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Abstract

In this paper, we propose a non-convex formulation to recover the authentic structure from the corrupted
real data. Typically, the specific structure is assumed to be low rank, which holds for a wide range of
data, such as images and videos. Meanwhile, the corruption is assumed to be sparse. In the literature,
such a problem is known as Robust Principal Component Analysis (RPCA), which usually recovers the
low rank structure by approximating the rank function with a nuclear norm and penalizing the error by an
¢1-norm. Although RPCA is a convex formulation and can be solved effectively, the introduced norms are
not tight approximations, which may cause the solution to deviate from the authentic one. Therefore, we
consider here a non-convex relaxation, consisting of a Schatten-p norm and an £,-norm that promote low
rank and sparsity respectively. We derive a proximal iteratively reweighted algorithm (PIRA) to solve the
problem. Our algorithm is based on an alternating direction method of multipliers, where in each iteration
we linearize the underlying objective function that allows us to have a closed form solution. We demonstrate
that solutions produced by the linearized approximation always converge and have a tighter approximation
than the convex counterpart. Experimental results on benchmarks show encouraging results of our approach.
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1 Introduction

The popularity of webcams and mobile phone cameras has generated a large amount of visual data. How-
ever, visual data are easily corrupted by artifacts arising from imaging devices or natural factors such as
illumination. The human vision system could recognize the corruption with accumulated information and
knowledge. However, it will result in irrelevant or noisy information in the computer vision community.
Thus, a bunch of methods have been proposed to obtain authentic data for visual processing tasks, such
as image processing. Image denoising aims at reducing the noise from the original image [Lee80] [LOO00]
[Z2YZH13] [CHH13] [SYLLOS]. Specifically, some approaches focus on statistical image modeling for
the purpose of optimal signal representation and transmission, such as the Gaussian scale Mixture (GSM)
model, the variance-adaptive model or Bayesian estimation [SCDO02] [SYLLOS8]. Portilla et al. presented
a denoising method based on a local Gaussian scale mixture model in an overcomplete oriented pyramid
representation [PSWSO03]. The approaches mentioned above are based on the initial features of the visual
data. Generally, better features will enhance the performance of representation. For instance, Shao et al.
generated domain-adaptive global feature descriptors to obtain better performance in image classification
[SLL14]. Zhu et al. utilized weakly labeled data from other domains as the feature space for the visual
categorization problem [ZS14]. Based on a comprehensive feature space, some effective and promising
denoising approaches are proposed by exploiting sparse and redundant representations over a trained dictio-
nary [ERO06]. Elad et al. proposed the K-SVD algorithm [AEBO06]. It was the first time that sparse modeling



of image patches has been successfully applied in image denoising. Yan et al. exploited the sparsity within
representation in the wavelet domain to handle high-level noises [YSL13]. One reason for the success of the
algorithm is the statistical properties of noise. It is natural to assume the noise is sparse. Besides, the visual
data such as images are probably of low rank structure [HZY "12]. For example, for a facial image taken
under certain illumination conditions, the low-rank component captures the face, and the sparse component
captures the light on the face [WYG™09]. Thus, the idea of turning the problem into a low rank matrix and
a sparse matrix recovery problem has drawn considerable attention. In the following, we first describe the
problem.

1.1 The Problem Description

Suppose X is an observed data matrix in R™*™, where m is used to denote the ambient dimension of a
sample and n is the number of samples. The problem can be formulated as:
inrank(L) + A||.S st. X=L+S

min (L) + AllSlos + S, (1.1)
where L € R™*™ has a low rank structure that is assumed to be the authentic structure of the observed data,
and S € R™*™ is assumed to be sparse representation of the noise. Rank(L) is the rank of the matrix L,
||S]]o is the £p-norm which counts the number of non-zero entries in S, and \ is a parameter balancing the
two components. The goal of the above optimization problem (1.1) is called Robust Principal Component
Analysis (RPCA), aiming to recover the low-rank component L and sparse component S, with the constraint
of X =L+85.

1.2 The Reformulation and Solutions

It is challenging to solve problem (1.1), because rank(L) and ||S||y are both discontinuous and non-convex.
In fact, it is NP-hard. A common strategy [CLMW11] is to relax the rank function to the convex nuclear
norm ||L[, = ™2™ 5.(L), where o; denotes the i-th singular value of L, and relax the £o-norm to the
tr-norm [[S|[x = >_;; |Si;], where |S;;| is the magnitude of the (¢, j)-th element in S. Problem (1.1) can
then be reformulated as:

in||L||, + M|[S||1, s.t. X = L+ S.
IB}SHH [« + AllSI, s + (1.2)

Candes et al. theoretically proved that if L and S satisfy certain assumptions, they can be recovered exactly
via solving a convex program called Principal Component Pursuit with A = 1//max{m,n} [CLMWI1].
Unlike the formulation defined in (1.1), RPCA in (1.2) is convex, and the optimal solution is tractable. An
efficient solver for (1.2) is Alternating Direction Method (ADM) [LCM09] which guarantees to obtain the
optimal solution. Another well-known first-order algorithm is the Accelerated Proximal Gradient (APG),
which solves an unconstrained Stable Principal Component Pursuit (SPCP) problem [ZLW ™ 10] as follows:

. 1
min A[| L[« + AalIS][1 + SIIL+ S = X][, (1.3)

where \; > 0and Ay > 0 are balancing parameters. APG is a fast method with a convergence rate O(1/72),
where T’ is the number of iterations.

1.3 Related Works

As the RPCA model is capable of recovering the low rank components from grossly corrupted data and
theoretical conditions to ensure the perfect recovery have been analyzed in depth, RPCA and its exten-
sions have been applied to many applications, including background modeling [CLMW11], image align-
ment [PGWT10] and subspace segmentation [LLY " 13a]. Specifically, Hui et al. presented a patch-based



algorithm using low-rank matrix recovery [JLSX10]. Wang et al. studied the problem of aligning corre-
lated images by decomposing the matrix of corrupted images as the sum of a sparse matrix of errors and
a low-rank matrix of recovered aligned images [WLLL13]. Hu et al. proposed a truncated nuclear norm
regularization for estimating missing values from corrupted images [HZY ™ 12].

There are several works aimed at improving the low-rank and sparse matrix recovery. Muetal. [MDYY11]
proposed an Accelerated RPCA using random projection. Zhou and Tao [ZT11] developed a fast solver for
low-rank and sparse matrix recovery with hard constraints on both L and S. To alleviate the challenges
raised by coherent data, most recently, Liu et al. recovered the coherent data by Low-Rank Representation
(LRR) [LLY " 13b]. Aybat et al. developed a fast first-order algorithm to solve the SPCP problem [AGI11].
Fazel suggested to reformulating the rank optimization problem as a Semi-Definite Programming (SDP)
problem [Faz02]. An accelerated proximal gradient optimization technique was applied to solve the nuclear
norm regularized least squares [TY10] [JYO09].

However, existing algorithms may lead to solutions that deviate from the original problem. Most previ-
ous works use the convex nuclear norm as a surrogate of the rank function and the ¢;-norm as a surrogate
of the ¢p-norm, and then instead solve the new problem. But the nuclear norm is the sum of the singular
values, while the rank function is the number of the non-zero singular values in which each singular value
contributes equally. There are similar differences between the /p-norm and ¢;-norm when performing a
theoretical analysis [RFP10]. Hence, the solution to the relaxed problem may be far from the original one.
Some researchers instead consider non-convex surrogate functions.

The smoothed Schatten-p norm is a popular non-convex surrogate of the rank function defined as
[MF12][NWCT12]:

lp(X) = To(XTX + el)P/?
- () e Y

=1

where [ is the identity matrix with the same size as X, and £,,(X) is differentiable for p > 0 and nonconvex
for p < 1. Mohan and Fazel used the Schatten-p norm to replace the rank function and considered the
problem [MF12]:

min £,(X)

sit. A(X) = b, (1)

where A : R™*"™ — RP is a linear map, and b € RP denotes the measurements. They also proposed
the Iterative Reweighted Least Squares (IRLS) algorithm for rank minimization. Under certain conditions,
IRLS-1 converges to the global minimum of the smoothed nuclear norm and IRLS-p converges to a sta-
tionary point of the corresponding non-convex yet smooth approximation to the rank function. Nie et al.
[NHD12] proposed the extended Schatten-p norm as an efficient surrogate of the rank function defined as:

min(m,n) 1/p
by = Z Uf
i=1 (1.6)
— (Tr(XTx)P ) .

They derived an efficient algorithm to solve the above problem.

For the {p-norm, many non-convex surrogate functions have been proposed, e.g., {,-norm with 0 <
g < 1 [FL09], and Smoothly Clipped Absolute Deviation (SCAD) [FLO1]. Nie et al. [NWC™12] used
the Alternate Direction Method (ADM) to solve a similar problem for the non-convex matrix completion



problem. Candés et al. [CWBO08] proposed an algorithm to solve the reweighted ¢; minimization problem,
which could better recover the {g-norm. The condition of sparse vector recovery has been given in [FL09].

The major drawback to the above approaches is that previous iteratively reweighted algorithms can only
approximate either the low-rank component or the sparse one with a non-convex surrogate [CZ][LXY13].
One important reason for this is that it is difficult to solve a problem whose objective function contains two
or more nonsmooth terms. Thus, in this paper, we simultaneously approximate the low rank and sparse
functions with non-convex surrogates.

1.4 Introducing Our Approach

In this paper, we propose a new formulation with the Schatten-p norm and ¢,-norm regularized Principal
Component Pursuit (p, ¢-PCP) (0 < p,q < 1) for recovering the low-rank and sparse matrices. We also
provide an algorithm to solve such a non-convex problem with two non-smooth components. Empirically,
our proposed Proximal Iteratively Reweighted Algorithm (PIRA) can solve p, g-PCP effectively without loss
of efficiency. In each iteration, PIRA provides closed-form solutions which make the algorithm efficient. To
the best of our knowledge, this is the first time that the £, , norm has been used to approximate the RPCA
problem. We are also the first to provide corresponding solutions. Experimental results demonstrate that
the solutions can tightly approximate the RPCA problem and the objective function can converge in several
iterations. The main contributions of this study are summarized as follows.

e We propose a joint Schatten-p norm and /,-norm regularized Principal Component Pursuit (p, g-PCP)
model for low-rank and sparse matrix recovery.

e A new Proximal Iteratively Reweighted Algorithm (PIRA) is presented to solve the p, ¢-PCP problem.
We demonstrate the effectiveness and efficiency of our algorithm.

e We empirically show that our solutions can approximate the original problem and the objective func-
tion will converge with a few iterations.

e Extensive experiments on synthetic data and real world data show that our proposed algorithm out-
performs state-of-the-art algorithms.
1.5 Overview of the Paper

The rest of the paper is organized as follows. In Section 2, we give detailed information about our proposed
non-convex p, ¢-PCP model and an iteratively reweighted algorithm (PIRA) to solve p, g-PCP. We provide
a detailed analysis of the optimization algorithm in Section 3. Experimental results are presented in Section
4. We conclude this paper in Section 5.

2 Non-convex Principal Component Pursuit

In this section, we first present the non-convex principal component pursuit model. We then propose a new
iteratively reweighted algorithm to solve the non-convex principal component pursuit problem.

2.1 The p, ¢-PCP Model

The motivation for approximating the rank function with £,-norm is to obtain better empirical performance,
in terms of recovering low-rank matrices, than the nuclear norm [MF12] when 0 < p < 1. Mohan and
Fazel theoretically prove that the £,,-norm is similar to the nuclear norm minimization when p = 1 [MFI12].



The £,-norm is used with 0 < ¢ < 1 as a surrogate of the /yp-norm because it generalizes and improves the
¢1-norm [FLO9]. The /,-norm degenerates into the £p-norm when ¢ — 0. A similar property holds for the
Schatten-p norm as a surrogate of the rank function. It is of interest to consider the non-convex principal
component pursuit by using the Schatten-p norm and ¢,-norm jointly:

I}llisr} A Z o?(L) + Ao Z Z 153519,
’ i=1 i=1 j=1 (2.1)

st. X =L+ 85,

where X € R™*" (we assume m < n in this paper) is the observed data matrix, and o;(L), 7 = 1,--- ,m,
denotes the singular values of L. p,q € [0,1], A1, A2 > 0. More generally, we further consider the stable
model as follows:

1211§A120f(L)+AQZZ|Sij’q+§HX—L—SH%- (2.2)
’ i=1 i=1 j=1

When p = ¢ = 1, the above p, ¢-PCP model degenerates into the convex PCP as in (1.2) or (1.3).

It is expected that smaller values of p and ¢ can help p, g-PCP approximate the RPCA in (1.1). It is worth
mentioning that many non-convex penalty functions can be applied for the non-convex principal component
pursuit model. We use the Schatten-p norm and the ¢,-norm in this study, because compared with other
non-convex penalty functions, they are matrix norms which bear more similar special properties such as
the nuclear norm and /;-norm. The low-rank matrix and the sparse matrix recovery conditions based on
the Null Space Property (NSP) have been presented in previous works [FLO9][MF12]. In fact, they are
extended from the nuclear norm and the convex ¢;-norm. It is easy to tune the parameters of p and ¢ within
(0,1). Many previous works empirically showed that the ¢,-norm improved the recovery performance by
comparison with the convex ¢;-norm [CWBO08]. A similar improvement was recently found in the Schatten-
p norm by comparison with the convex nuclear norm [MF12]. It is expected that jointly combining them in
a model will surpass the recovery performance of the convex PCP.

2.2 Proximal Iteratively Reweighted Algorithm

In this section, we demonstrate how to solve problem (2.2) using the Schatten-p norm and ¢,-norm regular-
izers. In fact, the {,-minimization is non-smooth, non-Lipschitz continuous, and NP-hard [CGWY11]. We
use the strategy of shifting o? to (o; +£)P, and |S;;|? to (|S;;| + €)%, with 0 < £ < 1, and solve the relaxed
problem as follows:

m

Tg4M§:@KL%+@”+M§:§:®$H+QQ

i=1 i=1 j=1 (2.3)
1
+jM+S—X%-

€ ensures that the zero singular values and nonzero entries in the sparse component have corresponding
weightings. The above problem is non-smooth and has two variables. We present a Proximal Iteratively
Reweighted Algorithm (PIRA) to solve it.
Intuitively, we need to update L and S alternately. For fixed S = S in the k-th iteration, problem (2.3)
can be described as:
@ 1
LMY = arg min Ay > (oi(L) + )P + S+ SF— X||%. (2.4)
i=1



To solve the above problem, we linearize the objective function of (2.3) using the Taylor expansion w.r.t. L
at L = L* and add a proximal term. L¥*1 is then updated by minimizing the relaxed function:

LM = arg mLin A1 Z(O’Z’(Lk) + )P + wf (o3 (L) — oy (LF))
i=1

+|yLk+sk—Xy\%+<Lk+sk—X,L_Lk>

M1 k)2
:argminﬁiwka-(lj)
L= o

1 R P ?

+-||L—- L= —(L"+ S* - X) ,
2 H1 F

where

wh = P i=1,---,m, (2.6)

b (oi(LF) + o)t

are the weights corresponding to L*. They are actually the gradients of (o;(L) + )P w.rt o;(L) at L = LF,
i = 1,--- ,m. The backtracking rule can be used to estimate in each iteration [BT09]. Note that problem
(2.5) is non-convex. Fortunately, it has a closed form solution as shown in [CDC13].

Lemma 1. Given Y € R™"™ 0 < w; <wg < -+ < w;g (s = min(m,n)), and X > 0, the optimal solution
to the following problem:

s
Dau(¥) = arginA D i () + SIIX — VI, @)
i=
is given by the weighted singular value threshold:
Dyw(Y) = USx(Z)V7T, (2.8)
where Y = UXVT is the SVD of Y, and Sy,,(mY) = Diag{(Z;; — Mw;)+ }.
Using Lemma 1, L**! can be updated by:

1

k+1 _ k
L¥7 = Dy by, (L o

(L* + S* — X)). (2.9)

Note that the main computation for each iteration is one SVD. The iteration is expected to obtain a better
estimation of the rank successfully. Even with large rank initially, some small singular values will have large
weights and will themselves become zero in the following iterations. Thus, the rank of L decreases with
each iteration. For fixed L = LF in the k-th iteration, the solution of problem (2.3) can be derived as:

m n 1
k : k
S = al"gmén)\g El E 1(‘S¢j| +e)+ 5HL —l—S—XH%. (2.10)
i=1 j=

To solve the above problem, we linearize the objective function of (2.3) using the Taylor expansion w.r.t S



Algorithm 1 Solving Problem (2.3) using PIRA

Input: X € R"™*", 0 < p,q <1, >1and pg > %
Initialize: k = 0, w* € R™, M* ¢ R™*", [k ¢ Rm*n Gk ¢ R™*" and ¢ > 0.
while not converge do

1. Update L*+! by

1
LMY = Dy ks (Lk — E(Lk + Sk — X)) .
2. Update S*+1 by
1
SH = Sy (S’f - E(Lk + SF — X)) :
3. Update the weight vector wf“, t=1,---,m,by
whtl — p
' (0i(LF+1) +£)' 7P

4. Update the weight matrix MZ.]}“, t=1,---,m,j=1,---,n,by (2.12).

k+1 _ q

T UsET e

end while
Output: L*, S*.

at S = S* and add a proximal term. S**1 is then updated by minimizing the relaxed function:

gt = argmin Ay SN USEI+ ) + ME(|Si;] — 1SED
i=1 j=1

+||Lk+5k—X||2F+<L’f+5k—X,S—Sk>

M2
+ 218 - SM1%

)\ m n
— iy 22 kg, .
_arng}HQZZMZﬂSM

i=1 j=1
1 oLk ?
+-||1S— (5" — —(L°+ 5" - X) ,
2 H2 F
where
A S i=1,---,mj=1,---,n,

ME :
Y (ISE] 4 e)ta

2.11)

2.12)

are the weights corresponding to S*. They are actually the gradients of (|S;;| + £)? w.r.t. |S;;| at S = S*,
i=1,---,m,j =1,--- n. Note that this problem requires O(mn) flops. The value of s will influence
the convergence of the iterations [HYZ08], but we empirically set it to be 2.1 which shall hold. Note that
problem (2.5) is separable. Each S;; can be solved separately using the following closed form solution

[HYZ08]:
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Figure 1: The convergences of the subproblems (2.4) and (2.10) are shown in (a) and (b) respectively. The
convergence of the global objective function (2.2) is shown in (c).

Lemma 2. Given y,w € R, w > 0 and A > 0, the optimal solution to the following problem

1
Sxw(y) = argmin Awlz| + 5 (@ = y)*, (2.13)
is given by
Yy— )\wa lfy > )‘w,
Sw(y) =y + 2w, ify<-—w, (2.14)
0, otherwises.

Using Lemma 2, S**1 can be updated by

Sk+1::SMANH2<Sk——é}(Lkﬁ—Sk——Xj>. (2.15)
2

Alternately updating L by (2.9), S by (2.15) and their weights w by (2.6) and M by (2.12) leads to the
proposed Proximal Iteratively Reweighted Algorithm (PIRA), as shown in Algorithm 1. Note that in each
iteration, PIRA solves a weighted nuclear norm minimization problem and a weighted ¢;-norm minimiza-
tion problem. Both have closed form solutions, and their computational costs are the same as for convex
optimization.

The detailed procedure of our algorithm is shown in Algorithm 1. We first use a common strategy which
relaxes it to the form (2.3) by introducing e, and then fix the L and S separately to obtain the optimal solution
(step 2-3). Updated weights w and M are used for the next iteration based on the current solutions (step
4-T7). We will provide the further analysis of our algorithm in the following section.

3 Algorithmic Analysis

In this section, we give a detailed analysis of our algorithm. We first illustrate that the obtained solution L*
is the stationary point for problem (2.5), and the solution S* is optimal for problem (2.11). We then show
that the obtained solutions can approximate the optimal solutions of the original problems (2.4) and (2.10).
Finally, the numerical results show that PIRA decreases the objective function (2.3) monotonically.

The experimental data are X = L + S + &. L = UV is a rank-10 matrix where U and V are 200 x 5
generated by the Matlab function randn. Each element of S is set to zero with probability 0.8 and non-zero
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Figure 2: Comparison of low-rank and sparse matrix recovery with varying noise levels o = {0.01,0.1}, n = 200,
r = 10.

entries are sampled in the interval [-5, 5] with probability 0.2. ¢ is the Gaussian noise with i.i.d. N(0,0.01?).
We set p to be 0.5. As shown in the synthetic data experiment later, p = 0.5 is representative.

For the low rank part recovery, the original problem is in the form of (2.4). With linearization, the
problem (2.4) can be derived as (2.5), which falls into the general nonconvex low-rank minimization form,

i F(X) = ;gA(oi(X)) + f(X). 3.1)

We observe that the penalty function gy in our problem (2.5) is Schatten-p norm, which is continuous, con-
cave and monotonically increasing on [0, 00). The loss function f in Eqn. (2.5) is smooth and continuously
differentiable with a Lipschitz continuous gradient, that is

IVAX) = VIW)lr < LIHIX = YlF, 3.2)

where X = L,Y = LF — i(Lk + S*¥ — X) in the k-th iteration, L(f) > 0 is the Lipschitz constant of V f,
and V denotes the gradient of f [CSZ14]. The solution obtained by PIRA then has the attractive properties
defined in the following lemmas.

Lemma 3. The sequence L* generated by Algorithm 1 satisfies the following properties: (1) F (Lk) de-

creases monotonically; (2) the sequence L is bounded; (3) "7, ||L* — L*1|% < iIfELL?

Lemma 4. Let L* generated by Algorithm 1 be bounded as shown in Lemma 3. Any accumulation point L*
of L¥ is then a stationary point.

Thus, the objective function value (2.5) monotonically decreases, and any limit point of L* is a station-
ary point. Then, we empirically demonstrate the convergence of the subproblems 2.4 2.10 and the global
problem 2.2. To this end, let f denote the subproblem to recover L, g denotes the subproblem to recover
S, and W is the global problem. In the k-th iteration, the objective function of L problem is f(L**1;S¥),
the objective function of S is g(S**1; L¥), and the global objective function is W (L¥, S¥). The Figure 1
reports the convergence of the objective function values in respond to iteration numbers. Specifically, in the
k-th iteration, the y-value of Figure 1 (a) is || f(L¥1; S*) — f(L*; S¥=1)||p. It is shown that the algorithm
converges with limited rounds of iterations.
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Figure 3: Comparison of low-rank and sparse matrix recovery with varying matrix sizes n = {200,400, 600, 800},
o = 0.01, » = 10. In the case of p = ¢ = 1, our method p, ¢-PCP is the same as SPCP.

4 Experiments

In this section, we conduct experiments on both synthetic and real visual data to validate the effectiveness
of our proposed method p, ¢-PCP. In the experiment on synthetic data, we mainly discuss the influence of
various p, q values and noise levels. For the real-world data sets, we test our method in multiple tasks, such
as image denoising and light/shadow removal.

The comparative algorithms include the classical convex solution SPCP [ZLW ' 10], Non-Smooth Aug-
mented Lagrangian algorithm (NSA) [AGI11] and Truncated Nuclear Norm Regularization (TNNR) [HZY " 12].
We use the solver based on ADMM to solve a subproblem of TNNR in the release codes (denoted as TNNR-
ADMM). As TNNR-ADMM could only recover the authentic structure, we compare our method with it in
the application of image denoising. For the parameters in our algorithm, p; is set the same as p2 (2.1)
(empirical value). ¢ is initialized to be le — 3 and decreases to £/p (p=1.1) after each iteration. A; and Ay
are tuned using 3-fold cross validation. Similarly, we tune the parameters for the comparative algorithms.

All the experiments are conducted with Matlab on a PC with Intel Core2 Q9550 2.83G CPU and 8G
RAM.

4.1 Synthetic Data

In this experiment, we verify the effectiveness and robustness of our algorithm by comparing with NSA
and SPCP. For each setting of parameters, we report the average result over 10 trials. We generate a rank-
r matrix as L = UVT, where U and V are n x r generated following Gaussian distribution. The zero
elements of .S are sampled with probability 1-ps and the non-zero entries are sampled in the interval [-5, 5]
with probability p, (ps = 0.2). We further add Gaussian noise ¢ with i.i.d. N(0,02). X = L+ S + £ is
then the observed recovered matrix.

We first examine our proposed p, g-PCP algorithm with different p and g. The data are generated with
different noise levels, i.e., 0 = 0.01 and ¢ = 0.1. For simplicity, we set p = q. When p = ¢ = 1, our
p, g-PCP model is actually the SPCP model. We measure the recovery performance based on the Relative
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Table 1: Comparison of low-rank and sparse matrix recovery with varying underlying ranks of data.

Rank(L) | Algorithm | rank(Z*) | [|E|lo | PHle (x10-2) | I580m (10-3) | S 1(By; = Ey)
NSA 118 | 23041 3.32 6.50 0.9986

s SPCP 24 | 9635 2.33 7.43 0.8262
p,q-PCP 5| 8023 1.12 3.75 0.9911

NSA 118 | 23209 467 1436 0.9978

r=15 SPCP 34 | 10348 3.20 10.87 0.7704
p,q-PCP 15| 7969 1.14 4.06 0.9919

NSA 120 | 23452 14.66 50.42 0.9941

r =20 SPCP 50 | 12569 6.83 23.78 0.6297
p,q-PCP 20 | 7921 1.25 487 0.9870

NSA 122 | 23825 36.82 142.39 0.9775

r=25 SPCP 83 | 18483 21.95 84.89 0.4249
p,q-PCP 26 | 8077 3.25 14.27 0.9740

Squared Error (RSE) of the low rank part L and sparse part S as

IL = L*|[r

RSE(L) = i 4.1)
S—8*

where L* and S* are the recovered matrices. The experimental results are shown in Figure 2. It can be
seen that p, ¢-PCP achieved better recovery performance with smaller values of p and ¢q. The performance
of p, g-PCP with p = ¢ = 0.5 is compatible with that for p = ¢ = 0.1.

To verify the effectiveness and robustness of our algorithm, we further design two experiments for
comparison with other methods. One is to vary the underlying rank r of the observed data, and the other to
vary the dimension n of the matrix. The experimental settings are as follows:

e We fix 0 = 0.01 and n = 200, and vary r in the set {5, 15, 20, 25};
e We fix » = 10 and o = 0.01, and vary n in the set {200, 400, 600, 800}.

Following the two directions n and r, the experimental results for the different algorithms are shown in
Table 1 and Figure 3. In all cases, our algorithm outperforms NSA and SPCP in terms of the rank of L and
the sparsity of E. Specifically, Figure 3 records the relative square error of low-rank matrices and sparse
matrices. It is obvious that our algorithm with three representative p, ¢ values all outperforms NSA and
SPCP. For our own algorithm p, ¢-PCP, the differences between p, ¢ = 0.1 and p, ¢ = 0.5 are limited. Thus,
in the following experiments, we adopt p,q = 0.5 to test our algorithm. Table 1 shows comprehensive
results of the recovery errors related to L and E (column 4-5), and the accuracy of the captured sparse
location (column 6). L* and S* are the solutions obtained using different algorithms, and L, S are the
groundtruth matrices. || £*||o represents the number of non-zero entries of £*. 3 I(E;; = E;;) records the
percentage of correctly located entries. From the results shown in Table 1, we see that our algorithm and
NSA both perform much better than SPCP in capturing the sparse locations in matrix £. For recovering
the low-rank and sparse matrix, our algorithm obtains the best approximation. In particular, in the case of
r = 25, compared with NSA (36.82 x 1073) and SPCP (21.95 x 10~%), we obtain 3.25 x 1072 relative
error of L. Furthermore, our algorithm achieves 14.27 x 10~3 RSE of E, which is much better than NSA
(142.39 x 10~3) and SPCP (84.89 x 1073).
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Figure 4: Comparison of image recovery using different low rank approximation algorithms. The images in
the second and last row are the amplified patches circled by the red Q4 line in the previous row.
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Figure 5: Comparison of the relative square error (a) and PSNR values (b) on the 50 natural images.
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(a) Original (b) NSA (c) SPCP (d) p, ¢-PCP

Figure 6: Background extraction using different algorithms. Because of limited space, we only plot the
results of three frames (corresponding to three rows).

4.2 Image Denoising

The real images may be corrupted by different types of noise. In this experiment, we apply the low-rank
approximation algorithms for image denoising. We download 50 images from the Google image search
engine. The images are with three channels and of the same size 300 x 300. We add Gaussian noise
N (0,0.2%) to 50% of the pixels of each image. Note that the color image consists of three channels: Lyeq,
Lgreen and Lpe € R™*™. We implement the principal component analysis algorithms for each channel
respectively. The image is then recovered by combining the recovered results from the three channels.
Some recovered images are shown in Figure 4. It can be seen that our method achieves the best image
recovery performance. The images recovered by NSA and SPCP are blurred and some important details are
missing. The recovered images of TNNR-ADMM are much clear than NSA and SPCP, but still not as good
as our method.

We measure the recovery performance based on the RSE(L) defined in (4.1) and the PSNR (Peak Signal
Noise Ratio) [HTGOS] value. Figure 5 plots the RSE and PSNR values on 50 tested images. It can be seen
that our algorithm obtains the highest PSNR values and the smallest RSE for all the images. Such results
indicate that the our low-rank approximation is better than the traditional nuclear norm heuristic in this
situation. Though TNNR-ADMM is non-convex method, it is still inferior to our method. It demonstrates
the effectiveness of our model and the optimization method.

4.3 Other Applications

To test the generalization of our method, we design two algorithms for two more applications, separation of
foreground and background for a surveillance video and removal of light/shadow from facial images.
Specifically, we first apply different approaches to background separation and detection of objects in the
foreground in an airport surveillance video [LHGTO04]. It contains a sequence of 201 grayscale frames of
144 %176 pixels during an observation time period. The size of the observed data is X € R2?3344x201,
Figure 6 shows the background extraction results using NSA, SPCP and p, ¢-PCP algorithms. It can
be seen that all three methods are able to separate the background and foreground. To further compare the
background recovery results clearly, we mark the ghosting parts of the NSA with rectangles, and mark the
same parts with the same rectangles in the original frame, as well as in the recovered background of SPCP
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(c) Subject 3 (d) Subject 4

Figure 7: Shadow removal results for facial images of Subject 1 (a) and Subject 2 (b); Light removed from
facial images of Subject 3 (c) and Subject 4 (d). All the images are from the YaleB database. In each
subfigure, the first row is the recovered low rank and sparse part by NSA. The second and third rows are the
results of SPCP and our method.

and p, ¢-PCP. Although the SPCP has a better recovered background than NSA, there are ghosting shadows
in the recovered background. Our algorithm best recovers the background, removing almost all the shadows.

We further apply the principal component pursuit algorithms for removing light and shadow on facial
images. Such processing is usually very important for face recognition. The reason that PCP can be applied
for removing light/shadow on a face is that the captured facial image can be regarded as the sum of the low
rank part (common face) and sparse errors (e.g., light/shadow). We test the competing algorithms on the
YaleB data set, which consists of 38 subjects under different illumination. Each subject has 64 images with
resolution 192 x 168. Thus the size of the observed matrix is 32256 x 2432. We apply NSA, SPCP and
p, g-PCP on this data set, and plot four example images (1 per individual) in Figure 7. It can be seen that the
shadow and light on the faces are removed, and the recovered facial images are very clear. This verifies the
effectiveness of our proposed algorithm. The three methods perform well in this situation.
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5 Conclusions and Future Work

This study investigates the use of the Schatten-p norm and the /,-norm regularized non-convex principal
component pursuit. We further develop an iteratively reweighted algorithm PIRA to solve the non-convex
problem. In each iteration, PIRA solves two sub-problems which have closed form solutions. The obtained
L and R are optimal for the linearized sub-problem. We demonstrate the convergence of the objective func-
tion based on the calculated low rank and sparse parts by experiments. We present extensive experiments
on both synthetic and real-world data to demonstrate the attractive properties and effectiveness of our algo-
rithm. Interesting future work will be applying the joint Schatten-p norm and £,-norm to other low-rank and
sparse problems in the area of video denoising.
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