
ZebraRecognizer : Pedestrian Crossing Recognition for
People with Visual Impairment or Blindness

Sergio Mascettia,b,∗, Dragan Ahmetovica, Andrea Gerinoa,b, Cristian
Bernareggia,b

aUniversità degli Studi di Milano, Dept. of Computer Science, Via Comelico 39, 20135
Milan, Italy.

bEveryWare Technologies, Via Comelico 39, 20135 Milan, Italy.

Abstract

Independent mobility is a challenge for people with visual impairment or blind-

ness. Groundbreaking innovation comes from mobile devices (e.g., smartphones)

that are convenient platforms to provide assistive technologies in the form of

mobile applications.

This paper presents ZebraRecognizer , a software module that recognizes ze-

bra crossings and that advances state of the art along two directions. First,

it removes projection distortion from the acquired image, hence improving the

accuracy of the recognition and making it possible to compute the quantified

relative position of the crossing with respect to the user, which is crucial to

effectively guide the user. Second, ZebraRecognizer is efficient, as it adopts a

customized version of the EDLines algorithm that is also implemented to run

in parallel on the GPU. Experimental results show that ZebraRecognizer is ac-

curate, efficient and it computes the crossings position precisely.

Keywords: Visual impairment, blindness, pedestrian crossing, mobile

computing

∗Corresponding author. Phone: (+39) 02 503 16336. Fax (+39) 02 503 16276
Email addresses: sergio.mascetti@unimi.it (Sergio Mascetti),

dragan.ahmetovic@unimi.it (Dragan Ahmetovic), andrea.gerino@unimi.it (Andrea
Gerino), cristian.bernareggi@unimi.it (Cristian Bernareggi)

Preprint submitted to Pattern Recognition June 20, 2016

1. Introduction

In the past years mobile devices became accessible to people with visual im-

pairment or blindness1. This makes it possible to develop mobile applications

specifically designed for this class of users and indeed these apps are already

available on online stores. For example, there are applications that support5

independent mobility in urban environments by reading aloud the current ad-

dress and nearby points of interest. Other solutions that have been proposed in

the scientific literature rely on more involved techniques to extract information

from the environment and provide it to the user. In particular, in this paper we

consider the problem of detecting pedestrian crossings from the images captured10

with the mobile device camera.

There are a number of challenges involved with the identification of pedes-

trian crossings. First, given the hazards inherently connected with road crossing,

it is crucial to have no false positives, i.e., to erroneously recognize a crossing in

an image that actually contains none. At the same time, in order to guarantee15

an effective solution, most pedestrian crossings should be properly identified.

Second, it is necessary to precisely compute the relative position between the

user and the pedestrian crossing2. Third, since the application should be re-

sponsive, the identification process should have a low execution time.

This paper describes a software module called ZebraRecognizer that adopts20

an original pattern matching technique to recognize zebra crossings, a very com-

mon type of pedestrian crossings. ZebraRecognizer is designed to be included

in a mobile application called ZebraX that addresses the problem of guiding a

person with visual impairment or blindness to cross along a pedestrian crossing.

The extensive experimental evaluation highlights three major contributions of25

ZebraRecognizer with respect to the state of the art.

1In case the reader is unfamiliar with accessibility tools for people with visual impairment

or blindness there is a short video introducing the main ideas: http://goo.gl/mEI6Uz.
2In this paper “relative position” refers to the relative position between the user and the

pedestrian crossing.

2

http://goo.gl/mEI6Uz

• ZebraRecognizer rectifies selected features in the input image, hence re-

moving projection distortion. This eases the analysis of the zebra crossing

pattern, thus improving the quality of the recognition in terms of precision

and recall. The result is that ZebraRecognizer incurs in no false positives30

and it correctly identifies 93% of zebra crossings.

• Since the stripes composing the zebra crossing are rectified, ZebraRecog-

nizer computes the relative distance with quantified and precise measures.

For example, in 96% of the cases the frontal distance is computed with an

error smaller than 50cm (approximately one step) and the rotation angle35

(i.e., heading) is always computed with an error smaller than 10◦.

• ZebraRecognizer has been specifically engineered to be used on mobile

devices and, in particular, the most expensive operations are computed in

parallel on the smartphone GPU. As a result, on an iPhone 5S, ZebraX

can process about 25 frames per second.40

Note that, in addition to zebra crossing recognition, there are other chal-

lenges arising in the design and development of an application that guides people

with visual impairment or blindness to cross over pedestrian crossings. Among

others, there is the problem of computing a safe path to cross and the design of

effective audio instructions. We are currently investigating these topics. How-45

ever, they are out of the scope of this paper.

This paper extends a previous conference version [1] along a number of di-

rections.

• This paper improves all main steps of the recognition algorithm:

– ground plane rectification is now computed with a totally different50

and robust technique derived from the solution proposed by Lefler et

al. [2] (see Section 3.1);

– line segments merging is applied on rectified elements, rather than

on the original image (see Section 3.3);

3

– during line segments computation, orthogonal regression is adopted55

instead of least squares line fitting (see Section 3.3);

– new version also adopts “vertical distance” criterion during line seg-

ments grouping (see Section 4.1);

• The new solution defines distance measurements that can be used by the

other ZebraX modules to effectively guide the user. The computation of60

these measurements is not trivial and requires in-depth changes in the

recognition process itself (see Section 4.3).

• The solution presented in this paper has been optimized and engineered

and this positively impacts on accuracy and computational costs. In par-

ticular, this paper describes how to run the most expensive operations of65

the algorithm on the mobile device GPU (see Section 3.4).

• This paper presents new experimental results, including a detailed eval-

uation of the precision of the computed relative distance, showing that

the proposed technique is not only accurate in terms of precision and re-

call, but also precise is computing the position of the zebra crossing (see70

Section 5).

• This paper extends the technical description of the solution, including two

formal results with corresponding proofs (see Section 3, Appendix A and

Appendix B).

• This paper improves presentation, including a description of ZebraX mod-75

ules, extended discussion of related work, adds new examples and more

than 20 figures.

The paper is organized as follows. Section 2 describes the background of

ZebraRecognizer : related work, its role in ZebraX and the details of the pattern

matching problem it addresses. The technical solution is described by showing80

how ZebraRecognizer extracts the features from the input image (Section 3)

and processes them (Section 4). The results of the experimental evaluation are

presented in Section 5, while Section 6 concludes the paper.

4

2. Background

2.1. Related work85

To support independent mobility for people with visual impairment or blind-

ness, some applications available on the market convey to the user information

extracted from available data sources. For example, iMove3 is an iOS applica-

tion that informs the user about the current address and about nearby points

of interest (e.g., shops, bus stops, etc.).90

A more involved approach consists in extracting the contextual information

from the analysis on images coming from the device camera, possibly combining

this information with data obtained from other sensors, like accelerometer, for

example. This section presents some of the contributions appearing in scientific

literature that follow this approach to recognize pedestrian crossings.95

The first solution proposed in literature [3] detects pedestrian crossings with

the following approach: first, line segments and their vanishing points are de-

tected through Hough line segment detector. Then, outliers are filtered out

by a Random Sample Consensus algorithm. The result, expected to be a set

of line segments belonging to the same zebra crossing, is then validated using100

cross ratio constraint. This solution was validated on some sample images, but

no extensive evaluation on a large set of images was conducted. Moreover, no

experimental evaluation with people with visual impairment or blindness was

undertaken.

A different approach [4] first applies a bipolarity segmentation to detect areas105

of alternating black and white stripes and then validates the result through cross

ratio invariant verification. This solution yields good results in terms of precision

and recall, although the experimental evaluation has been conducted on a small

data set (about 100 images), all with similar illumination conditions. Vice versa,

our solution has been validated with a much larger set, captured with different110

3At the time of writing iMove is available for free download at https://itunes.apple.

com/en/app/imove/id593874954

5

https://itunes.apple.com/en/app/imove/id593874954
https://itunes.apple.com/en/app/imove/id593874954

illumination conditions including direct sunlight, night and cloudy weather.

Ivanchenko et al. propose two techniques for detecting pedestrian crossings.

One solution detects zebra crossings but does not compute their relative position

with respect to the user, which is a necessary step to guide the user towards the

crossing [5]. The second solution detects the “two stripes” pedestrian crossings115

and adopts a rectification technique that, while not described in detail, appears

to be similar to the one proposed in this contribution [6].

Murali et al., present an innovative approach to estimate the user’s position

in an intersection [7]. The idea is to acquire 360◦ image panoramas while turning

in place on a sidewalk. The image panorama is then converted to an aerial120

(overhead) view of the nearby intersection, centered in the user’s location. The

goal is to match this aerial view with a template of the intersection obtained

from a satellite image. The matching process allows crosswalk features to be

detected and permits the estimation of the user’s location in the intersection.

The main difference is that the aim of our solution is to continuously detect125

the relative position of the crossing in order to guide the user. Vice versa the

solution proposed by Murali et al. can identify the user’s absolute position but

it requires the acquisition of a complete panorama and hence it cannot be used

while the user is crossing.

Our previous solution for the recognition of zebra crossings focuses on the130

computation of the instructions to guide the user (e.g., “shift left”, “rotate

right”) [8]. This solution processes the projected image captured by the camera

and this introduces non-negligible approximation in the evaluation of the relative

position.

Finally, our recent contribution [9] adopts a solution similar to the one pro-135

posed in this work to recognize pedestrian crossings from geo-referenced online

images (e.g., satellite images and “Google street view” images). The aim is to

acquire information about the presence and position of zebra crossings that are

not currently in the camera field of view.

6

ZebraX

Navigator

Logic

ZebraRecognizer

Images

Accelerometer
and gyroscope

data

Figure 1: Modules of the ZebraX application

2.2. System modules140

The ZebraX application is divided into three main modules, as depicted in

Figure 1.

The Navigator module is in charge of conveying audio instructions to guide

the user towards and along the zebra crossing. The main challenge is that

the user needs to be continuously informed about his/her position with respect145

to the zebra crossing. However a person with visual impairment or blindness

should not be overwhelmed with too many audio messages, because they can

divert the attention from the surrounding audio scenario, which is essential to

acquire indispensable information (e.g., an approaching car, a person walking

by, etc.). Ullman et al. remark that blind people run into difficulty while being150

guided by verbose speech messages [10].

The instructions that the Navigator module conveys to the user are com-

puted by the Logic module. In this case the challenge is to generate a short and

safe path in which the zebra crossing is always in the camera field of view.

To compute these guidance instructions the Logic module takes in input the155

relative position of the crossing.

This paper focuses on the procedure to recognize the zebra crossings and to

compute their relative position. This computation is run by the ZebraRecognizer

module which is internally divided into 6 steps, as shown in Figure 2. The

first three steps (i.e., rectification matrix computation, image pre-processing160

and line segments detection) are all aimed at extracting the line segments that

7

represent the stripes (see Section 3). In the last three steps (i.e., line segments

grouping, zebra crossing validation, final result computation) the line segments

are processed and relative position is computed (see Section 4).

Line segments
grouping

Zebra crossing
validation

Final result
computation

Line segments
detection

Rectification
matrix

computation

Image
pre-processing

Figure 2: ZebraRecognizer flowchart

2.3. The Pattern Matching Problem165

The recognition technique described in this paper has been tuned for detect-

ing zebra crossings as defined by Italian traffic regulations (see Figure 3a), but

it can be easily adapted to most definitions used worldwide. For example, given

the similarity between Italian zebra crossings (Figure 3b) and the US version

(see Figure 3c), it is possible to reconfigure ZebraRecognizer to recognize the170

US zebra crossings with very limited effort, by setting and re-tuning the detec-

tion parameters. Clearly, the solution does not directly apply to other types

of pedestrian crossings, like the “two lines crossings” (see Figure 3d). Still, the

adopted methodology can be used to design similar solutions for other pedestrian

crossings or other kinds of geometrically well-known horizontal traffic signs.175

A zebra crossing is described as a horizontal traffic sign consisting of an

alternating pattern of dark and light stripes (see Figure 3a). It is composed of

at least 2 light stripes and 1 dark stripe. The stripes are commonly rectangular

and, less frequently, in case of diagonal crossings, parallelograms. They are

50cm thick and have a width of at least 250cm. The dark stripes are of the180

same color of the underlying road while the light stripes may be white or, in

case of road works, yellow.

The recognition process is entirely computed locally on the mobile device be-

cause the responsiveness requirements of ZebraX makes it impractical to have

8

White stripe

Long edge (>250cm) S
hort edges (50cm

 each)

Dark stripe

White stripe

Dark stripe

(a) Zebra crossing

pattern in Italy

(b) Pedestrian

crossing in Italy

(c) Pedestrian

crossing in USA

(d) “Two lines

crossing” in UK

Figure 3: Examples of zebra crossings.

Z

Y

X

(a) Device axes

Roll

Yaw

Pitch

(b) Rotations

hu

he

hf
π
6

hd

(c) Height

Figure 4: Rotation and position of the mobile device while using ZebraX .

a remote computation due to network latency. For the detection of zebra cross-185

ings, ZebraRecognizer relies on data sources available on off-the-shelf smart-

phones: video camera, accelerometer and gyroscope. The first captures image

frames that can then be analyzed with computer vision techniques in order to

detect zebra crossings, if present. Accelerometer and gyroscope, instead, can be

used to extract the orientation of the device with respect to the ground plane190

and the detected crossings.

Technically, the input of ZebraRecognizer consists of user’s height hu, an

image i with height ih and width iw and the gravity acceleration data repre-

sented as a three dimensional unit vector a = 〈ax, ay, az〉. Its elements ax, ay

and az are measured in g = 9.80665 m/s2, take values in [−1, 1] and represent,195

respectively, the portion of the gravity that is applied on the device x, y and z

axes (see Figure 4a).

9

(a) Line segments in the

source image.

(b) Line segments in the

rectified ground plane.

Dark stripe

W
hite stripe

Lateral distances
Fro

nta
l

dis
tan

ce

Rotation
angle

L

R

(c) Relative distances.

Figure 5: Zebra crossing identification and relative distances.

The output of the algorithm is the most suitable detected zebra crossing, if

any. It is characterized by a list of stripes, each one defined by its top and bottom

line segments and its color (i.e., black or white). We represent the position of200

each line segment both in the source image (e.g., Figure 5a) and on the rectified

ground plane (e.g., Figure 5b). The result also includes four compact and easy-

to-use distance measurements (see Figure 5c): frontal distance, rotation angle,

lateral distances from the left and right borders of the crossing.

3. Features extraction205

The features that ZebraRecognizer uses to detect a zebra crossing in an

image are the line segments representing the long edges of the stripes. They

are recognized with a customized version of the EDLines algorithm, originally

proposed by Akinlar et al. [11]. The modified version of this algorithm requires

the knowledge of the horizon line in the image. Property 1 defines how to210

compute the horizon line equation (proof is in Appendix A).

Property 1. Let ρ and θ be the device pitch and roll angles respectively, C =

〈Cx, Cy〉 is the center of the image and f is the focal distance of the camera (in

10

C

Ground
Plane

Image Plane

C'

Rectified Plane

Rectification

Figure 6: Rectification homografy

pixels). Then, the equation of the horizon line h inside the acquired image is

sin(θ)x+cos(θ)y−sin(θ)(Cx+tan(ρ)sin(θ)f)−cos(θ)(Cy +tan(ρ)cos(θ)f) = 0

(1)

The modified EDLines algorithm also takes in input the rectification matrix215

that is used to rectify the line segments being extracted (see Section 3.1). The

image used by EDLines is pre-processed, as described in Section 3.2. The actual

specialized version of EDLines is presented in Section 3.3 while Section 3.4

describes the algorithm implementation on the GPU.

3.1. Ground plane reconstruction220

Planar rectification is a homography, represented by a 3×3 rectification ma-

trix, that removes the projective distortions from the image of a planar surface

and returns a view of the same plane in which the camera’s axis is perpendicular

to the plane. For the ground plane, the rectified image is a view from directly

above it, as seen in Figure 6. Once the rectification matrix is known, it can be225

selectively applied to some elements (i.e., line segment end points) instead of

the whole image, thus reducing the execution time. In our previous work ([1])

rectification matrix is obtained by using a well-known technique [12]. How-

ever, we experimentally observed that a more recent approach [2] yields better

performance (mainly in terms of recall) and hence we decided to adopt it.230

Note that the rectification matrix is computed for each new frame using

the last available gravity data. Since on the system used for the experiments

11

(iPhone 5S) gravity acceleration data is updated about 100 times per second,

each time a new frame is received the rectification matrix is computed with

values no older than 10ms.235

The application of the rectification matrix to the image yields a “rectified

plane” in which the distances are proportional to those on the ground plane.

More specifically, the distance between any two points on the ground plane is

equal to the distance of the corresponding points on the rectified plane multiplied

by a zoom factor. To compute the zoom factor it is necessary to know the240

distance between any two points in the rectified plane as well as the distance

between the corresponding two points in the ground plane.

In our case, we consider two artificial points on the rectified plane that are

crafted in such a way that we can derive the distance of the two corresponding

points in the ground plane thanks to the knowledge of the camera position in245

space and camera parameters. Property 2 shows how to derive the zoom factor

(proof in Appendix B).

Property 2. Let ρ be the device pitch angle, hd the device’s height, C the

center of the image and f the focal distance of the camera (in pixels). R is the

rectification matrix computed previously while Ai and Bi are arbitrary points250

below the horizon and that lie on line vl that is perpendicular to the horizon and

that passes through the image principal point C.

Points Ar = R ·Ai and Br = R ·Bi are rectified points corresponding to Ai

and Bi respectively.

Then, the zoom factor z is:255

z =
hd ·

[
tan

(
π − ρ− atan

(
CBi

f

))
− tan

(
π − ρ− atan

(
CAi

f

))]
ArBr

(2)

Note that Property 2 assumes that the height hd of the camera with respect

to the ground is known. To estimate this value, ZebraRecognizer assumes that

the user is holding the device in a position like the one depicted in Figure 4c in

which the elbow is close to the hip and the forearm has an inclination of about

π/6 with respect to the ground plane. By considering the proportions of the260

12

human body [13], the device height can be derived from the user’s height hu

(either estimated or asked to the user). Indeed, on average, the height at elbow

is 0.615 ·hu and the forearm length is 0.205 ·hu. Consequently, the device height

from the ground is estimated as:

hd = 0.615 · hu + sin(π/6) · 0.205 · hu (3)

Clearly the above computation is subject to some approximation. However,265

the error does not practically affect navigation. For example, considering a

175cm tall person, the technique estimates that the device is held at 125cm

from the ground. Even in the extreme case in which the device is actually kept

at the height of the shoulders4 (about 145cm from ground), a zebra crossing at

a distance of 2m is computed as being 2.33m from the user i.e., the error is less270

than an average step length.

3.2. Image Pre-Processing

As observed in Section 2.3, zebra crossings can be painted with different

colors. Hence we are only interested in the light and dark components of the

image. For this reason, we acquire grayscale images. Clearly, the use of single-275

channel images also helps improving the computation performance and reduces

the memory footprint.

The acquired images contain many small details we are not interested in, such

as cracks, paint imperfections, leaves and dirt. These imperfections may actually

impair detection, hence we use resampling and blurring to filter them out. The280

first method rescales the image until small details become undetectable. Also,

it reduces the image size and thus diminishes the execution time of per-pixel

operations that follow. However, the size still has to be sufficient for a correct

detection. As highlighted in our experiments (see Section 5), the best results of

the recognition can be obtained with relatively low resolution (i.e., 180× 320).285

ZebraX acquires images at this resolution. Vice versa, the images in the test-

sets were recorded at the resolution of 1080 × 1920 and resized, with a linear

4This is an unnatural position that we never observed during experiments.

13

(a) Original image (b) Pre-processing (c) Line segments

(d) Line segment groups (e) Crossing validation (f) Detected crossing

Figure 7: Main steps of ZebraRecognizer .

interpolation filter, before running each test so that ZebraRecognizer can be

evaluated with images at different resolutions.

Finally, a Gaussian blur filter is applied to the image. Similarly to the290

resampling, the aim is to filter out imperfections in the image and ease the

line segments detection. Since this step reduces the number of recognized line

segments, it also indirectly affects the computation performances because fewer

line segments need to be processed in the following steps.

Figure 7b shows an example of the pre-processing step applied to Figure 7a295

(the portion of the image above the horizon is ignored). Henceforth with “im-

14

age” we intend the result of the pre-processing step.

3.3. Line Segments Detection Algorithm

The line segments detection step is a modified version of the EDLines algo-

rithm [11]. The input is composed by the pre-processed image, the horizon line300

and the rectification matrix. The output is a set of detected segments in the

rectified coordinate system. There are four main differences with respect to the

original algorithm.

First, our technique ignores the portion of the image above the horizon since

no zebra crossings will ever be found there. This approach significantly reduces305

the computation time for two different reasons: it speeds up the line segments

detection process itself and it reduces the number of detected segments, hence

reducing the computation time of successive processing steps. This solution also

helps improving the recognition accuracy as it prevents false positives (i.e., a

false crossing recognized above the horizon).310

The second difference with respect to the original EDLines algorithm is that

our solution computes additional information about the detected line segments.

First, in addition to gradient direction, our solution also computes the gradient

orientation of the detected segments, so, in practice, we compute the angle

of the gradient in [0, 2π) rather than in [0, π). This information is useful in315

the following steps since the direction and the orientation of the gradient can

differentiate between segments on the top and those on the bottom of each

stripe. The second additional information computed by our version of EDLines

is whether each end point of each line segment lies on the image boundary.

This is useful, in the following computation, to distinguish between stripes that320

terminate in the end point position and those that, instead, can potentially

continue but are not visible in the image.

The third difference is that our technique also merges close segments. Two

segments having both slope distance and spatial distance lower than specified

thresholds are merged. This is useful, for example, when two or more portions325

of a line segment have been recognized as different line segments due to minor

15

(a) Split line seg-

ments (projected)

(b) Split line seg-

ments (rectified)

(c) Merged line seg-

ments (rectified)

(d) Merged line seg-

ments (projected)

Figure 8: Example of line segments merging.

imperfections in the image, noise, flawed coloration of the stripes or objects be-

tween the observer and stripes (Figure 8 shows an example). The line segment

s resulting from the merging of two line segments s1 and s2 is computed as

follows: first, the lines l1 and l2 on which the two line segments lay are calcu-330

lated. Then, a new line l (equation in general form: ax+by+c = 0) is computed

with parameters a, b and c being weighted averages (based on the two segments’

lengths) of the corresponding parameters of lines l1 and l2. Finally, the segment

s is computed as the union of the two line segments’ projections on l.

In our previous solution ([1]), this merging operation was computed using335

line segments in their representation on the image, hence subject to projection

distortion. Vice versa, in our current solution, line segments are rectified before

being merged.

The fourth difference is that, during line segment computation, we use or-

thogonal regression instead of least squares line fitting for the purpose of deter-340

mining the equation of the line on which each line segment lays. Orthogonal

regression computes the orthogonal distance between each point and the candi-

date line, differently from the line fitting algorithm that computes the vertical

distance. Orthogonal regression is needed in our case since we are also interested

in vertical line segments.345

As a final step, after merging lines segments, we prune the segments that

are too short to possibly represent a stripe edge. Figure 7c shows an example

16

of application of our personalized version of EDLines.

3.4. GPU Computation of Line Segments Detection

While our implementation of EDLines has been highly optimized, it is still350

the most expensive operation of ZebraRecognizer and it takes about 45% of

the entire computation time. The reason is that three operations required by

EDLines have a time complexity linear in the number of pixels in the image.

These three operations consist in the computation of gradient magnitude, gradi-

ent direction and anchors. Since the aim of these three operations is to extract355

the so called “anchors”, in this paper we globally refer to them as “anchors

extraction”.

To reduce the computation time of “anchors extraction”, we implemented

it through two fragment shaders, so that the computation can be run by the

GPU highly parallel architecture. Indeed, while the general purpose GPU com-360

putation frameworks like CUDA and OPENCL are still not available on mobile

devices, it is possible to use programmable fragment and vertex shaders that

are actually available in mobile GPUs. The core idea behind a fragment shader

is that it defines how to compute each pixel of an output image. To achieve a

highly parallel computation, each pixel in the output image must be computed365

independently from all the others in the sense that it is not possible to use, in

the computation of a pixel, the result of the computation of a different one.

The proposed solution adopts a single fragment shader to compute both

gradient magnitude and direction. These two operations can be computed in

a single fragment shader as both depend on the input image only. Vice versa,370

anchors computation depends on the result of the other two operations, hence

it is implemented in a separate fragment shader. The result of each operation

is stored in a different channel of an RGB image.

Our experimental results, run on an iPhone 5s with the methodology pre-

sented in Section 5, show that, on average, anchors extraction is more than 4375

times faster when run on GPU. In absolute terms, the average time required to

compute these operations on a single frame is about 8.5ms when computed in

17

CPU and less than 2ms when computed in GPU.

4. Features processing

Starting from the line segments extracted from the image, ZebraRecognizer380

groups them into candidate crossings (Section 4.1) that are then validated (Sec-

tion 4.2). Finally, ZebraRecognizer selects the most relevant crossing and com-

putes the distance measurements (Section 4.3).

4.1. Line Segments Grouping

The aim of the line segments grouping phase is to partition the set of line385

segments into blocks, each one representing a different candidate crossing. Each

candidate crossing is characterized by a set of stripes, that, in turn, are com-

posed by a pair of line segments each. During line segments grouping, rectified

line segments are processed, so that it is possible, for example, to straightfor-

wardly check geometrical properties (e.g., parallelism) and to compute quanti-390

fied measurements (e.g., the width of each stripe).

All line segments are first assumed to be part of a single set that is then parti-

tioned according to three criteria: ‘slope’, ‘horizontal overlapping’ and ‘vertical

distance’. The idea behind the slope criterion is that the line segments in the

same crossing are mutually parallel. For example, in Figure 7d, line segment395

7 is not grouped with the line segments in the dashed box due to the ‘slope’

criterion. The same holds for line segments 9, 10, 11, 12, 13 and 14.

In addition to being parallel, line segments composing a zebra crossing should

also be reciprocally ‘aligned’. Technically, consider the projections of the line

segments on a line parallel to them; it should hold that the large part of each400

line segment projection overlaps with the projections of the other line segments.

The evaluation of this criterion should take into account that in some cases a

line segment can actually have a small overlap due to the fact that it is partially

outside the field of view. It is possible to distinguish these cases because it is

known, for each end-point of each line segment, if it lies on the image boundary405

18

(see Section 3.3). Consider the example of Figure 7d. The line segments in the

dashed box are all grouped together, even if the line segments closer to the user

have a smaller overlapping: this is due to the fact that part of the line segment

is outside the field of view. Vice versa, line segments 3, 4 and 8 are not grouped

together with the line segments in the dashed box because their overlap with410

the other line segments is too small.

Finally, the vertical distance criterion guarantees that, in each group, two

consecutive line segments must have opposite gradient directions and a distance

of about 50cm (this is specific for Italian regulation, see Section 2.3). For exam-

ple, in Figure 7d line segments 1 and 2 are too close to the line segments in the415

dashed box and hence are not grouped with these line segments. Analogously,

line segments 5, 6 and 15 are too far away and, again, are not grouped together

with the line segments in the dashed box.

Each grouping criterion is enforced by using an agglomerative hierarchical

clustering technique with single linkage. The first criterion (“slope”) is applied420

to the entire set of line segments (considered as a single set) and results in a set

of blocks, each one used as input for the iterative application of the other two

criteria.

4.2. Zebra Crossing Validation

After the line segments grouping step, each resulting block is validated ac-425

cording to two criteria: ‘grayscale consistency’ and ‘number of edges’.

Grayscale consistency criterion captures the fact that each light (or dark)

stripe has a grayscale level that is lighter (darker, respectively) than the average

grayscale level of the candidate crossing. Clearly the expected grayscale level

(light or dark) of a stripe is known due to the fact that the gradient of its two430

edges is defined. The minimum required difference between the stripe grayscale

level and the crossing average grayscale level is specified by the “grayscale con-

sistency magnitude threshold” parameter. Thanks to this criterion, structures

that are geometrically similar to stripes but without consistent dark/light alter-

nating grayscale level are discarded. An example of application of the grayscale435

19

(a) A false positive candidate

crossing after grouping

(b) False positive is discarded by

“grayscale consistency” criterion

Figure 9: Application of the “grayscale consistency”.

consistency criterion is shown in Figures 9a and 9b. After the grouping phase,

some line segments are grouped in a single block and hence are marked as a

candidate crossing (Figure 9a). However, as can be observed in Figure 9b, there

is a too small difference in the coloration of the identified stripes. By enforcing

the grayscale consistency criterion the candidate crossing is discarded.440

The second validation criterion, is “number of edges”. It defines that a

valid zebra crossing should be composed of a minimum number of edges. In

most of our experiments, this value is set to 5, hence guaranteeing that each

crossing contains at least two white stripes, as required by Italian regulation.

Consequently, blocks that contain a smaller number of line segments are pruned.445

In theory, the number of edges criterion could only be checked as the last step

of the recognition procedure (i.e., after enforcement of grayscale consistency).

However, checking the number of edges criterion requires a negligible time (i.e.,

it takes constant time in our implementation). For this reason this criterion

is evaluated after each step of grouping and validation in order to reduce the450

number of line segments to process, hence improving the overall computation

time of ZebraRecognizer .

A candidate crossing that meets the grayscale consistency and the number

20

of edges criteria is marked as a ‘validated crossing’.

4.3. Final Result Computation455

In many cases either none or a single validated crossing is returned by the

validation phase. However, it is possible that two or more crossings are returned.

This happens, for example, at crossroads or when there are two consecutive ze-

bra crossings separated by a traffic island. To decide which one is the “most

relevant” crossing for the user, we adopted the following methodology. We iden-460

tified, in a set of sample images (see Section 5) the cases in which two or more

validated crossings are identified. By observing them, we empirically defined

this procedure: the most relevant crossing is the closest to the user among

those having roughly the same direction as the user. Consequently ZebraRec-

ognizer first checks if any detected crossing has an orientation angle within a465

threshold from the user’s orientation. If favorable crossings are available, all

other crossings are discarded. Among the remaining ones, the closest one to the

user is selected as the most relevant.

Once the most relevant crossing has been selected, its position with respect

to the user is computed for the purpose of guiding the user during the crossing.470

In particular, the distance is computed as a set of four distance measurements,

represented in Figure 5c. “Frontal distance” is defined as the distance between

the user and the closest line segment (called CLS in the following). “Rotation

angle” is the (oriented) angular distance between the user’s heading and the

crossing. In the figures shown in this paper we represent the user pointing475

upwards, so the rotation angle corresponds to the stripes angle. In theory, since

the line segments should be mutually parallel, the angle is the same for all line

segments. However, in practice, there can be some approximation and hence

the rotation angle is computed as the average angle of all line segments. The

third and fourth distance measurements are “lateral distance left” and “lateral480

distance right”. We will describe the former, the latter is analogous. “Lateral

distance left” intuitively represents the distance between the user and the left

border of the crossing measured on CLS. More formally, it is the (directed)

21

distance between the left border of CLS and the projection of the user’s position

on CLS.485

There is an issue arising in the computation of “lateral distance left” (the

same holds for “lateral distance right”). Indeed, it is possible that the edge of

the first detected stripe is not entirely contained in the image. In this case the

left end-point of CLS does not necessarily represent the left border of the closest

stripe. Let’s consider two examples. In Figure 10a the left end-point of CLS490

(point B) actually represents the left end of the stripe (point A). Figure 10b

shows the rectified view. Differently, in Figures 10c and 10d the first stripe is

not fully contained in the image and the left end-point of CLS (i.e., point B′) is

not the left end of the stripe (i.e., point A′). In the first case (Figures 10a and

10b) it is clear that the user is close to the left border and hence he/she should495

be instructed to strife right before crossing. Should the same instruction be

provided in the second case? The answer is negative. Indeed, by observing the

stripes that are farther from the user, it is possible to infer that the first stripe

extends on the left of the user hence, intuitively, it is safe to start crossing in

the current position. To capture this intuitive reasoning, we take into account500

the left end-points that are marked as not-being on the image boundary (see

Section 3.3). If there are too few of these points, the “lateral distance left” is

marked as not quantifiable. Vice versa, we use an orthogonal regression algo-

rithm to find the stripe “border” i.e., the line that passes through these points.

We then compute the intersection A′ of this line with the line where CLS lies.505

The “lateral distance left” is then computed as the length of A′C ′.

5. Experimental evaluation

5.1. Experimental methodology

When ZebraRecognizer is run in ZebraX , the input data are taken directly

from the device’s camera and sensors, and this makes it impossible to run the510

recognition procedure twice with the same input. Clearly this is a problem with

app debugging, parameters tuning and performance measuring. To overcome

22

CLS

A=B

C

(a) Left edge is vis-

ible.

C

User

CLS
A=B

(b) Figure 10a rec-

tified.

CLS
A’ B’ C’

(c) Left edge is not

visible.

A’ B’ C’

User

(d) Figure 10c rec-

tified.

Figure 10: Computation of lateral distance.

this issue we first collect images and then we process them off-line. We developed

two applications. zRecorder is a mobile application that records the stream

of images and motion sensors data (i.e., accelerometer and gyroscope). The515

other application, zSimulator , reads the data stored by zRecorder and uses it

as an input to run ZebraRecognizer so that its performance can be measured.

zSimulator can be run both on traditional devices (i.e., desktops and laptops)

and on mobile ones. This approach significantly eases the debugging process

and enables regression tests, parameters tuning and reproducible experimental520

tests.

We used zRecorder to create four sets of images (with corresponding motion

data) at 1080 × 1920 resolution. All sets are publicly available5. The first set,

called Testset1, consists of 40 videos and 4015 frames captured in different illu-

mination conditions (sunny, cloudy and night). All frames have been manually525

annotated to distinguish those containing a zebra crossing (1877) from the re-

maining ones (2138). The second set, called Testset2, includes 6 videos with a

total of 206 frames. In this case, for each frame we also annotated the relative

position of the crossing. To minimize the approximation while collecting this

information, we recorded the videos by using a tripod positioned at a given530

frontal and left/right distance from the crossing. Since the tripod is stationary,

5http://webmind.di.unimi.it/ZebraRecognizerTestSet/

23

http://webmind.di.unimi.it/ZebraRecognizerTestSet/

the frontal and lateral distances are fixed for each video, while the rotation an-

gle varies. To measure the rotation, before starting the recording, we calibrate

the device so that it is perfectly perpendicular with the stripes and then, for

each frame, we measured the rotation angle by using gyroscopes information.535

We empirically observed that the error introduced by the gyroscopes is negli-

gible, also considering that the duration of the recording is of few seconds and

that the device is not subject to sudden movements (since it is on a tripod).

The third set, called Testset3, is a subset of Testset1 that contains only heavily

blurred images with zebra crossings (manually selected from Testset1). Testset3540

contains 613 images, mostly taken in conditions of low ambient light. Finally,

the fourth set, called Testset4 contains 265 images of zebra crossings that are

partially covered by external objects, for example a pole (like in Figure 8).

We used a desktop pc for computationally intensive evaluations (e.g., pa-

rameters tuning) and an iPhone 5s smartphone for evaluating the execution545

time.

We take four indicators into consideration: precision, recall, execution time

and positioning accuracy. Precision, calculated as the ratio between the cor-

rectly detected crossings and all the detected crossings, measures the amount of

false positives. A precision score of 1.0 means that each detection corresponds550

to a crossing in the examined image, conversely a lower ratio implies that some

crossings were detected where none was present. The recall metric is computed

as the ratio between the detected crossings and all the correct crossings in the

dataset. While a score of 1.0 means that all the crossings were correctly de-

tected, lower values indicate that some of the crossings were not. Given the555

safety concerns for the navigation of users with visual impairment or blindness

in a dangerous environment, we notice how anything less than a perfect preci-

sion score is unacceptable, while a high recall score, although important, is less

critical. Henceforth, unless differently stated, we report our results in which the

precision is always equal to one.560

The execution time defines the average time needed to run ZebraRecognizer .

It does not take into account the time required to load the image from the hard

24

drive nor the time required to resize the input image. Indeed, when ZebraRec-

ognizer is used in ZebraX , the input image is already acquired at the necessary

resolution and no resizing is needed. Clearly, lower execution time allows higher565

frame rates, increasing the responsiveness of the detection with respect to the

user’s movements. Also, it means that the procedure is less computationally

intensive, with a lower power consumption.

Finally, the positioning accuracy indicates the extent to which the relative

position returned by ZebraRecognizer is precise. The positioning accuracy in a570

given frame is characterized by four values, one for each distance measurements.

Each value is the difference between the distance computed by ZebraRecognizer

and the expected (actual) value. Clearly, positioning accuracy can only be com-

puted if the expected relative distance is known and hence only using Testset2.

5.2. Parameters tuning575

This section reports the results of the study conducted for the tuning of five

representative parameters that highly influence the recognition performances:

“resolution”, “grouping angle”, “grayscale consistency”, “blur kernel size” and

“blur standard deviation” .

The “resolution” parameter specifies the size of the image on which the580

detection is run. The “grouping angle” parameter defines the maximum an-

gular distance between two line segments that are grouped together (see Sec-

tion 4.1). The “grayscale consistency” parameter defines the minimum differ-

ence in grayscale level (value range between 0 and 255) between a stripe and the

average grayscale level of the crossing (see Section 4.2). The last two parameters585

refer to the strength of the blur filter applied during image pre-processing (see

Section 3.2). These parameters are listed in Table 1 together with their min-

imum and maximum values used during parameters’ tuning, and their default

chosen values.

Figure 11a shows that with a very low resolution (below 90 × 160) recall590

diminishes drastically. This is due to the fact that in these cases the features are

hard to detect. For high resolutions (above 180× 320) there is also a reduction

25

Parameter Min Chosen Max

Resolution 90× 160 180× 320 720× 1280

Grouping angle 1.5 3 7.5

Grayscale consistency 1 5 9

Blur kernel size 3 9 13

Blur standard deviation 0.7 0.9 1.4

Table 1: Most influential parameters and their values.

0

0.2

0.4

0.6

0.8

1

11
x2

0

90
x1

60

18
0x

32
0

27
0x

48
0

36
0x

64
0

45
0x

80
0

54
0x

96
0

63
0x

11
20

72
0x

12
80

R
ec

al
l

Image resolution

(a) Resolution parameter

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.5 3 4.5 6 7.5 9
 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

P
re

ci
si

on

R
ec

al
l

Grouping angle

Precision
Recall

(b) Grouping angle

Figure 11: Results of parameter tuning.

in recall due to the fact that noise and imperfections are more visible and impair

drastically the segment detection stage. While this behavior can be offset by

using stronger blurring during the preprocessing step (see Section 3.2), higher595

resolutions do not improve the detection accuracy. Thus, the default resolution

used for the detection is 180× 320 pixels.

For the “grouping angle” parameter we observe (see Figure 11b) that, for

larger values of this parameter, recall is higher due to the fact that larger blocks

of line segments are generated with the application of the “slope” criterion600

hence it is less likely that they are pruned by the “number of edges” criterion.

However, for values larger than 3◦, some false positives can be introduced and

hence precision diminishes, although very slowly. For this reason, the default

value is 3. The analysis for the “grayscale consistency” parameter is similar (see

Figure 12a): for smaller values of this parameter the “grayscale consistency”605

26

 0.9985

 0.999

 0.9995

 1

 1 2 3 4 5 6 7 8 9
 0.91

 0.92

 0.93

 0.94

P
re

ci
si

on

R
ec

al
l

Grayscale consistency

Precision
Recall

(a) Grayscale consistency

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.9
 0.91
 0.92
 0.93

P
re

ci
si

on

R
ec

al
l

Blur standard deviation

Precision
Recall

(b) Blur standard deviation

 0.997

 0.998

 0.999

 1

 3 5 7 9 11 13
 0.91

 0.915

 0.92

 0.925

 0.93

P
re

ci
si

on

R
ec

al
l

Blur kernel size

Precision
Recall

(c) Blur kernel size

Figure 12: Results of parameter tuning.

criterion is easier to satisfy, hence there is a higher recall. However, for values

smaller than 5 precision is less than 1. Hence, we choose 5 as the default value.

Figure 12b shows that, for what concerns the “blur standard deviation”

parameter, there is a peak in both precision and recall for the value of 0.9.

Thus, we chose this value as the parameter default. For the “blur kernel size”610

parameter, we can observe in Figure 12c that, for values smaller than 7, there

are some false positives (i.e., precision is less than 1). Vice versa, when this

parameter is set to 7 or higher, precision is 1. For values larger than 7, both

precision and recall are not influenced, but the computation costs are higher.

Hence, we chose the value of 7 for this parameter as default.615

5.3. Impact of GPU computation

One set of experiments is aimed at assessing the improvements of the GPU

implementation of anchors extraction (see Section 3.4). Figure 13a shows the

comparison between the CPU and the GPU implementations for different values

of the “resolution” parameter. As expected, this parameter significantly influ-620

ences the execution time of anchors computation as this is an operation with

time complexity linear in the number of pixels. Indeed, the computation time

of the CPU implementation is 2.5ms for images with resolution 90× 160, while

it is almost exactly four times larger (i.e., 9.67ms) for images with four times

the number of pixels (i.e., 180 × 320). The same increase can be observed for625

images with resolution 360 × 640. Differently, with the GPU implementation,

27

0
5

10
15
20
25
30
35
40

90x160 180x320 360x640

C
om

pu
ta

ti
on

 ti
m

e
(m

s)
CPU
GPU

Source resolution (pixels)

(a) Computation time of anchors ex-

traction

 0

 5

 10

 15

 20

 25

 30

CPU GPU

C
om

pu
ta

ti
on

 t
im

e
(m

s) Other
Anchors extraction

(b) Impact of anchors computation

time in ZebraRecognizer

Figure 13: Computation time of ZebraRecognizer .

the total computation time is composed by a constant-time overhead (we es-

timate its cost to be about 1.5ms) and the actual computation, whose cost is

indeed linear in the number of pixels and about 10 times faster than with the

CPU implementation. So, overall, while the computation on the GPU leads to630

an improvement of about 30% for 90 × 160 images, the improvement is much

larger with 180× 320 images (the default resolution value) where the GPU im-

plementation is more than 4 times faster. In our experiments we also observed

that for larger images the benefits are even higher (e.g., for 360 × 640 images

the GPU implementation is about 8 times faster).635

One question is how the GPU implementation of anchors extraction im-

pacts on the overall computation time of ZebraRecognizer . Figure 13b helps us

provide an answer by showing, at the default resolution, how the entire com-

putation time of ZebraRecognizer is divided between anchors extraction and all

other operations. When anchors extraction is computed in CPU, it requires640

almost the same time as all the other operations (precisely, anchors extraction

takes 44% of the entire computation time). Vice versa, with the GPU implemen-

tation, anchors extraction requires 15% of the entire computation time. Overall,

since the GPU implementation is about 4 times faster, it improves the overall

ZebraRecognizer computation time by about 30%.645

28

5.4. Robustness

We used Testset3 and Testset4 to evaluate the robustness of the proposed

solution when the zebra crossing is heavily blurred or partially covered. In this

analysis, since the two testsets contain true positives only (all images contain

a zebra crossing), we evaluated recall only. Note that ZebraRecognizer has650

not been specifically tuned for these two testsets of images: the values of all

parameters are the same as defined in the tuning phase, conducted with Testset1

(see Section 5.2).

Figure 14 shows a comparison of the recall obtained in Testset1, Testset3

and Testset4 when two different techniques are used for line segments detection.655

In this section we consider the default technique only (Edlines); we discuss the

results with the other technique (LSD) in Section 5.5.

We can observe in Figure 14 that, when ZebraRecognizer is run with heavily

blurred images, recall slightly improves (from 0.93 with Testset1 to 0.96 with

Testset3). This is due to the fact that images in Testset3 are mainly captured660

in conditions of low ambient light (when it is easier to have heavily blurred

images). In this light condition, there is a higher contrast between light stripes

and the dark background, which makes it easier to detect crossings.

For what concerns Testset4, we can observe that, considering only images

in which the stripes are partially covered, the decrease in recall is very small:665

from 0.93 with Testset1 to 0.88 with Testset4. This supports the fact that, in

the great majority of the cases, the line segment detection algorithm is able to

reconstruct the entire stripe edge, even when it is partially occluded.

5.5. Comparison with previous solutions

In this section we first compare the impact on ZebraRecognizer of two dif-670

ferent algorithms for line segment detection and then we compare the solution

presented in this paper with our previous ones.

Since line segment detection is a crucial part of our technique, we investi-

gated the impact of two different approaches: a customized version of EDLines

29

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Testset1 Testset3 Testset4

R
ec

al
l

LSD EDLines

Figure 14: Recall with Testset1, Testset3 and Testset4 using EDLines and LSD.

(described in Section 3.3) and a customized version of Line Segment Detector675

(LSD), [14].

We implemented a version of ZebraRecognizer adopting LSD and we tuned

it with the same methodology described in Section 5.2 for the “standard” Ze-

braRecognizer version that uses EDLines. In practice, we tuned the parameters

to obtain no false positives (i.e., to have precision 1) and to have the highest680

possible recall. Figure 14 shows that the algorithm performs consistently better,

in terms of recall, when EDLines is adopted. Indeed, in Testset1, the recall is

0.93 and 0.86 for EDLines and LSD, respectively. A similar result is obtained

for Testset3. For Testset4, the ZebraRecognizer version using EDlines yields a

much higher recall score. This suggests that the solution based on LSD is less685

efficient in reconstructing the line segments if they are partially occluded. Also,

when LSD is adopted, ZebraRecognizer has a computation time that is about 3

times higher than with EDLines. For the above reasons, we can conclude that

EDLines outperforms LDS for this specific application.

We now compare the solution presented in this paper with our previous690

solutions ([8], [1]), that are henceforth called “Version 1” and “Version 2”, re-

spectively. A direct comparison with other solutions is unfeasible because the

implementation and the data used for their evaluation are not public. Vice

versa, as we explain in Section 5.1, the data used for our tests is public, so that

a direct comparison of future works with our solution is possible. The three695

solutions are compared according to two metrics: recall and computation time.

30

 0

 0.2

 0.4

 0.6

 0.8

 1

Version
1

Version
2

Current

R
ec

al
l

(a) Recall comparison

 0
 10
 20
 30
 40
 50
 60
 70
 80

Version
1

Version
2

Current
CPU

Current
GPU

C
o

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

(b) Computation time comparison

Figure 15: Performance comparison (precision is 1 in all versions).

For each version we use the corresponding default system parameters, which,

as previously stated, are tuned to yield a precision equal to 1.

For what concerns recall, Figure 15a shows that it improved from .69 in

Version 1 to .78 in Version 2 up to .93 in the current version of ZebraRecognizer .700

The improvement from Version 1 to Version 2 is mainly due to the fact that in

Version 2 the geometrical properties are checked on the rectified image. The

improvements from Version 2 to the current version is due to the number of

improvements described in Sections 3 and 4.

For what concerns the computation time, in Version 1 the average time to705

process each frame is 74ms, while in Version 2 it is 23ms. In the current version

of ZebraRecognizer the average time is 22ms with the CPU implementation of

anchors extraction while it is 16ms with the GPU implementation. Considering

also the image acquisition time, ZebraX can process about 25 frames per second.

The small improvement between Version 2 and the current CPU implementa-710

tion is due to two contrasting factors: on one side, we engineered and optimized

the code, hence improving the computation time by about 20%. On the other

side, we fixed a bug in the line segments merging algorithm (see Section 3.3).

The effect of the bug was to erroneously terminate before merging was complete,

hence resulting in a partially incorrect result but faster computation. After fix-715

ing this bug, all line segments are now correctly merged, but the improvement

in computation time from Version 2 to the current version is negligible. Still,

the GPU implementation of anchors extraction guarantees an improvement of

31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Frontal distance (cm)

(a) Frontal distances cumulative distri-

bution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Rotation difference (degrees)

(b) Rotation distances cumulative dis-

tribution

Figure 16: Accuracy of frontal and rotation distances.

about 30%.

5.6. Positioning accuracy720

A set of experiments is aimed at asserting the approximation introduced

when computing the four distance measurements (see Section 4.3). In the fol-

lowing we indicate as “error” the absolute value of the difference between the

distance (frontal, angular or left/right shift) returned by ZebraRecognizer and

the expected (correct) distance.725

For what concerns the frontal distance, the average error is 0.22m. Figure 16a

shows the cumulative distribution function (CDF) chart of the error occurring

in the computation of frontal distance. It can be observed that in 50% of the

cases the error is less than 20cm, while in 96% of the cases the error is less than

50cm, which corresponds to approximately one step.730

In a few cases the error is about 1m: this is due to the fact that the first white

stripe is not recognized. Fortunately this problem occurs in few frames (less

than 3%) that are generally non-consecutive (the longest sequence we measured

is composed by two consecutive frames). This makes it possible to identify

the occurrence of this problem in the Logic module by checking for sudden735

changes in the frontal distance. Indeed, since the temporal distance between

two consecutive frames is less than 0.05s (frequency is about 25 frames per

32

second), a change in the frontal distance larger than 0.5m clearly indicates that

the closer stripe has not been recognized. The results of the frontal distance

error also show that the mean error is larger when the observer is far from the740

crossing. For example, when the observer is 4m far from the crossing, the mean

error is 0.24m, while for a distance of 2m the mean error is less than 0.2m.

For what concerns the rotation angle, the average error is about 2.2◦. Fig-

ure 16b shows the CDF chart: it can be observed that the error is up to 9.5◦

and that in 93% of the cases the error is less than 7◦. In this case it is not745

possible to check for sudden changes, as a user can possibly rotate very quickly.

Nevertheless values can be smoothed by using a moving average in the Logic

module. For example, with a moving average of length 3, the average error in

the rotation angle is 1.0◦ and the maximum error observed in the experiments

is 3.0◦.750

During our experiments we observed that the computation of the lateral

distance is subject to a non-negligible approximation caused by two factors:

first, EDLines frequently does not recognize the entire stripe edge, but just

a portion of it and consequently the computation of the border is not always

precise. See Figure 17 for an example. Second, the projection of the user’s755

position on CLS (the line segment closest to the user) can be imprecise due to

approximations in the computation of CLS angle. To address the former issue,

our solution excludes, from the border computation, the points that introduce

an error above a given threshold as, for example, points A in Figure 17. This

is useful, for example, when there are few line segments that are much shorter760

than the actual stripe edge. To address the latter issue, when computing the

projection on CLS, instead of using the angle of CLS, we use the average

angle computed among all the stripes. The resulting technique always correctly

identifies a lateral distance as not quantifiable (i.e., the border is out of the field

of view, see Section 4.3). In some rare cases it happens that, even if the border765

is visible, it is still identified as not quantifiable. This is often due to the fact

that the border is only visible in the stripes that are far away from the user and

these stripes are not recognized. In any case, in 87% of the cases, if a border

33

A

Figure 17: Stripe edge not completely recognized

is visible then it is identified by our technique and, in these cases the average

error is 0.25m.770

6. Conclusions and future work

This paper presents ZebraRecognizer , a software module to recognize pedes-

trian crossings. The requirements of this module were derived from the ex-

perience in the development of ZebraX , an application that recognizes zebra

crossings, computes the safe path to correctly align and provides audio feedback775

to guide the user with visual impairment or blindness. This paper shows that

ZebraRecognizer can compute the quantified and accurate position of the zebra

crossing without incurring into any false positive and with few false negatives.

At the same time, ZebraRecognizer is efficient on mobile devices.

We are currently working on the other two modules composing ZebraX . The780

Logic module has two main objectives: first, to keep the information about the

stripes position updated by using dead reckoning techniques and, second, to

compute a safe path to guide the user towards the crossing. Also, this mod-

ule could implement a form of spatio-temporal reasoning to track the already

recognized zebra crossings between consecutive frames. The Navigator mod-785

ule interacts with the user and its main challenge is to provide effective audio

feedback without distracting the user from the surrounding environment.

As a future work, we intend to integrate ZebraX with iMove, a commercial

application we developed that supports independent mobility of people with

34

l

F

P

ρ
f
d

D

C

Im
ag
e

Ground

(a) Lateral view.

y

D=P

d
θ

F

Q

h

C

x

Image

Ground

(b) Frontal view.

Figure A.18: Device orientation for the computation of the horizon line equation.

visual impairment or blindness. As a parallel research direction we intend to790

extend the machine vision technique to recognize other elements of the urban en-

vironment relevant for a user with visual impairment or blindness, in particular

traffic lights.

APPENDIX

Appendix A. Proof of Property 1795

The notation used in the proof refers to Figures A.18a and A.18b.

We approximate the ground to an infinite plane. Thus, line l, which points

from the device camera to the horizon, is parallel to the ground plane and angle

F̂DP is π/2.

We define the horizon line h in the image by using its angle θ and a point

P where h passes. The equation of a line having slope m and passing through

point P = (Px, Py) is:

y − Py = m(x− Px)

The slope is computed from the line angle θ as m = tan(θ) = sin(θ)/cos(θ).800

Replacing m in the equation we obtain the horizon line h in its general form:

sin(θ)x+ cos(θ)y − (sin(θ)Px + cos(θ)Py) = 0 (A.1)

35

We now show how to compute θ and P .

Consider Figure A.18a. Let P be the point where the image plane intersects

line l. Thus, point P lies on the horizon line h and P is inside the image. Also,

since point D is the device, segment DC is perpendicular to CP . Hence PCD is805

a right triangle. Since CD is the focal distance f and angle PDC is the device

pitch angle ρ, the distance (in pixel) between the image center C and point P

is d = f · tan(ρ).

In the image plane, the device roll θ is the inclination of the device’s x axis

with respect to the ground plane. Since the horizon line h is parallel to the810

ground plane, θ is also the inclination of the horizon in the image. Consider

Figure A.18b. Let Q be the projection of C on the line parallel to the x axis

(in the device reference system) that passes through P . Since ĈPQ+ θ = π/2,

it follows that P̂CQ = θ. Since the distance d is known, then the distance of

point P from point C along the x axis is dx = PQ = d · sin(θ). Analogously,815

the distance of point P from point C along the y axis is dy = CQ = d · cos(θ).

Thus, the coordinates of point P are P =< Cx − sin(θ)d,Cy − cos(θ)d >.

Finally, substituting d and P in Equation A.1 we obtain:

sin(θ)x+cos(θ)y−sin(θ)(Cx+tan(ρ)sin(θ)f)−cos(θ)(Cy +tan(ρ)cos(θ)f) = 0

(A.2)

Appendix B. Proof of Property 2

To compute the zoom factor ZebraRecognizer takes into account two points820

Ai and Bi on the image plane and their projections Ar, Br, Ag and Bg on the

rectified plane and ground plane, respectively. See Figure B.19a.

Ai and Bi are arbitrary points below the horizon and lie on line vl, which is

perpendicular to the horizon and passes through the image principal point C.

The distance ArBr is computed by applying the rectification to Ai and Bi and825

by computing the euclidean distance on the resulting points Ar and Br. The

distance AgBg on the ground plane is computed as AgBg = FAg − FBg.

36

l

F

P

ρ
f

D Image

Ground

C

Bg Ag

Bi

Ai

Br Ar Rectified

hd

(a) Lateral view.

D=P

F

C

Image

Ground

h vl

Ai

Bi

(b) Frontal view.

Figure B.19: Zoom factor computation.

To compute FAg consider right triangle DFAg of which we know the device’s

height hd. The angle F̂DP is right and it is also the sum of the device pitch

ρ, angle ̂FDAg and angle ̂AgDC. The angle ̂AgDC can be computed from830

the device’s focal distance f and the distance AiC as ̂AgDC = atan(AiC/f).

Thus, the angle ̂FDAg = π − ρ− ̂AgDC. Now, the distance FAg is computed

as FAg = tan(̂FDAg) ·hd. An analogous approach can be used to compute the

distance FBg.

Finally, the zoom factor is computed as z =
AgBg

ArBr
or, by substituting the835

known values:

z =
hd ·

[
tan

(
π − ρ− atan

(
CBi

f

))
− tan

(
π − ρ− atan

(
CAi

f

))]
ArBr

(B.1)

[1] Ahmetovic, D., Bernareggi, C., Gerino, A., Mascetti, S., ZebraRecognizer:

efficient and precise localization of pedestrian crossings, in: Proceedings of

the 22nd International Conference on Pattern Recognition (ICPR), IEEE

Computer Society, 2014.840

[2] Lefler, M., Hel-Or, H., Hel-Or, Y., Metric plane rectification using sym-

metric vanishing points, in: Proc. of the 20th International Conference on

Image Processing, IEEE Comp. Soc., 2013.

37

[3] Se, S., Zebra-crossing detection for the partially sighted, in: Proc. of the

Conf. on Computer Vision and Pattern Recognition, IEEE, 2000.845

[4] Uddin, M.S., Shioyama, T., Detection of pedestrian crossing and measure-

ment of crossing length - an image-based navigational aid for blind people,

in: Trans. on Intelligent Transportation Systems, IEEE, 2005.

[5] Ivanchenko, V., Coughlan, J., Shen, H., Detecting and locating crosswalks

using a camera phone, in: Computer Vision and Pattern Recognition Work-850

shop, IEEE, 2008.

[6] Ivanchenko, V., Coughlan, J., Shen, H., Staying in the crosswalk: A system

for guiding visually impaired pedestrians at traffic intersections, in: Assist

technol Res Ser., IOS, 2009.

[7] Murali, V., Coughlan, J. M., Smartphone-based crosswalk detection and855

localization for visually impaired pedestrians, in: Workshop on Multimodal

and Alternative Perception for Visually Impaired People (MAP4VIP), Int.

Conf. on Multimedia and Expo, IEEE, 2013.

[8] Ahmetovic, D., Bernareggi, C., Mascetti, S., ZebraLocalizer: identification

and localization of pedestrian crossings, in: Proceedings of the 13th Inter-860

national Conference on Human Computer Interaction with Mobile Devices

and Services, ACM, 2011.

[9] D. Ahmetovic, R. Manduchi, J. Coughlan, S. Mascetti, Zebra crossing spot-

ter: Automatic population of spatial databases for increased safety of blind

travelers, in: Proceedings of the 17th International ACM SIGACCESS Con-865

ference on Computers and Accessibility (ASSETS 2015), ACM, 2015.

[10] Ullman, B.R., Trout, N.D., Accommodating pedestrians with visual im-

pairments in and around work zones, in: Journal of the Transportation

Research Board, TRB, 2009, pp. 96–102.

[11] Akinlar, C., Topal, C., Edlines: A real-time line segment detector with a870

false detection control, Pattern Recognition Letters.

38

[12] Liebowitz, D., Zisserman, A., Metric rectification for perspective images

of planes, in: Proc. of Computer Vision and Pattern Recognition, IEEE,

1998.

[13] Huston, R., Principles of biomechanics, CRC press, 2008.875

[14] Von Gioi, R. G., Jakubowicz, J., Morel, J.M., Randall, G., Lsd: A fast line

segment detector with a false detection control, Trans. on Pattern Analysis

and Machine Intelligence.

Sergio Mascetti is Associate Professor at Università degli Studi di Milano,880

Department of Computer Science. His research interests include mobile data

management, with focus on assistive technologies and privacy protection. He is

co-founder of EveryWare Technologies, a university spin-off developing assistive

technologies on mobile devices.

885

Dragan Ahmetovic is a Ph.D. graduate in computer science at University of

Milan with a thesis focusing on computer vision-based pedestrian crosswalk de-

tection and crossing guidance for people with visual impairments. His research

interests are computer vision, assistive technologies and sensor fusion-based lo-

calization.890

Andrea Gerino is a PhD student at the Computer Science Department of the

University of Milan. His research interests include mobile data management

and the development of mobile applications to support people with disabilities.

He is co-founder of EveryWare Technologies, a university spin-off developing895

assistive technologies on mobile devices.

Cristian Bernareggi is scientific and technological collaborator at Università

degli Studi di Milano, Computer Science Library. His research interests include

39

human computer interaction with focus on assistive technologies for people with900

sight impairment. He is co-founder of EveryWare Technologies, a university

spin-off developing assistive technologies on mobile devices.

40

	Introduction
	Background
	Related work
	System modules
	The Pattern Matching Problem

	Features extraction
	Ground plane reconstruction
	Image Pre-Processing
	Line Segments Detection Algorithm
	GPU Computation of Line Segments Detection

	Features processing
	Line Segments Grouping
	Zebra Crossing Validation
	Final Result Computation

	Experimental evaluation
	Experimental methodology
	Parameters tuning
	Impact of GPU computation
	Robustness
	Comparison with previous solutions
	Positioning accuracy

	Conclusions and future work
	Proof of Property 1
	Proof of Property 2

