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Abstract
This paper presents an approach for generating class-specific image segmentation. We introduce two novel features
that use the quantized data of the Discrete Cosine Transform (DCT) in a Semantic Texton Forest based framework
(STF), by combining together colour and texture information for semantic segmentation purpose. The combination
of multiple features in a segmentation system is not a straightforward process. The proposed system is designed to
exploit complementary features in a computationally efficient manner. Our DCT based features describe complex
textures represented in the frequency domain and not just simple textures obtained using differences between intensity
of pixels as in the classic STF approach. Differently than existing methods (e.g., filter bank, etc.) just a limited amount
of resources is required. The proposed method has been tested on two popular databases: CamVid and MSRC-v2.
Comparison with respect to recent state-of-the-art methods shows improvement in terms of semantic segmentation
accuracy.
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1. Introduction and motivations

Nowadays a wide range of applications including medical, robotics and automotive, require the ability

to automatically understand the real world. Examples of these applications are a smart cars able to recognize

and eventually help a careless driver, to detect a pedestrian crossing the street. Another example is a smart

system that during a surgery operation is able to drive the surgeon on the localization of the tumour area

and steer him in the removal process of that area. Last but not least a surveillance system that can analyze

and recognize automatically what is going in the world from a recorded video. Electronic devices with the

ability to understand the real world from images are called intelligent systems with semantic segmentation.

The semantic segmentation, can be thought as an extension of the popular scene classification problem
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where the entity to classify is not anymore the whole image but single group of pixels [1]. It aims at

pixel-wise classification of images according to semantically meaningful regions (e.g., objects). A precise

automated image segmentation is still a challenging and an open problem. Among others, local structures,

shape, colour and texture are the common features deployed in the semantic segmentation task. Colour or

gray level information are essential core features used to segment images into regions [2, 3]. An efficient

and computationally light descriptor to build on colour features is the colour histogram. The histogram

ignores the spatial organization of the pixels, which is generally an advantage as it supports rotation and

scale invariance. When spatial organization is required a second order statistics can be used. An example

is image correlograms [4] that describes the correlation of the image colours as a function of their spatial

distance. Local structures (i.e., edges, corners, and T-Junctions) are also useful features that are detected

by differential operators commonly applied to the luminance information. The shape is one of the most

important characteristic of an object and allows to discriminate different objects. Finally texture is a visual

cue that describes the luminosity fluctuations in the image, which let us interpret a surface as a whole part.

Textures can be characterized using properties such as regularity, coarseness, contrast and directionality

and contain also important information about the structural arrangement of the surface. It also describes

the relationship of the surface to the surrounding environment. One immediate application of image texture

is the recognition of image regions using texture properties. Texture features can be extracted by using

various methods. Gray-level occurrence matrices (GLCMs) [5], Gabor Filter [6], and Local Binary Pattern

(LBP) [7] are examples of popular methods to extract texture features. Other methods to obtain texture

features are the fractals representation [8] and Textons [9].

The key step to obtain a reliable semantic segmentation system is the selection and design of robust and

efficient features that are capable of distinguishing the predefined pixels’ classes, such as grass, car, people,

etc. The following criteria should be taken into account while considering the design of a system and the

related features extraction method:

• Similar low-level features response can represent different objects as part of objects. Each single

feature cannot be hence adequate for segmenting, in a discriminative way, the object that they belong

to. A spatial arrangement of low-level features increases the object discrimination.

• A semantic segmentation approach cannot be generic because is strongly related to the involved ap-

plication both in terms of requirements and input data types. Some examples of different domains

include the segmentation of images obtained from fluorescence microscope, video surveillance cam-

eras and photo albums. Another important parameter that is application dependent is for example the

detail coarseness of required segmentation.

• The information needed for the labelling of a given pixel may come from very distant pixels. The
2
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category of a pixel may depend on relatively short-range information (e.g., the presence of a hu-

man face generally indicates the presence of a human body nearby), as well as on very long-range

dependencies [10].

• The hardware miniaturization has reached impressive levels of performance stimulating the deploy-

ment of new devices such as smart-phones and tablets. These devices, though powerful, do not have

yet the performance of a typical desktop computer. These devices require algorithms that perform on

board complex vision tasks including the semantic segmentation. For these reasons, the segmentation

algorithms and related features should be designed to ensure good performance for computationally

limited devices [11].

The first contribution of this paper is the design of new texture features pipeline, which combine colour

and texture clues in more efficient manner with respect to other methods in literature (e.g., convolutional

network). Secondly, we propose texture features based on DCT coefficients selected through a greedy

fashion approach and suitably quantized. These DCT features have been exploited in [12] and successfully

applied for the scene classification task making use of their capability to describe complex textures in the

frequency domain maintaining a low complexity. Other approaches usually compute similar features using

bank of filter responses that drastically increases the execution time. As in [12] our texture information is

extracted using the DCT module that is usually integrated within the digital signal encoder (JPEG or MPEG

based). The proposed features are then used to feed a Semantic Texton Forest [13] that has been showed to

be a valid baseline approach for the semantic segmentation task.

The rest of the paper is organized as follows: Section 2 discusses the state-of-the-art approaches,

whereas Section 3 describes the random forest algorithm and how to add the novel features in the STF

system. Section 4 presents the pipeline of the proposed approach. Section 5 introduces the extraction

pipelines for each proposed features. Section 6 describes the experimental settings and the results. Finally,

Section 7 concludes the paper.

2. Related works

To address the challenges described above, different segmentation methods were proposed in literature.

Some basic approaches segment and classify each pixel in the image using a region-based methodology

as in [14, 15, 16, 17, 18, 19, 20, 21, 22]. Other approaches use a multiscale scanning window detector

such as Viola-Jones [23] or Dalal-Triggs [24], possibly augmented with part detectors as in Felszenszwalb

et al. [25] or Bourdev et al. [26]. More complex approaches as in [27, 28] unify these paradigms into a

single recognition architecture, and leverage on their strengths by designing region-based specific object

detectors and combining their outputs. By referring to the property that the final label of each pixel can
3
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be dependent by the labels assigned to other pixels in the image, different methods use probabilistic mod-

els such as the Markov Random Field (MRF) and the Conditional Random Fields (CRF) that are suitable

to address label dependencies. As example, the nonparametric model proposed in [29] requires no train-

ing and can easily scaled to datasets with tens of thousands of images and hundreds of labels. It works

by scene-level matching with global image descriptors, followed by superpixel-level matching with local

features and efficient MRF based optimization for incorporating neighbourhood context. In [30], instead,

a framework is presented for semantic scene parsing and object recognition based on dense depth maps.

Five view independent 3D features that vary with object class are extracted from dense depth maps at a

superpixel level for training a randomized decision forest. The formulation integrates multiple features in

the MRF framework to segment and recognize different object classes. The results of this work highlight a

strong dependency of accuracy from the density of the 3D features. In the TextonBoost technique [31] the

segmentation is obtained by implementing a CRF and features that automatically learn layout and context

information. Similar features were also proposed in [32], although Textons were not used, and responses

were not aggregated over a spatial region. In contrast with these techniques, the shape context technique

in [14] uses a hand-picked descriptor. In [33] a framework is presented for pixel-wise object segmentation

of road scenes that combines motion and appearance features. It is designed to handle street-level imagery

such as that on Google Street View and Microsoft Bing Maps. The authors formulate the problem in the

CRF framework in order to probabilistically model the label likelihoods and the a prior knowledge. An

extended set of appearance-based features is used, which consists of Textons, colour, location and His-

togram of Gradients (HOG) descriptors. A novel boosting approach is then applied to combine the motion

and appearance-based features. The authors also incorporate higher order potentials in the CRF model,

which produce segmentations with precise object boundaries. In [34] a novel formulation is proposed for

the scene-labelling problem capable to combine object detections with pixel-level information in the CRF

framework. Since object detection and multi-class image labelling are mutually informative dependent

problems, pixel-wise segmentation can benefit from the powerful object detectors and vice versa. The

main contribution of [34] lies in the incorporation of top-down object segmentations as generalized robust

potentials into the CRF formulation. These potentials present a principled manner to convey soft object

segmentations into a unified energy minimization framework, enabling joint optimization and thus mutual

benefit for both problems. A probabilistic framework is presented in [35] for reasoning about regions, ob-

jects, and their attributes such as object class, location, and spatial extent. The proposed CRF is defined on

pixels, segments and objects. The authors define a global energy function for the model, which combines

results from sliding window detectors and low-level pixel-based unary and pairwise relations. It addresses

the problems of what, where, and how many by recognizing objects, finding their locations and spatial ex-

tent and segmenting them. Although the MRF and the CRF are adequate models to deal with the semantic
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Figure 1. Integration of texture features in the STF system.

segmentation problem in terms of performance, they represent a bottleneck in the computation, because

the inference is a highly resources consuming process. A powerful approach with good performance, while

preserving high efficiency, is based on the random forest. For example in [13], the authors show that one can

build rich Texton codebooks without computing expensive filter-banks or descriptors, and without perform-

ing costly k-means clustering and nearest-neighbour assignments. Specifically, the authors propose the bag

of Semantic Textons that is an extension of the Bag of Word Model [36] obtained by combining a histogram

of the hierarchical visual word with a region prior category. In this paper we build on the semantic texton

forest (STF) approach (detailed in Section 3) by proposing a new semantic segmentation pipeline which

exploits features extracted on the DCT domain. The exploitation of contextual and structural information

have been recently proposed in [37, 38] to improve the performances of random forests for semantic image

labelling. In particular, the random forest approach has been augmented in order to consider topological

distribution of object classes in a given image. A novel splitting function has been also introduced to allow

the random forest to work with the structured label space. Recent trends also consider Convolutional Neural

Network for the semantic segmentation. In [39] the authors adapt state-of-the-art classification networks

(i.e., AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned

representations to the segmentation task. A novel architecture that combines semantic information of the

different layers is proposed to produce the final semantic segmentation of images.

3. Random forests and Semantic Texton Forest

Before presenting our approach, we briefly review the randomized decision forest algorithms [40]. Ran-

dom forests are an ensemble of separately trained binary decision trees. Decision trees are trained to solve

the classification problem separately and the results are predicted combining all the partial results obtained

by each tree. This process leads to a significantly better generalization and avoids overfitting to the data.
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Maximizing the information gain and minimizing the information entropy are the goals of the training to op-

timally separate the data points for classification problems or to predict a continuous variable. The decision

tree concept was described for the first time in [41] and later more and more computer vision applications

used an ensemble of randomly trained decision trees. Complex computer vision tasks exploiting random

forests were presented in [42, 43, 44] for a shape classification system, automatic handwriting recognition

and medical imaging. A Random Forest can solve different problems like predict class label, estimate value

of a continuous variable, learn probability density function and manifold. The Random Forest uses weak

classifiers in each node of the trees to solve the classification or regression problem. A weak classifier

(called decision stump) is specialized on a sub problem and is significantly faster compared to a strong clas-

sifier (e.g., SVM [45]), which is usually designed to tackle complex problems. Every Random Forest can

be described by the number T of the trees used, the maximum depth D and the type of weak learner model

used in each node. The STF model is a complex system that ensembles 2 randomized decision forests in

cascade. The randomized decision forests obtains semantic segmentation acting directly on image pixels

with simple features (e.g., differences between pixels) and therefore do not need the expensive computation

of filter-bank responses or local descriptors. They are extremely fast for both training and testing. Specif-

ically, the first randomized decision forest in the STF uses only simple pixel comparisons on local image

patches of size d×d pixels. The split function f1 in this first forest can directly take the pixel value p(x, y, b)

at pixel location (x, y) in the colour channel b or computes some other functions defined on two different

locations p1(x1, y1, b1) and p2(x2, y2, b2) selected within the square patches dxd. Given, for each pixel i the

leaf nodes Li = (l1, ..., lT )i and inferred class distribution P(c|Li), one can compute over an image region r

a non-normalized histogram Hr(n) that concatenates the occurrences of tree nodes n across the different T

trees, and a prior over the region given by the average class distribution P(c|r) =
1
|r|

∑|r|
i=1 P(c|Li) (see the

STF block in Fig. 1). The second randomized decision forest in the STF uses the category region prior P(c|r)

and the Semantic Texton Histogram Hr(n) to achieve an efficient and accurate segmentation. Specifically,

the split node functions f2 of the second forest evaluate either the numbers Hr+1(n′) of a generic semantic

Textons n′ or the probability P(c|r + i) within a translated rectangle r relative to the ith pixel that we want

to classify. The categorization module determines finally the image categories to which an image belongs.

This categorization is obtained by exploiting again the Semantic Texton Histogram Hr(n) computed on the

whole image using a non-linear support vector machine (SVM) with a pyramid match kernel. The STF runs

separately the categorization and the segmentation steps, producing an image-level prior (ILP) distribution

P(c) and a per-pixel segmentation distribution P(c|i) respectively. The ILP is used to emphasize the likely

categories and discourage unlikely categories:

P′(c|i) =
1
Z

P(c|i)P(c)a (1)
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Figure 2. Pipeline of the proposed approach. For further details on the Semantic Texton Forest block refer to Fig. 1.

using parameter a to soften the prior and where
1
Z

is a normalization constant such that P′(c|i) sum up to

one. As previous mentioned, our approach combines texture and colour clues within a STF (see Fig. 1).

Adding the texture features in the first random forest allows us either to catch the semantic segmentation

output after performing entirely the STF system (point B in the Fig. 1) or after perform just the first random

forest (point A in the Fig. 1). The last solution is preferred for real time applications, when the execution

time is crucial with respect to the accuracy. In Section 6, we show that including the proposed DCT features,

the accuracy increases in both the semantic segmentation steps.

4. Proposed approach

The workflow of our method is shown in Fig. 2. Each image is first converted into a grayscale channel

and then upsampled. A 8x8 block based DCT transformation is applied and just the most NF discriminative

DCT coefficients are selected (generating NF different DCT channels). The DCT data are then quantized

using a non-uniform clustering. The quantization extracts NF new DCT index channels that will be aggre-

gated with a subsampled version of the colour data. The 3 colour channels and the NF DCT index channels

are finally used to generate suitable colour and texture features for each node of the decision random forest

in the STF system. Next Section explains the functionality of each block of the system, whereas Section 5

describes the detail of the "DCT based features extraction" block.

4.1. DCT transform and DCT frequencies selection

One of the most popular standard for lossy compression of images is JPEG [46]. JPEG is an hard-

ware/software codec engine present in all the consumer devices such as digital cameras, smartphones, etc.
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(a) (b) (c)

Figure 3. Laplace distributions of DCT coefficients for natural images. Left: image under consideration; Middle: the 64 basis related
to the 8 × 8 DCT transformation; Right: the different DCT distributions related to the 64 DCT basis reported in the middle, obtained
considering the image at left.

Moreover, the great majority of the images on Internet are stored in JPEG format. DCT features that can

be extracted directly in the compressed domain reducing the features extraction cost. These are desirable

features for the image segmentation engine. The JPEG algorithm divides the image into non-overlapping

blocks of size 8 × 8 pixels, then each block is transformed using the discrete cosine transform (DCT) fol-

lowed by quantization and entropy coding. The DCT has been extensively studied and hence there is a

very good understanding of the statistical distributions of the DCT coefficients and their quantization. The

coefficient that scales the constant basis function of the DCT is called the DC coefficient, while the other

coefficients are called AC coefficients. Different statistical models for AC coefficients were proposed in-

cluding Gaussian [47], Cauchy, generalized Gaussian and sum of Gaussian distributions [48, 49, 50, 51, 52].

The knowledge of the statistical distribution of the DCT coefficient is useful in quantizer design and noise

mitigation for image enhancement. In our model we assume that the distribution of the AC coefficients

resembles the Laplace distribution (See Fig. 3). This guess has been demonstrated through a rigorous math-

ematical analysis in [53, 54]. The probability density function of a Laplace distribution can be written

as:

F(x | µ, b) =
1
2b

exp
(
−
|x − µ|

b

)
(2)

where µ and b are the parameters of the Laplace distribution. Given N independent and identically dis-

tributed samples x1, x2, ..., xN , (i.e., the DCT coefficients related to a specific frequency) an estimator µ̂ of

µ is the sample median and the maximum likelihood estimator of the slope b is:

b̂ =
1
N

N∑
i=1

|xi − µ̂| (3)

A recent work [12] describes how to use these parameters to classify the scene in real time. In Section 4.2,

instead, we show how to use the Laplace distribution to quantize properly the DCT coefficient and use

them to extract texture features for the image segmentation problem. As shown in [33] the most prominent
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(a)

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 54 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(b)

Figure 4. Left: Schema used to select the DCT frequencies. Right: Standard JPEG quantization table.

patterns composing images are edges. Some of the DCT basis are related to the reconstruction of edges

of an 8x8 image block (i.e., first row and first column of Fig. 3(b) ), whereas the others are more related

to the reconstruction of the textured blocks. Moreover, high frequencies are usually affected by noise and

could be not useful to segment the image. For this reason, we have performed an analysis to understand

which of the AC DCT basis really can contribute in our pipeline. One more motivation to look only for the

most important frequencies is that we can reduce the complexity of the overall system. To select the most

important frequencies we used a greedy fashion approach. Our analysis suggested that a good compromise

between segmentation accuracy and computational complexity (i.e., the number of AC DCT frequencies to

be included in the pipeline to fit with required computational time and memory resources) is the one which

considers the AC DCT components related the DCT basis of Fig. 4(a). According to this schema only 25

frequencies out of 64 are selected to compute features useful for the segmentation. We will refer to this set

of frequencies as F and the related cardinality as NF (see [12] for more details on the frequency selection) .

4.2. Quantization

Two important observations regarding the DCT data should be taken into account when these data

are used as features. The first one has been disclosed in the previous paragraph: the DCT data can be

summarized by Laplace distributions. The second one states that, in the real world, the human vision is

more sensitive to some frequencies rather than others [55, 56, 57].

These observations convey the fact that before using the DCT data, they need to be properly processed.

In our process, to take into account the HVS (human vision system) sensitivity to the different frequencies,

we replace the uniform random function used to select the features in each node of the 1st random forest

(see STF block in Fig. 1), with a probability selection function PDCT . The PDCT steers the learning process

towards using more frequently the DCT coefficients that are more important for the human vision system.

For this purpose we exploit the standard quantization Table (Fig. 4(b)) used in the JPEG compression [55].

This table has been developed to achieve good image compression and avoiding visible distortions. Due to
9
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variations in the contrast sensitivity of the human visual system as a function of spatial frequency, different

DCT coefficients are quantized with different factors [58]. More specifically, the standard JPEG suggests

to use these perceptual criteria to quantize the corresponding DCT coefficients amplitudes that cause per-

ceptible differences to a human observer. Equation (4) allows us to convert each quantization value into

a selection probability that is high for the most important frequencies (i.e., low values in the quantization

table) and low for the frequencies that are less important (i.e., high values in the quantization table) satisfy-

ing in this way our modelling. The standard quantization table is hence transformed in a probability table

that we refer with the symbol PDCT (see Table 1). Each element PDCT (i) in this table is formally defined as

follows:

PDCT (i) =


1
qi∑

j∈F
1

q j

if i ∈ F

0 otherwise
(4)

where qi, q j are quantization values of the standard JPEG quantization table (Fig. 4(b)), and F is the set of

selected DCT coefficients (see Section 4.1). These priors are used in the learning process to increase the

probability to discover good features that maximize the information gain of the data, in each node of the 1st

random forest of the STF system [13].

Table 1. Probability table PDCT obtained from the standard JPEG quantization table
0 0.078 0.086 0.054 0.036 0.022 0.017 0.014

0.072 0.072 0.061 0.045 0 0 0.014 0
0.061 0.066 0 0 0 0.015 0 0
0.061 0.051 0 0 0.017 0 0 0
0.048 0 0 0.015 0 0 0 0
0.036 0 0.016 0 0 0 0 0
0.018 0.013 0 0 0 0 0 0
0.012 0 0 0 0 0 0 0

In order to cater our first observation stating that DCT data can be summarized by Laplace distributions,

we propose a quantization step that is capable to generate more centroids in the DCT space where the data

distribution is more dense (all the value that are near to the center of the Laplace distribution) and less in the

areas where only a few DCT data fall in. The aim is to produce centroids that follow the natural distribution

of the considered DCT data. Usually K-means is used to quantize the features space. The centroids provided

by K-means codebooks are highly dependent on the sample distribution in the space, degrading as this

becomes more non-uniform. K-means works well for data containing only uniform distribution since in the

non-uniform case that K-means devotes most of its centres to the immediate neighborhood of the central

peak, and the coding suffers [59]. The non-uniformity is essentially due to two effects: (i) certain data

occur far more frequently than others; and (ii) the amount of any given feature that appears is extremely
10
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Figure 5. Laplace distribution representing a given AC frequency. The Laplace distribution is clustered in two different ways. In
the left the centroids, represented by the red points, are obtained using a uniform quantization. In the right the centroids are instead
obtained with the proposed analytic solution that takes into account the non-uniformity distribution of the data.

variable due to the multi-scale region structure of natural scenes. K-means centres drift towards high density

regions owing to the "mean shift like" K-means update rule [60]. Asymptotically, they are distributed

according to the underlying density (i.e., in the same way as random samples). This point is critical because

the data that are most informative for classification tend to have intermediate frequencies. Over-frequent

patches typically contain generic image structures like edges that occur often in all classes, giving little

discriminant information. Conversely, rare patches may be highly discriminant when they occur, but they

occur so seldom that they have little influence on overall performance. These effects are probably even

greater in man-made environments, where large uniform uninformative regions are common. A clustering

that takes into account the non-uniformity property of the data is essential to quantize the DCT space. To

obtain the quantization with the aforementioned non-uniform property, we propose an analytic solution. An

uncompressed training database of images is used to obtain the two Laplace parameters (median and slope

of each DCT coefficient). The cluster centroids are then computed performing integration on the area of

each Laplace distribution. The points that divide this area in k equal spaces are the proposed quantization

points (Fig. 5).

This process is repeated for all the NF DCT coefficients, separately producing a vocabulary table with

k x NF entries. In each column of this table, the values are arranged in an ascending order that is important

during the clustering process since it allows to implement an efficient stopping criteria. This vocabulary

table is used to quantize the DCT channels and produce for each DCT value a corresponding DCT index

value required in Section 5 to generate the proposed features. The new DCT index channels represent

in a suitable way the visual data as discuss so far and they have also the advantage that can be stored in

memory just using few bits per pixel. Comparison results using different number of clustering are provided

in Section 6.

11
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4.3. Upsampling and subsampling

The design of the proposed pipeline is aimed to be as generic as possible and capable to efficiently

segment any image regardless of its resolution. In order to obtain this capability, we propose to process a

subsampled version of the image. The only consequence of using the subsampled image is a less precise

segmentation boundaries output. On the other hand, one should also consider that the DCT data are obtained

by a block based process that produces not pixel specific information. For this reason, to obtain DCT

information required for each subsampled pixels we need to use an enlarged version of the image as input

of the DCT transformation block. The enlarged version can be obtained either using an interpolation process

or can be already available if applied on a multi-resolution sensor. The relation that links the upsampling

factor Us and the subsampling factor S s with the DCT block size S DCT_block is described by the following

equation:

Us ∗ S s = S DCT_block (5)

When the subsampling factor S s is equal to the size of the DCT block S DCT_block no enlarging process

is required before the DCT transformation block. At the end of this process, colour and texture data are

available and ready to generate features through the colour and the DCT based features extraction blocks

(see Fig. 2).

5. DCT-based features extraction

We propose two novel DCT based features which are computed after the quantization step detailed in

Section 4.2. The first one, that we call feature f1, is aimed to capture the different textures distribution for

each image region. The feature f1 is defined as a tuple [r(x, y, h,w, t), s] where r is an image region with

size h×w associated to the ith pixel in the DCT layer t, and s is the quantization index used for the statistical

evaluation. The vector of coordinates (x, y) indicates the offset of the considered region with respect to the

ith pixel to be classified. A set R of candidate rectangle regions are chosen at random, such that their top-left

and bottom-right corners lie within a fixed bounding box B1. The details about the extraction process used

to obtain the feature f1 are shown in Fig. 6. Specifically, the 3D array with NF 2D maps of size h × w is

extracted with an offset vector (x, y) respect to the ith pixel to be segmented (the ith pixel is represented with

the red cross in Fig. 6). In the step 3) of Fig. 6, one of the NF available DCT index layers, is selected using

the probability table PDCT defined in Section 4.2, whereas in the step 4) and 5) a statistical measurement

is performed on the selected region r. By fixing the value s as one of the index of the quantization process

(selected randomly when the features are generate) and using the region r, we propose the three following

measurements:

S tat1 (r, s) =
∑

c∈r |c − s|
|r|

(6)

12
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Figure 6. Extraction pipeline for feature f1.

S tat2 (r, s) =
∑

c∈r(c − s)2

|r|
(7)

S tat3 (r, s) =
∑

c∈r δcs

|r|
(8)

where |r| is the area of the region r and c is the result of the quantization process applied at each pixel in

the region r. The quantization process used in the proposed approach is further detailed in Section 4.2.

In equation (8), δcs is the Kronecker’s delta function applied to the variables c and s. The performances

obtained with the different measures are reported in Table 7 and will be analysed later in Section 6. These

aforementioned measurements can be efficiently computed over a whole image by exploiting the integral

histogram [61].

The second extracted feature, called feature f2 detailed in Fig. 7 , is designed to compare two generic

pixels P1 and P2 related to the ith pixel to be classified in the semantic segmentation pipeline. Specifically,

considering the pixels P1 and P2 obtained adding the offsets (x1, y1) and (x2, y2) to the ith pixel, two 1D

arrays are generated by the NF channels extracted in the step 2) of the pipeline (see Fig. 7). This produces

the feature vectors V = V1..VNF and T = T1...TNF . In the step 4) of Fig. 7 two indexes w and z are extracted

using the table PDCT , and the elements Vw and Tz are selected. Such two values are finally combined using

a mathematical operation (e.g., sum, log, pow, etc.) to generate the final feature value. The performances

of each mathematical operation involved in the extraction of the feature f2 are reported in Table 4 and will
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Figure 7. Extraction pipeline for feature f2.

Figure 8. Example of features f2.

be discussed later in Section 6.

Fig. 8 shows a toy example where the feature f2 is computed in two different points specified by the

yellow crosses. Just considering, the offsets (x1, y1) and (x2, y2) (represented by the blues arrows) the DCT

blocks centred in the points denoted by the red square are picked and the NF coefficients selected. For

each block the two coefficients in the blue squares are selected and a division operation (in this example)

is performed between them. The two analysed pixels are related to a bicyclist and a pedestrian. Due to

the vertical high frequencies correlated to the wheel under the human the features value of f21 and the f22

are sensibly different allowing the STF system to properly perform the semantic segmentation. From this

example we can observe that although the feature f2 is very simple, it allows to recognize complex visual

14
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Table 2. Number of operations required to compute f1 for an image of 640x480 pixels
Us=4 Us=2 Us=1

S tat1 7692 1950 501
S tat2 11538 2924 751
S tat3 3846 974 250

cues inside the image.

5.1. Complexity of the proposed features

In this Section we describe the computational cost required to extract each proposed feature. For the

feature f1 the complexity is strictly related to the use of the integral histogram [62]. If the available memory

is enough to store and use the integral histogram (NF new layers of integer are required), the features f1 can

be computed in constant time. Otherwise, assuming that the bounding box of the region r cannot be more

then B1, the average number of operations required is:

∑B1
i i2 ∗ sOp

B1
=

(B1 + 1)(2 ∗ B1 + 1) ∗ sOp

6
(9)

where sOp is a value that depends by the statistic measure used, and specifically it is 2 for S tat1, 3 for

S tat2 and 1 for S tat3. Table 2 summarizes the number of required operations when different statistics and

different upsampling factors Us are used. Table 2 is obtained using an input image of 640x480 pixels and

running the system with the a maximum bounding box B1 equal to width/3 = 213 pixels.

On the other hand, since the feature f2 is the result of just one operation between two numbers it can be

computed always in constant time.

6. Experimental setting and results

To analyse the proposed solution we have performed experiments employing the Cambridge-driving

Labeled Video Database (CamVid) [63, 64] and the MRSC-v2 dataset [13, 31]. In the following subsections

are reported the experimental settings and the results obtained considering the aforementioned datasets.

6.1. CamVid Dataset

CamVid is a collection of videos captured on road driving scenes. It consists of more than 10 minutes

of high quality (970 x 720), 30 Hz footage and is divided into four sequences. Three sequences were taken

during daylight and one at dusk. A subset of 711 images is almost entirely annotated into 32 categories, but

as suggested in [28], we used only the 11 object categories, forming a majority of the overall labelled pixels

(89.16%). Data were captured from the perspective of a driving automobile. The driving scenario increases

the number and heterogeneity of the observed object classes. The parameters of the system are summarized
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Figure 9. CamVid database and per-class distributions.

Table 3. System parameters
Related to Name Description Default value

Proposed features

M Modality for different features setting M4
Us Upsampling factor used to enlarge the image 2
S Type of statistic used to generate the feature f1 S tat2

Qp Number of quantization points used to quantize the Laplace distribution area 32
B1 Box size used to generate the feature f1 W∗/2
B2 Box size used to generate the feature f2 resF∗ × 15

STF system

D1 Depth for the 1st forest 12
D2 Depth for the 2nd forest 15
N1 Number of the features randomly chosen to generate the nodes in the 1st forest 800
N2 Number of the features randomly chosen to generate the nodes in the 2st forest 800

* See Section 6 for the definition of W and resF

in Table 3.

Our system has been extensively evaluated with the purpose to optimize these parameters. The database

is split into 468 training images and 233 test images as suggested in [28]. A validation step is applied to

obtain the best configuration for each parameter. Specifically the validation process divides the training

images in 2 sub-groups of equal size. The first group is used for training the validation and the remaining

for test them. Moreover we have fixed a default value for all of the free parameters. These initial values are

reported in the last column of Table 3. In the final test phase, the configuration set that has obtained the best

performance is used to train the system. The semantic segmentation accuracy is computed by comparing the

ground truth pixels to the inferred segmentation. We report per-class accuracies (the normalized diagonal of

the pixel-wise confusion matrix), the mean-class accuracy, and the overall segmentation accuracy. Table 4

shows the results obtained when the novel features are introduced in the STF system and when different

operations are used to compute the features f2. The first 4 rows of Table 4 shows the classification results

obtained by the system when each of the proposed features f1 and f2 are included in the STF system. Some

tests use also a feature called "unary" that is obtained when the point P1 and P2 are the same and the selected

DCT channels W and Z are equal. The next 6 rows of Table 4 show the results obtained using the different

type of operations to compute feature f2. From the results, we can see that adding both the features f1 and

f2 to the STF system, improves the classification performance. Specifically the best results are obtained
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Table 4. Results for different configuration of M
M Overall MeanClass

M1= STF 74.40 68.99
M2= STF & f2 unary 74.86 69.90

M3= STF & f1 75.55 70.46
M4= STF & f1 & f2 unary 74.84 70.42

M5= STF & f1& f2 unary & f2 |diff| 75.12 70.52
M6= STF & f1 & f2 unary & f2 sum 75.51 71.01
M7= STF & f1 & f2 unary & f2 diff 75.24 70.94
M8= STF & f1 & f2 unary & f2 div 75.50 71.21
M9= STF & f1 & f2 unary & f2 mol 75.19 70.75
M10= STF & f1 & f2 unary & f2 log 75.00 70.75

Table 5. Analysis of the parameters related to the STF system

(a) Results for different values of N1

N1 Overall MeanClass
400 75.12 70.52
600 75.59 70.83
800 75.16 70.90

1000 75.36 71.19

(b) Results for different values of N2

N2 Overall MeanClass
400 75.12 70.52
600 74.96 71.39
800 75.29 71.38

1000 75.49 71.76

(c) Results for different values of D1 & D2

D1 & D2 Overall MeanClass
D1=12 & D2=15 75.15 70.42
D1=13 & D2=14 74.19 70.25
D1=13 & D2=15 75.12 70.52
D1=13 & D2=16 75.68 70.71
D1=14 & D2=15 75.44 71.40

Table 6. Results for different values of Us
Us Overall MeanClass
4 75.32 71.91
2 75.12 70.52
1 74.46 69.43

when the "division" and the "sum" operations are considered to generate the feature f2.

Tables 5(a), 5(b) and 5(c) analyse the performance related to the forest parameters, specifically the

depths D1 and D2 of the 2 random forests involved into the system and the number of the features N1 and

N2 randomly selected to generate each node. Increasing the values of these parameters gives in general a

better accuracy.

Table 6 analyses the behaviours of the system when different upsampling factor Us are used. The

best results are obtained when the image is upsampled by a factor of 4. To have an acceptable efficient

system, it is recommended to use an upsampling factor of 4 only when the integral histogram is used in

the system, otherwise, reminding the computational analysis proposed in Section 5 and according to the

Table 2, an adequate trade-off between performance and high efficiency is obtained using an upsampling

factor equal to 2. Table 7 shows the system accuracy obtained using each of the proposed statistics when

different number of clusters are computed for quantizing the DCT data. The best results are obtained when
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Table 7. Results for different values of Qp and for different type of statistic
Qp=8 Qp=16 Qp=32 Qp=64 Average

Overall MeanClass Overall MeanClass Overall MeanClass Overall MeanClass Overall MeanClass
S tat1 75.12 70.52 75.57 70.99 74.43 71.00 74.46 71.30 74.90 70.95
S tat2 75.48 71.21 75.41 71.11 74.89 71.63 74.90 71.06 75.17 71.25
S tat3 75.46 71.15 74.67 69.80 74.66 70.16 74.64 69.98 74.86 70.27

Average 75.35 70.96 75.22 70.63 74.66 70.93 74.67 70.78

Table 8. Results for different values of B1. W is wt ∗ Us/DCTblockS ize where wt is the width of the image, Us is the upsampling
factor and DCTblockS ize is the size of the DCT transformation block

B1 Overall MeanClass
w/2 75.08 70.92
w/3 75.12 71.13
w/4 75.00 70.52
w/5 74.78 70.12

Table 9. Results for different values of B2. ResF is DCTblockS ize/Us where DCTblockS ize is the size of the DCT transformation
block and Us the upsampling factor

B2 Overall MeanClass
resF*17 74.86 70.58
resF*15 75.06 71.21
resF*13 74.98 71.12

Table 10. Comparison to state-of-the-art on the CamVid dataset
Classification for each class

Approach B
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an

Fe
nc
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Si
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B
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t
Overall Mean-class

Proposed 49.16 77.14 93.51 80.84 63.92 88.05 75.00 76.28 28.62 88.54 76.16 76.35 72.47
Shotton [13] 44.83 75.31 93.39 80.53 59.96 88.99 71.15 70.40 27.90 89.27 73.89 74.90 70.51
Tighe [28] 83.10 73.50 94.60 78.10 48.00 96.00 58.60 32.80 5.30 71.20 45.90 83.90 62.50
Tighe [29] 87.00 67.10 96.90 62.70 30.10 95.90 14.70 17.90 1.70 70.00 19.40 83.30 51.20

Brostow [63] 46.20 61.90 89.70 68.60 42.90 89.50 53.60 46.60 0.70 60.50 22.50 69.10 53.00
Sturgess [33] 84.50 72.60 97.50 72.70 34.10 95.30 34.20 45.70 8.10 77.60 28.50 83.80 59.20
Zhang [30] 85.30 57.30 95.40 69.20 46.50 98.50 23.80 44.30 22.00 38.10 28.70 82.10 55.40
Floros [34] 80.40 76.10 96.10 86.70 20.40 95.10 47.10 47.30 8.30 79.10 19.50 83.20 59.60
Ladicky[35] 81.50 76.60 96.20 78.70 40.20 93.90 43.00 47.60 14.30 81.50 33.90 83.80 62.50

the statistic S tat2 is selected. Moreover, only 8 clusters are enough to quantize the DCT data. We use

clustering with 8, 16, 32 and 64 centroids. Table 7 shows that increasing the number of the clusters will not

provide substantial improvement to the system. For this reason, the clustering with 8 centroids is the one

that we propose in the final configuration. With 8 clusters for each DCT coefficient we have 8xNF different

DCT Textons (in our case with 25 frequencies selected there are 200 DCT Textons). Furthermore, with this

configuration, each DCT index data, can be saved in memory employing only 3 bits.

Table 8 and 9 show the performance obtained using different sizes for the bounding box B1 and B2. The

best results are obtained when a bounding box equal to wt ∗ Us/(3 ∗ DCTblockS ize) pixels is used for the

feature f1 and equal to DCTblockS ize ∗ 15/Us pixels is used for the feature f2 (where wt is the width of

the image, Us is the upsampling factor and DCTblockS ize is the size of the DCT transformation block).

Table 10 compares the results obtained by the state-of-the-art approaches with respect our proposal when

the best configuration set of parameters is used. Instead, Table 12 shows the confusion matrix obtained by

our solution.
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Table 11. Comparison to state-of-the-art on the MSRCv2 dataset
Classification for each class
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Proposed 41.9 91.5 76.8 87.6 91.7 92.4 85.1 62.5 90.5 72.0 77.3 72.7 33.7 29.8 92.3 44.9 79.8 78.0 36.7 56.6 24.3 74.0 67.5
Shotton [13] 45.9 92.6 75.0 86.9 91.7 87.2 84.9 53.4 88.5 58.6 73.0 65.6 40.4 24.5 86.1 48.8 75.4 68.5 29.7 52.7 16.8 71.5 64.1

TexBoost [31] 61.6 97.6 86.3 58.3 50.4 82.6 59.6 52.9 73.5 62.5 74.5 62.8 35.1 19.4 91.9 15.4 86.0 53.6 19.2 62.1 6.6 72.2 57.6

Fig. 9 represents the distribution of the pixels per class. One can note a widely varying class prevalence

in this dataset with the first two majority classes (Building and Road) alone containing more than 50% of

the pixels. Obviously, the learning step for the small classes is in general more complex since they are not

well represented in the database. The approaches in [28, 29, 30, 33, 34, 35] obtain better performances for

the two classes most represented in the CamVid dataset (i.e., Building and Road - see Fig. 9 and Table 10)

and hence show a better overall accuracy at the cost of losing the mean-classes performance (since they are

less accurate in discriminating less represented classes in the dataset, such as Sign, Pedestrian, Bicyclist,

etc. - see Fig. 9 and Table 10). In our approach instead, the challenging classes with small percentage of

samples in the dataset have got a significant improvement in the per-class accuracy and hence the proposed

approach obtains the better results in the mean-classes score.

Since the optimization is done over all the classes we have a significant improvement in the per-class

accuracies and a more balanced performance at the cost of losing on the overall results. As a result, our

approach obtains always better accuracy in the small classes (i.e., Pedestrian, Fence, Pole, Sign) with respect

to all the considered approaches. In conclusion, one should note that, in the case of unbalanced dataset,

the mean-class metric is a more reliable measure than the overall accuracy measure since it applies equal

importance to all 11 classes. Fig. 10 shows some classification errors of our approach. In the first case a

region containing a bicycle is confused with a pedestrian; instead in the second case an area belonging to a

building is confused with the class pedestrian. The reason behind these errors can be explained as follows:

in the first case, the long distance between the subject and the camera, does not allow to distinguish whether

the high frequency under each person is relative to the wheel’s bike or to the legs of the subjects. In the

second case, the low brightness makes difficult even for a human to distinguish whether the textures in that

area belong to a group of people or to the structure of the building.

Fig. 11 shows an example of visual segmentation outputs, of our approach in comparison with the STF

system. In this case, our approach has the ability to segment properly an area containing a bicyclist while

the STF approach is failing. In Fig. 12 are compared the computational time obtained by our approach and

the STF during the two semantic segmentation levels. These tests are performed on a PC with a processor

i73930k 3.20 Ghz (6 cores) and with 32 Gb of memory RAM. Both approaches use the best parameters

configuration (i.e., number of trees, depth, number of features analysed, bounding box, etc.). Moreover,

features f1 are computed without the support of the integral image. As we can see from Fig. 12, the proposed
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Table 12. 11x11 Confusion Matric obtained on the CamVid database
Building Tree Sky Car Sign Road Pedestian Fance Pole Sidewalk Bycyclist

Building 49.16 4.76 1.49 5.24 11.54 0.12 10.56 6.79 6.80 2.66 0.87
Tree 3.18 77.14 2.91 1.49 3.29 0.07 2.67 6.81 1.64 0.69 0.11
Sky 0.45 4.34 93.51 0.06 0.23 0.00 0.00 0.01 1.40 0.00 0.00
Car 2.07 0.94 0.31 80.84 1.60 0.71 6.85 1.70 1.14 1.65 2.21
Sign 9.77 6.53 0.24 3.55 63.92 0.00 5.11 5.04 5.14 0.27 0.42
Road 0.01 0.01 0.00 2.19 0.01 88.05 0.33 0.16 0.22 8.17 0.85

Pedestian 1.57 0.32 0.00 5.19 2.21 0.22 75.00 4.51 3.30 2.94 4.73
Fance 0.68 3.10 0.00 3.36 0.76 0.35 8.31 76.28 1.82 5.07 0.27
Pole 9.71 11.45 4.06 2.33 9.96 0.49 16.66 9.65 28.62 5.98 1.10

Sidewalk 0.03 0.02 0.00 0.95 0.01 3.93 3.38 1.11 1.02 88.54 1.02
Bycyclist 0.11 0.37 0.00 3.66 0.50 1.03 13.05 2.68 1.13 1.30 76.16

Table 13. 21x21 Confusion Matric obtained on the MSRCv2 database
Buil. Grass Tree Cow Sheep Sky Aerop. Water Face Car Bike Flower Sign Bird Book Chair Road Cat Dog Body Boat

Buil. 41.9 2.25 10.46 0.58 0.19 5.27 2.37 1.46 4.02 2.90 7.92 0.00 0.90 0.20 2.26 2.17 11.82 0.44 0.50 1.84 0.46
Grass 0.16 91.5 0.77 3.36 1.43 0.01 0.60 0.01 0.06 0.00 0.12 0.19 0.00 0.08 0.00 0.17 0.22 0.00 0.25 1.06 0.00
Tree 1.49 10.81 76.8 0.54 0.00 3.38 1.42 0.90 0.82 0.13 1.18 0.07 0.58 0.11 0.02 0.19 0.39 0.00 0.13 0.82 0.14
Cow 0.01 7.22 0.37 87.6 2.27 0.00 0.00 0.11 0.08 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 1.64 0.60 0.00

Sheep 0.05 4.91 0.02 1.34 91.7 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.50 0.00 0.08 0.39 0.00 0.02 0.00 0.00
Sky 1.63 0.12 1.30 0.00 0.00 92.4 0.74 1.50 0.00 0.01 0.00 0.00 0.06 1.84 0.00 0.02 0.22 0.00 0.00 0.00 0.05

Aerop. 8.67 1.30 0.06 0.26 0.00 2.52 85.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.03 0.00 0.00 0.00 0.00
Water 6.18 6.48 0.69 0.30 0.13 6.34 0.01 62.5 0.01 2.18 1.61 0.04 0.25 1.41 0.01 0.14 9.70 0.33 0.24 0.42 1.01
Face 0.58 0.08 0.70 0.01 0.00 0.21 0.00 0.06 90.5 0.15 0.00 0.27 0.08 0.02 0.37 0.01 0.00 0.30 0.42 6.01 0.16
Car 13.29 0.00 0.31 0.00 0.00 0.01 0.00 0.93 0.00 72.0 0.08 0.00 0.96 0.02 0.00 0.07 11.99 0.19 0.02 0.06 0.01
Bike 4.23 0.01 0.37 0.00 0.00 0.00 0.00 0.00 0.14 1.40 77.3 0.00 0.12 0.00 0.00 1.37 14.17 0.86 0.01 0.00 0.00

Flower 0.31 3.45 2.80 1.17 1.61 0.01 0.00 0.22 0.83 0.01 0.00 72.7 8.35 2.52 2.20 0.01 0.25 0.20 0.38 2.88 0.00
Sign 26.42 0.83 3.20 0.08 0.24 2.58 0.00 2.36 0.56 0.36 0.71 1.82 33.7 3.68 12.11 0.99 6.02 1.63 0.42 1.88 0.35
Bird 11.63 9.68 0.98 0.58 7.90 3.35 0.00 8.74 0.10 0.24 2.07 0.01 0.20 29.8 0.00 4.31 14.40 2.86 2.71 0.22 0.14
Book 3.03 0.03 0.16 0.00 0.00 0.00 0.00 0.01 1.28 0.10 0.00 0.08 0.34 0.00 92.3 0.00 0.31 0.25 0.04 1.97 0.02
Chair 1.21 9.76 9.98 9.49 0.89 0.03 0.00 0.06 0.04 0.64 5.45 0.00 1.07 0.70 0.35 44.9 9.33 2.53 2.90 0.64 0.00
Road 3.65 0.70 0.47 0.00 0.89 0.31 0.32 6.18 0.61 0.89 3.18 0.00 0.23 0.04 0.00 0.32 79.8 1.48 0.47 0.44 0.04
Cat 1.42 0.00 0.72 0.00 0.00 0.00 0.00 0.71 0.14 0.03 7.33 0.00 0.07 0.28 0.18 3.04 7.80 78.0 0.24 0.00 0.00
Dog 17.91 3.07 6.09 0.25 0.07 0.47 0.91 0.74 4.57 0.01 0.00 0.07 3.13 4.66 0.04 3.59 11.95 1.80 36.7 3.95 0.00
Body 4.87 4.18 2.52 3.31 0.00 1.64 0.38 3.46 8.28 1.13 0.01 0.47 0.88 0.49 3.29 0.31 2.98 1.68 1.75 56.6 1.72
Boat 21.44 0.10 0.80 0.00 0.00 2.51 0.00 22.31 0.00 5.78 10.50 0.00 1.36 1.50 0.00 1.17 7.41 0.00 0.00 0.80 24.3

(a) (b)

Figure 10. Examples of classification error obtained using our approach. In 10(a) a region containing a bicycle is confused with a
pedestrian; in 10(b) an area belonging to a building is confused with the class pedestrian.

Figure 11. Example of visual segmentation improvement, obtained using our approach with respect to the STF.
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Figure 12. Computational time obtained by our approach and the by the STF [13] during the two segmentation phases.

features increases significantly the accuracy obtained on the first level (+8%) while are just slightly better

on the second level (+2%). On the other hand, the complexity of our features has a negligible impact on the

execution time. Hence, for real-time systems that cannot perform both the semantic segmentation levels,

the introduction of our features is crucial to have a good classification improvement with a reduced amount

of resources.

6.2. MSRC-v2 Dataset

This Section presents results of image segmentation on the database MSRC-v2 that contains pho-

tographs of real objects viewed under general lighting conditions, poses and viewpoints, for a total of

591 images. In this experiment we have used, for all the parameters, the same configuration obtained in

the previous Section (except for the two depth levels that we have changed into 15 for D1 and 17 for D2).

We have again compared our approach with state-of-the-art and the results are showed in Table 11. As we

can see from the table, also in this case results are in favour of the proposed approach. Specifically, our

method achieve the highest segmentation accuracy of 74.0% (1.8% more than Shotton [13] and 2.5% more

than TexBoost [31]) for the overall pixel accuracy. Whereas regarding the average across categories we ob-

taining 67.5% (3.4% more than Shotton [13] and 9,9% more than TexBoost [31]). Still better performance

could likely be achieved by a complete experimental validation on this database. Finally, in Table 13 we can

analyse in more details the confusion matrix obtained by the proposed approach on the MSRC-v2 database.
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7. Conclusion

This paper describes an approach for semantic segmentation of images. Two novel texture features

based on DCT data are introduced in the Semantic Texton Forest framework [13]. The proposed DCT

features describe complex textures capable to recognize object and region with different frequencies char-

acteristics. Our approach makes use of a limited amount of resources that allow good accuracy for real time

applications. The effectiveness of the proposed semantic segmentation system has been demonstrated by

comparing it with the STF and other state-of-the-art approaches. In most of the case, our approach shows

better performance overcoming the per-classes accuracy in the considered databases. Moreover, in a real

scenario our system could show further improvements since usually a large version of the image is available

in the pipeline. This avoids to perform the proposed upsampling block in the pipeline and generating a more

reliable DCT data that are not affected by the interpolation.
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