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Abstract

In this paper, we propose a novel two-level hierarchical framework for three-

dimensional (3D) skeleton-based action recognition, in order to tackle the

challenges of high intra-class variance, movement speed variability and high

computational costs of action recognition. In the first level, a new part-

based clustering module is proposed. In this module, we introduce a part-

based five-dimensional (5D) feature vector to explore the most relevant joints

of body parts in each action sequence, upon which action sequences are

automatically clustered and the high intra-class variance is mitigated. In the

second level, there are two modules, motion feature extraction and action

graphs. In the module of motion feature extraction, we utilize the cluster-

relevant joints only and present a new statistical principle to decide the time

scale of motion features, to reduce computational costs and adapt to variable

movement speed. In the action graphs module, we exploit these 3D skeleton-

based motion features to build action graphs, and devise a new score function
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based on maximum-likelihood estimation for action graph-based recognition.

Experiments on the Microsoft Research Action3D dataset and the University

of Texas Kinect Action dataset demonstrate that our method is superior

or at least comparable to other state-of-the-art methods, achieving 95.56%

recognition rate on the former dataset and 95.96% on the latter one.

Keywords: action recognition, 3D skeleton, hierarchical framework,

part-based, time scale, action graphs.
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1. Introduction1

Action recognition is an active research topic that focuses on labeling a2

motion sequence as one of the known actions. It can be widely applied in3

human-computer interaction, health care, video surveillance, etc. In order4

to achieve high accuracy and great robustness for real-world applications,5

an action recognition system has to overcome three challenges: high intra-6

class variance with low inter-class variance, variable movement speed, and7

high computational costs. As shown in Fig. 1, people may perform the same8

action of Side Boxing in quite different ways, by using one hand or two hands,9

leading to high intra-class variance. Meanwhile, people may also perform the10

same action with variable movement speed, as demonstrated in Fig. 2.11

(a) Side Boxing with one hand

(b) Side Boxing with two hands

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

t(s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

t(s)

Figure 1: An illustrative example of high intra-class variance. Two panels

present skeleton sequence diagrams of action Side Boxing sampled at 10fps.

Prior to 2010, many color image-based methods of action classification12
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(a) Side Boxing with low speed

(b) Side Boxing with high speed
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Figure 2: An illustrative examples of variable movement speed. Two panels

present skeleton sequence diagrams of action Side Boxing sampled at 10fps.

had been studied [1]. However, these methods have relatively low recognition13

accuracies and thus they are unable to be applied in real-world applications.14

The situation has been much improved as technologies on depth imag-15

ing advance quickly [2–5]. Recent works of action recognition could be di-16

vided into two types, depth map-based methods [6–10] and 3D skeleton-based17

methods [11–22]. The former directly takes sequences of depth maps as in-18

put, while the latter utilizes 3D skeleton sequences inferred from depth maps.19

Fig. 3 shows the color image, depth image and 3D skeleton acquired from a20

Kinect sensor.21

Depth map-based methods extract features from depth maps to describe22

the human poses and model the transition of poses. The widely-used features23

include sampled 3D points from silhouettes [6, 7], histograms of oriented24

gradients [8], histogram of oriented 4D normals [9], histogram of oriented25

principal components [10], etc. However, the extraction of these features is26
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Figure 3: Depth image, skeleton and color image.

often time-consuming, making them hardly applicable in real-time scenarios.27

In fact 3D human skeleton, which could be reliably estimated from depth28

maps in real time [23–25], is an efficient and concise surrogate to describe the29

human poses. In most 3D skeleton-based methods [11, 12, 14, 16, 18, 21], mo-30

tion features are represented by pair-wise differences of joint positions within31

the current frame or between the current frame and the previous frames.32

Hence motion features extracted from 3D skeleton can efficiently model the33

action dynamics. Kapsouras et al. [21] further considered the time scale for34

motion features to fit various movement speeds. However, no principle has35

been supplied yet for how to determine the time scale. Some other histogram-36

based features are also proposed, like histograms of 3D joints [13], space time37

pose [17], histogram of oriented displacements [15], points in a lie group [19],38

etc.39

Yang et al. [12] used a 3D skeleton-based method to achieve higher recog-40

nition rates than the depth map-based method [6], but in their method it was41
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still difficult to distinguish similar actions, such as Draw X, Draw Tick and42

Draw Circle. Mining techniques were adopted for finding relevant joints for43

each action [11, 14], which indeed improved the classification performance.44

However, mining techniques are computationally expensive and difficult to45

be expanded to new actions. Chen et al. [18] proposed a simple and effec-46

tive hierarchical model to cluster similar actions and improved the accuracy47

of recognition. However, the hierarchical model therein was manually con-48

structed, which limited the expansibility of the method. A new representa-49

tion called SMIJ (sequence of the most informative joints) was proposed to50

select the most informative joints for performing an action [22], which was51

easy to interpret. However, this representation required segmenting each ac-52

tion sequence into several windows beforehand, which raised a difficult prob-53

lem of choosing the temporal window size. Moreover, it performed poorly54

when the skeleton data were noisy or the actions were based on almost the55

same joints.56

In this paper, in order to tackle the three challenges aforementioned, we57

propose a novel two-level hierarchical framework for 3D skeleton-based action58

recognition. The first level of the framework consists of a part-based cluster-59

ing module. In this module, a part-based five-dimensional feature vector is60

introduced to explore the most relevant joints of body parts in each action61

sequence, upon which action sequences are clustered. Distinct sequences of62

the same action could be grouped into different clusters, enabling us to cope63

with the problem of high intra-class variance. Hence this module groups64

similar actions together and divides the recognition task for various actions65

into several smaller and simpler tasks, which can significantly improve the66
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final performance (for example by more than 10% in our first experiment).67

In the second level of the framework, there are two modules, motion feature68

extraction and action graphs. For each cluster, only the relevant joints ob-69

tained from the first level are utilized for motion feature extraction, which70

not only enhances the validity of the extracted features but also reduces the71

computational costs remarkably. We also investigate and derive a statistical72

principle for determining the time scale of motion features to deal with the73

problem of variable movement speed. After motion feature extraction, we74

apply action graphs to these 3D skeleton-based motion features to finally75

classify actions. Experiments on the Microsoft Research Action3D dataset76

and the UTKinect-Action dataset show that our method is noticeably su-77

perior or at least comparable to other state-of-the-art methods, achieving78

recognition rates of 95.56% and 95.96%, respectively on the two datasets.79

The remainder of this paper is organized as follows. In Section 2 the80

proposed hierarchical framework is described. Details of the three key mod-81

ules, part-based clustering, motion feature extraction and action graphs, are82

followed in Section 3. Experimental performance of our method is demon-83

strated in Section 4. Section 5 concludes our work and discusses the future84

work.85

2. Hierarchical Framework86

As shown in Fig. 4, our hierarchical framework for 3D skeleton-based87

action recognition consists of three modules: part-based clustering, motion88

feature extraction and action graphs classification. For an action sequence,89

the hierarchical framework first decides its cluster. Motion features are then90
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Figure 4: The hierarchical framework of our proposed method.
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extracted from the relative joints. In the final classification, we apply the91

Viterbi decoding to the action graphs. Unlike [18], the hierarchical framework92

here is automatically learned from data during the training procedure with-93

out manual intervention. Correspondingly, our framework has three main94

characteristics.95

Firstly, a part-based five-dimensional feature vector is introduced to ex-96

plore the most relevant joints of body parts in each action sequence. Then97

action sequences are clustered to construct the first level of the hierarchical98

model. More details will be described in Section 3.1. The part-based clus-99

tering module groups similar actions together and partitions the recognition100

task for various actions into several smaller and simpler tasks, which could101

significantly improve the final performance, as verified in Section 4.3.1.102

Secondly, for each cluster, only the relevant joints are utilized for mo-103

tion feature extraction. Since irrelevant joints provide little information for104

classification, motion features of the relevant joints can not only enhance the105

validity of the extracted features but also reduce the computational costs. We106

extract motion features with higher order and time scale (see Section 3.2),107

which improves feature representability and thus achieves higher accuracy108

as demonstrated in Section 4.3.2. We further investigate how to choose the109

time scale for any specified dataset.110

Thirdly, we apply action graphs for classification. Unlike [6], our action111

graphs are applied to skeleton-based motion features. Postures are obtained112

via K-means clustering, upon which action graphs are trained. From max-113

imum likelihood estimation, we derive a new score function for the Viterbi114

decoding. We also investigate action graphs for early detection of actions,115
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which will be discussed in Section 4.3.3.116

3. Modules117

3.1. Part-based Clustering118

The joints of a human body could be divided into several parts, as actions119

are only related to certain parts of the body. Given the relevance of parts120

for each action sequence, actions that are relevant to different joints could be121

discriminated easily. So we could cluster action sequences with same relevant122

parts together and divide the recognition task into several simpler tasks in a123

cluster. In our method, a part-based five-dimensional feature vector is defined124

to explore the most relevant joints to body parts in each action sequence,125

then action sequences are clustered by using these features to construct the126

first level of the hierarchical framework.127

We define a body part as a set of joints close to each other. For clarity and128

simplicity, here we assume that the number of joints involved is 20 according129

to the Kinect sensor. Other situations with different numbers of joints could130

be adapted without difficulty. Here five body parts and the joints relevant131

to each body part are defined as132
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O1 = LUE ={left shoulder(1), left elbow(2),

left wrist(3), left hand(4)};

O2 = RUE ={right shoulder(5), right elbow(6),

right wrist(7), right hand(8)};

O3 = LLE ={left hip(9), left knee(10),

left ankle(11), left foot(12)};

O4 = RLE ={right hip(13), right knee(14),

right ankle(15), right foot(16)};

O5 = TRS ={head(17), shoulder center(18),

spine(19), hip center(20)}.

To measure the relevance of the five body parts to an action sequence,133

we construct a part-based five-dimensional feature vector R = [R1, . . . , R5].134

Given a T -frame sequence of joints positions X = {X1, . . . , XT}, where135

X t = [xt
1, . . . , x

t
20] in which xt

i is the 3D coordinate of the ith joint in the tth136

frame, the variance vector V = [V1, . . . , V20] of the joints in the sequence is137

calculated as138

Vi =
T∑
t=1

∥xt
i − x̄i∥2 ,

where the mean coordinate x̄i =
1
T

∑T
t=1 x

t
i. For incomplete skeletons, the139

corresponding entries Vi can be simply set as zero for the missing joints.140

Then the feature vector R, which represents the relevance of body parts to141
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an action sequence, is defined as:142

Rj = 1{(R̂j/maxl∈{1,...,5} R̂l)>η},where R̂j =
∑
i∈Oj

Vi . (1)

Here 1{·} is the indicator function valued in {0, 1}; the threshold η can be143

decided by cross-validation using the training set.144

Then action sequences can be clustered based on R, which automatically145

constructs the first level of the hierarchical framework during the training146

phase. A practical example of part-based clustering is shown in Fig. 5. As147

different people may perform the same action in different ways (actions with148

large intra-class variances), distinct sequences of the same action are allowed149

to be grouped into different clusters. For example, one person may perform150

action Side Boxing with two hands while another person may do it with only151

one hand, which means that R for these two sequences are different so that152

they may belong to different clusters. Allowing distinct sequences of the153

same action to be grouped into different clusters improves the performance,154

as verified in Section 4.3.1.155

Our method is also readily expansible for adding new actions. To add a156

new action to the dataset, we could simply calculate R for sequences of this157

new action, then join them to proper clusters or create a new cluster, and158

finally retrain the action graphs for the actions of the affected clusters.159

3.2. Motion Feature Extraction160

For each cluster, we extract motion features F t, t = 1, . . . , T, from the161

relevant joints X̂ t = {xt
i | i ∈ Oj, Rj = 1, j = 1, . . . , 5} only. For exam-162

ple, assume R = [1, 1, 0, 0, 0] for a cluster, which means that the actions in163

this cluster are mainly relative to the two hands. Then the relevant joints164

12



Root:

all sequences

of 20 actions

1st cluster:

13 actions

R=[0,1,0,0,0]

3rd cluster:

2 actions

R=[0,0,0,1,0]

2nd cluster:

6 actions

R=[1,1,0,0,0]

sequences of

Hand Clap

sequences of

High Wave

sequences of

Side Boxing

using two

hands

sequences of

Forward

Kick

sequences of

Side Boxing

using one

hand

sequences of

Horizontal

Wave

sequences of

Hammer

sequences of

Hand Catch

sequences of

Forward

Punch

sequences of

High Throw

sequences of

Draw X

sequences of

Draw Tick

sequences of

Draw Circle

sequences of

Tennis Swing

sequences of

Tennis Serve

sequences of

Pickup

Throw

sequences of

Hands Wave

sequences of

Jogging

with small

steps

sequences of

Tennis Serve

sequences of

Golf Swing

sequences of

Side Kick

4th cluster:

1 action

R=[1,1,1,1,0]

sequences of

Jogging

with big steps

5th cluster:

1 action

R=[1,1,0,0,1]

sequences of

Bend

Figure 5: The part-based clustering result obtained from the 20 actions.
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X̂ t are the joints of O1(LUE) and O2(RUE), i.e., X̂ t = {xt
1, x

t
2, . . . , x

t
8}.165

As we extract motion features only from relevant joints, the dimension of166

X̂ t is reduced. Since joints of irrelevant parts provide little information for167

identification of actions, the motion features extracted from only the joints168

of relevant parts can not only enhance the validity of the features but also169

greatly reduce the computational costs. The procedure of motion feature170

extraction is described as follow.171

Similarly to previous works [12, 21], we compute pair-wise differences172

of joint positions between specific frames to obtain motion features. These173

features consist of three components: static pose SP , dynamic pose DP and174

offset pose OP . The static pose represents the static state at the current175

frame, the dynamic pose represents the instant motion, and the offset pose176

represents the offset from the initial state.177

In [12], the higher order terms (position differences of different joints)178

were utilized to reduce noise but without considering the time scale. In179

contrast, [21] considered the time scale but ignored the higher order terms.180

In this paper, we combine them together, which means: We calculate SP ,181

OP and DP with higher order terms as in [12], while for DP , to take the182

time scale into consideration, we calculate it with three previous frames (1,183

5, 10 frames) before the current frame, respectively. This combination aims184

to capture the dynamics in various time scales and to reduce noise at the185

same time, which could enhance representability of the feature. We further186

investigate and devise a statistical principle for choosing the time scale, i.e.,187

the number of previous frames used. It will be demonstrated that, given188

a dataset, using the time scale up to the standard deviations of sequence189
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lengths is highly possible to offer an optimal performance. More details190

could be found in Section 4.3.2.191

To extract the motion features for the tth frame of a T -frame sequence,192

we calculate the three components from only the relevant joint positions193

X̂ t = {x̂t
m | m = 1, . . . ,M}, where M is the number of relevant joints:194

SP t = {x̂t
i − x̂t

j | i, j = 1, . . . ,M ; i ̸= j} ,

DP t = {x̂t
i − x̂t−s

j | i, j = 1, . . . ,M ; s = 1, 5, 10} ,

OP t = {x̂t
i − x̂1

j | i, j = 1, . . . ,M} .

Then we concatenate the three components to obtain the motion features195

F t
ori = [SP t, DP t, OP t]. After that, we apply principle component analysis196

(PCA) to reduce the dimension of the features and reach the final motion197

features198

F t = Wopt(F
t
ori − µ) ,

where Wopt is the optimal projection matrix and µ is the mean of all F t
ori.199

Note that here PCA is utilized to reduce computational costs and the result-200

ing motion features are later fed into action graphs for classification rather201

than directly used for classification. Thus, supervised dimension-reduction202

techniques like linear discriminant analysis (LDA) are not suitable here. De-203

note the dimension of the final motion features F t as L. The impact of L on204

recognition performance will be investigated by experiments in Section 4.4.205
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3.3. Action Graphs206

Many classification methods have been introduced to action recognition,207

among which action graphs [26] are an effective method to explicitly model208

the action dynamics. Action graphs were applied to depth map-based action209

recognition in [6]. Unlike [6], here we apply action graphs to 3D skeleton-210

based features and derive a new score function for recognition.211

An action can be represented by transitions of several postures, here a212

posture means the similar motion features for the frames in a salient state.213

Thus we could model an action as a weighted directed graph, whose nodes214

represent the postures of the action and whose edges represent the transi-215

tional probabilities between two postures.216

Fig. 6 is a sketch of two action graphs. Action High Throw consists of217

three postures, ω1 =hand lifting, ω2 =throwing and ω3 =hand putting down.218

The notation pn[i, j] near the arrows represent the transitional probabilities219

between postures ωi and ωj. In most cases of action High Throw, it starts220

from hand lifting, transits to throwing and ends at hand putting down. It221

is also quite possible that two consecutive frames stay at the same posture,222

which is represented as a self-loop edge in the action graph. Situations are223

similar for action High Wave, which shares two postures ω1 and ω3 with224

the former action and has another two new postures ω4 =wave slightly and225

ω5 =wave substantially. Nevertheless, because of high intra-class variance,226

there are two or more possible paths (e.g. 1-4-3 or 1-5-3) for the same action.227

As actions often share postures, we could obtain postures by clustering228

the motion features of all frames from all training samples via an algorithm229

like K-means clustering, with each cluster center representing a posture.230
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Figure 6: A sketch of two action graphs. In the sketch, each ωi represents

a posture and the notation pn[i, j] near the arrows represent the transitional

probabilities between postures ωi and ωj for the nth action. This sketch

intends to visualize the relationship of postures, actions and transitional

probabilities.
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Consider an action set of N actions A = {An}n=1,...,N that contains K231

postures Ω = {ωk}k=1,...,K , we could model them as a set of weighted directed232

graphs, which can be represented by a quadruplet G = (A,Ω, B, P ), where233

A = {An}n=1,...,N ,

Ω = {ωk}k=1,...,K ,

B = {Bn}n=1,...,N ,

P = {Pk}k=1,...,K ,

in which Bn = {p(ωj|ωi, An)}i,j=1,...,K , for n = 1, . . . , N, is the transitional234

probability matrix of the nth action An, and Pk(F
t) = p(F t|ωk) is the con-235

ditional probability of an observation F t to be generated from the node236

ωk. We assume that the distribution of the observations for a node can237

be approximated by an isotropic normal distribution: Pk(F
t) = p(F t|ωk) =238

1
(2π)L/2σL exp(− 1

2σ2∥F t − ωk∥2). Here σ is the standard deviation for all L239

dimensions. Such action graphs G can be trained as described in [26].240

For classification, we could apply maximum likelihood estimation. Given241

an action sequence of T frames, let F t be the final motion feature vector242

for the tth frame, and F = {F t}t=1,...,T be the motion feature sequence.243

The posture sequence corresponding to F is denoted by S = {St}t=1,...,T ,244

where St ∈ Ω for all t. The recognition of the most likely action A∗ that245

generates the observation F can be then formulated as a maximum likelihood246
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estimation:247

A∗ = argmax
An∈A,S∈ΩT

p(F, S|An)

= argmax
An∈A,S∈ΩT

[p(S|An) p(F |S,An)]

= argmax
An∈A,S∈ΩT

[
p(S1, . . . , ST |An) p(F

1, . . . , F T |S1, . . . , ST , An)
]
.

(2)

Assume 1) F is statistically independent of An given S, 2) F t is statistically248

dependent only on St, and 3) St is a Markov chain in an action, i.e., St only249

depends on its previous state St−1. We can further simplify (2) as250

A∗ = argmax
An∈A,S∈ΩT

T∏
t=1

[
p(St|St−1, An) p(F

t|St)
]

= argmax
An∈A,S∈ΩT

T∑
t=1

[
log(p(St|St−1, An)) + log(p(F t|St))

]
.

(3)

To solve (3), we adopt the Action-Specific Viterbi Decoding(ASVD) method [26]251

and derive a new score function:252

Score(An)

= max
S∈ΩT

T∑
t=1

[
log(p(St|St−1, An)) + log(p(F t|St))

]
= max

I∈{1,...,K}T

T∑
t=1

[
log(p(ωIt|ωIt−1 , An)) + log(p(F t|ωIt))

]
= max

I∈{1,...,K}T

T∑
t=1

[
log(Bn[I

t−1, I t]) + log(PIt(F
t))

]
= max

I∈{1,...,K}T

T∑
t=1

[
log(Bn[I

t−1, I t])− C∥F t − ωIt∥2
]
,

(4)

and253

A∗ = argmax
An

Score(An) . (5)
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In (4), I = [I1, . . . , IT ] is a sequence of numbers, where I t ∈ {1, . . . , K},254

ωIt = St, and C = 1
2σ2 , which could be optimized by cross-validation using255

the training set if σ is hard to be reliably estimated.256

4. Experiments and Discussion257

4.1. Datasets258

(a) High Wave

(b) Side Kick

(c) Tennis Serve

Figure 7: Sample frames of 20-joints skeleton for actions of (a) High Wave,

(b) Side Kick and (c) Tennis Serve from the MSRAction3D dataset.

MSRAction3D dataset [6]: The Microsoft Research Action3D dataset259
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(“MSRAction3D” for short) consists of 20 actions of 10 subjects, each action260

with 2 or 3 repetitions. These actions are mainly interactions with console261

in video games. As shown in Fig. 7, actions in this dataset capture a variety262

of motions related to arms, legs, torso, and their combinations. Meanwhile,263

the skeleton positions in this dataset are quite noisy. Hence, experiments264

on this dataset were widely adopted to test the accuracy and robustness of265

recognition methods for various actions. In previous works, it was used in266

two ways, either as one dataset containing all actions [7, 9–11, 14, 19–21] or267

by division into three subsets [6, 8, 12, 13, 15–19, 21].268

UTKinect-Action dataset [13]: The University of Texas Kinect Action269

dataset (“UTKinect-Action” for short) consists of 10 actions of 10 different270

persons, each action with 1 or 2 repetitions. These actions, including walk,271

sit down, stand up, pick up, carry, throw, push, pull, wave and clap hands,272

are mainly obtained from daily life. One of the challenges of this dataset is273

that one of the persons is left-handed. Meanwhile, the lengths of samples274

from this dataset vary in a wide range. It was used for evaluation in several275

previous works [13, 16, 17, 19].276

4.2. Experiments and Results277

In all experiments, we use the same hardware setup: Intel Core i7-4790278

CPU @3.6GHz, 24GB RAM. Our method could run at about 30fps for test.279

In all experiments, C in (4) and η in (1) are tuned by cross-validation280

using the training set, which follows the procedure below: (i) set a grid of281

values of C and η, divide the training set into two halves; (ii) train on the282

first half with different combinations of C and η, get accuracies by testing283

on the second half; (iii) repeat (ii) but exchange the two halves, average the284
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accuracies from (ii) and (iii); and (iv) find the values of C and η that produce285

the highest accuracy.286

4.2.1. MSRAction3D287

We follow the two types of experiments, as with the previous works.288

Firstly, the whole dataset is used to verify the performance of our method on289

a large number of actions. Secondly, three subsets of this dataset are tested290

to confirm the applicability of the method in various situations.291

In the first type of experiments, the entire 20 actions with 557 sequences292

are applied as with [9]. We conduct the cross-subject test, where sequences of293

half the subjects are used for training and the rest for testing. We repeat the294

experiment 252 times for different folds of 10 subjects as with [9]. The per-295

formance, including the best result, the worst result and the average result,296

are listed and compared in Table 1. The confusion matrix of the best result297

is displayed in Fig. 8. In the confusion matrix, the vertical coordinate (y)298

represents the true label of an action sequence and the horizontal coordinate299

(x) represents the recognition result. The value at the (x, y) coordinate of300

the matrix represents the ratio of action y recognized as action x. As shown301

in Table 1, our method outperforms other methods in terms of the average302

result and/or the best result. From the confusion matrix of the best result303

in Fig. 8, we can see that 15 out of 20 actions achieve 100% accuracy, which304

is perfect considering the noise of skeleton collected by Kinect and the huge305

intra-class variance among different subjects. Note that the action Hand306

Catch gets the lowest accuracy 50%, mainly because it is similar to other307

two actions High Wave and High Throw.308

In the second type of experiments, as with [6] all the 567 sequences of the309
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Table 1: Recognition rates of the first experiment on MSRAction3D. In the

table, we present the best result, the worst result and the average result for

252 different folds of 10 subjects.

Method Avg ± Std Best Worst

Ours 87.05± 3.75 95.56 74.39

Random Occupancy Patterns [7] - 86.50 -

Actionlet Ensemble [11] - 88.2 -

HON4D+Ddisc [9] 82.15± 4.18 88.89 -

Spatial and Temporal Part Sets [14] - 90.22 -

HOPC of 3D Pointclouds [10] 86.49± 2.28 92.39 74.36

Points in a Lie Group [19] - 89.48 -

Histograms of Action Poses + DTW [20] - 90.56 -

Dynemes and Forward Differences [21] - 91.94 -
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Figure 8: Confusion matrix of our method on MSRAction3D with the part-

based clustering. In the confusion matrix, the vertical coordinate (y) repre-

sents the true label of an action sequence and the horizontal coordinate (x)

represents the recognition result. The value at the (x, y) coordinate of the

matrix represents the ratio of action y recognized as action x.
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dataset are split into three subsets, each with eight actions. Evaluation for310

each subset is done independently. Table 2 shows the three subsets in this311

experiment. These three subsets have different aims: AS1 and AS2 contain312

similar actions to verify a method’s ability to discriminate similar movements,313

while AS3 groups complex actions together to evaluate the versatility of a314

method. The overall recognition rate is calculated by averaging the results315

over subsets. We also use the cross-subject test for this experiment and316

repeat it for different folds of subjects. The results are shown in Table 3,317

from which we can observe that our method outperforms the state-of-the-art318

method [21] by 2.5% in terms of the best result.319

Table 2: The three subsets of actions for the second experiment on MSRAc-

tion3D.

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Horizontal Wave (HoW) High Wave (HiW) High Throw (HT)

Hammer (H) Hand Catch (HC) Forward Kick (FK)

Forward Punch (FP) Draw X (DX) Side Kick (SK)

High Throw (HT) Draw Tick (DT) Jogging (J)

Hand Clap (HC) Draw Circle (DC) Tennis Swing (TSw)

Bend (B) Hands Wave (HW) Tennis Serve (TSr)

Tennis Serve (TSr) Forward Kick (FK) Golf Swing (GS)

Pickup Throw (PT) Side Boxing (SB) Pickup Throw (PT)
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Table 3: Recognition rates of the second experiment on MSRAction3D.

Method Avg ± Std Best Worst

Ours 88.7± 3.6 96.1 78.0

Bag of 3D Points [6] - 74.7 -

Histograms of 3D Joints [13] - 78.97 -

EigenJoints [12] - 82.3 -

EigenJoints + Hierarchical [18] - 90.3 -

Histograms of Oriented Displacements [15] - 91.26 -

Random Forests [16] - 94.3 -

Space-Time Pose [17] - 92.77 -

Points in a Lie Group [19] - 92.46 -

Dynemes and Forward Differences [21] - 93.6 -

4.2.2. UTKinect-Action320

We follow the challenging cross-subject test setting of [16, 19] instead of321

leave-one-out-cross-validation (LOOCV) setting of [13, 17]. In this setting,322

half of the subjects are used for training while the remaining for testing. The323

performances on this dataset are compared in Table 4. We can find out that324

our method, comparable to the method of Vemulapalli et al. [19], is much325

better than other methods. The confusion matrix of our method is shown in326

Fig.9, from which we can observe that all 10 actions achieve accuracy higher327

than 90%, 6 out of which achieve 100% accuracy.328
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Table 4: Recognition rates on UTKinect-Action.

Method Recognition rate

Ours 95.96

Histograms of 3D Joints [13] 90.92

Random Forest [16] 91.9

Space-Time Pose [17] 91.5

Points in a Lie Group [19] 97.08
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Figure 9: Confusion matrix of our method on UTKinect-Action.
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4.3. Module Analysis329

We carry out further experiments to analyze the effects of the three mod-330

ules. All these experiments follow the same setup as the first type of ex-331

periments on MSRAction3D aforementioned, i.e. the entire 20 actions being332

used, cross-subject test and repeating for different folds of subjects.333

4.3.1. Part-based Clustering334

We perform the first type of experiments on MSRAction3D to verify the335

part-based clustering. The results are shown in Table 5. In terms of the av-336

erage result, the part-based clustering significantly improves the recognition337

rate by about 14%. The improvement is mainly due to two merits of the338

part-based clustering: 1) it automatically divides distinct sequences of the339

same action into more than one cluster, and 2) it provides the relevant joints340

for motion feature extraction to help distinguish similar actions in the same341

cluster. Fig. 5 shows the part-based clustering result obtained from the 20342

actions.343

For the first merit, again take action Side Boxing as an example. Some-344

body may do it with one hand while others may prefer to use two hands,345

which results in a large intra-class variance (see Fig. 1). Without the part-346

based clustering, it only achieves 86.7% recognition accuracy. If we restrict347

that the sequences of the same action could only be grouped into a single348

cluster, it is difficult to decide which cluster, the cluster of using one hand349

or the cluster of using two hands, is correct for Side Boxing. Using either350

one may lead to misclassifying the other kind of sequences, which will result351

in a low recognition accuracy of 70%, even lower than the result without352

the part-based clustering. In contrast, allowing them to appear in different353
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clusters (see Fig. 5) can solve the problem, which leads to 100% recognition354

accuracy for this action in our experiment. A similar case is with action355

Jogging.356

For the second merit, take actions Hammer, High Throw and Draw Cir-357

cle as an example. Without the part-based clustering, action Hammer is358

highly confused with High Throw or Draw Circle and only 25% are recog-359

nized correctly. As these actions are similar movements using only the right360

hand, motion features extracted from all joints of body would contain much361

irrelevant information as noise, resulting in a low recognition accuracy. With362

the part-based clustering, they are grouped into the same cluster and only363

the joints of right up extreme (RUE) are used for motion feature extrac-364

tion. These motion features are the most discriminative with the irrelevant365

noise dropped out, which ultimately improves the recognition rate of Ham-366

mer up to 83.3%. Similar situations exist with Horizontal Wave (confused367

with Draw X and Draw Tick), Draw X (confused with Draw Circle) and368

Jogging (confused with Forward Kick).369

Table 5: Performance comparison between methods with and without the

part-based clustering.

Method Avg ± Std Best Worst

With part-based clustering 87.05± 3.75 95.56 74.39

Without part-based clustering 73.08± 4.34 83.03 61.97

29



Table 6: Performance comparison among different time scales for feature

extraction. The notation 1, 5, 10 means that three previous frames (1, 5, 10)

before the current frame are used.

Time scale Avg ± Std Best Worst

1 81.51± 3.66 89.59 70.38

1, 5 84.88± 3.35 92.67 75.61

1, 5, 10 87.05± 3.75 95.56 74.39

1, 5, 10, 15 82.31± 4.00 93.70 72.47

1, 5, 10, 15, 20 79.78± 4.28 93.70 68.77

4.3.2. Time Scale for Motion Feature Extraction370

As described in Section 3.2, to take the time scale into consideration, we371

calculate the DP component of the motion features with several previous372

frames before the current frame. To determine how many of previous frames373

are sufficient, we repeat the first type of experiments on MSRAction3D with374

different numbers of previous frames for motion feature extraction and com-375

pare the recognition accuracy in Table 6. We can observe that taking the376

time scale into consideration could enhance representability of the motion377

features, which in turn results in higher recognition accuracy. Besides, us-378

ing three previous frames (1, 5, 10) provides the best performance in this379

experiment. Take the action Bend as an example. Without taking the time380

scale into consideration, it only achieves 58.3% recognition rate. While using381

two previous frames (1, 5) already improves it up to 91.7% and using three382

previous frames (1, 5, 10) even manages to achieve 100% recognition rate.383

However, using more previous frames (15, 20) leads to worse performance,384
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which is mainly because the previous frames far away could not provide valu-385

able information for recognition but produce more noise.386
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Figure 10: Recognition accuracies of various sequence lengths using different

time scales for motion feature extraction. In the figure, “Bias from the aver-

age sequence length” means the absolute difference between the length of a

sequence and the average length of all sequences of this action, according to

which we divide the test set into several groups and compare the recognition

accuracies for each group using different time scales.

In order to investigate how to decide the time scale for a given dataset,387

we record the sequence lengths of the samples of all 20 actions. We find out388

that for this dataset, the standard deviations of sequence lengths of most389

actions are around 10, which explains why using up to 10 previous frames is390

sufficient to represent the time scale. We further partition the test set into391

several groups of sequences according to the difference between the length of392

a sequence and the average sequence length, that is, according to the bias393

from the average sequence length. For each group, we then compare the394
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recognition accuracies obtained from using different time scales for motion395

feature extraction. The comparative results are plotted in Fig. 10 (accuracies396

are obtained from the best result). We can observe that extracting motion397

features for three previous frames (1, 5, 10) improves the accuracies for differ-398

ent sequence lengths. Moreover, the improvement is relatively prominent for399

sequences whose length biases from the average are around 10 ([7.5, 12.5)).400

These observations imply that, given a dataset, using the time scale up to the401

standard deviations of sequence lengths is highly possible to offer an optimal402

performance.403

4.3.3. Action Graphs404

The Viterbi decoding algorithm used for action graphs is a dynamic pro-405

gramming algorithm, which could output scores (confidences) for all actions406

at any frame. This suggests that we may make use of this benefit to recognize407

actions at earlier time before the end of an action with sufficient confidence or408

to automatically and reliably segment actions along with action recognition.409

This is also useful to make the recognition latency lower when we apply the410

recognition algorithm in real-time applications.411

Here we carry out an experiment to verify the early detection performance412

of our method. In this experiment, we rescale the length of all test action413

sequences to be 1, and recognize the action at the points of 5/6, 2/3, 1/2,414

5/12, 1/3, 1/4, respectively. (Here we do not set the points to make equal415

segments, just because the recognition rate usually does not vary equably.416

Thus we sample more points for the early stage where the recognition rate417

varies more rapidly.) The training procedure is just the same as before. We418

record the recognition rates at different points for all folds of subjects and419
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put the average results and the standard deviation together to draw Fig. 11.420

We can observe that, from right to left, at first the recognition rate goes down421

slowly with the recognition point moving earlier, and then it drops quickly422

when the point is earlier than 2/3. So with bearable decline of recognition423

accuracy (about 4%), we could achieve early detection of actions at the 2/3424

point of the action sequence. At this point, the performance of our method425

is still higher than [9] (see Table 1).426
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Figure 11: Recognition rates at different points of action sequences. We

rescale the length of all test action sequences to be 1, and a point means the

length used for prediction.

To summarize up the module analysis, the introduction of the part-based427

clustering in our proposal and modifying the motion features of [12] with con-428

sideration of time scale are demonstrated to be effective on the MSRAction3D429
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dataset, resulting in better performance. Meanwhile, we suggest a statistical430

principle for deciding the time scale for any specified dataset. Furthermore,431

early detection is proved to be feasible with the use of action graphs.432

4.4. Impact of Parameters433

To verify the performance of our method versus different parameter values434

(here parameters include the PCA-reduced dimension L and the posture435

number K), we carry out experiments on MSRAction3D (the first type) and436

UTKinect-Action with various parameter values for the fold that gets the437

best result.438

4.4.1. Impact of the PCA-reduced Dimension L439

Fig. 12a shows how the performance of our method varies with different440

values of the PCA-reduced dimension, L. We can observe that, for both441

datasets, when L is small the performance slightly increases with L, and442

when L is large enough the performance becomes rather stable and then443

slightly decreases. This may be because when L is sufficiently large we can444

capture most of the energy as shown in the energy graph, Fig. 12b, and then445

more unimportant principal components induce certain irrelevant informa-446

tion. When L reaches 16, we already capture 95% of the energy and achieve447

the best performance. For this reason and for the consideration of small448

computational costs, we choose 16 as the value of L for both datasets.449

4.4.2. Impact of the Posture Number K450

Fig. 13 shows the impact of the number of postures, K, on the recognition451

performance. As we need more postures to characterize more actions, we take452

ratio ρ = K/N as the parameter to be discussed, where N is the number of453
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Figure 12: Impact of the PCA-reduced dimension.
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actions. As we can observe in Fig. 13, as ρ increases, the performance at first454

improves significantly and then stays at a high level.455

To explain this pattern, take two actions Hand Catch and High Throw456

in the MSRAction3D dataset as an example. When ρ is too small, we do457

not have enough postures to characterize all the actions so the transitional458

probability matrices of them are similar, which results in a poor recognition459

performance. Fig. 14a shows the main part of the transitional probabil-460

ity matrices of the two actions when ρ is too small (4). The two matrices461

seem similar to each other, which leads to a low recognition rate of 25% for462

Hand Catch. As ρ gets large enough, we manage to characterize different463

actions with different postures and/or different transitional probability ma-464

trices, which makes the recognition task much easier. Fig. 14b shows the465

main part of the transitional probability matrices of the same two actions466

when ρ is large enough (10). Compared with those in Fig. 14a where ρ is too467

small, the two matrices now are much more different from each other, which468

improves the recognition rate of Hand Catch to 75%. To verify the visual469

impression of the matrix similarity in Fig. 14a and Fig. 14b, we calculate the470

correlation r of the two transitional probability matrices, A and B, for these471

two actions, using the following formula:472

r =

∑N
i=1

∑N
j=1(Ai,j − Ā)(Bi,j − B̄)√(∑N

i=1

∑N
j=1(Ai,j − Ā)2

)(∑N
i=1

∑N
j=1(Bi,j − B̄)2

) ,

where Ā =
∑N

i=1

∑N
j=1 Ai,j

N2 , B̄ =
∑N

i=1

∑N
j=1 Bi,j

N2 . When ρ is 4, r is 0.44; when473

ρ is 10, r is 0.20, which indicates that the matrices are much less similar.474

Considering Fig. 13 and reasonable computational costs, we set ρ to 10 for475
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Hand Catch High Throw

1 28

1

28

1 28

1

28

(a) When ρ is too small (4), matrices of two actions are moderately

similar (r = 0.44).

Hand Catch High Throw

1 40

1

40

1 40

1

40

(b) When ρ is large enough (10), two matrices are not similar (r = 0.20).

Figure 14: Transitional probability matrices of two actions at different values

of ρ. The value at the (i, j) coordinate of the matrices represents the transi-

tional probabilities from posture i to posture j. Each value is illustrated by

the brightness, with a brighter one for a larger probability.
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the MSRAction3D dataset and 16 for the UTKinect-Action dataset.476

In summary, all the above experiments have verified that our proposed477

method has tackled to some extent the three challenges mentioned at the478

beginning of this paper. Firstly, with the utilization of the part-based clus-479

tering module, the challenge of high intra-class variance with low inter-class480

variance has been mostly solved. Secondly, we have notably worked out the481

challenge of variable movement speed by considering time scales for motion482

features. Thirdly, since our method is based on 3D skeleton, its computation483

costs are relatively low, making the method applicable in real time.484

5. Conclusion485

In this paper, we have proposed a novel two-level hierarchical framework486

for action recognition with 3D skeleton sequences. In the framework, we487

have introduced a new part-based five-dimensional feature vector to mine488

the most relevant body parts for each action sequence and to cluster action489

sequences, have investigated the time scale of dynamics to optimally modify490

established motion features, and have devised a score function for the action491

inference based on action graphs. Our experiments have also verified that,492

compared with other state-of-the-art methods, the proposed method could493

achieve higher accuracy on the complex MSRAction3D dataset.494

Nevertheless, the performance of our method still considerably depends495

on the accuracy of the skeleton positions, even though we only utilize the496

relevant joints. Besides, the two datasets used here provide known beginning497

and end of the actions, which are not available in real-world interactions.498

Hence, further to our work is to investigate the open problem of segment-499
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ing actions automatically, reliably and quickly by using action graphs, as500

suggested in Section 4.3.3.501
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