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Abstract—Soft subspace clustering algorithms have been successfully used for high dimensional data in recent years. 

However, the existing algorithms often utilize only one distance function to evaluate the distance between data items on 

each feature, which cannot deal with datasets with complex inner structures. In this paper, a composite kernel space 

(CKS) is constructed based on a set of basis kernels and a novel framework of soft subspace clustering is proposed by 

integrating distance metric learning in the CKS. Two soft subspace clustering algorithms, i.e., entropy weighting fuzzy 

clustering in CKS for kernel space (CKS-EWFC-K) and feature space (CKS-EWFC-F) are thus developed. In both 

algorithms, the prototype in the feature space is mapped into the CKS by multiple simultaneous mappings, one 

mapping for each cluster, which is distinct from existing kernel-based clustering algorithms. By evaluating the distance 

on each feature in the CKS, both CKS-EWFC-K and CKS-EWFC-F learn the distance function adaptively during the 

clustering process. Experimental results have demonstrated that the proposed algorithms in general outperform 

classical clustering algorithms and are immune to ineffective kernels and irrelevant features in soft subspace. 
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1 INTRODUCTION 

lustering has a wide range of applications, including statistics, data mining, and database. It has been extensively studied and 

many algorithms have been developed [1-7]. Among the studies, soft subspace clustering has emerged as a hot research topic in 

the fields of data mining in recent years [8-17, 39]. Under the classical framework of k-means or fuzzy c-means clustering 

algorithms, data objects in the entire data space are grouped but assigned with different weights for different dimensions of the 

clusters. The assignment is based on the importance of the features in identifying the corresponding clusters. For datasets with 

different clusters correlating to different subsets of features, soft subspace clustering is a more suitable approach since different 

vectors of feature weights are assigned to each cluster. 

According to the ways of dataset partitioning, soft subspace clustering algorithms [8-20] can be divided into two categories, 

namely, soft subspace hard clustering and soft subspace fuzzy clustering. For the former, each data object belongs to only one 

cluster [8, 11-13], while for the latter, each data object belongs to every cluster to a certain degree [10, 17].  Besides, soft 

subspace fuzzy clustering can deal with overlapping cluster boundaries. On the other hand, according to the way of soft 

subspace weighting, soft subspace clustering can also be classified into fuzzy weighting subspace clustering and entropy 

weighting subspace clustering [10]. Typical fuzzy weighting subspace clustering algorithms include attributes-weighting 

algorithm (AWA) [8], fuzzy weighting k-means (FWKM) [12], fuzzy subspace clustering (FSC) [11] and partition-indexed soft 

subspace clustering (PI-SSC) [17]. The algorithms assign a fuzzy weight jh
w


 to the hth feature of the jth cluster and adjust the 

feature weights for each cluster automatically during the clustering process. Entropy weighting subspace clustering algorithms 

include entropy weighting k-means (EWKM) [13], clustering objects on subsets of attributes (COSA) [20] and enhanced soft 

subspace clustering (ESSC) [10]. The algorithms utilize entropy to control the feature weights in each cluster. 

Although many soft subspace clustering algorithms have been developed for different application areas, there are still rooms 

to further improve the performance. A major weakness of soft subspace clustering is the lack of algorithms that are universal for 

various real world applications. In other words, given a particular soft subspace clustering algorithm, the clustering results can 

be satisfactory for some datasets while inferior for others. This is because existing soft subspace clustering algorithms utilize 

only one fixed distance function to evaluate the relationships between data items in two patterns during the clustering process. 

However, data items in two patterns of different datasets could exhibit different and complex relationships which cannot be 

described simply by a distance function. Moreover, as the clustering process proceeds, the relationships between data items 

may change from time to time while the existing soft subspace clustering techniques cannot adapt to the change by updating the 

distance computation, thereby leading to performance degradation. 

To improve the performance of soft subspace clustering, it is necessary to evaluate the relationship between data items 
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adaptively and a distance metric learning strategy is thus in demand. Recent studies have shown that learning the distance 

function from the data can improve the performance effectively. Depending on the availability of the training data, algorithms 

for distance metric learning can be divided into supervised and unsupervised approaches. In supervised distance metric learning 

algorithms, labeled data or side information are utilized to learn the distance function such that data points from the same class 

are put closely together whereas those from different classes to moved far apart. Representative approaches include convex 

optimization approach [21], information-theoretic approach [22], smooth optimization approach [23] and alternating 

optimization approach [40]. On the other hand, unsupervised distance metric learning is a more challenging approach due to the 

lack of any prior knowledge. In the absence of constraint or class label information, most unsupervised distance metric learning 

algorithms are in general developed to exploit the underlying manifold structure of the data. Typical unsupervised approaches 

include adaptive metric learning algorithm (AML) [29], nonlinear adaptive distance metric learning algorithm (NAML) [25], 

adaptive metric learning for self-organizing incremental neural network (SOINN-AML) [27], locally linear metric adaptation 

(LLMA) [24]. However, all the above  clustering algorithms are developed based on distance computation in full space, which 

is different from the situation in soft subspace clustering algorithms where distance computation is performed based on data 

items along with each feature. Thus, it is necessary to develop distance metric learning approach so that the most suitable 

relationship between data items along with each feature can be learned in an unsupervised way. 

In this paper, a distance metric learning mechanism for soft subspace clustering is investigated. First, a composite kernel 

space (CKS) is constructed by linear combination of a set of basis kernel mappings. With the mechanism of distance metric 

learning, the distance between data items on each feature can be learned adaptively in this CKS. Accordingly, a novel 

framework of soft subspace clustering is proposed by integrating distance metric learning in the CKS. Especially, two novel 

soft subspace clustering algorithms, i.e., entropy weighting fuzzy clustering in CKS for kernel space (CKS-EWFC-K) and 

feature space (CKS-EWFC-F) are proposed, with suffixes K and F in the abbreviations standing for the kernel space and feature 

space respectively. In both algorithms, the prototype in the feature space is mapped into the CKS by a class of mappings 

simultaneously, one mapping for each cluster. The mechanism is different from existing kernel-based clustering algorithms. 

Based on fuzzy partition of the datasets, the proposed algorithms simultaneously locate clusters in CKS and identify the optimal 

kernel weights for a combination of kernel sets. The incorporation of soft subspace and the automatic adjustment of kernel 

weights in CKS enable adaptive computation of the distance between data items. Hence, the clustering quality of 

CKS-EWFC-K and CKS-EWFC-F can be improved for various applications. For easy reference and to enhance the readability 

of the paper, the major notations used in this paper are summarized in Table 1. 
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Table 1 Notations used in this paper 

Notations Descriptions 

c Cluster number 

m Fuzziness of membership 

n Size of dataset 

s Number of features 

p Number of mappings or kernels 

uik Fuzzy memberships 

wih Feature weight 

Z Cluster center matrix 

W Fuzzy weighting matrix 

U Fuzzy partition matrix in fuzzy clustering algorithms, or hard partition matrix in hard clustering algorithms 

V Kernel weights matrix 

α fuzziness of W 

η, γ, ε, εu, εw Coefficients for penalty terms 

xih The hth feature of data point xi 

zjh The hth feature of cluster center vj 

The rest of the paper is organized as follows. In Section 2, related work on soft subspace clustering is reviewed. In Section 3, 

the composite kernel space is presented, followed by the discussion of the CKS-EWFC-K and CKS-EWFC-F algorithms and 

their properties. The experiment results are reported and analyzed in Section 4. Conclusions are given in Section 5. 

2 RELATED WORK 

Soft subspace clustering has been a hot research topic in recent years [8-20]. Many algorithms have been developed and the 

ultimate goal, generally speaking, is to find the local minimum of the objective function J below 

2

1 1 1

( , , )= ( , ) ( , )
c n s

m

ji jh ih jh

j i h

J u w d x z


= = =
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under the constraints 
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c

jij
u

=  and 
1

=1
s

jhh
w

= . In the equation, the first term 2

1 1 1
( , )

c n sm

ji jh ih jhj i h
u w d x z



= = =    is 

interpreted as the total weighted distance between each data object xi, i=1, 2, …, n, and the cluster centers zj, j=1, 2, …, c; and 

the second term Η(U,W) is a penalty term which is often used to optimize the performance of the algorithm. The term d(xih, zjh) 

in Eq.(1) is a dissimilarity measure between xih and zjh, which is often taken as the Euclidean distance, i.e. d(xih,zjh) = ||xih-zjh||, in 

the original feature space. Other distance functions have also been used in some recent studies, e.g. Minkowski distance 

function [30], alternative distance function [15], ε-insensitive distance [10] and the Euclidean distance function in kernel space 

[16]. In this paper, we present a new taxonomy for soft subspace clustering based on the distance function adopted. 
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2.1 Euclidean distance  

The attribute weighting algorithm proposed by Chan et al. is one of the earliest soft subspace clustering algorithms. It adopts 

the Euclidean distance function [8] and the fuzzy weighting strategy is incorporated into the learning criterion. The objective 

function of AWA JAWA is formulated as follows: 

( )
2

1 1 1

( , , )=
c n s

AWA ji jh ih jh

j i h

J u w x z


= = =

− U W Z
 (2a) 

s.t.  uji∈{0, 1},
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(2b) 

In order to avoid the problem of zero dispersion of a dimension in a cluster, Eq.(2a) is modified to Eq.(3a) by appending a 

penalty term, i.e.,  

( )
2

1 1 1 1 1 1
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c n s c n s
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 (3a) 
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1

1
c
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=
= , i = 1, 2, ..., n 
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1

1
s
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=
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(3b) 

By using Eq.(3), a soft subspace clustering algorithm called FWKM is developed [12]. From Eq.(3a), the objective function 

JFWKM is given by 

( )( )
2

1 1 1

( , , )=
c n s

FWKM ji jh ih jh

j i h

J u w x z
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,

 (4) 

where ( )
2

2
( , )

ih jh ih jh
d x z x z = − + , with ε>0, is the distance function. Hence, AWA can be regarded as a special case of 

FWKM when ε=0. 

Using a similar learning criterion, FSC is also developed [11] and the objective function JFSC can be formulated as follows: 

( )
2

1 1 1 1 1
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s.t.  uji∈{0, 1}, 
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(5b) 

where ( )
2

2
( , )

ih jh ih jh
d x z x z= −
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1 1

( , )=
c s

jh

j h

w


= =

 U W . 

It is clear from Eq.(2) to Eq.(5) that a fuzzy weight wjh
α is assigned to the features of different clusters with a fuzzy index α, 

which is a common characteristic of the above algorithms. Therefore, algorithms of this kind are called fuzzy weighting 

subspace clustering algorithms. In order to ensure the convergence of the algorithms, the fuzzy index α should be greater than 1.  
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Similarly, the concept of entropy has been introduced into the clustering process to develop weighting subspace clustering 

algorithms. For maximum entropy clustering algorithms, the fuzzy memberships are controlled by maximizing the entropy. 

EWKM [13] is a representative algorithm of this kind and the objective function JEWKM is given by 

( )
2

1 1 1 1 1

( , , ) ln
c n s c s

EWKM ji jh ih jh jh jh

j i h j h

J u w x z w w
= = = = =

= − +  U W Z  (6a) 

s.t.  uji∈{0, 1}, 
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(6b) 

From Eq.(6a), it is clearly that EWKM simultaneously minimize the within-cluster dispersion and maximize the negative 

weight entropy in the clustering process, so as to improve the clustering quality of the algorithm. 

All the algorithms mentioned above are based on hard partition of the datasets. The PI-SSC [17] proposed by Wang et al. is a 

typical soft subspace clustering algorithm based on fuzzy partition of the datasets. Similar to the aforementioned soft subspace 

clustering algorithms, PI-SSC adopts the Euclidean distance function to compute the dissimilarity between data items. In 

PI-SSC, partition index and fuzzy clustering are integrated into the framework of fuzzy weighting subspace clustering. The 

integration of the partition index as a piece of additional information can improve the clustering quality of PI-SSC. The 

objective function JPI-SSC is given by 

( )
2

1 1 1 1 1 1 1

( , , )
c n s c s n c

m m
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(7a) 
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1
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=
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   wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(7b) 

2.2 Minkowski distance  

While the Euclidean distance function is commonly used in most soft subspace clustering algorithms, other distance 

functions can also be considered. Amorim et al. attempted to improve fuzzy weighting soft subspace clustering algorithms by 

employing the Minkowski distance function to develop the Minkowski metric Weighted K-Means (MWK-Means) algorithm 

[14]. The objective function JMWK-Means of the algorithm is defined as follows: 

1 1 1

( , , )
c n s

p

MWK Means ji jh ih jh

j i h

J u w x z


−

= = =

= − U W Z

, 
(8) 

where the conventional Euclidean distance is replaced by the Minkowski metric, with p  as the parameter. We can easily see 

that when p=2, AWA [8] is indeed a special case of MWK-Means. 
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2.3 Alternative distance  

In order to improve the robustness of soft subspace fuzzy clustering, Pan et al. proposed a robust soft subspace clustering 

algorithm called Alternative Soft Subspace Clustering (ASSC) by incorporating an alternative distance metric into the 

framework of entropy weighting subspace clustering [15]. The learning criterion JASSC is formulated as follows: 

( )( )( )2

1 1 1 1 1

( , , )= 1 exp ln
c n s c s

m

ASSC ji jh h ih jh jh jh

j i h j h

J u w x z w w 
= = = = =

− − − +  U W Z

, 
(9a) 

under the following constraints 

s.t.  uji∈[0, 1], 
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(9b) 

Theoretical analysis of the robustness of ASSC has been made based on M-estimator and the convergence of the algorithm is 

guaranteed [15].  

2.4 Robust ε-insensitive distance  

Based on the ε-insensitive distance function, the novel soft subspace clustering algorithm ESSC is proposed by Deng et al. to 

enhance the robustness of clustering. In ESSC, the idea of fuzzy clustering and the between-cluster information are integrated 

into the learning criterion JESSC of the entropy weighting subspace clustering. JESSC  is given by [10] 

( ) ( )
2 2

0

1 1 1 1 1 1 1 1

( , , ) ln
c n s c n s c s

ESSC ji jh ih jh ji ih ih h jh jh

j i h i k h j h

J u w x z u w z z w w 
= = = = = = = =

= − − − +    U W Z

 

(10a) 

s.t.  uji∈[0, 1], 
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

   wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(10b) 

The objective function of ESSC can be further expressed as 

( ) ( )( )
2 2

0

1 1 1 1 1

( , , ) ln
c n s c s

ESSC ji jh ih jh ih h jh jh

j i h j h

J u w x z z z w w 
= = = = =

= − − − +  U W Z

, 

(11) 

where ( ) ( )
2 22

0
( , )

ih jh ih jh ih h
d x z x z z z= − − −  is indeed a robust ε-insensitive distance function. Attributed to the introduction 

of the distance function into soft subspace fuzzy clustering, the ESSC outperforms some soft subspace clustering algorithms 

that adopt the Euclidean distance function. 

2.5 Distance evaluation in kernel space 

For better modeling and discovery of the nonlinear relationships underlying the data, a nonlinear mapping  is used in kernel 

methods to map the input data from the original feature space to a new space of higher dimensionality, i.e. kernel space. For 

example, Shen et al. proposed the weighted fuzzy kernel clustering algorithm (WFKCA) [16] based on distance computation of 
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the data items in the kernel space and fuzzy partition of the datasets. It can be regarded as an extension of AWA [8]. The 

learning criterion JWFKCA of WFKCA is formulated as follows:  

( ) ( )( )
2

1 1 1

( , , )=
c n s

m

WFKCA ji jh ih jh

j i h

J u w x z
  

= = =

− U W Z  (12a) 

s.t.  uji∈[0, 1], 
1

1
c

jij
u

=
= , i = 1, 2, ..., n 

wjh∈[0, 1], 
1

1
s

jhh
w

=
= , j = 1, 2, ..., c 

(12b) 

WFKCA has demonstrated better performance than classical clustering algorithms on some popular datasets [16], but given a 

specific learning task, it is difficult to select suitable kernel types and inappropriate parameters for the kernels. Incorrect choices 

can seriously affect the performance of WFKCA. 

2.6 The research problem 

The soft subspace clustering algorithms discussed above are summarized in Table 2. It is clear that all these algorithms 

only utilize one single and fixed distance function. They are thus limited for the clustering of a few datasets, not universally 

applicable to datasets of different inner structures in different applications. This remains a challenging problem for soft 

subspace clustering applications. Distance metric learning appears to be a promising approach to solve this problem. The 

research has resulted in some effective solutions. In this paper, novel distance metric learning models for soft subspace 

clustering will be developed in the CKS which is constructed based on a set of basis kernels. Compared with existing distance 

metric learning approaches, the uniqueness of our work is that the distance function used for distance computation along with 

each feature is obtained by unsupervised learning during the soft subspace clustering process. Besides, the prototype in the 

feature space is mapped into the CKS through multiple simultaneous mappings, one mapping for each cluster. Two novel soft 

subspace clustering algorithms, i.e. CKS-EWFC-K and CKS-EWFC-F, are developed and their properties are investigated in 

detail. The effectiveness of the methods is proven with comprehensive experiments.  

 

Table 2 Characteristics of soft subspace clustering algorithms with different distance functions 

Clustering 

approach 
Algorithm 

2
( , )

ih jh
d x z  partitioning 

method  

subspace 

weighting 

method  

Penalty Η(U,W) 

Euclidean 
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soft subspace 

clustering 

AWA[8] 

( )
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x z−  

hard fuzzy / 
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1 1

c s
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1 1

ln
c s
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w w
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1 1 1 1
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m
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 

= = = =
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ESSC [10] ( ) ( )
2 2

0ih jh ih h
x z z z− − −

 (γ>0) 
fuzzy entropy 

1 1

ln
c s
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w w
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Minkowski 

distance based 

soft subspace 

clustering 

MWK-Means 

[14] 

p

ih jh
x z−  hard fuzzy / 

Alternative 

distance based 

soft subspace 

clustering 

ASSC [15] 
( )( )

2

1 exp
h ih jh

x z− − −

 

fuzzy entropy 
1 1

ln
c s

jh jh

j h

w w
= =

  

Kernelized 

distance based 

soft subspace 

clustering 

WFKCA [16] ( ) ( )( )
2

ih jh
x z −  fuzzy fuzzy / 

3. DISTANCE METRIC LEARNING  

3.1 Unsupervised distance metric learning in composite kernel space 

To enable universal soft subspace clustering for various real world applications, the key is to adopt an approach that can learn 

a suitable distance function in an unsupervised manner during the clustering process. However, most current studies on 

unsupervised distance metric learning only consider it as a dimensional reduction problem [28], which cannot be directly 

applied to soft subspace clustering because the algorithms could only evaluate distance between data items on one single 

feature. 

In kernel methods, data in the original feature space are mapped into an unknown high dimensional reproducible Hilbert 

space, i.e. kernel space, so that the actual distance function between the data items can be fully determined to improve the 

learning capability of the linear machines [31]. Consider a set of unknown mappings {ϕt}, t=1, 2…, p. For each mapping, the 

input data x are mapped as a Lt-dimensional vector ϕt(x) in kernel space. Let {K1, K2, …, Kp} be the Mercer kernels 

corresponding to the implicit mappings, we have 

Kt(xi,xj) = ϕt(xi)T ϕt(xj), t=1, 2…, p, (13) 

where xi and xj are two data points in the feature space. In Eq.(13), Kt(xi, xj) can be regarded as a similarity measure between 

ϕt(xi) and ϕt(xj) in the kernel space generated by the tth mapping. To combine these kernels, a new set of independent mappings, 

Φ = {Φ1, Φ2, …, Φp}, can be constructed from the original mappings as follows. 

1

1

( )

( )
...

 
 
  =
 
 
 

x

0
x

0

, 2

1

( )
( )

...



 
 
  =
 
 
 

0

x
x

0

, …, ( )
...

( )

p

p


 
 
  =
 
 
  

0

0
x

x

                                                            

(14) 

 

Each mapping ( )
t

 x , t=1, 2…, p, converts x into an L-dimensional vector, where Lt is the dimensionality of ϕt and L = 

1

p

tt
L

= . While the implicit mappings ϕt do not have the same dimensionality, the kernel spaces spanned by Φt have the same 
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dimensionality. In this way, a well-defined linear combination can be achieved. Moreover, the following equation can also be 

obtained, 

( ) ( )
1 2

1 2

1 2

( , )
( ) ( )

0

T

T t t t
t t

K t t

t t

  = =
  = 



x x x x
x x ,  

where ( )
t

 x  forms a set of orthogonal bases in the CKS. Thus, any L-dimensional vector in the CKS can be expressed as a 

linear combination of the orthogonal bases. 

Suppose x is the prototype in feature space. Let 

1 111

2 221

1

( )

( )
( )

( )

T

p

p

p cpc

vv

vv

vv







   
   
    =
   
   
      

x 0 0

0 x 0
x

0 0 x

 1 2 1

1 1 1

( ) ( ) ( ) ( ) ( )
p p p

t t t t ct t c

t t t

v v v
= = =

 
=    =   
 
  x x x x x , 

where  

1
( ) ( )

p

j jt tt
v

=
 = x x , j = 1,2, …c and jt

v R  (15) 

denotes the jth vector in the CKS and the coordinates are [vj1… vjp]T. The equation can be interpreted with Fig. 1, where the 

prototype x in the feature space can be mapped into the CKS by a class of mappings simultaneously. 

x

j

1

2

( )1 x

( )2 x

( )j x

 

Fig. 1 Prototype in the feature space and its mappings in the CKS (x denotes the prototype in original feature space, and ( )
j

 x  denotes the 

jth mapping of x from original feature space to CKS) 

 

The general form of the objective function JCKS-SSC of soft subspace clustering in CKS (CKS-SSC) is given by 

( ) 2

1 1 1

, , ( , ) ( , , )
c n s

m

CKS SSC ji jh ih jh

j i h

J u w d x z


−

= = =

= + U W V U W V , (16a) 

where 

1
1

c

jij
u

=
= , i=1, 2…, n 

1
1

s

jhh
w

=
= ,  0,1

jh
w  ,  j = 1, 2, …, c 

2

1
1

p

jtt
v

=
= ,  -1,1

jt
v  ,  j = 1, 2, …, c 

(16b) 
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The first term in JCKS-SSC is the sum of within-cluster dispersions and the second term is the penalty term which helps to improve 

the quality of clustering results. For hard clustering, m=1 and uji∈{0,1}; for fuzzy clustering, m>1 and uji∈[0,1]. c is the 

number of clusters and  α≥1. With different H(U,W,V) and α value, different variants of soft subspace fuzzy clustering in CKS 

can be developed. 

Notice that in CKS-SSC, the prototype xih in the feature space is mapped into the CKS by c mappings simultaneously, one 

mapping for each cluster. This is distinct from existing kernel-based clustering algorithms in which all the prototypes are 

mapped to the kernel space via one single mapping only. By introducing the distance metric learning mechanism into CKS-SSC, 

the most suitable mapping can be learned for each cluster during the clustering process, which is helpful to improve the 

clustering performance on the datasets with clusters of different inner structures. 

Similar to existing kernelized clustering algorithms [32], there are two general variants of CKS-SSC: (i) methods that  

implicitly leave the prototypes in the kernel space during the clustering process, and (ii) methods that perform an inverse 

mapping to obtain the prototypes in the original feature space. In this paper, methods of this first kind are referred to as 

CKS-SSC-K, and the distance function d(xih,zjh) is given by
 

( , ) ( )
ih jh j ih jh

d x z x z=  − . (17) 

By taking the derivative of Eq.(16) with respect to zjh and setting it to zero, we have 

( )
1 1

, ,
2 ( ) 2 0

n nCKS SSC K m m

jh ji j ih jh jh jit i
jh

J
w u x w z u

z

 − −

= =


= −  + =


 

U W V
.
 

Given a fixed fuzzy partition matrix U, the cluster center in CKS zjh can be obtained using the following closed-form solution 

( )
1 11 1

1

1 1 1

( ) ( )

pnn n
mm m
ji jt t ihji j ih ji t ihp

i ti i

jh jtn n n
m m mt

ji ji ji

i i i

u v xu x u x

z v

u u u

= == =

=

= = =

   
    

   = = =
 
 
 

  


  
. (18) 

Substituting Eq.(18) into Eq.(17), we have: 

1 1

1 1 1

1 1

( ) ( )

( , ) ( ) = ( ) = ( )

n n
m m

ji t ih ji t ihp p p

i i

ih jh j ih jh jt t ih jt jt t ihn n
m mt t t

ji ji

i i

u x u x

d x z x z v x v v x

u u

= =

= = =

= =

   
    

   =  −  −  −
   
   
   

 
  

 
.

 

After further derivation, d2(xih, zjh), the squared distance between xih and zjh in the CKS, is given by  

( ) ( )
2

2 2 ( )

1
( , ) ( ) ( ) ( )

T p t

ih jh j ih jh j ih jh j ih jh jt jiht
d x z x z x z x z v e

=
=  − =  −  − = , (19) 

where 
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2

( ) 1 1 1

1 1 1

( ) ( ) ( )

( ) = ( ) ( )

T
n n n

m m m

ji t ih ji t ih ji t ih
t i i i

jih t ih t ih t ihn n n
m m m

ji ji ji

i i i

u x u x u x

e x x x

u u u

= = =

= = =

   
     

   =  −  −  −
   
   
   

  

  
 

( ) ( )

( )
, 1 , 2 1, 2,1 1 2 11

2

1
1

,,
= ( , ) 2

n nn m mm

j i j i t i h i hjk t kh ih i ik

t ih ih n m n m
iki jii

u u K x xu K x x
K x x

u u

= ==

=
=

− +
 

 
 

(20) 

 

denotes the squared distance between xih and zjh in the kernel space induced by the implicit mapping ϕt. 

On the other hand, the second kind of methods retains the prototypes in the feature space during clustering process. The 

methods are referred to as CKS-SSC-F. In the algorithms, d(xih, zjh) can be evaluated by 

( , ) ( ) ( )
ih jh j ih j jh

d x z x z=  − . (21) 

Accordingly, the squared distance in kernel space is computed by 

( ) ( ) ( )2
2 2

1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
p

T t

ih jh j ih j jh j ih j jh j ih j jh jt jih

t

d x z x z x z x z v e
=

=  − =  −  − = ,
 

where 

( )
( , )+ ( , ) 2 ( , )

t

jih t ih ih t ih jh t ih jh
e K x x K x z K x z= − .

 

(22) 

Here, consider the Gaussian kernel which is commonly used in the literatures, i.e.  

( )
2

2
( , ) exp , 1, 2,...,

2

ih jh

t ih jh

t

x x
K x x t p



 −
 = − =
 
 

,
 

then 

( , )
t ih ih

K x x = ( , )
t jh jh

K z z =1 

and 

( )( )
2 1 ( , )

t

jih t ih jh
e K x z= −

. 

By taking the derivative of Eq.(16) with respect to zjh and setting it to zero, we have 

( ) ( )
2

1 1

1 ( , ), ,
=2 0

pn
t ih jhCKS SSC F m

ji jh jt

i tjh jh

K x zJ
u w v

z z

− −

= =

 −
=

 
 

U W V

 

which leads to the expression 

2 2

1 1 1 1

( , ) ( , )
p pn n

m m

jh ji ih jt t ih jh ji jt t ih jh

i t i t

z u x v K x z u v K x z
= = = =

=    .
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It can be seen from both Eq.(19) and Eq.(22) that d2(xih,zjh) is determined by the sum of 
( )t

jih
e  weighted by 

2

jt
v . This provides the 

facility for developing soft subspace clustering algorithms in the CKS. Also, unsupervised distance metric learning in CKS is 

achieved since d(xih,zjh) can be determined adaptively if 
2

jt
v  are updated automatically during the clustering process. 

3.2 The CKS-EWFC-K  algorithm 

By incorporating the mechanism of distance metric learning into the framework of entropy weighting subspace clustering, 

CKS-EWFC-K is proposed based on the framework of CKS-SSC-K. The objective function JCKS-EWFC-K is given by  

( ) 2 2 2

1 1 1 1 1 1 1

, , ( , ) log log
pc n s c c s

m

CKS EWFC K ji jh ih jh jt jt jh jh

j i h j t j h

J u w d x z v v w w 
− −

= = = = = = =

= + +   U W V , (23a) 

subject to 

1
1

c

jij
u

=
= ,  0,1

ji
u  ，m>1 

1
1

s

jhh
w

=
= ,  0,1

jh
w  ,  j = 1, 2, …, c 

2

1
1

p

jtt
v

=
= , j = 1, 2, …, c 

(23b) 

where 
2
( , )

ih jh
d x z  is evaluated with Eq.(19), W = [wjh] is a c×s feature weight matrix, V=[vjt] is a c×p kernel weights matrix 

and U=[uji] is the fuzzy partition matrix. Note that vjt can be interpreted as the weight of the tth orthogonal base ( )
t

   in the jth 

mapping ( )
j

 x . It can take both positive and negative values. Similar with the role of 
1 1

log
c s

jh jhj h
w w

= =   in entropy 

weighting subspace clustering algorithms like EWKM [13] and ESSC [10], the penalty term 2 2

1 1
log

c p

jt jtj t
v v

= =   in Eq.(23a) is 

introduced to control the kernel weights in each cluster so that they can be optimized during the clustering process. Comparing 

Eq.(23) with Eq.(16), it can be seen that CKS-EWFC-K is a special case of CKS-SSC when H(U,W,V) takes the form of  

2 2

1 1 1 1

log log
pc c s

jt jt jh jh

j t j h

v v w w 
= = = =

+   and α=1. 

The main idea of CKS-EWFC-K is to minimize the sum of the within-cluster dispersions and the negative weight entropy in 

Eq.(23). It contains three terms, the within-cluster compactness in the kernel space, the negative entropy of both feature weights 

and the kernel weights. The positive parameters γ and η are used to control the influences of the entropy of both wjh and vjt. 

The minimization of the objective function in Eq.(23) with the constraints is essentially a class of constrained nonlinear 

optimization problems. The usual strategy to optimize JCKS-EWFC-K is to achieve partial optimization for U, W and V, which can 

be achieved iteratively by solving the three minimization problems below: 

1. Problem P1: Fix U and W, solve the reduced problem ( ), ,
CKS EWFC K

J
− −

U W V ; 

2. Problem P2: Fix U and V, solve the reduced problem ( ), ,
CKS EWFC K

J
− −

U W V ; 
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3. Problem P3: Fix W and V, solve the reduced problem ( ), ,
CKS EWFC K

J
− −

U W V . 

Problem P1 is solved by 

2

1

exp exp
p

jt jt

jt

t

v
 

 =

−  −    
=      

    
  (24) 

where 
1

n m

jt ji jiti
u 

=
= , ( )

1

s t

jit jh jihh
w e

=
= . 

Theorem 1. Given the fixed matrices U and W, JCKS-EWFC-K is minimized with V computed using Eq.(24). 

Proof: Substituting Eq.(19) into Eq.(23), the objective function of CKS-EWFC-K can be rearranged as 

( ) 2 2 2

1 1 1 1 1 1 1

, , log log
p pn c c c s

m

CKS EWFC K jt ji jit jt jt jh jh

i j t j t j h

J v u v v w w  
− −

= = = = = = =

= + +  U W V , 

where ( )

1

s t

jit jh jihh
w e

=
= .

 

Using the Lagrange multipliers for the constraint 2

1
1

p

jtt
v

=
= , j=1,2,…,c, the Lagrange function L is given by

 

( ) 2 2 2 2

1 1 1 1 1 1 1 1 1

, log log 1
p p pn c c c s c

m

jt ji jit jt jt jh jh j jt

i j t j t j h j t

L v u v v w w v     
= = = = = = = = =

 
= + + − − 

 
    V . (25) 

For ease of description, we denote 
2

1 1

pc
m

i jt ji jit

j t

J v u 
= =

= . By setting the gradient of Eq.(25) with respect to vjt
2 and λj to zero, we 

obtain 

( )2 2

1 1

2 2 2
1

log
0

c p

n jt jtj ti

j

ijt jt jt

v vL J

v v v

  
= =

=

 
= + − =

  

 
  (26) 

and 

2

1
1 0

p

jtt
j

L
v

 =


= − =


 . (27) 

From Eq.(26), we have 

( )2
1 log 0

jt jt j
v  + + − = , 

where
1

n m

jt ji jiti
u 

=
= , ( )

1

s t

jit jh jihh
w e

=
= . By substituting it into Eq.(27), λj is eliminated and the closed-form solution for vjt

2 

is obtained,  i.e. ( ) ( )2

1
exp exp

p

jt jt jtt
v    

=
= − − . Theorem 1 is thus proved. □ 

Problem P2 is solved by 

( ) ( )( )1
exp exp

s

jh jh jhh
w    

=
= − −  (28) 
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where ( )
2

1

n m

jh ji ih jhi
u x z

=
= − . 

Theorem 2. Given fixed matrices U and V, JCKS-EWFC-K is minimized with W computed using Eq.(28). 

Proof: The objective function defined in Eq.(23) can be rearranged as 

( ) 2 2 2

1 1 1 1 1 1 1

, , ( , ) log log
pc s n c c s

m

CKS EWFC K jh ji ih jh jt jt jh jh

j h i j t j h

J w u d x z v v w w 
− −

= = = = = = =

= + +   U W V

 

Using the Lagrange multipliers for the constraint 
1

1
s

jhh
w

=
= , j=1,2,…,c, the Lagrange function L is given by  

( ) ( ) ( )1 1
, , , 1

c s

CKS EWFC K j jhj h
L J w  

− − = =
= − − W U W V . (29) 

By setting the gradient of Eq.(29) with respect to wjh and δj to zero, we have 

( )2

1
( , ) 1 log 0

n m

j ji ih jh jh ji
jh jh

L J
u d x z w

w w

   
=

 
= − = + + − =

 
  (30) 

and 

1
1 0

s

jhh
j

L
w

 =


= − =


 . (31) 

From Eq.(30), we have 

( ) ( )( )2

1
exp exp ( , )+

n m

jh j ji ih jhi
w u d x z   

=
= −   

By substituting it into Eq.(31), δj is eliminated and the closed-form solution for optimal wjh is obtained, i.e. 

( ) ( )( )1
exp exp

s

jh jh jhh
w    

=
= − −  with 2

1
( , )

n m

jh ji ih jhi
u d x z

=
= . Theorem 2 is thus proved. □ 

Problem P3 is solved by 

2 2

1 1

1

c

m m
ji ji ri

r

u d d
− −

− −

=

=   (32) 

in which dji is computed with 2 2

1
( , )

s

ji jh ih jhh
d w d x z

=
= .  

Theorem 3. Given fixed matrices W and V, JCKS-EWFC-K is minimized with U computed using Eq.(32). 

Proof: Denoting 2 2

1

( , )
s

ji jh ih jh

h

d w d x z
=

= , the objective function defined in Eq.(23) can be rearranged as 

( ) 2 2 2

1 1 1 1 1 1

, , log log
pc n c c s

m

CKS EWFC K ji ji jt jt jh jh

j i j t j h

J u d v v w w 
− −

= = = = = =

= + +  U W V  

Using the Lagrange multipliers for the constraint 
1

1
c

jij
u

=
= , i=1,2,…,n, the Lagrange function L is given by 
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( ) 2 2 2

1 1 1 1 1 1 1 1

, log log 1
pc n c c s n c

m

ji ji jt jt jh jh i ji

j i j t j h i j

L u d v v w w u    
= = = = = = = =

 
= + + − − 

 
    U . (33) 

By setting the gradient of Eq.(33) with respect to uji and ζi to zero, we have 

1 2
0

m

ji ji i

ji

L
mu d

u


−


= − =


 (34) 

and 

1
1 0

c

jij
i

L
u



 =


= − =


 . (35) 

By substituting Eq.(34) into Eq.(35), ζi  is eliminated and the closed-form solution for uji  is obtained, i.e. 

2 2

1 1

1

=
c

m m
ji ji ri

r

u d d
− −

− −

=



. Theorem 3 is thus proved. □ 

As the cluster centers are in the CKS and it is unlikely to evaluation of the centers directly, the theorems discussed above 

enable the elimination of the cluster centers from the objective function so that the objective function of CKS-EWFC-K defined 

in Eq.(23) can be readily optimized. Furthermore, the proposed CKS-EWFC-K algorithm can also be utilized for applications 

involving relational data.  

The CKS-EWFC-K algorithm is summarized in Table 3. It starts by initializing the memberships and feature weights, 

followed by repeated updating of the kernel weights by fixing the memberships and feature members, until the number of 

changes per iteration in the membership matrix falls below a given threshold. That is, the objective function Eq.(23) is 

minimized interactively according to Theorems 1 to 3. Suppose in the qth iteration where partial minimization is achieved, the 

following relationship holds, 

J(U(q+1), W(q+1), V(q+1)) ≤J(U(q), W(q+1), V(q+1)) ≤J(U(q), W(q), V(q+1))≤J(U(q), W(q), V(q)). 

It implies that J(U,W,V) is a decreasing function with respect to the iteration number q. Therefore, the proposed algorithm 

CKS-EWFC-K can subsequently converges to either a local optimal solution or a saddle point of the objective function. 

Table 3 The pseudo-code of the CKS-EWFC-K algorithm 
Algorithm 1. CKS-EWFC-K 

Input: D—the dataset, c—the number of clusters, q—the iteration number, s—the number of features, ε—threshold for determination 

1: Randomly initialize membership matrix and initialize W with wjh = 1/s 

2: for q = 1: maxIter 

3:    Update V(q+1) according to Eq.(24) with W(q) and U(q); 

4:    Update W(q+1) according to Eq.(28) with V(q+1) and U(q); 

5:    Update U(q+1) according to Eq.(32) with W(q) and V(q); 

6:    Calculate the objective function J(U(q+1), W(q+1), V(q+1)) with Eq.(23); 

7    if | J(U(q+1), W(q+1), V(q+1))- J(U(q), W(q), V(q))| < ε, break; 

8: end for 

9: Output W(q+1), V(q+1) and U(q+1). 
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The computational complexity of CKS-EWFC-K per iteration is O(sn2cp). The space required by the algorithm to store the 

kernel matrices, cluster centers V, feature weight matrix W, kernel weight matrix V and the partition matrix U is O(n2p), O(cs), 

O(cs), O(cp) and O(cn) respectively. 

3.3 The CKS-EWFC-F algorithm 

The CKS-EWFC-F algorithm is developed based on the framework of CKS-SSC-F and using the distance function in Eq.(21). 

The objective function JCKS-EWFC-F is given by 

( ) 2 2 2

1 1 1 1 1 1 1
, , , ( , ) log log

c n s c p c sm

CKS EWFC F ji jh ih jh jt jt jh jhj i h j t j h
J u w d x z v v w w 

− − = = = = = = =
= + +      U W V Z  (36a) 

subject to 

1
1

c

jij
u

=
= ,  0,1

ji
u  ，m>1 

1
1

s

jhh
w

=
= ,  0,1

jh
w  ,  j = 1, 2, …, c 

2

1
1

p

jtt
v

=
= , j = 1, 2, …, c 

(36b) 

where 
2
( , )

ih jh
d x z  is evaluated with Eq.(21). Similar to CKS-EWFC-K, to minimize the objective function JCKS-EWFC-F, it is 

necessary to satisfy the three conditions below: 

2

1

exp exp
p

jt jt

jt

t

v
 

 =

−  −    
=      

    
  (37) 

where 
1

n
m

jt ji jit

i

u 
=

= , ( )
1

2 1 ( , )
s

jit jh t ih jh

h

w K x z
=

= − ,

 

1

exp exp
s

jh jh

jh

h

w
 

 =

−  −    
=      

    
  (38) 

where 2

1

( , )
n

m

jh ji ih jh

i

u d x z
=

= , and 

 

2 2

1 1

1

c

m m
ji ji ri

r

u d d
− −

− −

=

=   (39) 

where dji is computed with 2 2

1
( , )

s

ji jh ih jhh
d w d x z

=
= , 

2 2

1 1 1 1

( , ) ( , )
p pn n

m m

jh ji ih jt t ih jh ji jt t ih jh

i t i t

z u x v K x z u v K x z
= = = =

=     (40) 

Note that zjh in Eq.(40) cannot be solved directly and the following strategy is adopted. Let the right-hand side of Eq.(40) be 

f(zjh). The first step here is to specify the initial value zjh
(0) and then compute f(zjh

(0)) and set it to zjh
(1). The step is repeated until 

the (q+1)th solution zjh
(q+1) is very close to the qth solution. Thus, if Eq.(37), Eq.(38) and Eq.(39) are used to solve for vjt

2, wjh 

and uji respectively, an iterative method is also needed to solve zjh before advancing to next iteration step of the CKS-EWFC-F 
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algorithm. In practice, however, it is found to be sufficient to use one step to approximate zjh
(l) in each iteration step of the 

CKS-EWFC-F algorithm. Table 4 summarizes the CKS-EWFC-F algorithm. 

Table 4 The pseudo-code of the CKS-EWFC-F algorithm 
Algorithm 2. CKS-EWFC-F 

Input: D—the dataset, c—the number of clusters, q—the iteration number, s—the number of features, ε—threshold for determination 

1: Randomly initialize membership matrix and initialize W with wjh = 1/s 

2: for q = 1: maxIter 

3:    Update V(q+1) according to Eq.(37) with Z(q), W(q) and U(q); 

4:    Update Z(q+1) according to Eq.(40) with U(q) and V(q+1); 

5:    Update W(q+1) according to Eq.(38) with U(q), V(q+1) and Z(q+1); 

6:    Update U(q+1) according to Eq.(39) with V(q+1), W(q+1) and Z(q+1); 

7:    Calculate the objective function J(U(q+1), W(q+1), V(q+1), Z(q+1)) with Eq.(36); 

8  if | J(U(q+1), W(q+1), V(q+1), Z(q+1))- J(U(q), W(q), V(q), Z(q))| < ε, break; 

9: end for 

10: Output W(q+1), V(q+1) and U(q+1). 

 

Using a strategy similar to that in Section 3.2, we can prove that CKS-EWFC-F is also convergent and the proof is not 

shown here for the sake of space. Instead, we will investigate the robustness of CKS-EWFC-F to noise or outliers which often 

exist in real-world applications. The utilization of the distance function in Eq.(21) can improve the robustness since noise or 

outliers influence the centers of clusters. We will show that according to influence function analysis, the estimator resulting 

from Eq. (36) is an M-estimator respect to z  which is robust to noise and outliers. 

Let {x1, …, xn} be a dataset of interest and θ be an unknown parameter to be estimated. The M-estimator uses a suitable 

symmetric positive-definite function called the robust-loss function and the objective function is constructed by summing the 

loss over all data points. Thus, in the M-estimator approach, the objective function J(θ ) can be written as 

( ) ( )
1

;
n

jj
J x  

=
= , (41) 

where ρ is an arbitrary function that can measure the loss of xj and θ. Then, the necessary condition for minimizing Eq.(41) is 

obtained by setting the derivative of Eq.(41) to zero, i.e. 

( )
1

0
n

jj
x 

=
− = , (42) 

where ( ) ( )j j
x x    − =  −  . Let w(xj-θ) be the weight function defined by 

φ(xj-θ)=(xj-θ)w(xj-θ).  

By substituting it into Eq.(42), the M-estimator can be expressed as the weighted mean 

( )

( )1

1

n
j j

jn
j

i j

i

w x
x

w x




=

=

−
=

−




. 
(43) 

Given a starting value for θ, the fixed-point iteration or Newton’s method can be applied to obtain a solution to Eq.(43) 

iteratively. 
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Usually, the influence function or influence curve (IC) can be used to assess the relative influence of individual 

observations toward the value of an estimate. The influence function of the M-estimator is proportional to the function φ and 

can be calculated as 

( )
( )

; ,
'( ) ( )

X

x
IC x F

x dF x

 


 

−
=

−
, (44) 

where FX(•) denotes the distribution function of X. If the influence function of the estimator is unbounded, an outlier might 

cause problems. 

In order to analyze the robustness of CKS-EWFC-F, the first term in Eq.(36) can be rewritten as 

1
( , , )J U W V  ( )2

1 1 1 1
1 ( , )

c s n pm

ji jh jt t ih jhh h i t
u w v K x z

= = = =
= −    . (45) 

Accordingly, the estimate of z resulting from Eq.(45) is an M-estimator with 

ρ(x-z) ( )2

1 1 1
1 ( , )

c s pm

ji jh jt t ih jhj h t
u w v K x z

= = =
= −    (46) 

and 

( )x z − = ( ) 2

2
1

( , )p
t ih jhm

ji jh ih jh jt

t t

K x z
u w x z v

=

−   = 
( )

( )( )

2

2
2 2

1 exp 2

mp
jt ji jh ih jh

t
t ih jh t

v u w x z

x z =

−

−
 . (47) 

By applying the L’Hospital’s rule, we have 

( ) ( )
( )

2

2 2

2
1

lim lim exp 0
2

p
ih jhm

jt ji jh ih jh t
x x

t t

x z
x z v u w x z 

→ →
=

  −
  − = − − =
   

  

  (48) 

On the other hand, we can easily obtain the maximum and minimum values of φ(x-z) by solving ( ) 0x x  −  = . Thus, 

the function φ(x-z) computed using Eq.(47) is bounded and continuous, which implies that our new estimator has a bounded and 

continuous influence function, with finite gross error sensitivity. Hence, CKS-EWFC-F is robust to noise or outliers. 

3.4 Connection with other clustering algorithms 

In the proposed methods, distance metric learning is achieved with all the data compared in the CKS. The CKS is constructed 

by combining several kernel spaces and the knowledge from different feature spaces is integrated so that the clustering 

algorithm can learn the most suitable combination of feature spaces through an iterative process.  

From another perspective, both CKS-EWFC-K and CKS-EWFC-F can be regarded as multiple-kernel extensions of EWKM 

[13], which is one of the most popular entropy weighting soft subspace clustering algorithms. Besides, CKS-EWFC-K can also 

be regarded as a soft subspace extension of multiple kernel fuzzy clustering (MKFC) [33]. 
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Both CKS-EWFC-K and CKS-EWFC-F can be readily extended to handle multi-view data. In multi-view clustering,  a 

dataset is partitioned into groups by considering multiple views simultaneously during the clustering process. In order to extend 

the two algorithms to handle multi-view data, each feature in the algorithms can be extended to a feature group which is 

interpreted as features in different views. In each view, evaluation of the similarities between the data points within each view 

can be performed in the CKS. The features in the same group share an identical weight. The development of multiple-view 

clustering algorithms in CKS is an important future work of our research. 

Similar to the argument that k-means is a special case of FCM, both CKS-EWFC-K and CKS-EWFC-F algorithms are 

reducible to special cases depending on the value of uji as follows: 

1 if , =1,2,...,

0

ji ri

ji

d d r c
u

otherwise


= 


 

Hence, both algorithms can be reduced to a soft subspace clustering algorithm based on hard partition. To the best of our 

knowledge, there is no previous study attempting to extend EWKM to the CKS version. 

3.5 Parameter setting 

Like most FCM-based clustering algorithms, it is necessary to set the fuzzy index m appropriately in both CKS-EWFC-K and 

CKS-EWFC-F. The results from a considerable number of experiments have shown empirically that the appropriate range is m

[1.05, 1.2]. It is also necessary to set γ and η appropriately. In our experiments, satisfactory results can be obtained for both 

algorithms with γ between 1 and 1000, and η between 1 and 10000. However, for a specific application, the tuning and choice of 

the values for γ and η is dependent on the domain knowledge which is always unavailable. 

4. EXPERIMENTS 

The proposed CKS-EWFC-K and CKS-EWFC-F algorithms were evaluated with a large number of experiments on real 

datasets of different complexities. The clustering results were compared with those obtained using several classical soft 

subspace clustering algorithms. All the experiments were implemented on a computer with an Intel i5-3230M CPU and 4GM 

RAM. 

4.1 Performance metrics and settings 

To evaluate the quality of clustering results, two measures, i.e. the rand index (RI) [34] and the normalized mutual 

information (NMI) [20], were used for evaluating the quality of clustering results. 

Let R be a reference partition containing m classes, and Q be the hard partition containing K clusters given by a clustering 

algorithm. Furthermore, suppose (i) the number of pairs of data objects belonging to a same class in R and to a same cluster in 
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Q is a; (ii) the number of pairs of data objects belonging to a same class in R but to a different cluster in Q is b; (iii) the number 

of pairs of data objects belonging to a different class in R but to a same cluster in Q is c; and (iv) the number of pairs of data 

objects belonging to different classes in R and to a different cluster in Q is d, RI is computed as 

a d
RI

a b c d

+
=

+ + +
. (49) 

Let n be the total number of data samples, ni be the number of data samples in class i, nj be the number of samples in cluster 

j, and ni,j be the number of samples in class i and cluster j. NMI is then defined as 

,

,,
log log log

i j ji

i j i ji j i j
i j

n n nn
NMI n n n

n n n n

    
=          
    (50) 

Obviously, NMI is equal to 1 when the clustering results perfectly match the external category labels, and close to 0 for random 

partitioning. 

Furthermore, paired t-test was used to check whether the average difference in the performance, in terms of RI and NMI, 

between CKS-EWFC-K and its rivals is statistically significant. The smaller the p-value, the more significant the difference. A 

p-value of 0.05 or less is usually considered statistically significant [35]. 

As discussed in Section 3.1, the CKS is constructed using multiple kernel functions (essentially a similarity measure for pairs 

of data) and can be used in many different ways. Similarly, different sets of kernel mappings can also be constructed. There are 

two common approaches to construct the kernel functions. First, given a set of representative vectors for data items, one can 

employ a number of reproducible kernel functions in the Hilbert space for the construction of multiple kernels. Second, given a 

set of raw data, different types of feature vectors can be extracted. These feature vectors often correspond to different cues and 

the similarities can be measured in different feature spaces. The first approach was adopted in this paper to construct the kernel 

functions for the experiments using the UCI dataset.  

Basis kernel mappings with different kernel functions were constructed to evaluate the distance between the data items on 

each feature in the CKS. To determine the optimal distance for a particular feature, a set of reasonable kernels frequently used 

by kernel methods were selected for our experiments, including a polynomial kernel with θ=1 and p=2, a linear kernel, and 

seven Gaussian kernels whose bandwidths are log(0.1), log(0.05), log(0.01), log(0.005), log(0.001), log(0.0005) and 

log(0.0001) respectively. Table 5 and Table 6 give the details of the basis kernels used for CKS-EWFC-K and CKS-EWFC-F 

respectively. After generating the kernel matrices for the whole dataset, the values of the elements were normalized to the range 

of [0, 1]. 

Table 5 Basis kernel for CKS-EWFC-K 

id Kernel Parameters settings 

K1 Polynomial kernel d=1, p=2 
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σ=log(0.1) 

K3 σ=log(0.05) 

K4 σ=log(0.01) 

K5 σ=log(0.005) 

K6 σ=log(0.001) 

K7 σ=log(0.0005) 

K8 σ=log(0.0001) 

K9 
Linear kernel 

1 2 1 2
( , )

T
k =x x x x  

/ 

 

Table 6 Basis kernel for CKS-EWFC-F 

id kernel type Parameters settings 

K2 

Gaussian kernel 
2

1 2

1 2 2
( , ) exp

2
k



 −
 = −
 
 

x x
x x  

σ=log(0.1) 

K3 σ=log(0.05) 

K4 σ=log(0.01) 

K5 σ=log(0.005) 

K6 σ=log(0.001) 

K7 σ=log(0.0005) 

K8 σ=log(0.0001) 

4.2 Experiments on UCI datasets 

The proposed methods were evaluated with experiments conducted using datasets obtained from the UCI repository. Only 

the extracted feature vectors are available from the datasets, the raw data are not provided. The datasets are described with a 

data matrix of “objects × features”. The details are shown in Table 7. 

Table 7 Details of the UCI datasets 

Dataset 
Number of 

instances 

Number of 

features 
Number of clusters 

Australian 690 15 2 

Breast Tissue 106 9 6 

Bupa 345 6 2 

Heart 270 13 2 

Iris 150 4 3 

Parkinsons 195 23 2 

Pima Indians Diabetes 768 8 2 

Vehicle 846 18 4 

Wdbc 569 30 2 

Wine 178 13 3 

In the experiments, the clustering performance of both CKS-EWFC-K and CKS-EWFC-F was compared with that of six 

classical soft subspace clustering algorithms. Note that the algorithms as KEWFC-K and KEWFC-F in the table refer to the 

implementation of CKS-EWFC-K and CKS-EWFC-F with one basis kernel only. This will be further discussed in Section 4.3. 

The parameters of these 10 algorithms and their settings are tabulated in Table 8. 

 

Table 8 Algorithms and the setting of the parameters in the experiments 

Algorithms Parameter setting 

CKS-EWFC-K 

m=1.05; 1.2 

γ = 1;5;10;50;100;1000 

η = 1;5;10;50;100;1000;10000 

CKS-EWFC-F 

m=1.05; 1.2 

γ = 1;5;10;50;100;1000 

η = 1;5;10;50;100;1000;10000 

KEWFC-K 
The parameters m, γ and η take values with which CKS-EWFC-K 

obtained the best clustering result 
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KEWFC-F 
The parameters m, γ and η take values with which CKS-EWFC-F 

obtained the best clustering result 

EWKM [13] γ = 1e-3; 1e-2; 1e-1; 1e0; 1e1; 1e2; 1e3; 1e4; 1e5; 1e6 

FWKM [12] 
β = 1.25; 1.5; 1.75; 2.0; 2.25; 2.5; 2.75; 3.0; 3.25; 3.5; 3.75; 4.0;

 4.25; 4.5; 4.75; 5.0; 5.25; 5.5; 5.75; 6.0 

AWA [8] 
α= 1.25; 1.5; 1.75; 2.0; 2.25; 2.5; 2.75; 3.0; 3.25; 3.5; 3.75; 4.0; 4.25; 

4.5; 4.75; 5.0; 5.25; 5.5; 5.75; 6.0 

LAC [38] h = 1;1/2; 1/5; 1/10; 1/50; 1/100; 1/1000 

FSC[11] 
α= 1.1;1.2;1.3;1.4;1.5;1.75;2;2.5;3;3.5;4 

ε= 0.0001;0.001;0.01;0.1 

MPC [9] / 

To evaluate the clustering algorithms with RI and NMI, the degrees of fuzzy membership were converted to hard 

assignments by assigning each data to the cluster with the highest degree of membership. In the experiments, under a fixed 

parameter setting, each algorithm was executed 10 times with different initial partitions. The best results achieved by the 10 

algorithms, expressed in terms of RI and NMI, are tabulated in Table 9 and Table 10 respectively. It can be seen from the tables 

show that no algorithm could give the best result for all the datasets. The overall clustering quality of CKS-EWFC-K was the 

best although classical soft subspace clustering algorithms outperformed in some cases. Another observation from the 

experiments is that the clustering performance was unstable for some soft subspace clustering algorithms with a fixed distance 

function when the algorithm was not properly initialized. For example, when MPC was performed on the datasets Breast Tissue, 

Parkinsons and Pima, the clusters always merged together if MPC was not initialized properly, which degraded the clustering 

performance considerably. This was not an issue for CKS-EWFC-K which always gave satisfactory clustering results even if 

the initialization was suboptimal. The result demonstrates that integrating distance metric learning into soft subspace clustering 

can guarantee stable clustering quality. Similar conclusions can be drawn for CKS-EWFC-F. 

4.3 Distance metric learning in CKS  

To assess the advantage of distance metric learning in CKS, the two proposed algorithms CKS-EWFC-K and CKS-EWFC-F 

were implemented respectively with one basis kernel only to investigate the effect of basis kernels on the clustering 

performance. The single basis kernel version of CKS-EWFC-K and CKS-EWFC-F are denoted as KEWFC-K and KEWFC-F 

respectively. 

For the sake of space, the details of the experiments conducted with CKS-EWFC-K are only given here. The optimal 

parameters with which CKS-EWFC-K achieved the best clustering result were first found by grid searching strategy, which 

were then applied to KEWFC-K. The performance of KEWFC-K in terms of RI and NMI with different basis kernels is shown 

in Table 11 and Table 12 respectively. The experiments for KEWFC-F were conducted in the same way and the corresponding 

results are shown in Table 13 and Table 14. 

It can be seen from Table 11 and Table 12 that with one fixed basis kernel, the performance of KEWFC-K was generally 

inferior to that of CKS-EWFC-K. Given a fixed basis kernel, while KEWFC-K was able to give better clustering result for some 
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datasets, its performance was rather poor in other cases. This illustrates that “one basis kernel fitting all datasets” is not possible 

because the data items on each feature can have different relationships which could not be evaluated with a single dissimilarity 

measure. Meanwhile, CKS-EWFC-K could always obtain satisfactory results for different datasets, showing that the 

development of soft subspace fuzzy clustering in CKS can improve the clustering results by automatically selecting the 

effective kernels along with each feature. This is advantageous in practice since soft subspace fuzzy clustering in CKS can be 

utilized without the need to identify the most basis kernel in advance. Another observation from the experiments is that, with 

the same parameters settings, the best average clustering result of CKS-EWFC-K was always determined by the best results of 

KEWFC-K over different basis kernels. The result illustrates that the introduction of effective kernel into the basis kernel set 

can improve the clustering quality of CKS-EWFC-K. Similar conclusions can be obtained from CKS-EWFC-F. 
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Table 9 Clustering performance in terms of RI 

Dataset Measure 
CKS-EWFC-

K 

CKS-EWFC-

F 
EWKM FWKM AWA FSC LAC MPC 

Australian 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.7183 

0.0783 

 

 

0.7204 

0.0888 

 

 

0.5977 

0.0334 

2.0575e-03 

9.0972e-03 

0.5493 

0.0000 

7.6859e-05 

7.6859e-05 

0.5512 

0.1079 

1.7245e-03 

2.6668e-03 

0.5027 

0.0048 

1.0378e-05 

2.0905e-04 

0.5293 

0.0103 

3.9393e-05 

5.5209e-04 

0.6152 

0.0000 

2.4378e-03 

1.2236e-02 

Breast Tissue 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.8100 

0.0227 

 

 

0.7457 

0.0258 

 

 

0.7242 

0.0240 

1.6233e-06 

7.3438e-02 

0.6097 

0.0411 

3.2718e-07 

3.2718e-07 

0.7637 

0.0320 

4.0497e-04 

0.2757 

0.7353 

0.0235 

1.7193e-04 

0.4086 

0.7170 

0.0219 

8.3489e-07 

1.8589e-02 

0.2928 

0.2725 

1.9488e-04 

7.4513e-04 

Bupa 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.5154 

0.0024 

 

 

0.5047 

0.0008 

 

 

0.5107 

0.0004 

3.4153e-04 

2.3321e-06 

0.4997 

0.0002 

1.0851e-08 

1.0851e-08 

0.5034 

0.0003 

1.0607e-07 

3.8450e-02 

0.5052 

0.0017 

7.6199e-07 

0.3931 

0.5145 

0.0023 

2.3089e-04 

1.0124e-09 

0.4987 

0.0000 

3.8346e-09 

5.9967e-07 

Heart 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.6971 

0.0000 

 

 

0.6816 

0.0088 

 

 

0.6579 

0.0640 

8.4682e-02 

0.3034 

0.5768 

0.0060 

3.1771e-13 

3.1771e-13 

0.5606 

0.0601 

5.1600e-05 

1.7295e-04 

0.5407 

0.0662 

3.8109e-05 

1.1248e-04 

0.6724 

0.0487 

0.1439 

0.6270 

0.5826 

0.0906 

3.1266e-03 

5.7254e-03 

Iris 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.9267 

0.0000 

 

 

0.8737 

0.0000 

 

 

0.8667 

0.0112 

3.9787e-08 

7.8325e-02 

0.9003 

0.0207 

2.9472e-03 

2.9472e-03 

0.9464 

0.0040 

8.4857e-08 

7.7188e-13 

0.9381 

0.0241 

0.1709 

1.4593e-05 

0.8622 

0.0739 

2.2130e-02 

6.3332e-1 

0.8889 

0.0614 

8.3453e-02 

0.4539 

Parkinsons 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

1.0000 

0.0000 

 

 

0.9799 

0.0636 

 

 

0.6606 

0.1193 

8.5495e-06 

2.5712e-05 

0.5632 

0.0089 

9.6665e-17 

9.6665e-17 

1.0000 

0.0000     

NaN     

0.3434 

0.6280 

0.0022 

1.6045e-021 

2.8247e-08 

0.6117 

0.0000 

0.0000 

1.9886e-08 

0.6270 

0.0000 

0.0000 

2.8810e-08 

Pima Indians 

Diabetes 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.6153 

0.0012 

 

 

0.5574 

0.0050 

 

 

0.5507 

0.0000 

3.6419e-17 

3.8989e-03 

0.5388 

0.0282 

1.0173e-05 

1.0173e-05 

0.5390 

0.0000 

8.1238e-18 

3.9841e-06 

0.5390 

0.0000 

8.1238e-18 

3.9841e-06 

0.5444 

0.0022 

8.3332e-16 

5.3075e-05 

0.5450 

0.0000 

1.7106e-17 

7.5242e-05 

Vehicle 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.6647 

0.0220 

 

 

0.6641 

0.0019 

 

 

0.6561 

0.0096 

0.2949 

1.7017e-02 

0.6482 

0.0393 

0.2593 

0.2593 

0.6715 

0.0106 

0.4114 

5.8058e-02 

0.6675 

0.0098 

0.7394 

0.3399 

0.6471 

0.0138 

4.1792e-02 

3.4618e-03 

0.6535 

0.0222 

0.3881 

0.1779 

wdbc 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.8968 

0.0000 

 

 

0.8605 

0.0031 

 

 

0.8365 

0.0063 

2.1793e-10 

1.1396e-08 

0.8365 

0.0000 

0.0000 

0.0000 

0.7984 

0.0502 

1.5858e-04 

3.0998e-04 

0.7515 

0.1170 

3.4811e-03 

1.2923e-03 

0.8423 

0.0000 

0.0000 

3.2166e-04 

0.8394 

0.0000 

0.0000 

3.9313e-04 

Wine 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.9461 

0.0000 

 

 

0.8964 

0.0649 

 

 

0.6835 

0.0061 

3.3567e-16 

8.1897e-02 

0.7103 

0.0206 

4.6474e-11 

4.6474e-11 

0.8582 

0.0411 

8.2594e-05 

3.0590e-03 

0.8058 

0.0316 

1.9727e-07 

0.1093 

0.8316 

0.0646 

3.3142e-04 

4.2088e-02 

0.8899 

0.0139 

4.0710e-05 

0.5219 

Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 
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Table 10 Clustering performance in terms of NMI 

Dataset Measure 
CKS-EWFC-

K 

CKS-EWFC-

F 
EWKM FWKM AWA FSC LAC MPC 

Australian 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.3686 

0.1345 

 

 

0.3744 

0.1512 

 

 

0.1425 

0.0496 

1.0089e-03 

4.9048e-03 

0.1043 

0.0000 

1.5658e-04 

1.5658e-04 

0.0909 

0.1730 

1.5197e-03 

2.5388e-03 

0.0169 

0.0095 

1.5621e-05 

2.7267e-04 

0.1294 

0.0452 

6.3061e-04 

3.5035e-03 

0.1693 

0.0000 

1.1453e-03 

6.3997e-03 

Breast Tissue 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.4856 

0.0218 

 

 

0.2733 

0.0317 

 

 

0.3189 

0.0173 

1.8098e-04 

6.0724e-03 

0.3409 

0.0261 

4.5030e-04 

4.5030e-04 

0.3995 

0.0467 

1.1745e-02 

1.2560e-04 

0.3179 

0.0118 

3.1117e-05 

1.4512e-03 

0.2577 

0.0127 

1.1330e-06 

0.2.339 

0.1097 

0.2315 

1.9645e-03 

6.2476e-02 

Bupa 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.0196 

0.0000 

 

 

0.0007 

0.0001 

 

 

0.0105 

0.0000 

0.7420 

1.9475e-14 

0.0134 

0.0000 

2.3382e-02 

2.3382e-02 

0.0060 

0.0000 

5.7077e-04 

3.3855e-12 

0.0102 

0.0011 

0.5400 

4.4851e-10 

0.0103 

0.0020 

0.1137 

3.4198e-07 

0.0063 

0.0000 

8.7981e-04 

2.1692e-12 

Heart 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.3062 

0.0000 

 

 

0.2836 

0.0130 

 

 

0.2827 

0.1047 

0.4963 

0.9800 

0.1118 

0.0090 

1.5395e-13 

1.5395e-13 

0.1023 

0.0867 

3.9637e-05 

1.2292e-04 

0.0649 

0.1014 

3.5981e-05 

1.0146e-04 

0.2828 

0.0767 

0.3605 

0.9785 

0.1284 

0.1386 

2.8664e-03 

5.0177e-03 

Iris 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.8513 

0.0000 

 

 

0.7419 

0.0000 

 

 

0.7416 

0.0291 

8.2314e-07 

0.9689 

0.7882 

0.0292 

7.7187e-05 

7.7187e-05 

0.8584 

0.0074 

1.4348e-02 

2.8000e-12 

0.8525 

0.0246 

0.8817 

1.8233e-07 

0.7923 

0.0268 

6.5652e-05 

2.1660e-04 

0.7979 

0.0518 

9.8465e-03 

7.6477e-03 

Parkinsons 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

1.0000 

0.0000 

 

 

0.9554 

0.1409 

 

 

0.3206 

0.0142 

1.2106e-16 

2.3173e-07 

0.0905 

0.0611 

4.4258e-12 

4.4258e-12 

1.0000 

0.0000     

NaN     

0.3434 

0.3059 

0.0000 

1.7736e-143 

1.4477e-07 

0.2973 

0.0000 

1.5866e-143 

1.2908e-07 

0.0000 

0.0000 

0.0000 

4.9132e-09 

Pima Indians 

Diabetes 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.1306 

0.0021 

 

 

0.0771 

0.0476 

 

 

0.0297 

0.0000 

1.0617e-16 

5.1118e-04 

0.0619 

0.0435 

5.9774e-04 

5.9774e-04 

0.0204 

0.0000 

4.7988e-17 

6.8405e-05 

0.0204 

0.0000 

4.7988e-17 

6.8405e-05 

0.0313 

0.0000 

1.2260e-16 

7.5620e-04 

0.0000 

0.0000 

1.0494e-17 

2.6234e-06 

Vehicle 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.1848 

0.0097 

 

 

0.1881 

0.0306 

 

 

0.2001 

0.0098 

2.3871e-03 

7.3708e-06 

0.1949 

0.0104 

3.9968e-03 

3.9968e-03 

0.1860 

0.0278 

6.1807e-02 

2.2730e-03 

0.1765 

0.0580 

0.4138 

0.1838 

0.1720 

0.0170 

0.1618 

1.2629e-02 

0.1704 

0.0320 

0.2603 

8.4625e-02 

wdbc 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.6833 

0.0000 

 

 

0.6312 

0.0050 

 

 

0.5944 

0.0031 

1.2679e-14 

3.7287e-09 

0.5638 

0.0000 

0.0000 

0.0000 

0.4737 

0.0929 

5.6469e-05 

3.5898e-03 

0.3932 

0.2006 

1.3682e-03 

6.2230e-03 

0.5808 

0.0000 

0.0000 

2.6307e-16 

0.5603 

0.0000 

4.1680e-14 

6.3507e-16 

Wine 

Mean 

Std 

p-value (CKS-EWFC-K) 

p-value (CKS-EWFC-F) 

0.8464 

0.0000 

 

 

0.7465 

0.0996 

 

 

0.4645 

0.0021 

8.3252e-022 

3.7708e-02 

0.4216 

0.0123 

2.2796e-15 

2.2796e-15 

0.7097 

0.0782 

3.6492e-04 

4.2538e-03 

0.6403 

0.0579 

1.3241e-06 

0.1369 

0.6460 

0.0870 

4.6272e-05 

8.9099e-02 

0.6682 

0.0238 

1.7715e-02 

1.4013e-05 

Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 

 

  



 

 

27 

 

 

Table 11 Clustering performance of CKS-EWFC-K and KEWFC-K in terms of RI 

Dataset Measure 
CKS-EWF

C-K 

KEWFC-K (CKS-EWFC-K with single basis kernel) 

K1 K2 K3 K4 K5 K6 K7 K8 K9 

Australian 

Mean 

Std 

p-value 

0.7183 

0.0783 

 

0.7169 

0.0778 

0.3434 

0.6768 

0.0029 

0.0127 

0.6860 

0.0017 

0.0226 

0.6992 

0.0009 

0.0461 

0.6945 

0.0009 

0.0359 

0.6996 

0.0008 

0.0469 

0.7036 

0.0020 

0.3661 

0.6961 

0.0019 

0.0397 

0.6994 

0.1050 

0.0365 

Breast Tissue 

Mean 

Std 

p-value 

0.8100 

0.0227 

 

0.7433 

0.0262 

1.1700e-04 

0.7991 

0.0194 

0.2016 

0.7910 

0.0245 

0.0111 

0.8011 

0.0189 

0.1133 

0.8028 

0.0208 

0.1768 

0.7990 

0.0260 

3.3165e-03 

0.8009 

0.0272 

0.0352 

0.8029 

0.0225 

0.4191 

0.7722 

0.0173 

9.9645e-04 

Bupa 

Mean 

Std 

p-value 

0.5154 

0.0024 

 

0.5026 

0.0000 

4.1011e-08 

0.5037 

0.0000 

9.0839e-08 

0.4994 

0.0009 

4.8043e-09 

0.5136 

0.0025 

0.0355 

0.5096 

0.0008 

1.9859e-04 

0.5122 

0.0000 

2.5709e-03 

0.5121 

0.0003 

2.2192e-03 

0.5113 

0.0019 

1.1183e-03 

0.5031 

0.0000 

5.9795e-08 

Heart 

Mean 

Std 

p-value 

0.6971 

0.0000 

 

0.6731 

0.0047 

5.7607e-08 

0.6952 

0.0044 

0.2220 

0.6888 

0.0029 

8.5381e-06 

0.6860 

0.0023 

1.1820e-07 

0.6906 

0.0032 

1.2405e-04 

0.6901 

0.0024 

7.9999e-06 

0.6897 

0.0032 

4.5024e-05 

0.6948 

0.0025 

0.0150 

0.5850 

0.0207 

3.5567e-08 

Iris 

Mean 

Std 

p-value 

0.9267 

0.0000 

 

0.8923 

0.0000 

0.0000 

0.7735 

0.0131 

3.8095e-11 

0.8123 

0.0726 

7.5929e-04 

0.8820 

0.0730 

0.0844 

0.8882 

0.0934 

0.2250 

0.9044 

0.0665 

0.3162 

0.8879 

0.0627 

0.0820 

0.8843 

0.0603 

0.0531 

0.9495 

0.0000 

0.0000 

Parkinsons 

Mean 

Std 

p-value 

1.0000 

0.0000 

 

1.0000 

0.0000 

NaN 

0.6021 

0.0000 

5.1806e-144 

0.5975 

0.0000 

0.0000 

0.5929 

0.0000 

0.0000 

0.5929 

0.0000 

0.0000 

0.6027 

0.0073 

3.7490e-17 

0.6104 

0.0160 

5.2775e-14 

0.6095 

0.0464 

7.1559e-10 

1.0000 

0.0000 

NaN 

Pima Indians 

Diabetes 

Mean 

Std 

p-value 

0.6153 

0.0012 

 

0.6154 

0.0004 

0.7762 

0.5466 

0.0000 

2.1000e-17 

0.5466 

0.0000 

2.1000e-17 

0.5458 

0.0000 

1.8934e-17 

0.5458 

0.0000 

1.8934e-17 

0.5465 

0.0003 

4.7955e-17 

0.5466 

0.0000 

2.1000e-17 

0.5474 

0.0000 

2.3340e-17 

0.5592 

0.0008 

2.2635e-16 

Vehicle 

Mean 

Std 

p-value 

0.6647 

0.0220 

 

0.3698 

0.1066 

1.2384e-05 

0.6604 

0.0138 

0.5438 

0.6645 

0.0127 

0.9695 

0.6622 

0.0043 

0.7275 

0.6631 

0.0030 

0.8145 

0.6659 

0.0064 

0.8860 

0.6597 

0.0178 

0.6426 

0.6522 

0.0212 

0.2093 

0.5977 

0.0780 

0.0209 

wdbc 

Mean 

Std 

p-value 

0.8968 

0.0000 

 

0.8394 

0.0000 

0.0000 

0.8905 

0.0000 

0.0000 

0.8999 

0.0000 

0.0000 

0.8946 

0.0015 

1.3230e-03 

0.8968 

0.0000  

NaN 

0.8937 

0.0000 

0.0000 

0.8934 

0.0027 

3.2291e-03 

0.8955 

0.0022 

0.1046 

0.8541 

0.0000 

0.0000 

Wine 

Mean 

Std 

p-value 

0.9461 

0.0000 

 

0.8972 

0.0000 

0.0000 

0.9114 

0.0030 

4.2011e-11 

0.9301 

0.0031 

5.4523e-08 

0.9036 

0.0000 

0.0000 

0.8855 

0.0026 

9.2926e-14 

0.8787 

0.0021 

3.8626e-15 

0.8834 

0.0064 

1.9369e-10 

0.8779 

0.0020 

3.1581e-15 

0.9133 

0.0036 

3.5946e-10 

Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 

 

Table 12 Clustering performance of CKS-EWFC-K and KEWFC-K in terms of NMI 

Dataset Measure 
CKS-EWF

C-K 

KEWFC-K (CKS-EWFC-K with single basis kernel) 

K1 K2 K3 K4 K5 K6 K7 K8 K9 

Australian 

Mean 

Std 

p-value 

0.3686 

0.1345 

 

0.3666 

0.1336 

0.3644 

0.2689 

0.0048 

0.0433 

0.2848 

0.0027 

0.0406 

0.3075 

0.0016 

0.0786 

0.2996 

0.0015 

0.0138 

0.3081 

0.0014 

0.0189 

0.3149 

0.0036 

0.0236 

0.3015 

0.0033 

0.0153 

0.3394 

0.1785 

0.3642 

Breast Tissue 

Mean 

Std 

p-value 

0.4856 

0.0218 

 

0.4788 

0.0163 

0.1106 

0.3879 

0.0518 

0.0190 

0.3824 

0.0539 

3.3523e-03 

0.4166 

0.0525 

0.0758 

0.4233 

0.0595 

0.1553 

0.4229 

0.0542 

0.0280 

0.4323 

0.0621 

0.3194 

0.4452 

0.0603 

0.9557 

0.5230 

0.0120 

0.2154 

Bupa 
Mean 

Std 

0.0196 

0.0000 

0.0000 

0.0000 

0.0105 

0.0000 

0.0003 

0.0003 

0.0094 

0.0030 

0.0026 

0.0007 

0.0036 

0.0000 

0.0033 

0.0005 

0.0025 

0.0014 

0.0003 

0.0001 
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p-value  1.0189e-06 0.0742 2.2464e-06 0.0496 3.8051e-05 2.9126e-05 2.0677e-05 4.7842e-06 1.2711e-06 

Heart 

Mean 

Std 

p-value 

0.3062 

0.0000 

 

0.2648 

0.0075 

3.0271e-08 

0.3016 

0.0071 

0.0719 

0.2911 

0.0047 

3.3098e-06 

0.2875 

0.0039 

1.1278e-07 

0.2959 

0.0053 

1.6610e-04 

0.2953 

0.0038 

7.4844e-06 

0.2946 

0.0050 

4.1460e-05 

0.3038 

0.0038 

0.0766 

0.1309 

0.0214 

9.1922e-10 

Iris 

Mean 

Std 

p-value 

0.8513 

0.0000 

 

0.8058 

0.0000 

0.0000 

0.5649 

0.0251 

4.8092e-11 

0.6366 

0.1205 

3.1886e-04 

0.7767 

0.0801 

0.0163 

0.7998 

0.0850 

0.0175 

0.8081 

0.0588 

0.0452 

0.7828 

0.0529 

2.7012e-03 

0.7806 

0.0488 

1.3219e-03 

0.8642 

0.0000 

0.0000 

Parkinsons 

Mean 

Std 

p-value 

1.0000 

0.0000 

 

1.0000 

0.0000 

NaN 

0.3212 

0.0000 

2.1672e-143 

0.3160 

0.0000 

2.0237e-143 

0.3109 

0.0000 

1.8930e-143 

0.3109 

0.0000 

1.8930e-143 

0.3218 

0.0082 

8.4611e-19 

0.3303 

0.0180 

1.1916e-15 

0.3130 

0.0965 

3.1952e-09 

1.0000 

0.0000 

NaN 

Pima Indians 

Diabetes 

Mean 

Std 

p-value 

0.1306 

0.0021 

 

0.1381 

0.0007 

0.8812 

0.0096 

0.0000 

2.0731e-17 

0.0096 

0.0000 

2.0731e-17 

0.0052 

0.0000 

1.5058e-17 

0.0052 

0.0000 

1.5058e-17 

0.0091 

0.0014 

3.7446e-16 

0.0096 

0.0000 

2.0731e-17 

0.0139 

0.0000 

2.8740e-17 

0.0617 

0.0012 

6.9406e-15 

Vehicle 

Mean 

Std 

p-value 

0.1848 

0.0097 

 

0.1344 

0.0475 

0.2021 

0.1496 

0.0218 

0.3842 

0.1528 

0.0213 

0.0522 

0.1493 

0.0076 

0.0375 

0.1493 

0.0097 

0.0383 

0.1612 

0.0281 

0.0729 

0.1622 

0.0291 

0.0668 

0.1489 

0.0190 

0.0466 

0.1372 

0.0367 

0.0213 

wdbc 

Mean 

Std 

p-value 

0.6833 

0.0000 

 

0.5665 

0.0000 

0.0000 

0.6678 

0.0000 

0.0000 

0.6914 

0.0000 

0.0000 

0.6776 

0.0035 

1.7892e-03 

0.6827 

0.0000 

0.0000 

0.6751 

0.0000 

0.0000 

0.6744 

0.0066 

3.6430e-03 

0.6797 

0.0052 

0.1232 

0.5948 

0.0000 

0.0000 

Wine 

Mean 

Std 

p-value 

0.8464 

0.0000 

 

0.7532 

0.0000 

0.0000 

0.7639 

0.0062 

1.1941e-11 

0.8023 

0.0070 

8.9298e-09 

0.7673 

0.0000 

0.0000 

0.7328 

0.0054 

1.8809e-13 

0.7204 

0.0058 

1.5331e-13 

0.7256 

0.0108 

5.6230e-11 

0.7090 

0.0024 

2.7890e-17 

0.8056 

0.0054 

1.8232e-09 

Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 

 

Table 13  Clustering performance of CKS-EWFC-F and KEWFC-F in terms of RI 

Dataset Measure 
CKS-EWF

C-F 

KEWFC-F (CKS-EWFC-F with single basis kernel) 

K1 K2 K3 K4 K5 K6 K7 K8 K9 

Australian 

Mean 

Std 

p-value 

0.7204 

0.0888 

 

/ 

NaN 

NaN 

NaN 

0.7104 

0.0000 

NaN 

0.7518 

0.0000 

NaN 

0.7419 

0.0198 

0.3910 

0.7497 

0.0000 

0.0000e+000 

0.7081 

0.1019 

8.4362e-04 

0.6561 

0.1292 

0.1600 
/ 

Breast Tissue 

Mean 

Std 

p-value 

0.7457 

0.0258 

 

/ 

0.7497 

0.0150 

0.4360 

0.7380 

0.0168 

0.1562 

0.7370 

0.0209 

5.5632e-02 

0.7398 

0.0242 

2.8708e-03 

0.7459 

0.0246 

0.8816 

0.7473 

0.0278 

0.3691 

0.7496 

0.0307 

0.1630 
/ 

Bupa 

Mean 

Std 

p-value 

0.5047 

0.0008 

 

/ 

0.5043 

0.0000 

NaN 

0.5038 

0.0003 

0.1048 

0.5028 

0.0008 

6.0164e-03 

0.5027 

0.0006 

3.8790e-03 

0.5021 

0.0010 

2.3148e-03 

0.5022 

0.0006 

1.1672e-03 

0.5019 

0.0004 

1.9949e-04 
/ 

Heart 

Mean 

Std 

p-value 

0.6816 

0.0088 

 

/ 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

0.6788 

0.0000 

0.3910 

0.6744 

0.0000 

0.1075 

0.6744 

0.0000 

2.8869e-02 
/ 

Iris 

Mean 

Std 

p-value 

0.8737 

0.0000 

 

/ 

0.8732 

0.0018 

0.3434 

0.8737 

0.0000  

NaN 

0.8737 

0.0000  

NaN 

0.8737 

0.0000  

NaN 

0.8737 

0.0000  

NaN 

0.8732 

0.0018 

0.3434 

0.8732 

0.0018 

0.3434 
/ 

Parkinsons 

Mean 

Std 

p-value 

0.9799 

0.0636 

 

/ 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

0.6846 

0.0000 

0.0000e+000 

0.8474 

0.1414 

5.4716e-02 

0.9267 

0.1277 

0.1188 

0.9199 

0.1263 

8.3235e-02 

0.8751 

0.1481 

3.5778e-02 
/ 

Pima Indians 

Diabetes 

Mean 

Std 

0.5574 

0.0050 
/ 

NaN 

NaN 

0.5541 

0.0000  

0.5530 

0.0007 

0.5537 

0.0035 

0.5526 

0.0004 

0.5531 

0.0014 

0.5534 

0.0026 
/ 
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p-value  NaN NaN 5.1242e-04 0.1319 2.2108e-02 3.5276e-02 1.0660e-03 

Vehicle 

Mean 

Std 

p-value 

0.6641 

0.0019 

 

/ 

0.6615 

0.0103 

0.4343 

0.6577 

0.0091 

6.4099e-02 

0.6537 

0.0096 

1.0825e-02 

0.6611 

0.0047 

7.6389e-02 

0.6622 

0.0094 

0.5802 

0.6579 

0.0140 

0.2203 

0.6413 

0.0186 

3.0512e-03 
/ 

wdbc 

Mean 

Std 

p-value 

0.8605 

0.0031 

 

/ 

0.8085 

0.0353 

1.3069e-03 

0.8395 

0.0019 

1.0843e-07 

0.8139 

0.1113 

0.2286 

0.7109 

0.0895 

5.1892e-04 

0.6827 

0.0053 

1.3108e-14 

0.6791 

0.0081 

1.6006e-13 

0.6816 

0.0000 

2.0749e-17 
/ 

Wine 

Mean 

Std 

p-value 

0.8964 

0.1649 

 

/ 

0.8303 

0.1144 

0.8445 

0.8610 

0.0854 

0.1089 

0.9031 

0.1800 

0.9802 

0.8616 

0.1697 

8.8254e-03 

0.8066 

0.1458 

1.6116e-03 

0.7653 

0.1260 

2.2083e-04 

0.8624 

0.1635 

0.1018 

/ 

Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 

 

Table 14  Clustering performance of CKS-EWFC-F and KEWFC-F in terms of NMI 

Dataset Measure 
CKS-EWF

C-F 

KEWFC-K (CKS-EWFC-F with single basis kernel) 

K1 K2 K3 K4 K5 K6 K7 K8 K9 

Australian 

Mean 

Std 

p-value 

0.3744 

0.1512 

 

/ 

NaN 

NaN 

NaN 

0.3570 

0.0000  

NaN 

0.4279 

0.0000  

NaN 

0.4032 

0.0495 

0.3910 

0.4249 

0.0000 

0.0000e+000 

0.3542 

0.1732 

9.9243e-03 

0.2658 

0.2195 

0.1621 
/ 

Breast Tissue 

Mean 

Std 

p-value 

0.2733 

0.0317 

 

/ 

0.2375 

0.0267 

4.7300e-02 

0.2400 

0.0277 

4.0805e-02 

0.2544 

0.0200 

7.5387e-02 

0.2584 

0.0245 

0.1724 

0.2714 

0.0368 

0.8702 

0.2835 

0.0381 

0.1532 

0.3010 

0.0423 

6.5733e-03 
/ 

Bupa 

Mean 

Std 

p-value 

0.0007 

0.0001 

 

/ 

0.0000 

0.0000  

NaN 

0.0000 

0.0000 

0.2298 

0.0002 

0.0003 

0.7978 

0.0002 

0.0002 

0.7638 

0.0005 

0.0006 

0.2052 

0.0004 

0.0003 

0.1816 

0.0006 

0.0002 

1.6346e-02 
/ 

Heart 

Mean 

Std 

p-value 

0.2836 

0.0130 

 

/ 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

0.2795 

0.0000 

0.3910 

0.2729 

0.0000 

0.1073 

0.2729 

0.0000 

2.8754e-02 
/ 

Iris 

Mean 

Std 

p-value 

0.7419 

0.0000 

 

/ 

0.7405 

0.0045 

0.3434 

0.7419 

0.0000 

 NaN 

0.7419 

0.0000 

 NaN 

0.7419 

0.0000 

 NaN 

0.7419 

0.0000 

 NaN 

0.7405 

0.0045 

0.3434 

0.7405 

0.0045 

0.3434 
/ 

Parkinsons 

Mean 

Std 

p-value 

0.9554 

0.1409 

 

/ 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

0.4127 

0.0000 

0.0000e+000 

0.6774 

0.2475 

3.7928e-02 

0.8355 

0.2233 

4.9168e-02 

0.8183 

0.2233 

3.2564e-02 

0.7418 

0.2634 

2.0605e-02 
/ 

Pima Indians 

Diabetes 

Mean 

Std 

p-value 

0.0771 

0.0476 

 

/ 

NaN 

NaN 

NaN 

0.0526 

0.0000 

 NaN 

0.0509 

0.0012 

9.0248e-02 

0.0521 

0.0061 

0.4051 

0.0503 

0.0008 

0.2084 

0.0510 

0.0023 

0.2495 

0.0516 

0.0048 

0.1391 
/ 

Vehicle 

Mean 

Std 

p-value 

0.1881 

0.0306 

 

/ 

0.1442 

0.0273 

0.6475 

0.1363 

0.0179 

4.2562e-02 

0.1314 

0.0176 

1.3126e-02 

0.1453 

0.0130 

0.5576 

0.1576 

0.0268 

0.3836 

0.1562 

0.0286 

0.4982 

0.1490 

0.0201 

0.9156 
/ 

wdbc 

Mean 

Std 

p-value 

0.6312 

0.0050 

 

/ 

0.5466 

0.0509 

5.8648e-04 

0.5969 

0.0031 

1.0797e-07 

0.5455 

0.1880 

0.1926 

0.3616 

0.1421 

2.1082e-04 

0.2926 

0.0414 

1.1407e-09 

0.2767 

0.0212 

2.2919e-12 

0.1201 

0.0000 

2.9981e-18 
/ 

Wine 

Mean 

Std 

p-value 

0.7465 

0.1996 

 

/ 

0.6521 

0.1457 

0.7573 

0.7128 

0.1118 

9.5024e-02 

0.7487 

0.2280 

0.9576 

0.6986 

0.2117 

3.1216e-02 

0.6371 

0.1952 

1.1381e-02 

0.5850 

0.1726 

1.5234e-03 

0.6695 

0.1819 

8.2630e-02 

/ 
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Note: NaN means “Not-a-Number”, which is returned by MATLAB and means that the result is meaningless. 

 

4.4 Scalability  

Experiments were conducted to investigate the scalability of both CKS-EWFC-K and CKS-EWFC-F with respect to the 

basis kernel number. The datasets listed in Table 7 were used to test the two algorithms with different number of basis kernels. 

Since KEWFC-K was a special case of CKS-EWFC-K with one basis kernel only, KEWFC-K was first executed with each 

basis kernel to evaluate the suitability of CKS-EWFC-K on each dataset. A kernel resulting in higher clustering quality with 

KEWFC-K indicated that the kernel was more suitable for CKS-EWFC-K. In the experiment, basis kernels were added into the 

basis kernel set one by one in descending order of suitability for CKS-EWFC-K, i.e. a kernel that is more suitable was added 

first. Given a basis kernel set, CKS-EWFC-K was executed 10 times on each dataset. Similarly, experiments were also 

conducted with CKS-EWFC-F in the same way. Table 15 shows the order of addition of the basis into the basis kernel set for 

different datasets. The parameters used in CKS-EWFC-K and CKS-EWFC-F for different datasets are given in Table 16. 

Table 15 details on orders in which the kernels were added into CKS-EWFC-K and CKS-EWFC-F 

algorithms datasets Order of addition 

CKS-EWFC-K 

Australian 

Parkinsons 

Wine 

K1, K7, K6, K9, K4, K8, K5, K3, K2 

K1, K9, K7, K8, K6, K2, K3, K4, K5 

K3, K9, K2, K4, K1, K5, K7, K6, K8 

CKS-EWFC-F 

Australian 

Parkinsons 

Wine 

K4, K6, K5, K3, K7, K8 

K6, K7, K8, K5, K4 

K4, K 8, K5, K 3, K2 , K6, K7 

 

Table 16 parameters for CKS-EWFC-K and CKS-EWFC-F on different datasets 

algorithms  m γ η 

CKS-EWFC-K 

Australian 1.2 1 10000 

Parkinsons 1.2 1 1000 

Wine 1.2 50 1000 

CKS-EWFC-F 

Australian 1.2 500 10 

Parkinsons 1.2 1 500 

Wine 1.2 500 5 

 

The clustering performance of CKS-EWFC-K and CKS-EWFC-F versus the number of basis kernels was plotted in Fig. 2, 

where the performance of KEWFC-K and KEWFC-F with the newly added basis kernel was also plotted in the same figure. It 

can be observed from the figure that, although the newly added kernels were more and more ineffective for CKS-EWFC-K, the 

clustering quality of both CKS-EWFC-K and CKS-EWFC-F remained steady, demonstrating their immunity to ineffective 

kernels.  
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Australian Parkinsons Wine 

 

Fig.2 Scalability of CKS-EWFC-K and CKS-EWFC-F with respect to kernel number  

4.5 Noisy datasets 

The robustness of the proposed algorithms was evaluated with noisy datasets. In the experiments, the proposed algorithms 

were first tested with noisy datasets generated by introducing uniformly distributed noise within the range [-dev, dev]  into the 

Australian Dataset of the UCI repository. The noisy datasets were generated with dev taking values within the range from 0.2 to 

2. The robustness of the algorithms against the increasingly noisy datasets is shown in Fig. 3. It can be seen that the clustering 

quality of the algorithms degraded with the amount of noise added to the dataset. Nevertheless, the performance of the proposed 

CKS-EWFC-K and CKS-EWFC-F always performed better than the other algorithms, clearly demonstrating that they were 

more robust against noise in the clustering process. 

  

Fig.3 Performance of soft subspace clustering algorithms on noisy dataset 

The proposed algorithms were also tested with segmented noisy texture images to evaluate their performance in handling 

large-scale dataset. The images used in the experiment were synthesized using five texture patterns drawn from the Brodatz 

texture database [36]. The resolution of the images was 100×100 pixels. Fig.4(a) shows the texture image and Fig.4(b) shows 

the ideal segmentation results. 
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In order to verify the robustness of the proposed algorithms, Gaussian noise with zero mean and different standard 

deviations (σ=0.05, 0.10, 0.15, 0.20, 0.25, 0.30) was added to generate the six noisy texture images shown in Fig.4(c)-(h). To 

generate data applicable to the clustering algorithms, Gabor filter [37] was applied to extract features from the texture images. 

A filter bank with 4 orientations (one every 45°) and five frequencies (starting from 0.46) was created. A 20-dimensional 

feature vector for every pixel of the images was thus extracted and datasets containing 10000 20-dimensional feature vectors 

were created accordingly.  

In the experiment, the performance of the proposed algorithms in image segmentation was compared with that of other 

clustering algorithms. The optimal parameter settings of the algorithms were found by using the grid searching strategy. For 

each parameter setting, the algorithms were executed 10 times. Fig.5 shows the average clustering performance in terms of RI 

and NMI over the six noisy texture images, with the algorithms executed under the optimal parameter settings. The results show 

that the proposed algorithms outperformed the other algorithms in the image segmentation application, which further 

demonstrates the merit of integrating distance metric learning into the process of soft subspace clustering. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig.4 Noisy texture images 

 

  
Fig.5 Clustering performance on noisy texture images with different amount of noises added. 

5. CONCLUSIONS AND FUTURE WORK 

The existing soft subspace clustering algorithms often utilize one distance function only to evaluate the similarity between 

data items on each feature, making them incapable of handling complex datasets. In this regard, the mechanism of distance 

metric learning in CKS is investigated. The work of the paper includes: (1) the construction of CKS by the linear combination 
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of a set of basis kernel mappings and the mapping of the prototype in feature space into the CKS by a class of mappings; (2) the 

development of the CKS-EWFC-K and CKS-EWFC-F algorithms using a novel learning criterion that combines the 

framework of entropy weighting soft subspace fuzzy clustering and distance metric learning in CKS; (3) the comprehensive 

experiments conducted to evaluate the performance of the proposed algorithms. The results show that the proposed algorithms 

can adaptively learn the distance functions suitable for the datasets during the clustering process, and the overall performance is 

better than that of other classical algorithms. These characteristics are appealing for various real-world applications. 

This study will be further extended to improve the performance of other soft subspace clustering algorithms. For example, 

CKS versions of existing fuzzy weighting subspace clustering algorithms [11] and multiple-view clustering algorithms in CKS 

can be developed. In addition, to make the algorithms more practical for real world applications, it is important to conduct a 

theoretical study on the setting of the parameters of the algorithms so that guidelines can be provided to facilitate the 

identification of the parameters. 
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