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Abstract

Multi-label classification problems usually occur in tasks related to informa-

tion retrieval, like text and image annotation, and are receiving increasing at-

tention from the machine learning and pattern recognition fields. One of the

main issues under investigation is the development of classification algorithms

capable of maximizing specific accuracy measures based on precision and re-

call. We focus on the widely used F measure, defined for binary, single-label

problems as the weighted harmonic mean of precision and recall, and later ex-

tended to multi-label problems in three ways: macro-averaged, micro-averaged

and instance-wise. In this paper we give a comprehensive survey of theoreti-

cal results and algorithms aimed at maximizing F measures. We subdivide it

according to the two main existing approaches: empirical utility maximization,

and decision-theoretic. Under the former approach, we also derive the opti-

mal (Bayes) classifier at the population level for the instance-wise and micro-

averaged F , extending recent results about the single-label F . In a companion

paper we shall focus on the micro-averaged F measure, for which relatively

fewer solutions exist, and shall develop novel maximization algorithms under

both approaches.

Keywords: multi-label classification, F measure, learning algorithms,

empirical utility maximization, decision-theoretic approach
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1. Introduction

Multi-label (M-L) classification problems, like document categorization, and

image and video annotation, usually occur in the design of information retrieval

(IR) systems. They consist of deciding whether an instance (e.g., a document)

is relevant or not to a given set of queries, which can be viewed as non-mutually

exclusive labels. An instance can thus be assigned more than one label. Over the

past ten years, M-L classification problems have received an increasing attention

from the pattern recognition and machine learning research communities (see,

e.g., [33, 36]). One of the main topics under investigation is the development of

learning algorithms tailored to specific M-L accuracy measures. Such measures

are mostly based on precision and recall, which are the main metrics used for

evaluating the performance of IR systems. They are di↵erent from the ones

used in single-label (S-L) problems, like the misclassification probability.

In this work we focus on the widely used F measure. It has been originally

proposed to evaluate IR systems in [30, 34], and is defined as the weighted

harmonic mean of precision and recall. It is also used to evaluate the accuracy

of S-L binary classifiers aimed at discriminating instances relevant to a query

from non-relevant ones.1

Three di↵erent versions of the F measure have subsequently been defined for

M-L problems: instance-wise, macro- and micro-averaged. Under the viewpoint

of the target accuracy measure, the existing approaches to M-L classifier design

can be subdivided into two groups. Works in the first group (including most of

the earlier ones) do not focus on a specific measure; they use S-L learning algo-

rithms, and deal with multiple labels per sample using problem transformation

or algorithm adaptation strategies (see the surveys of [33, 36]). Among the for-

mer, the simplest one is binary relevance (BR), which consists of independently

1The S-L F measure is also used in binary problems not related to IR, but characterized

by relevant class imbalance. In this case the misclassification probability is not a suitable

performance measure, since a classifier that always predicts the majority class attains an

accuracy equal to the corresponding prior.
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learning a binary classifier for each label, disregarding label correlation; other

approaches have been proposed to attain a trade-o↵ between taking into ac-

count label dependencies and keeping computational complexity low. Works in

the second group focus on developing algorithms to maximize a specific accuracy

measure, most often one of the M-L F measures. Maximizing the F measures

(including the S-L one) is however particularly di�cult since, contrary to S-

L measures like accuracy, they do not decompose either over samples, or over

labels, or both. Two di↵erent approaches for maximizing the S-L and M-L F

measures have been considered, in turn [19]. The empirical utility maximization

(EUM) approach aims at finding the decision rule which maximizes the chosen

F measure on a finite sample of labelled instances; this approach has been used

to develop several learning algorithms. The decision-theoretic approach (DTA)

aims instead at finding the label assignments that maximize the expected value

of the chosen F measure on a fixed set of unlabeled instances, with respect to

their joint label-conditional probability; in practice, this probability is estimated

from training data, whereas the unlabeled instances correspond to testing data.

In the present paper we give a comprehensive survey of existing algorithms

for maximizing the F measures, which is still lacking in the literature. Nearly

all works published in pattern recognition venues follow the EUM approach.

Both EUM and DTA have been considered in machine learning venues, instead,

where di↵erent EUM algorithms have been proposed, and the optimal (Bayes)

classifier at the population level has also been recently derived for some of the

F measures. Moreover, most of the earlier works focused on a single version

of the F measure, and only recently (since [5]) the distinction between the S-L

and M-L F , and between the three M-L versions, was clearly pointed out. Our

survey can be useful for further developments in this field, especially for the

pattern recognition community. As a by-product, we also derive the optimal

classifier at the population level for the M-L instance-wise and micro-averaged

F , under the EUM approach, extending recent results about the S-L F .

In a companion paper [28] we shall focus on the M-L micro-averaged F , for

which relatively fewer solutions exist, and shall develop both learning algorithms
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Table 1: Notation used in this paper.

X instance space (e.g., a vector space)

x 2 X a single instance (e.g., a feature vector)

m number of labels

Y = {0, 1}m label space

y = {y1, . . . , ym} 2 Y label vector of an instance (ground truth)

yi 2 {0, 1} i-th label of an instance, i = 1, . . . ,m

n number of instances in a given data set

(xj
,y

j) j-th instance of a given data set, j = 1, . . . , n

h(·; ✓) : X 7! Y multi-label classifier with parameters ✓

hi(·; ✓) : X 7! {0, 1} i-th label assigned by classifier h(·; ✓), i = 1, . . . ,m

hi, h
j
i short-hand notation respectively for hi(·; ✓) and hi(x

j ; ✓)

h,h
j 2 {0, 1}m label vectors, respectively (h1, . . . , hm) and (hj

1, . . . , h
j
m)

F
b
� S-L, binary F� (Eq. 4)

F
i
� M-L, instance-wise F� (Eq. 5)

F
M
� M-L, macro-averaged F� (Eq. 6)

F
m
� M-L, micro-averaged F� (Eq. 7)

based on EUM and an inference algorithm based on DTA.

The rest of this paper is structured as follows. After giving a formal definition

of the F measures in Sect. 2, in Sect. 3 we describe EUM and DTA. We then

survey existing works based on such approaches, respectively in Sects. 4 and 5,

for each of the F measures (including the S-L F ).

2. Definition of F measures

In Tables 1 and 2 we summarize respectively the notation and the abbre-

viations used in this paper. We shall use upper-case letters to denote random

variables, and the corresponding lower-case letters to denote their values.

For a given M-L problem, let m denote the number of labels, X the input

space (e.g., a feature vector space), x 2 X an instance (e.g., a feature vector),

and y 2 Y = {0, 1}m the corresponding label vector, where yi = 1 (0) means
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Table 2: List of the abbreviations used in this paper.

IR information retrieval

S-L, M-L single-label, multi-label

BR binary relevance

EUM empirical utility maximization

DTA decision-theoretic approach

that x is (not) relevant to the i-th label. A M-L classifier is commonly formalized

as a function

h(x; ✓) = (h1(x; ✓), . . . , hm(x; ✓)) 2 Y, (1)

where hi(x; ✓) = 1 (0) means that x is deemed as (non-)relevant to the i-th

label, and ✓ denotes the parameter vector to be set by the learning algorithm.

Precision (p) and recall (r) are the main measures used for evaluating the quality

of the results produced by IR systems, in terms of the “degree of matching”

between the true and the estimated relevance to a given query. They are defined

respectively as the probability that a retrieved instance (e.g., a document) is

relevant, and as the probability of retrieving a relevant instance, which are

complementary aspects of an IR system’s performance. Let S = {(xj
, y

j)}nj=1 be

a set of instances, where yj 2 {0, 1} denotes the relevance of xj to the considered

query, and let h
j 2 {0, 1} denote the estimated relevance. Let TP , FP and

FN denote the corresponding number of true positive (when h
j = y

j = 1), false

positive (hj = 1, yj = 0) and false negative (hj = 0, yj = 1) decisions. Precision

and recall can be estimated on the finite sample S as:

p = TP
TP+FP =

Pn
j=1 y

j
h
j

Pn
j=1 h

j
, (2)

r = TP
TP+FN =

Pn
j=1 y

j
h
j

Pn
j=1 y

j
. (3)

Single-label, binary F measure. The F measure has been originally

proposed for IR systems, to combine p and r into a scalar [30, 34]. Based on

principled arguments, it is defined as the weighted harmonic mean of p and r.
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It is also often used to evaluate the accuracy of S-L, binary classifiers (m = 1)

whose goal is to discriminate between relevant instances to a given query and

non-relevant ones. The S-L F is defined on a finite sample as (the superscript

‘b’ stands for ‘binary’):

F
b
� =

1 + �
2

1
p + �2 1

r

=
(1 + �

2)TP

(1 + �2)TP + �2FN + FP
=

(1 + �
2)

Pn
j=1 y

j
h
j

�2
Pn

j=1 y
j +

Pn
j=1 h

j
, (4)

where � 2 [0,+1) controls the trade-o↵ between p and r. Note that F b
0 = p and

F
b
+1 = r. For � = 1 one obtains the unweighted harmonic mean: F b

1 = 2
1/p+1/r .

Multi-label F measures. Three di↵erent M-L versions of the F measure

have been defined. The instance-wise F views instances as queries, whose rel-

evant labels have to be retrieved. It is thus defined for a single instance (x,y)

as:

F
i
� =

(1 + �
2)

Pm
i=1 yihi

�2
Pm

i=1 yi +
Pm

i=1 hi
. (5)

The macro-averaged F is computed on a set of instances; it is defined as the

average of the S-L F measures computed for each label, and gives the same

weight to each label:

F
M
� =

mX

i=1

(1 + �
2)TPi

(1 + �2)TPi + �2FNi + FPi
=

mX

i=1

(1 + �
2)

Pn
j=1 y

j
i h

j
i

�2
Pn

j=1 y
j
i +

Pn
j=1 h

j
i

. (6)

The micro-averaged F is computed after pooling the labels of all instances of a

given set, and gives equal weight to each labeling decision:

F
m
� =

Pm
i=1(1 + �

2)TPiPm
i=1[(1 + �2)TPi + �2FNi + FPi]

=
(1 + �

2)
Pn

j=1

Pm
i=1 y

j
i h

j
i

�2
Pn

j=1

Pm
i=1 y

j
i +

Pn
j=1

Pm
i=1 h

j
i

. (7)

To simplify the notation, from now on we will omit the subscript � in the

symbols denoting the F measures, when it is not necessary.

Choice between the multi-label F measures. The three M-L F mea-

sures evaluate di↵erent aspects of classifier performance, and thus the choice

between them is application-dependent. With regard to the problem of design-

ing classifiers that maximize the M-L F measures, quoting from [5]: “One should
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carefully distinguish these versions, as algorithms optimized with a given ob-

jective are usually performing sub-optimally for other (target) evaluation mea-

sures.” An empirical evidence of this fact was formerly reported in [6], where

it was observed that tuning the decision thresholds of a classifier to maximize

F
M can decrease the corresponding F

m. In particular, it is known that the

di↵erences between F
M and F

m can be large on data sets with rare labels [16]:

since the F measures disregard true negatives (i.e., instance-label pairs such

that yji = h
j
i = 0) and their magnitude is mostly determined by the number of

true positives, frequent labels dominate rare ones in F
m, whereas F

M is much

more sensitive to rare labels. Further insights have been given in [15]: for a

rare label, a perfect classifier only marginally improves Fm over a (trivial) clas-

sifier that labels all instances as non-relevant; moreover, for rare labels with

an “uninformative predictive model” (i.e., a classifier which outputs the same

score for all instances), Fm and F
M are maximized by classifying all instances

respectively as non-relevant and as relevant.

Maximizing the F measures. Under the viewpoint of classifier design,

maximizing the S-L and M-L F measures is more di�cult than maximizing

traditional S-L measures based on the 0–1 loss function and the corresponding

misclassification probability, or their variants. The latter are uni-variate mea-

sures, i.e., they decompose over instances. This means that the optimal label

assignment to any given instance is independent of other instances. On the

contrary, FM (as well as F
b) does not decompose over instances; F i does not

decompose over labels; and F
m does not decompose over either. Therefore, FM

and F
m (as well as F b) are multi-variate, which implies that the optimal label

assignments to a given instance depend also on the assignments to the other in-

stances on which these measures are computed. Additionally, in the case of Fm

the di↵erent label assignments, even for di↵erent instances, influence each other.

Accordingly, the maximization of these measures is in principle computationally

demanding, or even infeasible. Moreover, it fits only batch or o↵-line settings;

in on-line settings one should, e.g., classify the incoming samples in batches, or

consider a subset of the previously processed instances when labeling an incom-
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ing one [14]. Similarly, although F
i is uni-variate, its maximization requires in

principle to consider all possible 2m label assignments, which is feasible only

when the number of labels is small.

3. Approaches to F measure maximization

As mentioned in Sect. 1, two approaches for maximizing the F measures,

both in S-L (F b) and in M-L classification problems (F i, FM and F
m), have been

proposed so far: EUM and DTA [19, 4]. The existing maximization algorithms

are surveyed in the next two sections, and are summarized in Table 3. We

point out that, with the only exception of [29], all works published in pattern

recognition venues follow the EUM approach.

The EUM approach consists of learning a classifier of the form h(·; ✓) :

X 7! Y that maximizes the chosen F measure on a given training set of labelled

instances S = {(xj
,yj)}nj=1; the learnt classifier is then used to predict the label

assignments of testing data. In principle, this requires one to jointly evaluate

all possible label assignments to S, which amount to 2n for F b, n⇥ 2m for F i,

m⇥2n for FM, and 2mn for Fm. Learning algorithms based on EUM have been

developed for all F measures, except Fm, and the consistency of several learning

algorithms has also been investigated. In some of the most recent works, the

optimal (Bayes) classifier at the population level has also been derived for the S-

L F (which also applies to the M-L, macro-averaged F ); it has also been shown

that all F measures but the instance-wise can be maximized by reduction to a

cost-sensitive problem.

The DTA (also called plug-in rule approach in [4]) focuses instead on a fixed,

unlabeled sample (testing data) S = {xj}nj=1 (n = 1 in the case of F i), and

predicts through an inference procedure the label assignments that maximize

the expectation of the chosen F measure on S, with respect to the joint label-

conditional probability distribution P(Y1
, . . . ,Yn|xn

, . . . ,xn). In practice, this

distribution is estimated from training data. The corresponding maximization

problem is computationally very demanding as well, since the expectation has
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to be be computed over all possible combinations of true and assigned labels.

The number of such combinations is 22n for F b, 22m for F i, m22n for FM, and

22mn for F
m. Maximization algorithms based on DTA have been proposed so

far for F b (they also apply to F
M) and F

i, but not for Fm. The consistency of

DTA has also been investigated in recent works.

EUM and DTA have been compared in [19], focusing on the S-L F
b. These

approaches were found to be equivalent asymptotically (i.e., for large training

and test sets), provided that the underlying models are accurate. An empirical

analysis also provided evidence that EUM is more robust against model mis-

specification; on the other hand, if an accurate model is chosen, DTA was found

to be better in the presence of rare classes, as well as in the common domain

adaptation scenario where P(X) changes while P(Y |X) remains constant.

A comparison between EUM and DTA focused on M-L problems has later

been carried out in [4], limited to the instance-wise F
i. In this comparison the

EUM framework for structured loss minimization of [32] was considered, to-

gether with two specific implementations based on surrogate, convex loss func-

tions [25, 24] (see Sect. 4.2). The analysis of the infinite sample case showed

that the DTA is consistent, i.e., it converges to the Bayes optimal classifier

for the F
i measure, whereas the considered EUM algorithms are not. A fur-

ther analysis on finite data sets was carried out in [4], by comparing the exact

DTA-based inference algorithms for the two cases of conditionally independent

and conditionally dependent labels (see Sect. 5.2), and the EUM-based learn-

ing algorithms mentioned above. DTA-based algorithms were found to be more

e↵ective than EUM-based ones; they also exhibited a higher e�ciency in the

training step and for parameter tuning, but a lower e�ciency in the inference

step.

4. Empirical utility maximization approach

In this section we describe learning algorithms developed for the S-L and M-

L F measures, and then summarize recent theoretical results about the EUM

9



Table 3: Summary of existing EUM- and DTA-based methods (described respectively in

Sect. 4 and 5) for maximizing the S-L Fb measure and the three M-L F measures.

Empirical utility maximization approach (Sect. 4)

Works Measure Main characteristics

[9, 17, 20] F
b non-convex optimization

[18, 11] F
b SVM-like classifier, convex objective function

[19, 37, 13, 15, 23, 13] F
b optimal classifier, reduction to cost-sensitive problem

[22, 13, 12] F
b consistency analysis of maximization algorithms

[32, 25, 24] F
i, FM SVM-like classifier, convex objective function

[6, 26, 27] F
m tuning of binary classifiers’ thresholds

[23, 13] F
M, Fm optimal classifier, reduction to cost-sensitive problem

Decision-theoretic approach (Sect. 5)

Measure Works and main characteristics

F
b [14]: O(n2n) complexity, approximate solution

[1] O(n3), [10] O(n4), [19] O(n2) complexity, exact solution

F
M same algorithms for F b, independently for each label

F
i [5, 2, 35]: O(m3) complexity

F
i [29] (limited to a specific decision rule): O(m3) complexity

approach. We finally complement such results by deriving the optimal classifier

at the population level for the micro-averaged and the instance-wise F .

Learning algorithms proposed so far can be subdivided into four categories:

variants of the SVM learning algorithm (based on the maximum-margin ap-

proach) [18, 11, 32, 24, 25], whose objective function is (except for [18]) a con-

vex approximation of an F measure; optimization algorithms whose objective

function is a non-convex approximation [9, 17, 20]; algorithms that tune the

decision thresholds of binary classifiers [6, 26, 27, 22, 13, 12]; and cost-sensitive

algorithms [23, 13].
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4.1. Single-label F measure

The first learning algorithm was proposed in [18], as a modification of the

SVM learning algorithm. The objective function of the latter includes a penalty

term which upper bounds the number of misclassified training instances. This

term was was replaced by the following approximation of 2(1/F b
1 � 1), which is

a possible loss function corresponding to the use of F b
1 as the accuracy measure:

Pn
j=1(1� exp(↵⇠j))+

n+ �
Pn

j=1 I[yj = 1](1� exp(↵⇠j))+
, (8)

where I[a] = 1 (0) if a =true (false), x+ = x (0) if x � 0 (< 0), n+ is the number

of instances with label 1, and ↵ is a positive constant. However, Eq. (8) is non-

convex: finding the global minimum of the resulting objective function is not

guaranteed, and the optimization problem exhibits a much higher computational

complexity than the one of SVMs. Another interesting result was given in [18],

related to a di↵erent, heuristic modification to the SVM penalty term, formerly

proposed by other authors for balancing precision and recall. It consists of

assigning di↵erent weights to misclassified instances of the two classes:

C+

nX

j=1

I[yj = 1]⇠j + C�

nX

j=1

I[yj = 0]⇠j , (9)

where ⇠j is the hinge loss for the j-th training instance. The solution of the

corresponding learning problem turned out to approximate the one obtained

using (8), for suitable values of C+ and C�. In Sect. 4.3 we shall see that recent

theoretical results have proven the equivalence between maximizing F
b at the

population level and minimizing the expected error with suitable asymmetric

misclassification costs.

In [11] an extension of the SVM learning algorithm to performance measures

that do not decompose into expectations over instances, including F
b, was pro-

posed. It minimizes a convex upper bound of the corresponding loss function,

and uses a multi-variate decision function which jointly labels all training in-

stances (the class labels are conveniently denoted here as �1 and +1):

h(x1
, . . . ,xn;w) = arg max

h1,...,hn2{�1,+1}n

*
w,

nX

j=1

h
jxj

+
, (10)
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where h·, ·i denotes the dot product. The learning problem is:

minw,⇠�0
1
2kwk2 + C⇠

s.t. 8(h1
, . . . , h

n) 2 {�1,+1}n \ {(y1, . . . , yn)} :
D
w,

⇣Pn
j=1 y

jxj �
Pn

j=1 h
jxj

⌘E
� �(h1

, . . . , h
n
, y

1
, . . . , y

n)� ⇠

(11)

where � denotes the loss function. If the performance measure is F
b, then

� = 1 � F
b. In principle, Eq. (10) requires one to evaluate 2n di↵erent la-

bel assignments; moreover, the learning problem (11) has 2n � 1 constraints.

Nevertheless, since (10) is a linear function, its maximum can be computed by

independently considering each of the n assignments (h1
, . . . , h

n). Moreover,

problem (11) can be solved with O(n2) computational complexity, thanks to

the properties of F b, using an optimization strategy proposed in [31]. SVMs

turns out to be a particular case of the above classifier, when the error rate is

used in (11) as the loss function.

In [9] and [17] learning algorithms that maximize continuous but non-convex

approximations of F b were proposed, using numerical optimization techniques.

In [9] the linear discriminant function of logistic regression classifiers was used,

and F
b is approximated similarly to Eq. (8). To deal with non-convexity, the

optimization algorithm was run several times, starting from randomly chosen

parameter values. In [17] the class-conditional distribution P(X|Y ) is first esti-

mated, then the TP, FP and FN counts are approximated, for a given discrimi-

nant function, by integrating P(X|Y ) in the corresponding decision regions. The

parameters of the discriminant function that maximize F b are finally estimated

by an optimization algorithm.

4.2. Multi-label F measures

In the following we review existing EUM-based learning algorithms, sepa-

rately for each of the three M-L F measures.
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4.2.1. Instance-wise F

In [32] a SVM-like classifier was proposed for structured-output problems

with instance-wise performance measures, including F
i. The proposed discrimi-

nant function exploits the structure and dependencies within the output values:

h(x;w) = argmax
h2Y

hw, (x,h)i , (12)

where  (x,h) is a feature mapping (a combined feature representation of inputs

and outputs), and hw, (x,h)i measures how “compatible” a pair (x,h) is. The

learning problem is:

minw,⇠
1
2kwk2 + 1

nC
Pn

j=1 ⇠j

s.t. 8 h 2 Y \ yj
, j = 1, . . . , n :

⌦
w,

�
 (x,yj)� (x,h)

�↵
� �(yj

,h)� ⇠j , ⇠j � 0 .

(13)

When the performance measure is F i, then� = 1�F
i. An e�cient optimization

algorithm was also developed, that explicitly examines only a small subset of

the constraints in (13), which are n⇥ (2m � 1) in the case of F i.2

A similar approach was proposed in [25], which explicitly models the depen-

dencies (only the positive correlations) between pairs of labels. The decision

function is defined as:

h(x; ✓) = argmax
h2Y

h>
Ah , (14)

where A is an m⇥m upper-triangular matrix defined as Aii = hx, ✓ii, and Aik =

Cik✓ik, i 6= k; the parameter vector ✓i weighs the features for the i-th class; Cij

is the normalized counts of co-occurrence of labels i and j in training instances;

and ✓ik is a scalar parameter which is forced to be non-negative, implying that

Aik > 0 for i 6= k, which allows (14) to be e�ciently solved. The parameter ✓ in

the left-hand side of (14) is defined as (✓1, . . . , ✓m, ✓1,2, ✓1,3, . . . , ✓m�1,m). The

learning problem and the proposed optimization strategy are similar respectively

2An alternative formulation was also proposed, in which the right-hand side of each con-

straint is 1 � ⇠j/�(y,h), as well as equivalent formulations in which quadratic terms ⇠2j are

used in the objective function for penalizing margin violations.
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to (13) and to the one of [32], to e�ciently handle the constraints:

min✓,⇠
�
2 k✓k

2 + 1
n

Pn
j=1 ⇠j

s.t. 8 h 2 Y \ yj
, j = 1, . . . , n :

(yj)>Ayj � h>
Ah � �(y,h)� ⇠j , ⇠j � 0 .

(15)

Finally, the specific setting in which an ensemble of independently trained

binary classifiers are used for each label, and their scores are linearly combined,

was considered in [8]. A non-convex approximation of F
i was devised, and

an algorithm for maximizing it with respect to the combination weights was

developed. We shall describe it in Sect. 4.2.3, since it was applied also to F
m.

4.2.2. Macro-averaged F

In [24] a SVM-like approach similar to the one of [32] was proposed for

M-L loss functions that decompose over labels, including F
M. The classifica-

tion problem is formulated as a reverse prediction: given a set of instances

{(xj
,yj)}nj=1, the m labels are considered as the set of inputs, and the instances

that are relevant to a label are considered as the corresponding output. The in-

put value corresponding to the i-th label is encoded as an m-dimensional vector

ai 2 {0, 1}m, with a
i
i = 1, and a

i
k = 0 for k 6= i; the corresponding output values

are encoded as bi 2 {0, 1}n, with b
i
j = 1 (0) if the j-th instance is (not) relevant

to the i-th label. A given data set is then transformed into a set of m instances

{(ai,bi)}mi=1 made up of all possible input values and the corresponding output

vectors. The decision function for the i-th label is defined as:

b
i
= arg max

b2{0,1}n
h�(ai,b), ✓i , (16)

where

�(ai,b) =
nX

j=1

bj(x
j ⌦ ai) 2 Rd⇥m

, (17)

d is the dimensionality of X , and ✓ 2 R
d⇥m is a parameter matrix. Similarly

to [25], the learning problem is:

min✓,⇠
�
2 k✓k

2 + 1
m

Pm
i=1 ⇠i

s.t. 8 b 2 {0, 1}n \ bi
, i = 1, . . . ,m :

h�(ai,bi), ✓i � h�(ai,b), ✓i � �(bi
,b)� ⇠i, ⇠i � 0 ,

(18)
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where the loss function is defined as �(bi
,b) = 1 � F

c,i. The term 1
m

Pm
i=1 ⇠i

in the objective function is a convex upper bound on �. An e�cient, O(n2)

optimization algorithm was developed for solving problem (18). It was also

shown that the decision function (16) can be computed in O(n) time.

Since the M-L F
M measure is the average of the corresponding S-L F

b

measures, it is pertinent to investigate the relationship between the maximum-

margin approach of [24] (described above) and the one formerly developed in [11]

(Sect. 4.1), aimed at maximizing respectively F
M and F

b. No comparison

between these approaches was reported in [24]. As a contribution of this paper,

here we show that these approaches are equivalent, as stated in the following

Proposition:

Proposition 1. For C = 1
4�m , the M-L decision function (16) obtained by

solving the learning problem (18) of [24] coincides with the set of decision func-

tions (10) of independently trained binary classifiers (i.e., using BR) obtained

by solving the learning problem (11) of [11].

Proof. We first prove that their decision functions are equivalent. Since ai

in [24] is defined as an m-dimensional column vector in which the i-th element

is 1 and all the other ones equal 0, it follows that xj ⌦ ai in Eq. (17) is a d⇥m

matrix in which the i-th column equals xj , and all the other elements are zero.

Therefore, also �(ai,b) in Eq. (17) is a d⇥m matrix, in which the i-th column

equals
Pn

j=1 bjx
j and all the other elements are zero. The argument of the arg

max in (16) can thus be rewritten as:

h�(ai,b), ✓i =
*

nX

j=1

bjx
j
, ✓i

+
. (19)

This means that the assignment for the i-th label depends only on ✓i. We can

thus rewrite the decision function (16) for the i-th label as:

b
i
= arg max

b2{0,1}n

*
nX

j=1

bjx
j
, ✓i

+
. (20)

We now make the following change of variables:

h
j
i = 2b

i
j � 1, h

j = 2bj � 1, wi =
1

2
✓i . (21)
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Note that this implies that h
j 2 {�1,+1}. The decision function (20) for the

i-th label can be rewritten as:

h
1
i , . . . , h

n
i = argmaxh1,...,hn2{�1,1}n

DPn
j=1

⇣
hj+1

2

⌘
xj

, 2wi

E

= argmax
⇣
h
Pn

j=1 h
jxj

,wii+ h
Pn

j=1 x
j
,wii

⌘
.

(22)

The last term h
Pn

j=1 x
j
,wii is constant with respect to h

1
, . . . , h

n, which makes

the decision function (22) identical to (10).

We now prove that the learning problems are equivalent, for a proper choice

of their parameters � and C. The objective function of problem (18) can be

rewritten by explicitly indicating the Frobenius norm of the parameter matrix

✓ as a function of the 2-norm of its columns, denoted as ✓i, i = 1, . . . ,m:

min
✓,⇠

�

2

mX

i=1

k✓ik2 +
1

m

mX

i=1

⇠i . (23)

Using (19), the constraints of (18) can be rewritten as:

8 b 2 {0, 1}n \ bi
, i = 1, . . . ,m :

D⇣Pn
j=1 b

i
jx

j �
Pn

j=1 bjx
j
⌘
, ✓i

E
� (1� F

c,i
� )� ⇠i, ⇠i � 0 .

(24)

It is now evident that minimizing (23) under constraints (24) amounts to solving

the following m independent optimization problems, one for each label:

min✓i,⇠i�0
�
2 k✓ik

2 + 1
m⇠i

s.t. 8 b 2 {0, 1}n \ bi :
D⇣Pn

j=1 b
i
jx

j �
Pn

j=1 bjx
j
⌘
, ✓i

E
� (1� F

c,i
� )� ⇠i .

(25)

We now make another change of variables:

y
j
i = 2bij � 1 . (26)

Together with (21), this allows us to rewrite the constraints of (25) as:

8 (h1
, . . . , h

j) 2 {�1, 1}n \ {(y1i , . . . , yni )} :
D⇣Pn

j=1

⇣
yj
i+1
2 � hj+1

2

⌘
xj

⌘
, 2wi

E
� (1� F

c,i
� )� ⇠i

⌘
D⇣Pn

j=1(y
j
i � h

j)xj
⌘
,wi

E
� (1� F

c,i
� )� ⇠i ,

(27)
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which are identical to the constraints of (11), for the i-th label. Finally, us-

ing (21), the objective function of (25) becomes:

�

2
k2wik2 +

1

m
⇠i =

1

2
(4�)kwik2 +

1

m
⇠i . (28)

The solution of the corresponding learning problem does not change by rescal-

ing the objective function (28); dividing it by 4�, it becomes identical to the

objective function of (11) when C = 1
4�m , which completes our proof. ⇤

4.2.3. Micro-averaged F

F
m is the most challenging measure, since it does not decompose over in-

stances nor over labels. Existing EUM-based approaches consist of using a M-L

decision function defined as hi(x) = sign[fi(x) � ✓i], i = 1, . . . ,m, where fi(x)

are real-valued discriminant functions obtained by independently training one

binary classifier for each label (using any performance measure), whereas ✓i 2 R

are decision thresholds that are tuned afterwards (i.e., keeping fixed the fi(·)’s)

to maximize F
m on validation data.3 Let F

m(✓1, . . . , ✓m;S) denote the value

of Fm computed on a given data set S (e.g., a validation set) as a function of

the decision thresholds. The optimal threshold values are the solution of the

following optimization problem:

✓
⇤
1 , . . . , ✓

⇤
m = arg max

✓1,...,✓m
F

m(✓1, . . . , ✓m;S) . (29)

This approach was first proposed in [6], where a heuristic optimization pro-

cedure shown as Algorithm 1 was developed. Algorithm 1 consists of iteratively

updating a single threshold at each step by maximizing the corresponding F
m,

while keeping all the other thresholds at their current values, until some stop-

ping criterion is met. Since F
m(✓1, . . . , ✓m;S) can attain up to |S|+ 1 distinct

values with respect to any single threshold, the corresponding maximization

3Recently, it has been shown that the optimal solution can also be obtained by solving a

cost-sensitive problem with respect to the 2m error counts FPi and FNi (see Eq. 7) [23], but

no algorithm has been developed so far to implement it. This approach will be described in

Sect. 4.3.
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Algorithm 1 F
m maximization algorithm of [6].

Input: m trained binary classifiers fi, a data set S, a constant ✏ > 0
Output: m decision thresholds

✓
(0)
1  0, . . . , ✓(0)m  0, F

(0)  F
m(✓(0)1 , . . . , ✓

(0)
m ;S), t 1

repeat

for i = 1, . . . ,m do

✓
(t)
i  argmax✓ F

m(✓(t)1 , . . . , ✓
(t)
i�1, ✓, ✓

(t�1)
i+1 , . . . , ✓

(t�1)
m ;S)

end for

F
(t)  F

m(✓(t)1 , . . . , ✓
(t)
m ;S)

until
F (t)�F (t�1)

F (0) < ✏

return ✓
(t)
1 , . . . , ✓

(t)
m

step (the arg max step of Algorithm 1) can be solved by a simple line search

with complexity O(|S|). This approach was proposed in [6] without theoretical

support nor optimality guarantees.

In [26, 27] we analyzed the optimization problem (29), by studying the be-

havior of Fm as a function of ✓1, . . . , ✓m on a given sample S. Our main result

was the following proposition (reported in [27] as Property 1):

Proposition 2. Consider any given value ✓
0
1, . . . , ✓

0
m of the decision thresholds,

and the corresponding value F
m(✓01, . . . , ✓

0
m;S). If no higher value of Fm can be

attained by changing any single threshold, while keeping all the other m�1 ones

at their current value, then F
m(✓01, . . . , ✓

0
m;S) = max✓1,...,✓m F

m(✓1, . . . , ✓m;S).

Proposition 2 allows the exact solution of (29) to be found with low computa-

tional complexity. Indeed, it implies that the global maximum of Fm can be

attained by starting from any threshold values, and iteratively updating one

threshold at a time to any value that increases F
m (if any), until no further

increase of Fm can be achieved. As a by-product, Algorithm 1 of [6] turns out

to be one possible implementation of our optimization strategy above, provided

that no early stopping condition is used, i.e., if the repeat-until loop ends

only when F
(t) = F

(t�1). We also proved that, if each threshold is initially set

to �1,4 then the exact solution of (29) is attained by considering at each step

4In practice, if ✓
(0)
i < minx2S fi(x).
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(e.g., in the argmax step of Algorithm 1) only higher values of each threshold

than the current one [27]; this reduces the computational complexity to no more

than O(m2
n
2).

For the sake of completeness, we finally mention a similar approach that was

considered in [8] (we mentioned it also in Sect. 4.2.1). It consists of indepen-

dently learning an ensemble of K binary classifiers which output a real-valued

score for each label, fi,k : X 7! R, i = 1, . . . ,m, k = 1, . . . ,K. These classi-

fiers are then linearly combined: fi(x) =
PK

k=1 wkfi,k(x) + w0. In [8], Fm was

maximized with respect to the combination weights, that do not depend on the

label. To this aim, a non-convex approximation of all three M-L F measures

was defined, by approximating the TP, FP and FN counts, on a given data set,

using a logistic function of the scores fi; a quasi-Newton optimization algorithm

was then used.

4.3. Recent theoretical results about the single-label F measure

During the past two years several works have theoretically investigated the F

measure maximization problem under the EUM approach, and have derived the

optimal (Bayes) solution for the S-L F
b, either on a finite sample or at the pop-

ulation level. Novel maximization algorithms have also been developed, some

of them based on the above mentioned theoretical results, and their consistency

has been analyzed.

The optimal classifier at the population level has been derived in [19, 37, 13,

15]. The corresponding expression of F b can be obtained by replacing the TP,

FP and FN counts in (4) with the corresponding probabilities, denoted as tp,

fp and fn, and given by:

tp = P(h(X) = 1, Y = 1) = P(Y = 1)

Z

x:h(x)=1
p(x|Y = 1)dx (30)

fp = P(h(X) = 1, Y = 0) = P(Y = 0)

Z

x:h(x)=1
p(x|Y = 0)dx (31)

fn = P(h(X) = 0, Y = 1) = P(Y = 1)

Z

x:h(x)=0
p(x|Y = 1)dx (32)
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Accordingly, F
b
� = (1+�2)tp

(1+�2)tp+�2fn+fp . The optimal classifier h
⇤ consists of

thresholding the posterior probability:

h
⇤(x) =

8
<

:
1, if P(Y = 1|x) � ✓

⇤

0, otherwise
(33)

where ✓
⇤ =

F c⇤
�

1+�2 , and F
c⇤
� is the maximum S-L F . Since F

c⇤
� is unknown

in practice, also ✓
⇤ is unknown. Note also that ✓

⇤ is a population-dependent

value, i.e., the optimal decision whether labeling any instance as relevant or non-

relevant depends not only on that instance, but also on all the other instances

on which F
b is computed, as already pointed out in Sect. 2.5 Actually, this is

another way to express the fact that F b does not decompose over instances.

In practice, in the above mentioned works the optimal decision function (33)

was approximated by first estimating the posterior P(Y = 1|x), and then tuning

the decision threshold on validation data. The results in [7] allow to approximate

it using a di↵erent procedure based on the ROC curve of an underlying binary

classifier. It amounts to thresholding P(Y=1|x)
F c⇤

�
at 1

1+�2 , where the calibrated

estimate of P(Y = 1|x) and the estimate of F c⇤
� can be obtained from the ROC

convex hull; in this case, the threshold depends only on �.6

Note that all the above results also apply to F
M, whose optimal classifier is

obtained by independently using (33) for each label; in this case, the optimal

threshold can be di↵erent for each label.

An alternative solution was obtained in [23]: it was shown that the optimal

classifier, both at the population level or on a finite sample, can be obtained by

reduction to a cost-sensitive problem. Such a problem consists of minimizing

the expected weighted error given by a linear combination of the fp and fn

probabilities of each label (or the corresponding FP and FN counts), for suitable

costs. Analogously to rule (33), such costs depend on the maximum F
b, and

thus are unknown in practice. This implies that the optimal solution can be

5In [14] it had been already shown that the rule sign[P(Y = 1|x)� ✓], where ✓ is any fixed

threshold value, can not be optimal.
6This result has been suggested by one of the reviewers.
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obtained by wrapping a cost-sensitive classification algorithm in an inner loop

by an outer loop that sets the appropriate costs [23]. Although this requires

in principle to solve an infinite series of cost-sensitive problems, it was shown

that the cost space can be discretized to approximate the optimal solution with

a desired accuracy level, by choosing the costs that provide the maximum F
b

value a posteriori. Interestingly, similar results were derived in [23] for the M-L

F
M and F

m.

We finally summarize recent results about algorithms for maximizing F
b

(and thus also the M-L F
M).

The theoretical result of [23] mentioned above was applied in the same work

to existing cost-sensitive algorithms for binary problems. Interestingly, their

results apply also to the M-L F
m; however, exploiting them to develop specific

cost-sensitive algorithms for this measure is not straightforward, since the FP

and FN counts of each class are simultaneously involved, and was left in [23] as

a future work.

In [22, 13] the consistency of “plug-in” algorithms for maximizing F
b, con-

sisting of thresholding an estimate of the posterior P(Y = 1|x), and of empiri-

cally computing the threshold value, was investigated. In [13] a di↵erent two-

step approach was also considered (“Weighted Empirical Risk Minimization”),

based on a theoretical result analogous to the one of [23]. In the first step a

classifier with real-valued predictions f(x) is learnt by minimizing a surrogate

weighted loss with label-dependent costs, defined as

`(f(x), y) = (1� �)I[y = 1]`(f(x), 1) + �I[y = 0]`(f(x), 0) , (34)

which is known to be consistent with the (ideal) classifier given by sign (P[Y = 1|X]� �).

In the second step the empirical F b is maximized with respect to �. This al-

gorithm is computationally less demanding than the one of [23], since it only

requires a single loop to scan the values of �.

In [12] a similar two-step approach as the above Weighted Empirical Risk

Minimization was investigated. Di↵erent possible surrogate loss functions were

considered to learn the classifier at the first step, among strongly proper com-
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posite loss functions, such as logistic, squared-error, and exponential loss. The

results provided in [12] are not limited to the consistency of the considered ap-

proach, as in [13], but are valid also for finite samples; in particular, it was shown

that the regret of the considered classifier, measured with respect to the target

metric, is upper bounded by the regret of the score function f(·) measured with

respect to the surrogate loss.

A di↵erent algorithm was developed in [20], based on point-based stochastic

updates, and in particular on stochastic alternate maximization. For the sake

of completeness we also mention that in [21] some algorithms were developed

for maximizing versions of the macro- and micro-averaged F defined for multi-

class S-L problems, which are di↵erent from the M-L versions considered in this

paper. In particular, we point out that if the micro-averaged F of Eq. (7) (which

is di↵erent from the one considered in [21]) is used in a multi-class S-L problem,

it reduces to classification accuracy [16].

Finally, it is worth pointing out that most of the above results apply to broad

classes of performance measures based on ratios of TP, FN and FP counts, beside

the F measures.

4.4. Optimal classifier for the multi-label micro-averaged and instance-wise F

Here we show that the above mentioned results of [19, 37, 13, 15] on the

S-L F
b can be exploited to derive the optimal classifier at the population level,

under the EUM approach, also for the the M-L F
m.7 To this aim, we follow

an analogous proof procedure as the one in [15]. We then derive derive also the

optimal classifier for F i. As mentioned above, whereas the optimal classifier for

the S-L F
b, and for the M-L F

M and F
m, can also be obtained by reduction to

cost-sensitive problems, no analogous solution is known for the F
i [23].

Micro-averaged F . Our result is given by the following proposition.

Proposition 3. The optimal classifier at the population level for F
m
� consists

7This result has been suggested by one of the reviewers of a previous version of this paper.
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of deciding hi(x) = 1, if and only if:

P(Yi = 1|x) �
F

⇤m
�

1 + �2
, (35)

where F
⇤m
� is the optimal value of Fm

� .

Proof. Assume that the optimal decisions for all labels have already been

found on the whole instance space X , except for the k-th label in a region� ⇢ X

around a given x⇤. Now we write the Fm
� at the population level, by separating

the contribution of the decision hk(x) on �. Using Eq. (30), the term at the

numerator of the empirical Fm
� of Eq. (7) corresponding to

Pm
i=1 TPi, minus

the contribution of hk(x) on �, is given by the following expression, which we

denote again as tp for the sake of simplicity:

tp =
Pm

i=1,i 6=k P(Yi = 1)
R
x2X :hi(x)=1 p(x|Yi = 1)dx +

P(Yk = 1)
R
x2X��:hk(x)=1 p(x|Yk = 1)dx .

(36)

The terms corresponding to
Pm

i=1 FPi and
Pm

i=1 FNi in Eq. (7) can be written

similarly, using Eqs. (31) and (32); we denote them respectively as fp and fn.

To keep the following expressions simple, we also write:

bk = P(Yk = 1),

P1k(�) =
R
x2� p(x|Yk = 1)dx,

P0k(�) =
R
x2� p(x|Yk = 0)dx .

(37)

The value of Fm
� can now be written by considering the two possible choices for

hk(x), x 2 �. By choosing hk(x) = 1, we get:

F
0m
� =

(1 + �
2) [tp+ bkP1k(�)]

(1 + �2) [tp+ bkP1k(�)] + �2fn+ fp+ (1� bk)P0k(�)
. (38)

By choosing hk(x) = 0, instead, we get:

F
00m
� =

(1 + �
2)tp

(1 + �2)tp+ �2 [fn+ �2bkP1k(�)] + fp
. (39)

Accordingly, the optimal decision rule for the k-th label in � is hk(x) = 1, if

and only if F
0m
� � F

00m
� . After some algebraic manipulations, this amounts to:

bkP1k(�)

(1� bk)P0k(�)
� tp

�2tp+ �2fn+ fp+ �2b2kP
2
1k(�)

. (40)
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Let us now take the limit � ! {x⇤}. The left-hand side of inequality (40)

becomes (see also Eq. 37):

lim
�!{x⇤}

bkP1k(�)

(1� bk)P0k(�)
= lim

�!{x⇤}

R
x2� P(Yk = 1|x)p(x)dx
R
x2� P(Yk = 0|x)p(x)dx

=
P(Yk = 1|x⇤)

P(Yk = 0|x⇤)
.

(41)

Since lim�!{x⇤} P
2
1k(�) = 0, for the right-hand side of inequality (40) we get:

lim
�!{x⇤}

tp

�2tp+ �2fn+ fp+ �2b2kP
2
1k(�)

=
tp

⇤

�2tp⇤ + �2fn⇤ + fp⇤
, (42)

where tp
⇤ denotes the value of Eq. (36) computed in the whole instance space

X (except for the zero-measure element x), corresponding to the optimal micro-

averaged F , and similarly for fn
⇤ and fp

⇤. Finally, taking into account that

P(Yk = 0|x) = 1�P(Yk = 1|x), after some algebraic manipulations on Eqs. (41)

and (42) we obtain the claimed optimal decision rule:

P(Yk = 1|x⇤) � tp
⇤

(1 + �2)tp⇤ + �2fn⇤ + fp⇤
=

F
⇤m
�

1 + �2
. (43)

Instance-wise F . In this case the optimal classifier is given by the following

proposition.

Proposition 4. For a given instance x, the optimal classifier at the population

level for F i
� consists of deciding hi(x) = 1 for the m⇤ labels exhibiting the highest

posteriors, and hi(x) = 0 to the remaining ones, where 0  m
⇤  m is given

by:

m
⇤ = arg max

k2{0,...,m}

(1 + �
2)

Pk
i=0 P(Y(i) = 1|x)

k + �2
Pm

i=1 P(Yi = 1|x)
, (44)

where we write P(Y(0) = 1|x) = 0, and Y(1), . . . , Y(m) denote the labels sorted for

decreasing values of the posteriors P(Yi = 1|x).

Proof. Since F
i is computed on a single instance x (see Eq. 5), its prob-

abilistic definition involves only the posteriors P(Yi|x). For ease of notation,

let P = {i : hi(x) = 1}, N = {i : hi(x) = 0}, Pi1 = P(Yi = 1|x), and

Pi0 = P(Yi = 0|x). We then have:

F
i
� =

(1 + �
2)

P
i2P Pi1

(1 + �2)
P

i2P Pi1 + �2
P

i2N Pi1 +
P

i2P Pi0
. (45)
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Since
P

i2P (Pi1 + Pi0) = |P |, and
P

i2P Pi1 +
P

i2N Pi1 =
Pm

i=1 Pi1, we get:

F
i
� =

(1 + �
2)

P
i2P Pi1

|P |+ �2
Pm

i=1 Pi1
. (46)

Note that, for any given |P | > 0, Eq. (46) is maximized by deciding hi(x) = 1

for the |P | labels exhibiting the highest posteriors Pi1, and hi(x) = 0 for the

remaining labels. It immediately follows that F i
� is maximized by the decision

rule claimed above. ⇤

5. Decision-theoretic approach

F measure maximization algorithms based on DTA have been proposed so

far for F
b and F

i. We point out that no specific algorithm for F
M has been

developed under this approach, since the same algorithms for F b can be applied,

independently for each label (under the usual assumption of i.i.d. instances). No

algorithm based on the DTA has been developed yet for Fm, instead; we shall

fill this gap in our companion paper [28].

5.1. Single-label F

The label assignment that maximizes the expected value E[F b
� ] on a given

set of instances x1
, . . . ,xn is given by:

(h⇤1
, . . . , h

⇤n) = arg max
(h1,...,hn)2{0,1}n

X

y1,...,yn2{0,1}n

P(y1, . . . , yn|x1
, . . . ,xn)

(1 + �
2)

Pn
j=1 y

j
h
j

�2
Pn

j=1 y
j +

Pn
j=1 h

j
. (47)

If the labels are conditionally independent, i.e., P(Y 1
, . . . , Y

n|x1
, . . . ,xn) =

Qn
j=1 P(Y j |xj), then only up to n2n combinations of true and assigned labels

need to be evaluated, out of all possible 22n combinations [14]. This is because

each summand in (47) (i.e., the value of F b
� for fixed y

1
, . . . , y

n) is maximized by

one of the n label assignments in which the label 1 is given to the n0  n instances

exhibiting the n
0 highest posteriors P(Y j = 1|xj), for some n

0 2 {0, . . . , n} [14].

Exact inference algorithms with lower computational complexity, under the

assumption of conditionally independent labels, were subsequently derived in [1],
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Algorithm 2 Inference algorithm for maximizing E[F b
� ] for a rational �2 [19]

Input: p and q, where �
2 = p/q; the posteriors pj := P(Y j = 1|xj), j = 1, . . . , n

Output: the values f�,1, . . . , f�,n
for 0  j  n, set C[j] as the coe�cient of zj in the polynomial

[p1z + (1� p1)] . . . [pnz + (1� pn)]
S[j] q/j, j = 1, . . . , (q + r)n
for n

0 = n to 1 do

f�;n0  
Pn

k1=0(1 +
r/q)k1C[k1]S[rk + qk1]

for j = 1 to (q + r)(n0 � 1) do
S[j] (1� pn0)S[j] + pn0S[j + q]

end for

end for

return f�,1, . . . , f�,n

with O(n3) complexity; in [10], with O(n4) complexity; and in [19], with O(n3)

complexity, which reduces to O(n2) time and O(n) space complexity when �
2

is rational. We report this latter procedure as Algorithm 2, as it is the one with

lowest computational complexity. It provides the n + 1 values of the expected

F
b
� , denoted as f�,0, . . . , f�,n, corresponding to assigning hj = 1 to the n

0 in-

stances exhibiting the highest posteriors, for n0 2 {0, . . . , n}. The optimal label

assignment is the one corresponding to the highest f�,n0 .

In the most general case when the independence assumptions does not hold,

one can use the exact inference algorithm developed in [5] for F
i (described

in Sect. 5.2), with O(n3) complexity. This is possible because the expression

of F
b (4), and thus problem (47), are formally identical respectively to the

expression of F i (see Eq. 5 and to problem 48).

5.2. Instance-wise F

The label assignment h⇤ that maximizes E[F i
� ] for a given instance x is given

by:

h⇤ = argmax
h2Y

X

y2Y
P(y|x) (1 + �

2)
Pm

i=1 yihi

�2
Pm

i=1 yi +
Pm

i=1 hi
. (48)

This problem has the same form as (47), but in this case the assumption of con-

ditionally independent labels is not realistic, and thus the inference algorithms

of [14, 1, 10, 19] do not provide the exact solution. An exact solution with

26



Algorithm 3 The inference algorithm of [5] for maximizing E[F i]

Input: the matrix P of Eq. (49) and the value of P(Y = 0|x)
Output: the label assignment of Eq. (48)

compute the matrix W defined by Eq. (50)
F  PW , h

(0)  0, E0  P(Y = 0|x)
for k = 1 to m do

set h(k) such that hi = 1 for the top-k elements Fi,k in the k-th column of F ,
and hi = 0 for the other elements

Ek  2
Pm

i=1 h
(k)
i Fi,k

end for

q  argmaxk=0,...,m Ek

return h
(q)

O(m3) complexity was derived in [5, 4, 2, 35]. It does not require the knowledge

of the full distribution P(Y|x), but only of the m2 +1 probabilities P(Y = 0|x)

and P(Yi = 1, SY = s|x), i, s = 1, . . . ,m, where 0 = {0}m, and sY =
Pm

i=1 Yi is

the number of classes x is relevant to. The inference algorithm of [5] consists of

two nested maximization steps,8 and is reported as Algorithm 3, where P and

W denote the m⇥m matrices defined as:

Pi,s = P(Yi = 1, SY = s|x), i, s = 1, . . . ,m , (49)

Wi,k =
1

�2i+ k
, i, k = 1, . . . ,m , (50)

and F denotes the matrix PW . It is worth noting that, when the assumption of

conditionally independent labels does not hold, the di↵erence between the exact

solution provided by Algorithm 3 and the ones provided by algorithms based

on such an assumption can theoretically become arbitrarily large [5].

In [5, 2, 35], P(Y = 0|x) and P are estimated by sampling from the distri-

bution P(Y|x). The latter is in turn estimated using the Probabilistic Classifier

Chains (PCC) method [3], which exploits the product rule of probability:

P(Y|x) =
mY

i=1

P(Yi|x, y1, . . . , yi�1) , (51)

8This approach had already been proposed in [10], but their inference algorithm exhibits

a much higher computational complexity.
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and learns m probabilistic classifiers that independently estimate each of the m

terms in the right-hand side of Eq. (51). To this aim, linear regularized logis-

tic regression was used in [5, 2]. In [4, 35] P(Y = 0|x) and P were estimated

using a reduction approach, by independently solving the following m + 1 S-

L multi-class probability estimation problems. For a given i 2 {1, . . . ,m},

P(Yi = 1, SY|x) can be rewritten as P(Y 0
i |x) by defining a new random variable

Y
0
i = I[Yi = 1] ⇥ SY 2 {0, . . . ,m}; then P(Y 0

i |x) can be estimated, e.g., using

multinomial regression. Similarly, P(Y = 0|x) is obtained by a reduction to a

binary problem associated to a random variable Y 0 = I[Y = 0] 2 {0, 1}, by esti-

mating P(Y 0|x). On the one hand, the latter approach avoids a computationally

demanding sampling step; on the other hand, it produces non-calibrated prob-

abilities; a post-processing step is thus required, or additional constraints have

to be included in the above learning problems [4].

A di↵erent approach was proposed in [29], focused on the following decision

rule:

hi =

8
<

:
1, if P(Yi = 1|x) � ✓(x)

0, otherwise
i = 1, . . . ,m (52)

It labels a sample as relevant to the labels whose marginal posterior exceeds a

threshold ✓(x) which depends on the sample itself (equivalently, to the labels

exhibiting the top-k(x) values of P(yi|x), where the value k(x) depends again

on the sample). A dynamic programming strategy with O(m3) complexity was

proposed to find the value of ✓(x) (or k(x)) that maximizes the expectation in

Eq. (48). Note however that, if the labels are not conditionally independent, the

decision rule (52) is not guaranteed to provide the global maximum of E[F i] [14].

6. Conclusions

We provided a unifying, comprehensive survey of the existing approaches

and algorithms aimed at maximizing the F measures in multi-label classification

problems. We believe this is a useful contribution for further developments in

this field, due to the increasing interest on applications related to information
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retrieval, and on the corresponding measures of classification accuracy, from

both the pattern recognition and machine learning research communities.

Works published over the past few years considerably improved the knowl-

edge about F measures, and provided theoretically-grounded algorithms for

their optimization. The optimal (Bayes) classifier at the population level is now

known both for the S-L and for all three M-L F measures; in particular, the

ones for the M-L micro-averaged and instance-wise F were explicitly derived

in this paper. An equivalent solution based on a reduction to cost-sensitive

problems is also known, except for the M-L, instance-wise F , and algorithms

based on this approach have already been derived for the S-L F and the M-L,

macro-averaged F . Di↵erent maximization algorithms have also been proposed

for all these measures, and the consistency of some of them has been proven.

Only for the M-L micro-averaged F relatively fewer solutions are available: un-

der the empirical utility maximization approach, only maximization algorithms

that tune the decision thresholds of binary classifiers are known, and no maxi-

mization algorithm based on the decision-theoretic approach has been derived

so far. We shall fill these gaps in our companion paper [28].
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[3] K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel

classification via probabilistic classifier chains. In Proc. Int. Conf. Machine

Learning, pages 279–286, 2010.
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