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Abstract

In this paper, we constrain faces to points on a manifold within the parameter

space of a linear statistical model. The manifold is the subspace of faces which

have maximally likely distinctiveness and different points correspond to unique

identities. We provide a detailed empirical validation for the chosen manifold.

We show how the Log and Exponential maps for a hyperspherical manifold can

be used to replace linear operations such as warping and averaging with opera-

tions on this manifold. Finally, we use the manifold to develop a new method

for fitting a statistical face shape model to data, which is both robust (avoids

overfitting) and overcomes model dominance (is not susceptible to local minima

close to the mean face). We provide experimental results for fitting a dense

3D morphable face model to data using two different objective functions (one

underconstrained and one with many local minima). Our method outperforms

generic nonlinear optimisers based on the BFGS Quasi-Newton method and the

Levenberg-Marquardt algorithm when fitting using the Basel Face Model.

Keywords: Optimisation on Manifolds, Face Space, 3D Morphable Models,

Constrained Optimisation, Statistical Modelling

Email addresses: ankurrp@gmail.com (Ankur Patel), william.smith@york.ac.uk
(William A. P. Smith)

Preprint submitted to Pattern Recognition August 25, 2015



1. Introduction

Modelling “face space” (the manifold on which valid faces lie) is a long-

standing goal in statistical shape analysis and computer vision and has been

performed in various domains including 2D [1] and 3D [2] shape, appearance [3]

and texture [4]. These approaches can be viewed as manifold learning where5

the faces are assumed to lie on an unknown manifold, the structure of which is

learnt from data. Most commonly, the manifold is assumed to be a hyperplane

(linear subspace) and the principal axes of the plane are estimated from train-

ing data using Principal Components Analysis (PCA). Applying these models

to face analysis tasks requires a means to fit the model to observed data. Often10

this fitting process is underconstrained, prone to converge on local minima and

computationally expensive. For these reasons, there is strong motivation for

developing more constrained face space models in order to reduce the search

space of the fitting process.

An alternative to manifold learning is to assume that the structure of the face15

space manifold is known. For example, the Grassmannian manifold of subspaces

of a vector space has been used in face recognition [5] and the Kendall manifold

of shapes has been used to model face shape [6].

The model we propose in this paper can be viewed as a hybrid of these two

approaches in the sense that we assume the shape of the manifold is known20

(hyper-ellipsoidal) but we use manifold learning (PCA) to discover its principal

axes from data. The motivation for this choice of model is as follows.

Psychological results [7, 8] have shown that the parameter space of a PCA-

based model has an interesting perceptually motivated interpretation: identity

relates to direction in parameter space while distinctiveness is related to vector25

length (or equivalently distance from the mean). The reason for this is that in-

creasing the length of a parameter vector simply exaggerates its differences from

the average linearly, in other words its features, whereas rotating a parameter

vector changes the mix of features present in the face. This is the justification

for using angular difference in face space as a measure of dissimilarity for face30
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recognition [4].

This decomposition also allows a useful probabilistic interpretation. Under

the assumption that the original data forms a Gaussian cloud in a high dimen-

sional space, each model parameter is independent and distributed according

to a Gaussian distribution. This means that all faces lie on or near the surface35

of a hyperellipsoid in parameter space, with the probability density over the

parameter vector lengths following a chi-square distribution. In other words,

distinctiveness is subject to a statistical prior with the distinctiveness of most

samples clustered around the expected length.

In this paper, we use these observations to motivate a representation for faces40

which decomposes face appearance into identity and distinctiveness subspaces.

We focus on statistical models of 3D face shape. However, any class of objects

amenable to linear statistical modelling using PCA could make the same iden-

tity/distinctiveness decomposition. We use ideas from differential geometry to

develop tools which operate in the identity subspace, i.e. which retain constant45

distinctiveness. We provide empirical justification for constraining samples to

have fixed distinctiveness, determined by the expected vector length.

We propose a new algorithm for fitting a statistical face model to data. Many

such methods have been proposed previously, the details being dependent on

the precise nature of the model and data. This inevitably involves a nonlin-50

ear optimisation over the model parameters. Our approach is more general

and can be applied to any objective function. It operates via gradient descent

on the manifold of equal distinctiveness. In other words, we solve for identity

and assume distinctiveness takes its expected value. We show how the method

naturally lends itself to a coarse-to-fine optimisation strategy and how the re-55

sult avoids local minima or overfitting without having to select a regularisation

weight parameter. We show that this offers improved performance over two

generic nonlinear optimisation algorithms.
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1.1. Related Work

Perhaps the best known statistical face model is the Active Appearance60

Model (AAM) [3] which combines a linear model of 2D shape and 2D appear-

ance. Rather than model appearance, the 3D Morphable Model of Blanz and

Vetter [4] models the shape and texture which give rise to appearance via a

model of image formation. Xiao et al. [9] have used a 3D model in conjunction

with a 2D appearance model to enforce geometric constraints on the 2D shape65

generated.

Construction or training of a statistical face model involves a number of

steps: 1. data collection, 2. registration (e.g. transforming the face data to a

vector space) and 3. statistical analysis. When represented in a vector space,

face-like samples can be synthesised by taking convex combinations of training70

faces. However, it is the statistical analysis which allows us to study how the

face samples distribute themselves in high dimensional space and which regions

of this space correspond to plausible faces, i.e. face space.

Although statistical face models have useful applications when used in a

purely generative manner (e.g. for the synthesis of faces), the most compelling75

applications necessitate face analysis through fitting the model to observed data.

This data may take many forms, such as the appearance of a face in one [4, 3, 9]

or more [10, 11] images, a noisy and incomplete 3D scan [12] or the location of

a sparse set of feature points in an image [2].

When the objective function is underconstrained or ill-posed, the classical80

approach is to use Tikhonov regularisation (for a linear objective) or more gen-

erally to augment the objective function with a regularising term using a La-

grange multiplier. Typically, the regularisation term encourages smaller norms

or equivalently, solutions closer to the mean face. With a suitable choice of the

regularisation weight, this prevents overfitting and ensures that the resulting85

face is plausible. However, the optimal choice of regularisation weight may be

different for different data samples. By choosing a conservative value, fitting

results are likely to be too close to the mean face to capture features of the

input face.
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Much prior work uses such regularised optimisation approaches for face90

model fitting. For example linear regression [3], the inverse compositional al-

gorithm [13], global optimisation [4], hybrid objective functions to encourage

convexity [14] and alternating least squares for solving a multilinear system

[15, 16]. All of these approaches trade off satisfaction of a model-based prior

against quality of fit. To ensure robust performance, these approaches must95

favour the prior, resulting in model dominance.

Recently, Brunton et al. [17] proposed a method to fit a statistical shape

model to 3D data. They used a hard hyper box constraint, whereby each shape

parameter was constrained to lie within ±k standard deviations of the mean. In

other words, they assumed a uniform distribution over the hyper box as their100

prior. This has the advantage of being expressed as a linear inequality constraint

on the parameters, enabling it to be incorporated into standard optimisation

methods. Their hyper box is more conservative than the hyper-ellipsoid con-

straint that we propose here, with the two only intersecting at the corners of the

hyper box. This is done so as to prevent extreme values of a single parameter105

being allowed by the constraint. We have not found this to be a problem in our

experimental results and our manifold is motivated directly by the properties

of assumed distribution over the parameters. Moreover, by assuming a uniform

prior they do not discourage solutions close to the mean when the objective is

over constrained.110

There has been a recent interest in shape modelling on manifolds. Berkels

et al. [18] show how to perform discrete geodesic regression on shape manifolds.

This allows them to perform nonlinear regression in shape space according to a

specified discrete path energy. For the specific case of the space of thin shells

(including faces), Heeren et al. [19] provide a computational framework for calcu-115

lating geodesics, allowing for plausible interpolations, averaging, and even shape

extrapolation applications. In an altogether difference approach, Boscaini et al.

[20] formulate shape interpolation and averaging in the space of Laplacians,

from which shapes are subsequently reconstructed. Shapira and Ben-Chen [21]

shows how to align two face spaces (each corresponding to a different identity)120
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by a non-rigid ICP between the corresponding manifold samples. This allows

for shape analogies to be computed, providing a kind of expression transfer.

In this paper, we propose to solve the model fitting problem within the sub-

space of maximally likely faces. This requires the solution of an optimisation

problem on a manifold. This problem has been considered previously in the125

medical imaging [22], signal processing [23], computer vision [24], robotics [25]

and projective geometry [26] communities. Generic methods for optimisation

on arbitrary manifolds have also been proposed [27]. In particular, the recently

released Manopt toolbox [28] allows local optimisation on a number of manifolds

through the expression of an objective and its gradient in the Euclidean embed-130

ding space. We focus on the case of a hyperspherical manifold and develop a

hypherspherical gradient descent algorithm. In contrast to Manopt, our method

operates in a coarse-to-fine manner in order to reduce susceptibility to local

minima and exploits the closed nature of the manifold to reduce line searches

to interval searches. We extend our previous presentation of this work [29]135

by demonstrating results on expression interpolation (Section 3.1) and under-

constrained optimisation (Section 5.2), more thorough empirical evaluation of

the manifold assumption and describing the theoretical ideas more thoroughly.

1.2. Outline

In Section 2 we begin by describing our statistical model and manifold. We140

first introduce tools from differential geometry which are necessary for develop-

ing our methodology and then provide empirical validation to justify our choice

of manifold. In Section 3 we describe how warps and averages between two

or more faces can be constrained to the manifold and compare the result with

linear methods. In Section 4 we present our principal contribution: a method145

for fitting the model to data within the subspace defined by the manifold. In

Section 5 we provide results for two contrasting objective functions (one over-

constrained, the other underconstrained) and compare with generic nonlinear

optimisers using a regularised objective. Finally, in Section 6 we provide con-

clusions and directions for future work.150
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2. Statistical Modelling

Consider a sample of 3-dimensional face meshes which are in dense corre-

spondence (i.e. the same point on every face has the same vertex index). The

ith shape is represented by a vector of p vertices

si = (x1, y1, z1, . . . , xp, yp, zp) ∈ R
3p.

Given m such shape vectors, we use principal components analysis to obtain

an orthogonal coordinate system spanned by the m eigenvectors, where pi is

the ith eigenvector. Any shape vector s may now be represented as a linear

combination of the average shape and the model eigenvectors:

s = s̄+

m
∑

i=1

cipi, (1)

where c = [c1 . . . cm]T is a vector of parameters. We stack the eigenvectors to

form a matrix P, such that we may write: s = s̄ + Pc. The PCA eigenvalues,

denoted λi for the ith eigenvalue, provide a measure of how much of the variance

in the training data is captured by each eigenvector. We may choose to retain155

n < m model dimensions, such that a certain percentage of the cumulative

variance is captured. Psychological results show us that the dimensionality of

face space is relatively small (Meytlis and Sirovich [30] suggest 100 dimensions

is sufficient, even using a crude eigenface model). We discuss the effect of the

number of model dimensions and empirically evaluate their stability in Section160

2.4.

Our interest in this paper is to explore how shape samples drawn from a pop-

ulation distribute themselves in parameter space and how we can use this knowl-

edge to constrain operations. We define the vector ĉ = [c1/
√
λ1 . . . cn/

√
λn]

T as

the variance-normalised parameter vector. This vector is distributed according165

to a multivariate Gaussian with zero mean and unit variance, i.e. ĉ ∼ N (0, In).

This is the prior constraint typically used in the model fitting process to en-

sure that solutions remain plausible. It is maximised by a zero vector, which

corresponds to the mean sample.
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However, another interpretation based on the parameter vector length is

possible. The squared norm of ĉ corresponds to the square of the Mahalanobis

distance of c from the mean:

‖ĉ‖2 = D2
M (c) =

n
∑

i=1

(

ci√
λi

)2

. (2)

Since we assume each parameter follows a Gaussian distribution, the parenthe-170

sised terms are independent, normally distributed random variables with zero

mean and unit variance. The sum of the square of such variables follows a chi-

square distribution with n degrees of freedom, i.e. ‖ĉ‖2 ∼ χ2
n. This distribution

has expected value n and variance 2n. Hence, the standard deviation grows

as the square root of the mean and the vector lengths become relatively more175

tightly concentrated about the mean length as the number of dimensions grows.

These two apparently contradictory distributions suggest that the mean face

is the most probable sample but has a highly improbable vector length (this has

been reported in the psychology literature as The Face-Space Typicality Paradox

[31]). For example, a model with 100 dimensions would have an expected vector180

length of 100 and over 99% of parameter vectors would have lengths between

70 and 130. The probability of a vector length less than 50 is negligibly small.

A note of caution is required to accompany this analysis. Under the assump-

tion that each parameter vector follows a Gaussian distribution, the chi-square

analysis holds. However, since PCA eigenvectors capture the maximum possible185

variance, the eigenvalues decay rapidly with increasing dimension number. The

effect of this is to amplify less significant parameters, i.e. the denominator in

Equation 2 becomes small. The reason that this causes a problem is that eigen-

vectors associated with smaller eigenvalues are more susceptible to the influence

of noise, particularly when the training set size is small. The empirical analysis190

in Section 2.4 confirms this prediction.

2.1. Identity as Direction

Our argument is that valid members of the class will occupy a subspace of

parameter space. These points will lie close to the surface of a hyperellipsoid,
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Figure 1: The manifold of equally distinctive faces. A face is randomly sampled from the

manifold. Linearly scaling the parameter vector varies distinctiveness while keeping identity

fixed. Moving the sample over the manifold varies identity while keeping distinctiveness fixed.

the diameters of which are determined by the eigenvalues of the data.195

To negate the need for regularisation, we choose to force all samples to lie

on the surface of the hyperellipse, i.e. we fix distinctiveness (vector length) to

its expected value as a hard constraint. With distinctiveness fixed, points on

the manifold correspond to unique identities. Using this representation, face

processing and analysis are transformed to operations on a manifold. This200

manifold is visualised in Figure 1.

The analysis of data on a hyperellipsoidal manifold is extremely complex.

Therefore, without loss of generality, we transform the manifold to a hypersphere

by scaling each dimension by its corresponding standard deviation. For the

remainder of this paper, we therefore represent parameter vectors with squared205

Mahalanobis length n as unit vectors in R
n: x = 1√

n

[

c1√
λ1

. . . cn√
λn

]T

, where

‖x‖ = 1.

2.2. Log and Exponential Maps

Linear operations in Euclidean space such as averaging, warping and com-

puting partial derivatives must be reformulated for data which lies on a curved210
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Figure 2: Exponential map for the S2 manifold.

manifold. This is conveniently done in tangent space, where geodesic curves

through the point of tangency correspond to straight lines. Transforming points

from the manifold to the tangent space and back again is done using operations

from differential geometry, namely the log and exponential map.

A unit vector in n-dimensional space x ∈ R
n, may be considered as a point215

lying on the hyperspherical manifold x ∈ Sn−1. The two are related by x = Φ(x)

where Φ : Sn−1 7→ R
n is an embedding. If v ∈ TbS

n−1 is a vector in the tangent

space to Sn−1 at a base point b ∈ Sn−1, the exponential map, denoted Expb

of v is the point on Sn−1 along the geodesic in the direction of v at distance

‖v‖ from b. Figure 2 provides a visual illustration of the operation for the S2
220

manifold. The inverse of the exponential map is the log map, denoted Logb.

The geodesic distance (i.e. angular difference) between two points x1, x2 ∈
Sn−1 on the unit hypersphere can be expressed in terms of the log map, i.e.

d(x1, x2) = ‖Logx1
(x2)‖ = arccos (Φ(x1) · Φ(x2)). In Section 2.3, we derive a

simple and efficient means to compute the log and exponential maps for the unit225

hypersphere. In the remaining sections, we use the log and exponential maps

to perform useful operations on the manifold.

2.3. Log and Exponential Maps for the Hypersphere

In practice, we represent points on both the hyperspherical manifold and

the tangent space as vectors embedded in R
n. The log map [32] of x at base
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point b is therefore computed with respect to unit vectors in R
n: b = Φ(b) and

x = Φ(x):

ΦT (Logb(x)) =
θ(x− πb(x))

‖x− πb(x)‖
, (3)

where πb(x) = (b · x)b is the projection of x onto b and θ = arccos(b · x). The
result is a vector in the tangent space TbS

n−1 embedded in R
n according to an230

arbitrary embedding ΦT : TbS
n−1 7→ R

n.

Similarly, the exponential map of a tangent vector at b embedded in R
n,

v = ΦT (v), is given by:

Φ(Expb(v)) = cos(θ)b+
sin θ

θ
v, (4)

where here, θ = ‖v‖.

2.4. Empirical Evaluation: χ2 Prediction

Before we consider applications of processing data on the manifold described

above, we provide some empirical assessment of how well real world data adheres235

to the theoretical prediction made in Section 2.1. In order for all plausible data

samples to lie on or near the predicted manifold, the assumption of parameter

vector lengths following the chi-squared distribution must hold. In turn, the

distribution of faces along each eigenvector must follow a Gaussian distribution.

In practice, these eigenvectors are estimated from a sparse sample of a high240

dimensional space. In the case of a dense 3D face shape model, observations

typically consist of tens of thousands of vertices while the training set typically

comprises only hundreds of samples.

Clearly, the validity of the estimated manifold depends on the quality of

the estimated eigenvectors and therefore the size and diversity of the training245

set. Within-sample data (i.e. that used to train the model) adheres almost

exactly to the manifold assumption. Hence, we empirically evaluate whether

out-of-sample data follows the theoretical prediction. For our empirical test we

use the Basel Face Model (BFM) [33]. The BFM is a 3D morphable model

constructed from 200 faces. An additional 10 unseen (out-of-sample) faces are250

provided which are in correspondence with the model.
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Figure 3: Parameter vector length vs Number of model dimensions retained. The red points

represent the vector length for each out-of-sample face. The error bars (blue) represent three

standard deviation variation around the mean of the chi-square distribution. The green

squares denote the two faces which grossly overfit when projected onto the model (see column

(b) in Figure 6).

Given an out-of-sample face, s, the optimal parameter vector (in a least

squares sense) is given by simply projecting the face onto the model, i.e. c∗ =

PT (s − s). Substituting c∗ back into Equation 1, we obtain smod, the shape

which minimises ‖smod−s‖2. We do this for each face and measure the distance255

of the resulting point in parameter space from the mean (in terms of squared

Mahalanobis distance). We vary the number of model dimensions and show the

results in Figure 3. The blue line shows the expected vector length which grows

linearly with the number of dimensions. We indicate the expected spread of

vector lengths by using error bars to show three standard deviations either side260

of the mean. Red points represent the vector length for a sample projected onto

the model.

There are a number of interesting observations to make on this plot. For a

small number of model dimensions, the samples adhere to the statistical predic-

tion. However, as the number of dimensions increases, certain samples deviate265

rapidly from the prediction. These are faces which are dissimilar to those in the

training set and whose shape is poorly approximated by the model eigenvec-
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tors. The two extreme cases indicated by the green squares are gross overfits,

visualisations of which can be seen in Figure 6. The explanation for this is

that with sparse training data, the less significant eigenvectors are unstable and270

cannot be reliably estimated. A much larger training set may mitigate this

problem and lead to a model for which out-of-sample faces adhere more closely

to the statistical prediction. Nevertheless, to retain the expressiveness of the

model the dimensions with smaller eigenvalues are important and cannot be dis-

carded. What is required are constraints which prevent overfitting and ensure275

that model instances remain plausible. Our proposal to do this by enforcing a

hard constraint on the parameter vector lengths is evaluated in the next section.

2.5. Empirical Evaluation: Manifold Approximation

Irrespective of how well out-of-sample data adheres to the manifold assump-

tion, from a practical perspective the more important question is whether forcing280

samples to lie on the manifold provides a useful constraint. We attempt to an-

swer this by measuring the effect of enforcing the manifold constraint on the

“plausibility” of a face. For a face to be plausible it must appear face-like but to

be a plausible representation of a specific face it must also have a low perceptual

error between the original face and its model representation. There are many285

proposed measures for computing the perceptual error between a mesh and its

reconstruction. Most are based on the surface derivatives since it is surface

orientation which determines appearance. Hence, we measure perceptual error

in terms of the angular difference between surface normals.

We compare the optimal model-based reconstruction described above, smod,

to that obtained by projecting c∗ to the closest point on the hyperspherical

manifold:

ĉman =

√
n

‖ĉ∗‖ ĉ
∗. (5)

We refer to the resulting shape as sman. It should be noted we use the variance-290

normalised parameter vectors in Equation 5. We begin by establishing whether

the expected vector length predicted by the chi-square distribution is a good

choice with which to define the manifold. To do so, in Figure 4 for the 10

13
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Figure 4: Mean angular error vs Parameter Vector Length (for four different values of model

dimensions retained). All reported error measures are averaged over the 10 unseen faces in

the BFM.

out-of-sample faces in the BFM, we show the effect when the vector given by

projection onto the model is rescaled to various lengths. The x-axis shows the295

enforced vector length, the y-axis shows the mean angular error in the surface

normals (i.e. perceptual error). We perform this test for n = 49, 99, 149 and

199 parameter model.

The plot for each model shows a similar trend, with small and large vector

lengths having a higher error (underfitting and overfitting respectively) and a300

minimum occurring close to the chi-square prediction (i.e. when the parameter

vector lengths are forced to n). This suggests our statistically motivated choice

of hard constraint is reasonable.

Finally, we wish to show that forcing samples to lie on the manifold reduces

perceptual error. In Figure 5 (a) we plot the mean Euclidean error for smod and305

sman. Since it is optimal, smod achieves a lower Euclidean error than sman for all

n and this error decreases monotonically as the number of dimensions increases.

However, the purpose of our choice of manifold is to enforce plausibility. If

we repeat the same experiment but instead plot angular (perceptual) error,

shown in Figure 5 (b), we see that sman achieves a lower angular error than310

smod for all n. Increasing the number of model dimensions yields an almost
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Figure 5: Left plot (a): Mean Euclidean error vs Number of model dimensions retained; Right

plot (b): Mean angular error vs Number of model dimensions retained. All reported error

measures are averaged over the 10 unseen faces in the BFM.

(a) (b) (c)

Figure 6: Manifold approximation: (a) input unseen face; (b) least squares fit to vertices; (c)

parameter vector of (b) rescaled to manifold. All the results are for a n = 199 parameter

model.

monotonic reduction in perceptual error for sman, whilst the perceptual error

of the optimal least-squares surfaces (smod) begins to increase beyond about 80

dimensions. Two visual examples are shown in Figure 6. The two out-of-sample

faces in column (a) are grossly overfitted when allowed to minimise least squares315
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Figure 7: Warping between face and antiface on the S2 manifold. A linear warp is shown in

red and one of the possible plausibility-preserving warps is shown in blue.

error (column (b)). When rescaled to the manifold (column (c)) the perceptual

error reduces and the faces are visually plausible.

3. Plausibility-preserving warps and averages

We now demonstrate a simple application of the manifold to warping and

averaging of faces.320

3.1. Warps

Warping between faces or, more generally, computing weighted combinations

of two or more faces has applications in animation and in the production of

stimuli for psychological experiments [7]. The most obvious way to warp between

two shapes that are in dense correspondence is to linearly warp each vertex from325

its position in one shape to its position in the other. Equivalently, this can be

approximated by linearly warping between the two vectors of PCA parameters.

However, in either case the intermediate faces will not correspond to plausible

faces. Since the manifold of maximally probable distinctiveness is curved, any

linear warp will include faces that do not lie on the manifold, with the least330

plausible face occurring halfway along the warp.
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Figure 9: Linear versus plausibility-preserving warp from face to antiface. One of the infinite

possible plausibility-preserving warps is specified by providing an intermediate target face.

Face-antiface warps provide a particularly interesting special case. An an-

tiface is the antipodal point of a source face on the manifold. Perceptually,

antifaces appear opposite in some sense to the original face. The vector con-

necting a face to its antiface in parameter space passes through the mean. A335

linear warp between a face and antiface is therefore well-defined but will include

implausible faces for the duration of the warp. There is a further problem with

such linear warps. Psychological studies have shown that there is a perceptual

discontinuity as the face trajectory crosses the mean [7]. In other words, as

identity flips from face to antiface, the perceptual effect of a small movement340
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through face space is exaggerated.

Instead, we propose warps which take place on the manifold, following the

geodesic curve between the two source faces. Another way to view these warps is

as a rotation of a unit vector in R
n. All intermediate faces in this case have equal

distinctiveness and are equally plausible. In the case of antifaces, there are an345

infinite number of valid warps, all of length π. One way to conceptualise this is

that we can set off from a point on the hyperspherical manifold in any direction

and reach the antiface after travelling a distance π. An interesting result of this

observation is that we can choose any intermediate face as a target which will

be visited on the warp from face to antiface. This gives us a way to specify one350

of the infinite face-antiface warps and may also have interesting applications

in generating stimuli for psychological studies. This idea is demonstrated in

Figure 7 for the S2 manifold, which shows the difference between a plausibility-

preserving and linear warp.

For a source face xsrc and intermediate target face xtar, we can define a

unit vector in the tangent space, v ∈ Txsrc
Sn−1, from xsrc in the direction of

xtar: v =
Logxsrc

(xtar)

d(xsrc,xtar)
. A geodesic warp from xsrc to xtar is therefore given by

following this vector by a distance specified by the warping parameter w:

xwar = Expxsrc

(

w
Logxsrc

(xtar)

d(xsrc, xtar)

)

. (6)

When w = 0 we obtain the source face, i.e. xwar = xsrc, and when w =355

d(xsrc, xtar) we obtain the target face, i.e. xwar = xtar. If we set w = π we

obtain the antiface to xsrc. Intermediate faces are obtained when w ∈ (0, π).

We show an example warp from face to antiface via an intermediate target

face in Figure 9 using the 199 parameter BFM [33]. Note that the effect is of

smooth variation of identity, with each of the intermediate faces containing sig-360

nificant detail. We contrast this with a linear warp through the mean face which

results in implausibly smooth intermediate faces and no transition through in-

termediate identities. In Figure 8 we plot the parameter vector lengths for the

linear and plausibility-preserving warps.

In Figure 10 we show results on a different dataset. In this case, we built a365
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Fear Fear/anger Anger

Figure 10: Linear versus plausibility-preserving expression interpolation. First row: 3 frames

from captured fear-to-anger sequence. Second row: manifold interpolation between fear and

anger. Third row: linear interpolation.

person-specific expression model using scans from the Spacetime faces dataset

[34]. As the modal expression, we use the neutral face as the average and model

expressions as displacements from neutral. In this case, “identity” is inter-

preted as the combination of displacements associated with a certain expression.

Increasing “distinctiveness” simply exaggerates the magnitude of a particular370

expression. The manifold therefore spans expressions of equal magnitude and

allows plausibility-preserving warping between different expressions.

In the first row, we show three frames from a captured sequence in which

the face transitions from an expression of fear to anger. The middle frame

contains a mix of the two expressions. All three scans are out of sample of375

the trained model. In the second row, we project the start and end scans to

the manifold and interpolate between the two using our plausibility-preserving

warp. In contrast to the linear interpolation shown in the third row, our result

19



correctly predicts the more circular shape of the open mouth and the scrunched

eyes, leading to a more detailed expression.380

3.2. Averages

Given u > 2 source faces, x1, . . . , xu ∈ Sn−1, we wish to compute an average

face which captures characteristics of each of the source faces yet remains plau-

sible itself. The linear or Euclidean mean of the parameter vectors minimises

the sum of square error in R
n from the average to each of the source faces. This

is the extrinsic mean and will not lie on the manifold. The result is that the

face is implausibly smooth and lacking in features. We propose the use of the

intrinsic or Karcher mean. For u = 2, this can be found using the warping

equation given above with w = 0.5. For u > 2, this is the point xµ ∈ Sn−1

which minimises the total squared geodesic distance to each of the source faces:

xµ = arg min
x∈Sn−1

u
∑

i=1

d(x, xi)
2. (7)

This point cannot be found analytically, so we solve it as an iterative optimisa-

tion using the gradient descent method of Pennec [35]. We initialise our estimate

as one of the source data points, i.e. x
(0)
µ = x1. The estimated intrinsic mean is

then iteratively updated as follows:

x(j+1)
µ = Exp

x
(j)
µ

(

1

u

u
∑

i=1

Log
x
(j)
µ
(xi)

)

. (8)

This process converges rapidly, typically within 5 iterations. In Figure 11 we

compare our plausibility-preserving averages with linear averaging of the 74 di-

mensional parameter vectors obtained using the USF data [36]. Notice that each

of the Euclidean averages appears unrealistically smooth, whereas the averages385

computed on the manifold clearly show the presence of distinct features present

in the source faces (for example, the broader nostrils of face 1 are visible in the

first three averages but not the fourth).
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average

Plausibility
-preserving
average

Source faces

Figure 11: Linear versus plausibility-preserving averages.

4. Model fitting on the manifold of plausible faces

The most powerful application of the identity manifold is to use it for the

purpose of constraining the process of fitting a model to data. Suppose the

function ε : Sn−1 7→ R is an objective function which evaluates the quality of fit

of a face represented by a point on the plausibility manifold to some observed

data. This function could take any form, for example the difference between

predicted and observed appearance in an analysis-by-synthesis framework or the

error between a sparse set of feature points. We pose model fitting as finding

the point on the manifold which minimises this error, i.e.:

x∗ = arg min
x∈Sn−1

ε(x). (9)

In doing so, we ensure that plausibility is enforced as a hard constraint. Note390

also that the optimisation is more heavily constrained since the dimensionality

of the hypersphere is 1 less than the parameter space.

4.1. Local Optimisation

We can perform gradient descent on the manifold to find a local minimum

in the error function. The fact that our manifold is hyperspherical has some
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interesting implications for such an approach. We must first compute the

gradient of the objective function in terms of a vector on the tangent plane:

∇ε(x) ∈ TxS
n−1. To do so, we compute the gradient in terms of a vector in R

n

and project the result to the tangent plane as follows:

∇ε(x) = Logx

(

Φ−1

(

x− g

‖x− g‖

))

(10)

where x = [x1 . . . xn]
T
= Φ(x). The gradient in R

n:

g = [∂x1ε(x) . . . ∂xn
ε(x)]

T
, (11)

is approximated by using finite differences to calculate the partial derivatives:

∂xi
ε(x) ≈ ε(x′

i)− ε(x)

ǫ
, (12)

where x′
i = Φ−1([x1 . . . xi + ǫ . . . xn]).

With a means to compute the gradient, we can iteratively minimise the

objective function by adapting the gradient descent algorithm to operate on the

manifold:

x(t+1) = Expx(t)

(

−γ∇ε(x(t))
)

, (13)

where γ is the step size. Note that as γ varies, the point Expx (−γ∇ε(x)) ∈ Sn−1
395

traces out a great circle about the hypersphere. This is the search space for the

one-dimensional line search at each iteration of gradient descent.

4.2. Coarse-to-fine Model Fitting

The difficulty with our approach is choosing an unbiased initialisation. Ex-

isting methods for fitting statistical models to data typically commence from an400

initialisation of the mean (i.e. zero parameter vector), e.g. [4, 3]. However, this

point lies far from the plausibility manifold and is therefore unsuitable in our

case.

We tackle this problem and also reduce susceptibility to becoming trapped in

local minima by proposing a coarse-to-fine algorithm which iteratively increases405

the number of model dimensions considered in the optimisation.
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Consider in the simplest case a two dimensional model (in the one dimen-

sional case the manifold collapses to a pair of points and is the boundary of

a line segment). In two dimensions the manifold is S1 (i.e. a unit circle) and

requires the optimisation of a single angular parameter, θ. The result in two

dimensions, x(2) = [cos θ∗ sin θ∗]T , is given by solving the following interval

search problem:

θ∗ = arg min
θ

ε(Φ−1([cos θ sin θ]T )), 0 ≤ θ < 2π, (14)

which we solve using golden section search [37]. We use this result to initialise

the solution in three dimensions, initially setting the third parameter to zero:

x
(n)
init =

[

x(n−1) | 0
]

. We then perform gradient descent. We continue this pro-

cess, incrementally adding dimensions to the optimisation, each time setting410

the new parameter to zero and then performing gradient descent on the new

manifold using this as an initialisation. Hence, the result of a local optimisation

in n dimensions is used as the initialisation for optimisation in n + 1 dimen-

sions ensuring that the solution is already constrained to the right region of the

manifold.415

4.3. Constrained Line Search

The nature of the hyperspherical manifold can be used to inform the step size

used in the gradient descent optimisation. Specifically, the step size is bounded

and a constrained line search can be performed based on interval search.

We assume that the result in n dimensions has restricted the solution to

the correct hemisphere of the hypersphere. Travelling in the direction of the

negative gradient reduces the error. To travel in this direction whilst remaining

in the same hemisphere means the maximum arc distance that can be moved is

π
2 . Hence, the result in n dimensions is given by x(n) = h(γ∗), where

h(γ) = Exp
Φ−1(x

(n)
init)



−γ
∇ε
(

Φ−1(x
(n)
init)

)

∥

∥

∥∇ε
(

Φ−1(x
(n)
init)

)∥

∥

∥



 . (15)

The arc distance γ determines how far we travel along the great circle implied by420

the gradient of the objective function. Since we wish to constrain our solution
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to the same hemisphere, γ must lie in the interval
[

0, π
2

]

and we hence find

γ∗ using golden section search [37] to solve: γ∗ = arg min
γ

h(γ), 0 ≤ γ ≤ π
2 .

Multiple iterations of gradient descent can be used each time a dimension is

added to the optimisation. In our results we use four iterations per dimension.425

5. Model Fitting Examples

For our experimental evaluation, we use the algorithm described above to

fit our 3D morphable shape model to unseen data. We show results for two

different exemplar objective functions (one overconstrained and one undercon-

strained) and compare our results with those obtained using two different generic430

optimisers.

5.1. Overconstrained Optimisation

We choose as an objective function the angular error between surface normals

at each vertex of the model. This is an interesting choice of objective function

for two reasons. First, the search landscape of the objective function is littered435

with local minima. Second, the fitted result is likely to have lower perceptual

error than a least squares fit directly to the vertices. Whilst such a least squares

fit gives minimal geometric error, the result is often a gross over-fit which does

not resemble the input face. Minimising the surface normal error is a non-

linear problem which is related to minimising appearance error, as undertaken440

by analysis-by-synthesis of image data [4].

From an input face shape, represented by p vertices, we compute surface

normals at each vertex. If Ni is the surface normal at vertex i, our objective

function is the sum of squared angular errors between input and model surface

normals:

ε(x) =

p
∑

i=1

(

arccos(ni(Φ(x)) ·Ni)
)2

, (16)

where ni([x1 . . . xn]) is the surface normal of the ith vertex of the shape given

by: s + Pc, where the parameter vector is computed by transforming the unit

24



(a) (b) (c) (d)

Figure 12: Overconstrained model fitting example: (a) input bump maps for 3 unseen subjects;

(b) ground truth; (c) BFGS optimisation; (d) manifold optimisation. All the results are for a

n = 99 parameter model.

vector back to the hyperellipse:

c =
√
n
[

x1

√

λ1 . . . xn

√

λn

]T

. (17)

We compare our manifold optimisation with direct optimisation of the ob-

jective function using a generic optimiser based on the BFGS Quasi-Newton

method with a cubic line search [38]:

c∗ = arg min
c

p
∑

i=1

(

arccos(ni(c) ·Ni)
)2

. (18)

Note that the generic optimiser converges close to the mean if all parameters

are optimised simultaneously. We therefore take the same coarse-to-fine ap-

proach as for the manifold fitting, whereby we iteratively increase the number

of dimensions considered in the optimisation.445
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We provide results on the BFM [33] data. The scans were obtained using

the structured light scanning system provided by ABW-3D [33] and are set

into correspondence using a modified version of the Optimal Step Nonrigid ICP

Algorithm [39]. In Figure 12, column (a) shows input bump maps for three

unseen subjects. Column (b) shows the ground truth shape estimates. Column450

(c) shows the result of using the BFGS non-linear optimiser to solve Equation

18. Because of local minima close to the mean, these faces are implausibly

smooth. Finally, our manifold fitting result is shown in column (d). Note that

this result represents a trade off between over and underfitting. Averaged over

all the out-of-sample faces in the BFM, the angular error of the surface normals455

is 7.23◦ for the BFGS method and 5.33◦ for our method.

5.2. Underconstrained Optimisation

We now consider an objective function which is highly underconstrained.

In other words, solutions which minimise the objective function lead to highly

implausible faces. The problem we consider is estimation of a high resolution460

3D face surface given the positions of k = 70 2D annotations (k << p). A

linear version of this problem has been considered previously [40], where it was

observed that the problem leads to a trade off between the quality of fit to the

observed data and prior probability as measured by the model. The parameter

to control this trade off can be determined heuristically [40], although no single465

value will give optimal performance for all faces. In contrast, our proposed

approach requires no such regularisation constraint and ensures that the fitted

results have high quality shape estimates which are plausible.

Our aim is to recover face shape parameter estimates from a set of k 2D

annotations. We represent the ith observed feature point by Li ∈ R
2. We

write ri(Φ(x)) ∈ R
4 for the 3D position of the vertex corresponding of the ith

feature point represented in homogeneous coordinates. This is extracted from

the model shape vector given by: s + Pc, where the parameter is vector c is

computed by transforming the unit vector Φ(x) back to the hyperellipse using
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Equation 17. The corresponding projected 2D position is given by:

L̂i = [ei/gi fi/gi]
T
, (19)

where [ei fi gi]
T

= Cri(Φ(x)) and C ∈ R
3×4 is a camera matrix [41] which

performs a perspective projection. Our objective function is taken by measuring

the sum squared Euclidean distances between the observed 2D feature point

positions and the projected model estimates:

ε(x) =

k
∑

i=1

‖Li − L̂i‖2. (20)

The conversion from homogeneous to 2D Euclidean coordinates means that the

error is a nonlinear function of the shape parameters. We assume that the cam-470

era matrix is known, since our aim here is to evaluate a simple underconstrained,

nonlinear objective function. However, for a real world implementation this can

be estimated using the Gold Standard algorithm [41] and the two steps of pose

and shape estimation iterated to convergence.

We compare our manifold optimisation with direct optimisation of the ob-

jective function using a generic optimiser based on the Levenberg-Marquardt

algorithm (LMA) [42]. Note that since the problem is underconstrained, direct

optimisation of the objective function using LMA leads to gross overfitting. We

therefore also provide results for the regularised version:

c∗ = arg min
c

k
∑

i=1

‖Li − L̂i‖2 + ηD2
M (c), (21)

where η is a constant which controls the influence of the regularisation term. It475

should be noted in this case L̂i = Cri(c).

In Figure 13 we show results on the BFM [33] data. Column (a) shows the

ground truth faces (unseen) with the input feature points (blue circles). Column

(b) shows the result of using LMA to solve Equation 21, with η = 0. In this

case there is no regularisation constraint applied and hence we obtain grossly480

overfitted shape estimates. Column (c) shows the result of solving Equation 21

using LMA, with η chosen experimentally to provide optimal average perfor-

mance. To provide stable performance over all faces, the regularisation weight
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(a) (b) (c) (d)

Figure 13: Underconstrained model fitting example: (a) ground truth faces (unseen) with the

input feature points (blue circles); (b) LMA with no regularisation constraint; (c) LMA with

regularisation constraint;(d) manifold optimisation. All the results are for a n = 50 parameter

model.

must be set conservatively which means some solutions are restricted to lie too

close to the mean. The resulting faces therefore lack salient detail. Figure 14485

demonstrates the effect of varying the regularisation weight. Finally, our man-

ifold fitting result is shown in column (d). This result represents a trade off

between over and underfitting via the hard manifold constraint. Our method

does not require tuning of a parameter and provides stable performance in all

cases. Table 1 tabulates the mean Euclidean error over all vertices in the mesh490

averaged over all the out-of-sample faces in the BFM.

6. Conclusions

We have shown how a number of useful operations can be performed on

the manifold of equally distinctive faces. This provides a new way to constrain

operations involving the parameters of a statistical model. In particular, we495

have shown how to constrain the process of fitting a model to data which is
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

Figure 14: Demonstration of parameter selection for LMA optimisation of regularised objec-

tive. For two different subjects (shown on the left in the first and third rows), the optimal

regularisation weight (corresponding to the shape estimate with the bounded box) is differ-

ent. The manifold solution (shown on the right in the first and third rows) does not require

parameter tuning and provides improved results.

robust but does not require the selection of a regularisation weight parameter.

We avoid using a biased initialisation and improve efficiency by using a coarse-

to-fine strategy. This approach outperforms the use of two generic nonlinear

optimisation algorithms on two different objective functions. In this paper we500

provide experimental results for facial data. However, our approach could be

applied to any source of data modeled using a linear statistical model. In the

future we aim to consider whether nonlinear methods for deriving the statistical

model could negate the need for enforcing an additional manifold constraint in

parameter space, i.e. to derive a face space which, by construction, contains505

only plausible faces.

In addition, it would be interesting to compare our model fitting results

against other methodologies that seek to preserve local, high frequency detail.

For example, using a richer hierarchical model [17] which includes parameters
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Method Euclidean Error (in mm)

LMA without regularization 5.68

LMA with regularization 4.81

Our method 4.21

Table 1: Model fitting results (underconstrained objective).

to describe local deformations from the global model is an alternative modelling510

paradigm. We could compare whether the additional cost of many more model

dimensions provides a significant benefit over our manifold constraint within a

classical PCA-based model. Finally, we would like to apply our model fitting

approach to more challenging datasets that include missing data (occlusions)

and noise. With a suitable outlier rejection scheme, we expect that our manifold515

fitting approach would still improve distinctiveness of the results by avoiding

overfitting/underfitting to unoccluded/clean data, whilst ensuring a plausible

level of detail in missing regions. Any appropriate robust model fitting algorithm

could be adapted to work with the manifold constraint for this purpose. For

example, the two objective functions we consider in this paper are sums of520

squared residuals. These could be replaced with any robust error measure,

subject to the resulting objective having a gradient that can be derived or

numerically estimated.
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[19] B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, B. Wirth, Exploring the

geometry of the space of shells, Computer Graphics Forum 33 (5) (2014)

247–256.

[20] D. Boscaini, D. Eynard, D. Kourounis, M. M. Bronstein, Shape-from-

operator: recovering shapes from intrinsic operators, Computer Graphics575

Forum (Proc. Eurographics) 34 (2) (2015) 265—274.

[21] N. Shapira, M. BenChen, Crosscollection map inference by intrinsic align-

ment of shape spaces, Computer Graphics Forum 33 (5) (2014) 281–290.

[22] R. Adler, J.-P. Dedieu, J. Margulies, M. Martens, M. Shub, Newton’s

method on Riemannian manifolds and a geometric model for the human580

spine, IMA J. of Numerical Analysis 22 (2002) 359–390.

[23] J. Manton, Optimization algorithms exploiting unitary constraints, IEEE

Trans. Signal Proces. 50 (3) (2002) 635–650.

32
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