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Abstract 

We explore the problems of classification of composite object (images, speech signals) with low number of models per 

class. We study the question of improving recognition performance for medium-sized database (thousands of classes). The 

key issue of fast approximate nearest-neighbor methods widely applied in this task is their heuristic nature. It is possible to 

strongly prove their efficiency by using the theory of algorithms only for simple similarity measures and artificially 

generated tasks. On the contrary, in this paper we propose an alternative, statistically optimal greedy algorithm. At each 

step of this algorithm joint density (likelihood) of distances to previously checked models is estimated for each class. The 

next model to check is selected from the class with the maximal likelihood. The latter is estimated based on the asymptotic 

properties of the Kullback-Leibler information discrimination and mathematical model of piecewise-regular object with 

distribution of each regular segment of exponential type. Experimental results in face recognition for FERET dataset prove 

that the proposed method is much more effective than not only brute force and the baseline (directed enumeration method) 

but also approximate nearest neighbor methods from FLANN and NonMetricSpaceLib libraries (randomized kd-tree, 

composite index, perm-sort). 

 

1. Introduction 

Conventional machine learning techniques (support vector machines, multilayered feed-forward neural networks, deep 

neural networks, etc) [1] require large representative training sample to estimate the class border. These methods are known 

to be characterized with low accuracy if only few models are available for each class [2]. This issue is quite acute in, e.g., 

face recognition task in which it is sometimes difficult to gather various photos of the interesting person [2, 3]. The problem 

of insufficient accuracy becomes more complicated if the number of classes is large (hundreds or even thousands of 

classes). As a result, there is practically no alternative to the nearest neighbor (NN) methods in this task [1]. However, if the 

complex objects should be recognized in real-time (e.g., video-based face recognition [3]) and only standard hardware is 

available, the performance of brute-force implementation of the NN search is not enough. It seems that conventional fast 

approximate NN methods for image recognition, e.g. triangle tree [4], composite kd-tree [5], randomized kd-tree [6], Best-

Bin First [7], etc. can be applied. Unfortunately, it is known that these techniques show good performance only if the first 

NN is quite different from other models [7]. Such restriction has much in common with many real-world applications, for 

instance, faces have similar shape and common features. Their other limitation is the application with similarity measures 

which satisfy metric properties (sometimes, triangle inequality and, usually, symmetry) [4, 7, 8].  

Moreover, these methods are usually developed to approximately match very-large number (100 000) of image 
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descriptors of extracted keypoints [9]. Hence, their performance is comparable with brute-force method for medium-sized 

vocabularies (thousands of classes). To decrease the recognition speed for such training sets, ordering permutations (perm-

sort) method has recently been proposed [10]. Another interesting approach, namely, the directed enumeration method 

(DEM) outperforms the known approximate NN methods in face recognition [11]. 

Final issue is the heuristic nature of most popular approximate NN methods. It is practically impossible to prove that 

particular algorithm is optimal (in some sense) and nothing can be done to improve it. In this paper we propose an 

alternative solution on the basis of the statistical approach - while looking for the NN for particular query object, 

conventional probability of belonging of previously checked models to each class is estimated. The next model from the 

database is selected from the class with maximal probability. Thus, our task is to estimate this probability and to clarify the 

mentioned greedy-search algorithm. 

The rest of the paper is organized as follows. In Section 2 we explore the task of recognition of piecewise-regular objects 

and present the statistical parametric criterion based on the Kullback-Leibler minimum discrimination principle [12]. In 

Section 3 we briefly review the baseline method (DEM), remind the asymptotic properties of the Kullback-Leibler 

discrimination and propose the novel Maximum-Likelihood DEM (ML-DEM). In Section 4 we demonstrate experimental 

results of comparison of our method with several approximate NN algorithms in face recognition with FERET dataset. 

Finally, concluding comments are given in Section 5. 

2. Statistical recognition of piecewise-regular object 

In the classification task it is required to assign the query object X (facial photo, speech signal, image of natural scenes, 

text) to one of R>1 classes. Most part of contemporary research assumes that each class is specified by the given database 

{ }rX , { }Rr ,...,1∈  of R cases (models).  

Let the query object X be represented as a sequence of K regular (homogeneous) parts [13] extracted by any 

segmentation procedure: { }KkkXX ,1)( == . Every k-th segment { })(,1)()( knjkjkX == x  is put in correspondence with 

a sequence of (primitive) feature vectors { })(;),...,(1;)( kpjxkjxkj =x  with fixed dimension p=const, where n(k) is the 

number of features in the k-th segment. Similarly, every r-th model is represented as a sequence { }rKkkrXrX ,1)( ==  of 

rK  segments and the k-th segment is defined as 








== )(,1)(
)(

)( krnjk
r
jkX r x  of feature vectors )(

)(
k

r
jx . Here )(knr is 

the number of features in the k-th segment of the r-th model. 

To apply statistical approach, let's assume that: 

1. Vectors )(kjx , )(
)(

1k
r
j

x  are random. 

2. Segments KkkX ,1),( =  and rKkkrX ,1),( = are groups - random samples of i.i.d. feature vectors )(kjx  and 

)(
)(

k
r
jx , respectively. 
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3. Feature vectors of particular segment of one class are identically distributed. 

As the procedure of automatic segmentation is inaccurate, every segment X(k) should be compared with a set ( )krN  of 

numbers of closed to k segments of the r-th model. This neighborhood is determined for a specific task individually. If it is 

assumed that segmentation procedure is always correct, we may put ( )
{ }






≠∅

=
=

rKK

rKKk
krN

,

,
. 

There are two possible approaches to estimate unknown class densities, namely, parametric and nonparametric [1]. Let's 

discover parametric approach in detail. It is assumed that distributions of vectors )(kjx  and )(
)(

k
r
jx  are of multivariate 

exponential type nf ;θ  [12] generated by the fixed (for all classes) function ( )⋅0f  with p-dimensional parameter vector θ : 

( ) ( ) ( ) )(/
~

)
~

(ˆ)(exp
~

0; τθθτθ MXfXXf n ⋅⋅=                (1) 

where )
~

(ˆ Xθ  is an estimation of parameter θ  using available data (random sample) X
~

of size n,  

( ) ( )∫ ⋅⋅= XdXfXM
~~

)
~

(ˆ)(exp)( 0θθττ                  (2) 

and )(θτ  is a normalizing function (p-dimensional parameter vector) defined by the following equation if the parameter 

estimation )
~

(ˆ Xθ  is unbiased (see [12] for details) 

( ) θτ
τ

θ θ =≡⋅∫ )(ln
~~

)
~

(ˆ
; M

d

d
XdXfX n                 (3) 

Each r-th class of each k-th segment is determined by parameter vector )(krθ . This assumption about exponential family 

( ) )(;)(ˆ knkX r
f
θ

 in which parameter )(krθ  is estimated by using the observed (given) sample )(krX , covers wide range of 

known distributions (polynomial, normal, etc.) [12]. 

Hence, the recognition task is reduced to a problem of statistical testing of R simple hypothesis about parameter vector 

)(krθ . In this paper we focus on the case of full prior uncertainty and assume that the prior probabilities of each class are 

equal. In such case, Bayesian approach will be equivalent to the maximum likelihood criterion. For our task, every segment 

is recognized with the following rule  

( ) ( ) ( )
{ }Rr

kXf
krNk

knkX r
,...,1

max)(

1

max
)(;)(ˆ

1
∈

→
∈

θ
.                 (4) 

It can be shown that eq. (4) is equivalent to the Kullback-Leibler minimum information discrimination principle [12] 

( )
Rr

XX r
,1

min,
=

→ρ ,                      (5) 

where 

( )

( ) ( )( )∑
= ∈

=

=

K

k

kXfI
krNknK

XX

knkX

r

r
1

)(;:*ˆ

1

min
1

,

)(;)(ˆ
1θ

ρ

                 (6) 

and  
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( )

( )
( )

( )
∫ ⋅=

=








Xd
X

knkrX
f

X
knkX

f

X
knkX

f

kX
knkrX

fI

~

)
~

(
)(;)1(ˆ

)
~

(
)(;)(ˆ

ln)
~

(
)(;)(ˆ

)(;
)(;)1(ˆ:*ˆ

θ

θ

θ

θ
                  (7) 

is the Kullback-Leibler divergence between segments )(kX  and )( 1krX ; and ∑
=

=
K

k

knn
1

)( . 

Thus, criterion (5)-(7) is an obvious implementation of Bayesian approach to composite object recognition if the 

probabilistic mathematical model of piecewise-regular object [13] is used. 

3. Maximum-likelihood directed enumeration method 

Let's use an approach known from artificial intelligence to create an approximate NN algorithm for measure of similarity 

(6), (7). Namely, we primarily focus on greedy algorithms: on each step it explores the model which is the NN of the query 

object X with the highest probability. Such choose of the greedy class of algorithms is explained not only by its simplicity, 

but by the fact that practically all known approximate NN methods are greedy in some sense.  

3.1. Baseline: directed enumeration method 

As a baseline method we use the DEM [11] which was based on the metric properties of the Kullback-Leibler divergence 

and regards the models' similarity ),(, jiji XXρρ =  as an average information from an observation to distinct class i from 

an alternative class j. Hence, at the preliminarily step of the DEM, the model distance matrix ],[ jiρ=Ρ  is calculated as it 

is done in the AESA (Approximating and Eliminating Search Algorithm) method [4]. This time-consuming procedure 

should be repeated only once for a particular task and training set.  

Original DEM used the following heuristic: if there exists a model *
X  for which 10

*
, <<<





 ρρ XX , then for an 

arbitrary r-th model the following condition holds ( ) 1,.
*

, <<




− rXXrXX ρρ  with high probability. Hence, the criteria 

(5) can be simplified 

constXX =<






0
*

, ρρ .                      (8) 

Eq. (8) defines the termination condition of the approximate NN method. If false-accept rate (FAR) is fixed const=β , 

then 0ρ  is evaluated as a β -quantile of the distances between images from distinct classes { }jiRjRiji ≠== ,,1,,1,ρ . As 

a matter of fact, the optimization task (5) is replaced to an exhaustive search which terminates if condition (8) holds for the 

currently checked model. 

According to the DEM [11], at first, the model { }RrrX ,...,1, 1
1

∈  is randomly chosen so that  

{ }
11 ,,,...,1, rjriRji ρρ ≠∈∀ ,                     (9) 
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and the distance 






1
, rXXρ  is calculated. If the distance is lower than a threshold 0ρ  (8), the search is terminated. 

Otherwise, it is put into the priority queue of models sorted by the distance to X . Next, the highest priority item iX  is 

pulled from the queue and the set of models 
)(M

iX  is determined from 

( ) ( )kXjX

M
iXkX

M
iXjX

ρρ ∆≥∆







 ∈∀





 ∉∀ )()(

,                  (10) 

where ( ) ( )jjij XXX ,, ρρρ −=∆  is the deviation of ji,ρ  relative to the distance between X and jX . For all models from 

the set 
)(M

iX  the distance to the query object is calculated and the condition (9) is verified. After that, every previously 

unchecked model from this set is put into the priority queue. The method is terminated if for one model object condition (9) 

holds or after checking for constE =max  models. 

As we stated earlier, this method is heuristic as most popular approximate NN algorithms. However, the probability that 

the model is the NN of X can be directly calculated for the Kullback-Leibler discrimination by using its asymptotic 

properties. Let's describe them briefly. 

3.2. Asymptotic properties 

It is known [12] that if the segment X(k) has distribution of exponential type with parameter ( ) },...,1{,)(ˆ RkX ∈ννθ , 

then the 2-times Kullback-Leibler divergence (6) ( ) 







)(;

)(;)1(ˆ:*ˆ2 kX
knkrX

fI
θ

 is asymptotically distributed as a 

noncentral 2χ  with p degrees of freedom and noncentrality parameter ( ) 







)(;

)(;)1(ˆ:*ˆ2 kX
knkrX

fI νθ
. By assuming the 

independence of all K segments X(k), we can conclude that if the query object X corresponds to class ν, then the distance 

( )νρ XXnK ,2 ⋅  is asymptotically distributed as a 2χ  with pK ⋅  degrees of freedom. Similarly, ( )rXXnK ,2 ρ⋅ , ν≠r  

has asymptotic non-central 2χ  distribution with pK ⋅  degrees of freedom and noncentrality parameter rnK ,2 νρ⋅ . If 

pK ⋅  is high, then, by using the central limit theorem we obtain the normal distribution  

 












 ⋅+⋅
+

nK

pKnK

n

p
N

r

r
2

28
;

2

,

,

ν
ν

ρ
ρ .                   (11) 

of the distance ( )rXX ,ρ . 
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3.3. Proposed method 

Based on the asymptotic distribution (11) we replace the step (10) of the original DEM to the procedure of choosing the 

maximum likelihood model. Let's assume that the models 
lr

XrX ,...,
1

 have been checked before the l-th step, i.e. the 

distances 












lr
XXrXX ,,...,,

1
ρρ  have been calculated. By assuming the equal prior probability of each class and 

independence of the models from different classes, let's choose the next most probable model 
1+lr

X  with the maximum 

likelihood method [1]: 

{ } { }
( )∏

=−∈
+ =

l

i
r

rrR
l WXXfr

i

l 1,...,,...,1
1 ),(maxarg

1

ν
ν

ρ ,                 (12) 

where ( )( )νρ WXXf
ir

,  is the conditional density (likelihood) of the distance ( )
ir

XX ,ρ  if the hypothesis νW  is true (the 

class label of the query object X is ν). To estimate this likelihood, asymptotic distribution (11) is used. Hence, the 

likelihood in (12) can be written in the following form 

( )( ) ( )( )

( ) ( )














⋅+⋅

⋅−−⋅
−×





⋅+⋅−=

=














⋅+⋅

⋅−−⋅
−×

⋅+⋅⋅
=

pKnK

pKXXnK
pKnK

nK

pKnK

pKXXnK

pKnK

nK
WXXf

i

ii

i

i

ii

i

i

r

rr
r

r

rr

r
r

28

)),((2
exp28ln

2

1
exp

2

2

28

),(2
exp

)28(2

2
,

,

2
,

,

,

2
,

,

ν

ν
ν

ν

ν

ν
ν

ρ

ρρ
ρ

π

ρ

ρρ

ρπ
ρ

         (13). 

By dividing (12) by a constant ( )lnK π2/2 , taking a natural logarithm, dividing by 2/nK  and adding l, expression 

(12) can be finally transformed to 

{ } { }
( )∑

=−∈
+ =

l

i
i

rrR
l rr

l 1,...,,...,1
1

1

minarg µ
µ

ϕ .                    (14) 

where 

( ) 







++









+









−−

=
n

p

nK

n

p

n

p
XX

r
i

i

ii

r

r

rr

i ,

,

2

,

4ln
4

1

4

2
),(

µ

µ

µ

µ ρ
ρ

ρρ
ϕ .            (15) 

As the average segment's size is usually much higher the number of parameters Nn >> , then the function in (15) can be 

simplified 

( )
( )

i

ii

r

rr
i

XX
r

,

2
,

4

),(

µ

µ
µ ρ

ρρ
ϕ

−
≈                    (16) 

This equation is in good agreement with the heuristic from the original DEM [11] - the closer are the distances 

),(
ir

XXρ  and 
ir,µρ  and the higher is the distance between models µX  and 

ir
X , the lower is ( )irµϕ . 
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Next, the termination condition (8) is checked for the model 
1+lr

X . If the distance 






+1
,

lr
XXρ  is lower than a 

threshold 0ρ , then the search procedure is stopped on the 1+= lLchecks  step. Otherwise the model 
1+lr

X  is put into the 

set of previously checked models and the procedure (14), (16) is repeated.  

Let's return to the initialization of our method. We would like to choose the first model 
1r

X  to obtain the decision (8) in 

a shortest (in terms of number of calculations checksL ) way. Let's maximize an average probability to obtain the decision on 

the second step  

{ }
( )

{ }
( )∑

= ∈∈








≤=

R

r
RrR

WP
R

r
1 ,...1,...,1

1 min
1

maxarg
ν

νν
µ

µϕµϕ .                 (17) 

To estimate the conditional probability ( )
{ }

( ) 







≤

∈
νν ϕϕ WrrP r

Rr
1

,...1
1 min  in (17) we use again the asymptotic distribution 

(11): 

( )
{ }

( )
( )( ) ( )( )

( )( )
{ }

( )( )
{ }

∏∏

∏

<∈≥∈

=∈

⋅≥×⋅≤=













 −
≤

−
=









≤

µνµµνµ ρρ
νµνµµ

ρρ
νµνµµ

ν
µ

µµ

µν

µνµ
νν

ρρρρρρ

ρ

ρρ

ρ

ρρ
µϕµϕ

,,,, ,...,1
,,

,...,1
,,

1 ,

2
,

,

2
,

,...1

,,

,,
min

rr Rr
r

Rr
r

R

r r

r
r

Rr

WXXPWXXP

W
XXXX

PWP

 (19) 

Finally, based on (11) one can write 

( )
{ }

( ) ∏
=∈ 
























−Φ+=










≤

R

r
rr

Rr

nK
WP

1
,,

,...1 22

1
min µνµνν ρρµϕµϕ ,      (20) 

where ( )⋅Φ  is the cumulative density function of the normal distribution. As a result, the first model to check 
1r

X  is 

obtained from the following expression 

{ }
∑∏
= =∈ 
























−Φ+=

R R

r
r

R

nK
r

1 1
,,

,...,1
1

22

1
maxarg

ν
µνµ

µ
ρρ .             (21)  

Thus, the proposed ML-DEM (9), (14), (16), (21) is an optimal (maximal likelihood) greedy algorithm for an 

approximate NN search with termination condition (8) for the Kullback-Leibler discrimination (6), (7). As a matter of fact, 

this method can be applied with an arbitrary complex similarity measure. The next section provides experimental evidence 

to support this claim. 

4. Experimental study 

In this section we present experimental study of proposed ML-DEM in the problem of face recognition.  

4.1. Face recognition 

It is required to assign a query image X to one of R classes (persons) specified by reference images { }rX , { }Rr ,...,1∈ . 
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We assume that the object of interest (face) is preliminarily detected by an arbitrary algorithm (e.g., Viola-Jones method 

[14]). To implement here statistical approach described in Section 2, the image is divided into a regular grid of 21 SS ×  

blocks, 1S  rows and 2S  columns (in our notation, RKKKSS ====⋅ ...121 ). Next, the histogram 

)],(),...,,([),( 21
)(

21
)(

121
)( sshsshssH

r
N

rr =  of appropriate simple features is separately evaluated for each block ),( 21 ss  of 

the reference image rX . Here N is the number of bins in the histogram, { }11 ,...,1 Ss ∈ , { }22 ,...,1 Ss ∈ . The most popular 

image point's simple feature is the gradient orientation (probably, weighted with the gradient magnitude), i.e., ),( 21
)( ssH r  

is the histogram of oriented gradients (HOG) [15]. In this paper we assume, that each histogram ),( 21
)( ssH r  is 

normalized, so that it may be treated as a probability distribution [15]. The united vector 

)],(),...,1,2(),,1(),...,1,1([ 21
)()(

2
)()( SSHHSHH rrrr  is amounted the desired descriptor of the whole reference image. 

The same procedure is repeated to evaluate the histograms )],(),...,,([),( 2121121 sshsshssH N=  corresponding to the 

query image. 

The neighborhood ( ( )krN ) of block ),( 21 ss  contains the cells ( )21
~,~ ss  for which ∆<− 11

~ ss , ∆<− 22
~ ss , where 

const=∆  is chosen based on the concrete task (usually ∆=0 or ∆=1 [16]). In such case, the distance in the nearest 

neighbor rule (5), (6) will be calculated with the mutual alignment of the histograms in the ∆- neighborhood as follows 

( ) ( ) ( )∑
=

∑
=






 ∆+∆+

∆≤∆

∆≤∆
=

1

11

2

12

22,11
)(

,2,1
)(

2

,1

min

21

1
,

S

s

S

s

ss
r

HssH
H

SSrXX ρρ ,  (22) 

where ( ) ( )




 ∆+∆+ 22,11

)(
,2,1

)(
ss

r
HssH

Hρ  is an appropriate distance between HOGs. If the Kullback-Leibler 

discrimination (7) is applied, the distance between HOGs can be written in the following form 

∑
=

=




 N

i
r

iK

iK
iKKL

h

h
h

r
HH

1
)(
;

;
; ln

)(
,ρ .                   (23) 

Here we missed indices ),( 21 ss  for simplicity and use the convolution of the HOGs with any kernel ijK  

∑
=

=∑
=

=
N

j

hKh
N

j

hKh jijiK
r

jij
r

iK
1

,

1
;

)()(
;

                 (24) 

to prevent division by zero in (23) if the histogram value for several bins is equal to zero. In the experiment we use the 

conventional Gaussian Parzen window [17]. 

In this study we also explore the homogeneity-testing probabilistic neural network (HT-PNN) showed good accuracy 

with HOGs in face recognition and known to be equivalent to the statistical approach if the pattern recognition problem is 

referred as a task of testing for homogeneity of segments [18]: 

( ) ∑
=

−
















+
+

+
=

N

i
r

iKiK

r
iKr

ir
iKiK

iK
i

r
PNNHT

hh

h
h

hh

h
hHH

1
)(
;;

)(
;)(

)(
;;

;)(
2

ln
2

ln,ρ .          (25) 



 

9 

4.2. Experimental results 

In this experiment FERET dataset was used (http://www.itl.nist.gov/iad/humanid/feret/feret_master.html). R=1432 

frontal images of 994 persons populate the database (i.e. a training set), other 1288 frontal photos of the same persons 

formed a test set. 

The faces were detected with the OpenCV library. The median filter with window size (3x3) was applied to remove noise 

in detected faces. The faces were divided into 100 fragments ( 1021 == SS ). The number of bins in the HOG N=8. To 

obtain threshold 0ρ , the FAR is fixed to be %1=β . These parameters provide the best accuracy in our experiments.  

The error rate obtained by cross-validation with the NN rule and similarity measure (1) with Euclidean and the PNNH 

(2) distances is shown in Table 1 in the format average error rate ± its standard deviation. 

 

Table 1. Error rate (in %) of the NN method (22) 

 ∆=0 ∆=1 

Kullback-Leibler (23) 8.9±1.3 7.0±1.3 

HT-PNN (25) 7.8±1.2 6.6±1.3 

 

From this table one could notice that, first, alignment of HOGs (22) with 1=∆  improves the recognition accuracy. And, 

second, we experimentally supports the fact [18] that the error rate for the Kullback-Leibler distance (23) exceeds the error 

for the HT-PNN (25).  

In the next experiment we compare the performance of the proposed ML-DEM with an original DEM [11], brute force 

and several approximate NN methods from FLANN [5] and NonMetricSpaceLib [19] libraries showed the best speed, 

namely 

1. Randomized kd-tree from FLANN with 4 trees [6] 

2. Composite index from FLANN which combines the randomized kd-trees (with 4 trees) and the hierarchical k-means 

tree [5]. 

3. Ordering permutations (perm-sort) from NonMetricSpaceLib which is known to decrease the recognition speed for 

medium-sized databases (thousands of models) [10]. 

We evaluate the error rate (in %) and the average time (in ms) to recognize one test image with a modern laptop (4 core 

i7, 6 Gb RAM) and Visual C++ 2013 Express compiler (x64 environment) and optimization by speed. We explore an 

obvious way to improve performance by using parallel computing [16]. Namely, the whole training set was divided into 

T=const non-overlapped parts and each part is processed in its own task. All tasks work in parallel and terminate right after 

any task finds the solution. Each task is implemented as a separate thread by using the Windows ThreadPool API. We 

analyze both conventional nonparallel case (T=1) and the parallel one (T=8). 

After several experiments the best (in terms of recognition speed) value of parameter M of original DEM (10) was 

chosen M=64 for nonparallel case and M=16 for parallel one. Parameter maxE  was chosen to achieve the recognition 
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accuracy which is not 0.5% less than the accuracy of brute force (Table 1). If such accuracy could not be achieved, maxE  

was set to be equal to the count of models assigned to each task. 

The average recognition time per one test image (in ms) for the Kullback-Leibler discrimination (23) for ∆=0 and ∆=1 is 

shown in Fig. 1 and Fig. 2, respectively. 
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Figure 1: Average recognition time, Kullback-Leibler discrimination, ∆=0 
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Figure 2: Average recognition time, Kullback-Leibler discrimination, ∆=1 

 

Here one can notice that modifications of kd-tree from FLANN (randomized and composite indices) do not show 

superior performance even over brute force as the number of models in the database is not very high. However, as it was 

expected, perm-sort method is characterized with 2-3.5 times lower recognition speed in comparison with an exhaustive 

search. Moreover, perm-sort seems to be better than the original DEM for nonparallel case (T=1), though the DEM's 

parallel implementation is a bit better. The most important conclusion here is that the proposed ML-DEM shows the highest 

speed in all experiments.  

To clarify the difference in performance of the original DEM and the proposed ML-DEM, we show the dependence of 

the error rate and the number of checked models %100/ ⋅RLchecks  on the maximum number of models to be checked 

maxE  in Fig. 3 and Fig. 4, respectively. We describe here the case ∆=1 for which the DEM is the best among all other 

methods. 

Fig. 3 demonstrates that the speed of convergence to an optimal solution for the ML-DEM is much higher than the same 
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indicator of the DEM. Even when RE ⋅= 1.0max  we can get an appropriate solution. 
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Figure 3: Dependence of error rate on Emax, Kullback-Leibler discrimination, ∆=1 
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Figure 4: Count of models checks per database size %100/ ⋅RLchecks , Kullback-Leibler discrimination, ∆=1 

 

Fig. 4 proves that the proposed ML-DEM is an optimal greedy algorithm in terms of the number of calculated distances 

checksL . However, additional computations of the ML-DEM (14), (16) which include the calculations for every non 

previously checked model, are quite complex. Hence, the difference in performance with the DEM and other approximate 

NN methods is high only for very complex similarity measures (e.g., for the case of HOG's alignment, ∆=1). 

The average recognition time for the HT-PNN (25) for ∆=0 and ∆=1 is shown in Fig. 5 and Fig. 6, respectively. 
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Figure 5: Average recognition time, HT-PNN, ∆=0 
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Figure 6: Average recognition time, HT-PNN, ∆=1 

The results of this experiment are very similar to the Kullback-Leibler results (Fig. 1, 2) though the error rate here is 0.5-

1% lower (see also Table 1). However, the original DEM is here a bit faster than the perm-sort for conventional distance 

(∆=0, Fig. 5) but is not so effective for alignment (∆=1, Fig. 6). FLANN's kd-trees are 10-15% faster than the brute force. 

And again, the proposed ML-DEM is the best choice here especially for most complex case (T=8, ∆=1) for which only 6 

ms (in average) is necessary to recognize a query face with 93% accuracy. 

5. Conclusion and future work 

We have shown that using the asymptotic properties (11) of the Kullback-Leibler discrimination for recognition 

piecewise-regular objects (5)-(7) in the DEM [11] gives very good results in face recognition with medium-sized database, 

reducing the recognition speed by more than 2.5-6.5 times in comparison with brute force and by 1.2-2.5 times in 

comparison with other approximate NN methods from FLANN and NonMetricSpaceLib libraries. We studied the influence 

of various distance parameters (distance type, neighborhood size ∆) and the maximal number maxE  of distances to 

calculate. 

In contrast to the most popular fast algorithms, our method is not heuristic (except the termination condition (8)). 

Moreover, it does not build data structure based on an algorithmic properties of applied similarity measure (e.g., triangle 

inequality of Minkowski metric in the AESA [4], Bregman ball for Bregman divergences [8]). The proposed ML-DEM is 

an optimal (maximum likelihood) greedy method in terms of the number of distance calculations (see Fig. 3) for NN rule 

(5) with the sum of Kullback-Leibler discriminations (5), (6). Moreover, as we showed in the last part of our experimental 

study, the ML-DEM can be successfully applied (Fig. 5, 6) with other distances, e.g., not popular but very accurate HT-

PNN (25) [18]. 

The main direction for further research in the ML-DEM can be related to improving the performance of each step (14), 

(16) by its simplification or the usage of ideas of pivot-based approximate NN methods [20]. As a matter of fact, it is the 

main obstacle to use our method with various similarity measures. We are also working on exploration the influence of the 

popular distances (Euclidean, chi-squared, Jensen-Shannon, etc.) on the performance of our method. 
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