensity
and intensity gradient. Gan and Chung [4] proposed Maximum Distance
Gradient Magnitude (MDGM) for obtaining detailed image structure that
is then also incorporated with higher-order MI. Similar to this, Mellor and
Brady [15] proposed using local phase of the image to describe features within
the registration. The issue with higher-order MI is that the histogram di-
mensionality can become very large quite quickly as additional information
is incorporated. This becomes computationally demanding and, also, means
that the resulting histogram is sparsely populated.
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Russakoff et al. [21] and Tomaževič et al. [24] independently proposed
similar methods that tackle this issue of incorporating additional informa-
tion, with methods known as Regional MI (RMI) and Feature MI (FMI) re-
spectively. With higher-order MI, to include all neighbouring intensities for
each point would result in a 9D histogram for each image and an 18D joint
histogram. Since such a space is far too large to efficiently compute, RMI
models the data more compactly by its covariance matrix. Russakoff took
this approach to incorporate neighbourhood intensities whereas Tomaževič
used this idea to incorporate gradient features for each point. Yang et al.
[27] also furthered this work to include only the mean neighbourhood value
rather than the individual intensity values, leading to an even greater reduc-
tion of data. As preliminary reported [11], our approach builds upon these
methods by incorporating a wide range of derivative based spatial features as
described in the next section. More recently, there have been efforts within
the community to highlight open-source software, such as the Workshop on
Open-Source Medical Image Analysis Software [26]. Other popular software
tools include the Insight Segmentation and Registration Toolkit (ITK) [7],
elastix [3], and NiftyReg [17].

3. Feature Neighbourhood MI

Whilst there exist many similarity measures for image registration, one
major weakness for any technique is the presence of local maxima in the
transformation space that the registration is performed within. In many
cases, the transformation space can be very large, and so search optimiza-
tion techniques are required to reduce the computational load and to achieve
a result in an acceptable timeframe. Should local maxima be present within
the transformation space then this can often result in an incorrect registration
result. It is important therefore to emphasise the need for convergence, so
that the similarity measure being used does not only maximise the true regis-
tration, but also converges well towards the maximum result across the whole
transformation space. To achieve this, we introduce Feature Neighbourhood
Mutual Information (FNMI), a novel similarity measure that incorporates
both structural feature derivatives and spatial neighbourhood information for
multi-modal image registration. In this section, we shall describe the FNMI
similarity measure, by first introducing gauge co-ordinate feature derivatives
for extracting useful features from images (Section 3.1), and then presenting
the algorithm to compute similarity that the features are incorporated within
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(Section 3.2).

3.1. Gauge Co-ordinate Feature Derivatives

Feature derivatives essentially perform a mathematical operation on an
image, in order to extract useful information such as gradients and ridges.
Previously, there has been work that has addressed the use of first-order
feature derivatives for image registration [1, 4, 18, 24]. Whilst much previous
work only considers first-order derivatives, here we propose to obtain higher-
order features that can reveal much more detail on the underlying image
structure, by the use of gauge co-ordinates [5]. Given intensity L, we can
describe features in a Cartesian co-ordinate frame such as the magnitude
of the gradient

p

L2
x + L2

y. As more advanced properties are to be defined
within the image, Cartesian notation can soon become cumbersome. For
instance, isophote curvature would be given as:

2LxLyLxy − L2

xLyy − L2

yLxx

(L2
x + L2

y)
3/2

In contrast to Cartesian coordinates, gauge co-ordinates involve changing
from extrinsic to intrinsic geometry [5] such that a local co-ordinate system
is determined for each individual pixel. The gradient direction of a pixel is
an intrinsic property that is used to define the new local co-ordinate frame
as the gradient vector ~w and its perpendicular direction ~v:

~w =
⇥

Lx Ly

⇤

~v = ~w ·



0 1
−1 0

�

=
⇥

−Ly Lx

⇤

where Lx is the derivative of L with respect to x and Ly is the derivative of
L with respect to y. Derivatives of the intensity L can now be expressed in
terms of w and v. For example, Lw is the first derivative of L in the gradient
direction. Similarly, the isophote curvature described earlier can now be
simplified significantly to −

Lvv

Lw

. By using gauge co-ordinates, we can express
higher-order feature derivatives much more clearly compared to traditional
Cartesian notation. In particular, if we can express the feature derivatives
clearer then we can simplify the exploration of different features in order to
find a suitable subset for registration.

Figure 2 shows a number of different features that can be extracted,
expressed using gauge co-ordinates at different scales (defined by �). Taking
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(a) Original (b) (Lv σ = 2) (c) (Lv σ = 4) (d) (Lww σ = 8)

(e) (Lvvv σ = 2) (f) (Lwv σ = 4) (g) (Lwvvv σ = 4) (h) (Lwwv σ = 1)

Figure 2: Original image and corresponding gauge co-ordinate feature derivatives that
highlight key features from the image.

the derivative Lww σ = 8, note that the ridges in the image become well
defined where the isophotes occur, highlighting internal structure of the blood
vessels. Similarly, the derivative Lvvv σ = 2 produces a strong emphasis of
the outer edges of the blood vessels. Furthermore, when we combine gradient
and isophote derivatives we obtain a much richer representation of the image
consisting of both properties, as can be seen with Lwv σ = 4, Lwvvv σ = 4
and Lwwv σ = 1.

In our preliminary study [11], we only considered scale-space derivatives,
however we now consider a much wider set of features as suggested in [5].
Whilst it is possible to extract many higher-order derivatives at many differ-
ent scales, this results in a very large number of possible feature combinations.
Since it is computationally infeasible to identify exactly what combination
of features would produce the best registration, instead we employ a sub-
optimal Sequential Forward Search (SFS) [8] on a subset of 10 image pairs
to determine a set of gauge co-ordinate features that perform well for the
registration task. Figure 2 shows the set of gauge co-ordinate features as
chosen using SFS, applied to an example SLO image.
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It is important to state that the SFS method described here is used only
to determine a possible subset of features to include for our experimentation,
and was not used to configure any other parameters for the testing phase
of our study. In addition, further experimentation could be performed to
identify which features perform best for the entire dataset, using a training
and testing cross-validation approach. However, for real-world applications
this would not be feasible and so this is considered to be outside the scope
of this current work. Having obtained a set of features, the following section
will describe the algorithm implementation that the features are incorporated
within.

3.2. Algorithm Implementation

In order to calculate FNMI, we assume that we have two images, the
floating template A1 and the corresponding region in the reference image
B1 that we wish to compare against. For each of these images we derive a
set of gauge co-ordinate feature images, as described in Section 3.1, denoted
as A2...An and B2...Bn (where there are n − 1 gauge co-ordinate features).
The collection of images A and B are combined to form a stack made up
of 2n images. For each pixel in the template image, we create a vector that
consists of the pixel and its neighbouring pixels (using a square window of
width 2r+1), for each image in the stack. Supposing the size of the window
is r = 1, then there would be 8 direct neighbouring pixels, however just as
with RMI this may be increased to incorporate further spatial properties if
necessary. For every pixel where there is an overlap between the content in
the template image and the reference image (of which the count of pixels is
given by c), a vector consisting of d = 2n(2r+1)2 elements is produced. The
vectors are then concatenated to give the matrix P (where the size of P is
d × c).

The matrix P now represents the combination of structural and spatial
information for the two images being registered. To overcome the problem of
the high dimensionality of the joint distribution, we adopt a similar approach
that was used by both RMI and FMI. Given P , we calculate its covariance
matrix. This reduces the data to a d× d matrix that represents the variance
between a given point and its neighbouring points from the original matrix.
Unlike traditional MI, this approach also eliminates the issue of probabil-
ity density estimation since the entropy can be calculated directly from the
covariance matrix. If we assume that the higher-dimensional distribution
is approximately normally distributed, then as stated by Shannon [22], the
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entropy of a normally distributed set of points in <d with covariance matrix
C can be given as:

H(C) = log((2πe)
d

2 det(C)
1

2 ).

The joint entropy is computed by H(C), and the marginal entropies are
computed by H(CA) and H(CB), where CA is the d

2
⇥

d

2
sub-matrix in the

top-left corner of C, and CB is the d

2
⇥

d

2
sub-matrix in the bottom-right

corner of C. The similarity between the two images A1 and B1 using FNMI
is then given as:

FNMI = H(CA) +H(CB)�H(C).

4. Rigid Registration

In the previous section we have described the process of comparing the
similarity between two images, using the FNMI algorithm. Since image reg-
istration is the task of finding the spatial transformation that gives correct
matching correspondence between two images, we need to incorporate the
similarity measure with a capability for searching the transformation space.
For our study, we developed a MATLAB implementation that is capable of
performing multi-modal image registration using a variety of different similar-
ity measures. The system involves a two-stage registration approach, where
first an approximate rigid registration is found based on rotation and trans-
lation. We use the built-in MATLAB implementation of the Nelder-Mead
simplex algorithm, combined with a 3-level image pyramid, for efficient search
optimisation of this transformation space. A important consideration for any
search optimisation tool is to ensure that the search does not become trapped
by false local maxima within the function being optimised. In this experi-
ment, the function being optimised is the similarity measure that is computed
at each transformation where there is overlap between the template image
and the reference image. We study the effects of registration convergence fur-
ther in Section 5. For this work, experiments were conducted on a standard
desktop PC machine configured with a Pentium 2.6GHz dual-core processor,
4GB of memory, and Windows 7 operating system. The registration software
developed and a subset of the image data are both available to download by
request to the authors.
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4.1. Results

To quantify the results of our experiments, we compare the registration
results to the ground truth registration results as approved by an expert
clinician. We compare the mean and median translation error T (measured
in pixels) and rotation error R (measured in degrees), along with the mean
registration error based on the 4 corner points of the template image, defined
as Regerr (measured in pixels). This is calculated by measuring the distance
for each corner point between the registration result and the ground truth.
For each registration technique where different parameters are to be tested,
the bold values indicate the result that obtains the lowest error, or rather,
the best performance. Each experiment is carried out using the complete set
of 135 retinal image pairs.

Table 1 shows the registration results when using the existing methods
from the literature. The methods tested are MI (Viola and Wells [25], Maes
et al. [13]), Gradient MI (Pluim et al. [18]), Gradient-Image MI (Kubecka
and Jan [9]), Second-Order MI (Rueckert et al. [20]), Regional MI (Russakoff
et al. [21]), Feature MI (Tomaževič et al. [24]) and Neighbourhood Incorpo-
rated MI (Yang et al. [27]). For each method, we have also experimented
using a variety of different parameters to assess the relative performance.
We can observe a dramatic difference between using standard MI and meth-
ods stated that extend upon MI. From these methods, Regional MI offers
the greatest accuracy improvement, despite requiring the longest runtime.
Feature MI also provides fairly good registration accuracy whilst reducing
the runtime. As the two strongest methods, what would be advantageous is
to integrate aspects from each of these methods so as to improve registration
even further. We shall now perform our experimentation using the FNMI
algorithm described in Section 3 that aims to achieve this.

4.1.1. Feature Neighbourhood MI using first derivatives

In this first stage, we restrict the possible feature set to the first derivative
in the gradient direction, described as Lv in gauge co-ordinate notation, taken
at different scales defined by σ.

Table 2 shows the registration errors for our proposed similarity measure.
The experiments show where a single feature is combined with the intensity
image and also where multiple scale features are combined (with a maximum
of 3 additional features being used). FNMI appears to achieves very good
registration errors for all the tested methods. When one additional feature
is used, Lv σ = 2 gives the lowest registration error of Regerr = 5.08. The
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Method Mean Regerr Runtime

T R

MI (256 bins) 154.5 2.8 154.4 2.77

MI (Scott’s Rule +Skewness) 41.7 1.9 43.2 5.70

Gradient MI 42.09 2.24 43.15 10.50

Gradient-Image MI 29.26 2.02 30.84 7.34

2nd-Order MI (left pixel) 51.36 1.69 52.28 2.75

2nd-Order MI (right pixel) 51.91 1.88 52.69 2.73

2nd-Order MI (mean) 43.69 1.97 45.06 3.11

2nd-Order MI (median) 50.43 2.04 51.54 3.80

2nd-Order MI (gradient) 22.09 1.13 22.88 5.75

Regional MI (r=1) 39.26 1.04 39.54 14.02

Regional MI (r=2) 11.32 0.58 11.94 24.68

Regional MI (r=3) 4.69 0.51 5.50 41.25

Regional MI (r=4) 4.02 0.47 4.75 67.69

Regional MI (r=5) 1.87 0.47 2.64 96.83

Feature MI (Lvσ = 1) 19.48 1.89 21.09 9.21

Feature MI (Lvσ = 2) 17.62 2.10 19.68 10.68

Feature MI (Lvσ = 4) 18.40 2.48 21.26 11.15

Feature MI (Lvσ = 8) 23.99 2.65 27.17 12.40

Feature MI (Lvσ = 1, 2) 14.66 1.54 16.16 12.38

Feature MI (Lvσ = 1, 4) 12.49 1.70 14.49 11.91

Feature MI (Lvσ = 1, 8) 14.38 2.06 16.81 12.77

Feature MI (Lvσ = 2, 4) 14.58 1.86 16.56 12.04

Feature MI (Lvσ = 2, 8) 14.99 2.08 17.43 12.85

Feature MI (Lvσ = 4, 8) 17.01 2.50 20.15 13.39

Feature MI (Lvσ = 1, 2, 4) 13.12 1.60 15.11 13.61

Feature MI (Lvσ = 1, 2, 8) 13.38 1.55 14.97 14.56

Feature MI (Lvσ = 1, 4, 8) 12.62 1.62 14.42 15.10

Feature MI (Lvσ = 2, 4, 8) 14.69 1.99 17.30 15.34

NIMI (r=1) 63.88 2.40 64.71 6.51

NIMI (r=2) 66.03 2.44 66.78 6.38

NIMI (r=3) 64.76 2.51 65.58 6.35

NIMI (r=4) 67.79 2.37 68.56 6.31

NIMI (r=5) 68.14 2.71 68.99 6.39

Table 1: Registration errors for all 135 image pairs using existing MI registration methods.

Translation and Regerr are given in pixels, rotation is given in degrees, and runtime is

given in seconds. The bold values signify the lowest error obtained for each registration

technique, based on the given parameters.

mean runtime for this method is 84.17 seconds. When two additional features

are used, the combination of Lv at scales σ = 2 and σ = 4 further reduces

registration error, giving Regerr = 2.63. The inclusion of these two features
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FNMI Mean Regerr Runtime

T R

Lv (σ = 1) 6.19 0.66 6.99 84.44
Lv (σ = 2) 4.14 0.64 5.08 84.17

Lv (σ = 4) 6.65 0.82 7.34 92.18
Lv (σ = 8) 21.49 1.48 22.58 100.21
Lv (σ = 1, 2) 3.18 0.43 3.91 119.32
Lv (σ = 1, 4) 2.01 0.49 2.77 115.87
Lv (σ = 1, 8) 6.21 0.81 7.37 126.36
Lv (σ = 2, 4) 1.85 0.50 2.63 119.18

Lv (σ = 2, 8) 8.21 0.61 9.04 142.89
Lv (σ = 4, 8) 9.18 1.02 10.71 123.77
Lv (σ = 1, 2, 4) 2.11 0.51 2.90 153.96

Lv (σ = 1, 2, 8) 5.97 0.50 6.72 151.60
Lv (σ = 1, 4, 8) 5.47 0.59 6.24 175.09
Lv (σ = 2, 4, 8) 7.32 0.65 8.09 152.93

Table 2: Registration errors for all 135 image pairs using FNMI (with multi-scale gradient
features). Translation and Regerr are given in pixels, rotation is given in degrees, and
runtime is given in seconds. The bold values signify the lowest error obtained for each
registration technique, based on the given parameters

gives a mean runtime of 119.18 seconds. Whilst this is an increase compared
to using just one additional feature, a runtime of 2 minutes is still seen as an
acceptable runtime, especially if the registration proves to be accurate.

4.1.2. Feature Neighbourhood MI combining multiple first derivatives and

multiple higher-order gauge derivatives

Within our study we have performed FNMI registration using a number
of different feature combinations derived by gauge co-ordinates and multi-
scale derivatives. The complete testing procedure is detailed in [10], however
for conciseness, here we shall present only the final testing stage. Similar to
before, we shall focus on the combinations of first derivative features that
are deemed to provide useful information for the purpose of registration as
was discussed in Section 3.1 (Lv (σ = 1, 2), Lv (σ = 1, 4) and Lv (σ = 2, 4)).

Table 3 shows the registration errors when two multi-scale first derivative
features are used along with two higher-order gauge derivatives. In compari-
son to our testing of MI based methods (see tables 1 and 2) these results show
greater registration accuracy. The lowest registration errors occur when us-
ing the features Lv (σ = 2, 4), Lvvv (σ = 2) and Lwvvv (σ = 4), where
Regerr = 2.34. Similarly, there are two other combinations that also improve
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FNMI Mean Regerr Runtime

T R

Lv (σ=1,2) Lww (σ=8) Lvvv (σ=2) 5.92 0.42 6.37 222.64
Lv (σ=1,2) Lww (σ=8) Lwv (σ=4) 6.03 0.55 6.75 211.59
Lv (σ=1,2) Lww (σ=8) Lwvvv (σ=4) 3.90 0.55 4.65 208.22
Lv (σ=1,2) Lww (σ=8) Lwwv (σ=1) 5.08 0.40 5.60 213.71
Lv (σ=1,2) Lvvv (σ=2) Lwv (σ=4) 2.42 0.48 3.27 200.56

Lv (σ=1,2) Lvvv (σ=2) Lwvvv (σ=4) 3.55 0.50 4.38 211.02
Lv (σ=1,2) Lvvv (σ=2) Lwwv (σ=1) 4.89 0.51 5.68 213.66
Lv (σ=1,2) Lwv (σ=4) Lwvvv (σ=4) 4.17 0.49 4.89 209.09
Lv (σ=1,2) Lwv (σ=4) Lwwv (σ=1) 2.67 0.50 3.41 199.20
Lv (σ=1,2) Lwvvv (σ=4) Lwwv (σ=1) 3.43 0.48 4.09 216.91
Lv (σ=1,4) Lww (σ=8) Lvvv (σ=2) 5.62 0.48 6.22 200.00
Lv (σ=1,4) Lww (σ=8) Lwv (σ=4) 5.70 0.72 6.70 210.59
Lv (σ=1,4) Lww (σ=8) Lwvvv (σ=4) 2.94 0.67 4.15 223.07
Lv (σ=1,4) Lww (σ=8) Lwwv (σ=1) 3.30 0.52 4.01 211.82
Lv (σ=1,4) Lvvv (σ=2) Lwv (σ=4) 1.82 0.47 2.54 203.67
Lv (σ=1,4) Lvvv (σ=2) Lwvvv (σ=4) 1.89 0.50 2.65 224.43
Lv (σ=1,4) Lvvv (σ=2) Lwwv (σ=1) 4.67 0.49 5.31 209.06
Lv (σ=1,4) Lwv (σ=4) Lwvvv (σ=4) 3.08 0.67 4.05 217.27
Lv (σ=1,4) Lwv (σ=4) Lwwv (σ=1) 1.79 0.46 2.52 220.17

Lv (σ=1,4) Lwvvv (σ=4) Lwwv (σ=1) 2.19 0.51 2.92 216.33
Lv (σ=2,4) Lww (σ=8) Lvvv (σ=2) 5.54 0.57 6.16 205.62
Lv (σ=2,4) Lww (σ=8) Lwv (σ=4) 3.37 0.63 4.32 210.56
Lv (σ=2,4) Lww (σ=8) Lwvvv (σ=4) 4.33 0.57 5.21 227.03
Lv (σ=2,4) Lww (σ=8) Lwwv (σ=1) 3.08 0.55 3.84 208.09
Lv (σ=2,4) Lvvv (σ=2) Lwv (σ=4) 3.85 0.44 4.42 207.06
Lv (σ=2,4) Lvvv (σ=2) Lwvvv (σ=4) 1.71 0.43 2.34 223.51

Lv (σ=2,4) Lvvv (σ=2) Lwwv (σ=1) 4.15 0.38 4.70 206.87
Lv (σ=2,4) Lwv (σ=4) Lwvvv (σ=4) 3.97 0.61 4.86 223.29
Lv (σ=2,4) Lwv (σ=4) Lwwv (σ=1) 1.91 0.47 2.63 222.41
Lv (σ=2,4) Lwvvv (σ=4) Lwwv (σ=1) 2.46 0.50 3.12 219.28

Table 3: Registration errors for all 135 image pairs using FNMI (combining multiple first
derivative features with multiple higher-order gauge derivatives). Translation and Regerr
are given in pixels, rotation is given in degrees, and runtime is given in seconds. The bold
values signify the lowest error obtained for each registration technique, based on the given
parameters

on our previous results, when using features Lv (σ = 1, 4), Lvvv (σ = 2) and
Lwv (σ = 4), and features Lv (σ = 1, 4), Lvvv (σ = 2) and Lwvvv (σ = 4). The
results given for each of these tests all register the images to a satisfactory
clinical standard, showing that FNMI provides an extremely high level of
registration accuracy compared to existing methods. From our preliminary
study [11], we have shown here that incorporating more suitable features
does improve the registration accuracy.
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5. Registration Convergence

An important consideration for any similarity measure is how well the
correct solution can be found within the parameter space. There are two as-
pects in particular that should be considered when evaluating the registration
space; whether the global maximum is the correct registration and how well
the global maximum can be found in the space. Clearly the most important
requirement is that the global maximum of the similarity measure occurs
at the correct registration, otherwise registration will most likely fail. For
our testing, we shall determine from each point in the transformation space
whether the global maximum can be reached by performing hill climbing.
Our approach will assume that the greatest neighbouring value should be
followed, continuing in this fashion until a peak is reached. If this peak is the
global maximum then it can be said that the starting point converges to the
global solution. The collection of starting points that converge to the global
maximum make up the catchment region. Ideally we wish to maximise the
catchment region to improve the likelihood of the search optimization finding
the correct solution.

We investigate two possible scenarios for evaluating registration conver-
gence; where rotation is fixed and set to the ground truth value, and where
rotation lies between ±3� (with an increment of 0.5�). The first approach
allows for better visualization of the registration space since we are exploring
only the translation space, and so this can be displayed clearly by a sur-
face plot of the similarity value. The second approach is more difficult to
visualize, but will determine whether the similarity is reliable across the full
transformation space. The second approach also resembles the true regis-
tration problem more accurately, since the transformation space is the same
as that at the coarse level of the image pyramid. In both cases we use the
coarse level of the image pyramid (where the images are 1

4
of the original

size, resulting in a fundus image of 188 × 122 pixels and an SLO image of
96 × 96 pixels), and we consider the translation space to be the size of the
reference image (in this case, the fundus photograph).

Figure 3 shows the registration surface plots given by different similarity
measures for a typical registration of the retinal images. It can be seen that
in each case the global maximum is the same, and is actually the correct
point of registration. However, the registration surfaces do appear quite
different. First, for MI there are many other peaks in the surface which could
lead to incorrect registration. The surfaces obtained using FNMI, FMI and
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(a) FNMI (Lv σ = 2) (b) FMI (Lv σ = 2) (c) MI (16 bins)

(d) RMI (r = 1) (e) RMI ( r = 3 ) (f) RMI ( r = 5 )

Figure 3: Registration similarity measure surface plots across the translation space. The
maximum point on each surface plot shows the correct translation for registration.

RMI are all relatively smooth and all have a distinctive peak at the global
maximum. It is evident that the number of local maxima is significantly
reduced compared to MI, leading to a much smoother registration surface.

Regional MI (r = 1) shows the point of registration to be very steep
whereas the remainder of the surface is relatively flat. The catchment re-
gion of such a point therefore is quite small. As the neighbourhood radius
is increased this catchment region becomes larger, however this also has the
effect of enhancing the catchment region for the local maximum that occurs
in the top-right of the surface. The surface obtained using FMI is interesting
as there are regions with steady slopes to the global maximum. There are
however also plateau effects present (such as to the right of the global max-
imum) that could easily hamper the search algorithm. Finally, when using
FNMI we obtain a distinct peak similar to RMI but also the consistent steady
slope similar to FMI. Also, the problematic local maximum in the top-right
of RMI is reduced significantly in FNMI.
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Figure 4: Registration convergence to global optimum for all 135 image pairs, for transla-
tion only. (Mean shown by green star, median shown by red horizontal bar, interquartile
range shown by blue box, data range shown by whiskers and outliers shown by red crosses).

Figure 4 shows the results for registration convergence when using 6 dif-
ferent similarity measures FNMI, FMI, MI and RMI (r = 1, r = 3 and
r = 5). The results have been computed for the full set of 135 image pairs
for translation only (where rotation is fixed by the ground truth value). The
greater the percentage of convergence the more points in the surface that
will converge to the global maximum value by means of steepest ascent and
so we wish to maximize this. As can be seen on the boxplot, FNMI achieves
the greatest mean, median and interquartile range. The mean convergence
for FNMI is 45%, compared with 39% for RMI (r = 5) and 31% for FMI.
This is substantially better than just 9% when using MI (16 bins).

We perform the same experiment using the full transformation range as
is used for the registration task. The challenge of convergence becomes much
more difficult due to the larger transformation space. Similar to before, we
search the parameter space which is now a 3-dimensional space (consisting
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Figure 5: Registration convergence to global optimum for all 135 image pairs, for both
rotation and translation. (Mean shown by green star, median shown by red horizontal
bar, interquartile range shown by blue box, data range shown by whiskers and outliers
shown by red crosses).

of x-translation, y-translation and rotation).
Figure 5 shows the results for registration convergence when considering

the full transformation parameter space. As was evident in the previous test-
ing, it can be seen here also that FNMI provides the best convergence result
(given by the largest mean and median results). Since search optimization
schemes are often used for large registration tasks, the convergence of the
similarity measure becomes critical to ensure the successful outcome of the
registration.

6. Non-rigid Registration

So far in our study we have performed only rigid registration on the retinal
image pairs. The second stage of registration extends from rigid to non-rigid
registration in order to improve registration accuracy even further.
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Figure 6: Example to highlight subtle misalignment in rigid registration (for the image
pair shown in Figure 1).

Figure 6 shows an example where global rigid registration appears to have
performed well, however on closer inspection it can be seen that there are
subtle misalignments, particularly in the two example regions shown. While
the centre of the SLO (the ONH) and the main blood vessels register well, it
is normally towards the periphery of the image that misalignment becomes
apparent. From our test data, this is quite common of these two modalities.
This deformation is due to the curvature in the retina surface and the differ-
ences between the acquisition of the two images. The fundus image is simply
a photograph of the retina whereas the SLO image is generated from 64 in-
dividual slices captured at different focal lengths. The deformation could be
compared to that of pincushion distortion, however since the distortion is
dependent on the curvature of the patient’s retina rather than the camera
optics this cannot be globally modeled in the same fashion. What is clearly
apparent though is that rigid registration is not sufficient to accurately reg-
ister the two modalities successfully.

In order to correct the registration, rather than considering the template
image as a whole (as we have done previously) the image is divided into a
collection of subimages. Each subimage is a region from the original that
can be translated across the reference image. It is possible to restrict the
translation range of each subimage or apply a weighting term that favours
small translations so as to keep the regions relatively close together. In the
case of our registration problem, we divide the SLO image into a 4 × 4 set
of images. This partitions the SLO image so that the ONH occurs within
the central 4 windows and the peripheral blood vessels occur in the outer
12 windows. Taking the corresponding region from the rigid registration as
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the initial starting position, each subimage is individually registered to the
reference image. We found that it was sufficient to only consider translation
for each region since the initial registration is already relatively accurate.
Also, no image pyramid is required since the size of each subimage is already
quite small. The region of translation is restricted for each window since
it is only subtle misalignment that we expect to be correcting for. For the
16 windows used, we limit the 4 central windows to a translation radius
of 3 pixels and we limit the 12 outer windows to a translation radius of 5
pixels. Since the translation area is relatively small, the similarity measure
is much less likely to suffer dramatically from local maxima unlike the larger
transformation search used for the rigid registration.

The above process results in 16 individually registered image regions on
the fundus image. If there is deformation then it is most likely that there will
be either overlap or gaps between the individual windows. For each window,
we can determine the deformation by considering the centre point of the
window and measuring the distance between the original window position
and the newly-registered position. The collection of points for the initial and
newly-registered windows allows us to easily model the deformation by using
Thin Plate Spline warping [2].

6.1. Results

In order to test our approach to non-rigid registration, we shall use the
135 retinal image pairs described previously. Firstly the images are registered
using FNMI in order to find an approximate rigid registration. From this
we perform non-rigid registration using FNMI as the similarity measure on
a local window basis and then reconstruct the template image using Thin
Plate Spline deformation. The deformation is performed for the SLO image
which is mapped to the fundus photograph, since clinically it is the fundus
image that is seen as the ‘gold standard’ [16].

Figure 7 gives an example image highlighting the correction that non-
rigid registration can offer. In this example, we improve the correspondence
between the blood vessels in the two highlighted regions whilst preserving
good registration throughout the rest of our image as achieved previously.
Using our technique for non-rigid registration, the runtime is very efficient
and takes approximately 40 seconds to compute from the initial rigid regis-
tration (when using FNMI as the similarity measure).

Non-rigid registration results were evaluated by three independent clinical
observers using a 5 point scale. A system was developed to randomly present
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Figure 7: Corrected registration using non-rigid registration (for the image pair shown in
Figure 1).

the rigid and non-rigid registration images to the clinicians. The clinician
then had to grade the image before the next was presented. Images were
presented as those shown in Figure 8. Each result was presented twice,
with the checkerboard overlay being inverted. The mean result was used to
eliminate any bias that the display overlay could potentially introduce.

Excellent V. Good Good Weak Fail
Rigid 116 14 4 1 0
Non-rigid 135 0 0 0 0

Table 4: Mean results of rigid and non-rigid registration images as graded by three inde-
pendent clinicians by visual assessment.

Table 4 shows the mean grades awarded by the clinicians for both rigid
and non-rigid registration results. The table clearly indicates the improve-
ment that non-rigid registration has, where it can be seen that all non-rigid
results were graded by all three clinicians as excellent.

Figure 8 shows an example of the non-rigid registration results. In the
rigid registration results, whilst the majority of the registration may appear
correct, typically there is misalignment that occurs towards the right of the
template image (particularly noticeable at the top-right of each template
image). The non-rigid registration manages to correct for this in each case
successfully, whilst also preserving the global registration. Clearly, it is im-
portant for the rigid registration to provide an accurate approximation of the
true registration, so that the non-rigid registration process can then refine
this, since to perform non-rigid registration over the complete transformation
space initially would be computationally infeasible.
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Figure 8: Rigid registration (left) compared to non-rigid registration (right) results, for
four example SLO and fundus image pairs.
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7. Conclusion

We have proposed a two-stage non-rigid registration scheme for multi-
modal retinal image registration. The proposed method achieves excel-
lent accuracy and also maintains efficient runtime. As part of the registra-
tion scheme we have proposed Feature Neighbourhood Mutual Information
(FNMI) similarity measure, that extends the MI algorithm to incorporate fur-
ther image properties such as spatial and structural information. We present
our results using a sub-optimal feature set, which provides a high degree of
accuracy for the registration task being performed. Due to the flexibility
of information that can be incorporated into the similarity measure in this
fashion, it is likely that this approach could well be used for other multi-
modal registration tasks. The features that we present in Figure 2 serve as a
set of suitable features that could be widely applicable to other registration
tasks. We also study the registration convergence of FNMI and other simi-
larity measures, to assess how well they perform in conjunction with search
optimization schemes that are often required for large registration tasks. We
focus on multi-modal retinal images since the registration of these images is
a difficult task that cannot be achieved to a satisfactory standard using other
existing methods. The registration of these two modalities can be used to
significantly improve demarcation accuracy and monitoring of the ONH for
early detection and prevention of glaucoma disease.
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