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Abstract

Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging 

area. The basic assumption in the current state-of-the-art approaches is that the image patch at the 

target image point can be represented by a patch dictionary consisting of atlas patches from 

registered atlas images. Therefore, the label at the target image point can be determined by fusing 

labels of atlas image patches with similar anatomical structures. However, such assumption on 

image patch representation does not always hold in label fusion since (1) the image content within 

the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric 

patterns among atlas patches might be unbalanced such that the majority patterns can dominate 

label fusion result over other minority patterns. The violation of the above basic assumptions could 

significantly undermine the label fusion accuracy. To overcome these issues, we first consider 

forming label-specific group for the atlas patches with the same label. Then, we alter the 

conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-
specific dictionaries) consists of groups of representative atlas patches and the subsequent layers 

(residual dictionaries) hierarchically encode the patchwise residual information in different scales. 

Thus, the label fusion follows the representation consensus across representative dictionaries. 

However, the representation of target patch in each group is iteratively optimized by using the 
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representative atlas patches in each label-specific dictionary exclusively to match the principal 

patterns and also using all residual patterns across groups collaboratively to overcome the issue 

that some groups might be absent of certain variation patterns presented in the target image patch. 

Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as 

well as basal ganglia and brainstem structures, compared to other counterpart label fusion 

methods.
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1. Introduction

Automatically labeling regions of interest (ROIs) is the key step in many imaging-based 

studies [1–3]. Manual annotation of anatomical structures is tedious and very time-

consuming, which makes it impractical in most of the current medical studies with generally 

a large amount of imaging data. Therefore, high-throughput and automated segmentation 

methods are highly desired.

Since using multiple atlases is more capable of accommodating high structural variability 

than using single atlas, multi-atlas segmentation has emerged as a popular automated 

segmentation technique, by propagating the labels from annotated atlas images to the target 

image. In general, multi-atlas segmentation includes two steps, i.e., (1) Registration step, for 

aligning the selected atlases as well as their corresponding label images to the target image 

space [4–6], and (2) label fusion step, for fusing the registered label maps of the selected 

atlases into a consensus segmentation of the target image [1,7–14].

Among various proposed label fusion strategies, either voxel-wise [1,15] or patch-wise 

[9,16], they share a common assumption that similar anatomical structures should bear the 

same anatomical label. For example, the non-local label fusion method [9] computes patch-

wise similarity between the target image patch and all possible atlas patches in a search 

neighbor. Intuitively, high similarity leads to large weight in label fusion. Eventually, the 

label with the largest weight wins for tagging the target image point. To reduce the risk of 

introducing ambiguous atlas patches, sparsity constraint is recently used to enforce selection 

of only a very small number of atlas patches for label fusion [17,18].

It is apparent that each atlas image patch is independently represented by a set of registered 

atlas patches in label fusion. Although pairwise correlation between any two atlas image 

patches is explored in [19,20], the entire atlas patches are treated as a whole and compete 

each other to represent the target image patch. Consequently, there are two limitations in the 

current patch-based label fusion methods. First, image patch could be complex and might 

include different-scale morphometric patterns and noise. Thus, representing the whole image 

patches with mixed information inside is challenging. Second, the distribution of atlas image 

patches is highly complex. For certain groups of atlas image patches tagged with the same 

label, they might lack of diversity to accurately represent the new instance. In other words, 
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although the related pattern of underlying structure within the image patch might be well 

matched, the mismatches of unrelated structures can misguide the label fusion procedure.

To solve these issues, our solution is to break down the morphometric patterns in atlas image 

patches into two levels: label-specific and residual patterns, which are organized into a tree-

like dictionary. After that, we propose a hierarchical sparse label fusion method by 

efficiently representing the target image patch layer by layer in a competition-collaboration 
manner. Specifically, we consider that atlas image patches with the same anatomical label 

form a label-specific group. In the top layer, we construct a label-specific dictionary for each 

label by using the representative image patches (i.e., cluster centers) in each group. From the 

second layer, we continue selecting representative image patches from the remaining patches 

for each group. Then, we build one residual dictionary for each layer by combining 

information from all groups, where each atom is the residual pattern between the 

representative image patch in the current layer and its parent patch in the previous layer.

In label fusion, we represent the principal part of the target image patch with each label-
specific dictionary separately (via sparse constraint), with the remaining part collaboratively 

represented by the residual dictionaries. In the end, the group with the least representation 

error wins for tagging the target image point. In this way, only the label-specific dictionaries 
compete against others to represent the target image patch and vote for the label. Atoms in 

the residual dictionaries, regardless of being with the same label or not, collaborate to 

express the residual between the original target image patch and the weighted average of 

atoms in a certain label-specific dictionary, in order to overcome the issue that some groups 

might be absent of certain variation patterns presented in the target image patch. It is worth 

noting that the knowledge of common variations is allowed to transfer from one group to 

other groups, i.e., the variation patterns in the residual dictionary of each layer is shared 

across different anatomical groups. Importantly, since we alter the conventional flat and 

shallow dictionary into a deep tree-like structure, we eventually break down to solve a set of 

small-scale patch representation problems in each layer. In light of this, our method opts for 

solving the large-scale sparse patch representation problem in labeling each image point.

We have evaluated the performance of segmenting hippocampus from ADNI dataset and 

both basal ganglia and brainstem structures from other MR images. In all experiments, our 

hierarchical label fusion method achieves more accurate segmentation results than the 

conventional non-local [9,16] and sparse label fusion methods [18].

The remainder of the paper is organized as follows. In Section 2, we present our novel label 

fusion by deep sparse representation. In Section 3, we evaluate its performance by 

comparing with conventional patch-based methods, and we provide a brief conclusion in 

Section 4.

2. Method

The goal of multi-atlas label fusion is to propagate the labels from a set of registered atlas 

images to the target image T. Suppose we have N registered atlas images Is(s = 1, …, N), 

along with their respective label maps Ls (s = 1, …, N). The conventional label fusion 
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approaches estimate the target label f at each voxel x∈Ω of target image T in a patch-wise 

manner. Denote  as a P-dimensional (column) vector containing the intensity values in the 

target image patch centered at voxel x, and matrix  as a dictionary 

of M candidate atlas image patches (arranged into column vectors), which consists of all 

possible atlas patches in a search neighborhood of x. Following the same column order as 

the matrix  is a (column) vector of labels at the atlas patch 

centers, with each element li∈{−1,1} indicating either the absence or the presence of a given 

structure at the center of the respective atlas patch βi. For clarity, we only focus on single 

structure in this paper; however, it is straightforward to extend to multiple structures.

Next, the label fusion procedure can be regarded as a patch representation problem, seeking 

for a linear combination of atlas patches  which can best fit the target image patch . 

Here,  is a M-dimensional (column) vector, where each element indicates the influence in 

voting for the latent label f. Sparsity constraint upon the weighing vector  is proven a 

useful way to improve the label fusion accuracy [17,18,20] since encouraging more zero 

elements in the weighting vector can eventually reduce the risk of introducing misleading 

atlas patches. Thus, the objective function at each target image point x can be defined by:

(1)

where λ is the scalar controlling the sparsity degree. The intuition of encouraging sparsity 

on  is to suppress the spurious atlas patches in the dictionary B by using only a small 

number of good atlas patches, instead of all of them. Given the weighing vector , the label 

f at each target image point x can be determined by:

(2)

where ‘•’ denotes the inner product of two vectors.

2.1. Limitation of Conventional Flat Dictionary

It is apparent that all atlas patches in the dictionary B are stacked, column by column, in a 

single layer. Thus, solving the sparse representation problem in Eq. 1 becomes very difficult 

if the number of atoms in B is beyond the affordable scale. Another critical issue is that each 

atom independently competes against other thousands of atoms. Due to possible large 

variations between target and atlas images and also image noise and artifacts within each 

patch, it is often too strict to enforce the exact and entire patch matching between two image 

patches.

As the toy example shown in Fig. 1(a), the target image patch is a blue box face with two 

ears on the top. Conventional dictionary only has one layer, consisting of two kinds of faces: 
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box faces (#1–#4 in green) with ear(s) on either left or right side, and round faces (#5–#15 in 

red) with ear(s) on the top. It is clear that the shape of face is the primary pattern and 

specific to the label (face type) in this toy example. The variations about ears are just the 

external patterns, which are not related to the task of recognizing faces. Unfortunately, none 

of the sample in the group of box faces has ear (s) on the top, while such variations of ear 

are abundant in the group of round faces. In the conventional patch representation scenario, 

it is highly possible to label the target face with round face since too many non-primary 

variations (the pattern of ears) presented in the dictionary may mislead the representation 

procedure unless being treated aside from the primary label-specific patterns.

2.2. Construction of Deep Tree-like Dictionary

In light of this, we propose to alter the flat dictionary into a deep tree-like structure. Here, 

we consider forming atlas patches with the same label into a group. Suppose there are R 
kinds of labels, denoted by ξ1,…,ξr,…,ξR. Thus we can divide the atlas patches 

 into R groups, where each group Gr={βi | li = ξr,i = 1, …, M} (r = 1, …, 
R) only keep the atlas patches with label ξr. In the following, we apply the hierarchical k-

means [21] to each group Gr to divide the atlas patches into several layers, where the 

variation patterns within the group is hierarchically encoded via the tree from majority to 

minority. In the beginning, we define the tree has H layers and the branching factors of the 

tree {b1,…,bh,…bH−1} (with the last layer consisting of leaf nodes but no children), where 

bh specifies the number of children of each node at each layer. Then we start hierarchical k-

means from the whole group Gr. Specifically, we cluster all atlas patches of group Gr into kr 

divisions based on patch appearance, where each division consists of the atlas image patches 

similar to a particular cluster center. Furthermore, we choose the atlas image patch closest to 

the cluster center to represent each cluster of group Gr. The same procedure is then 

recursively applied to each cluster, splitting to b1 × b2 nodes in the second layer of tree. We 

repeat the above clustering procedure until  leaf nodes are left in the 

bottom layer, where |Gr| is the total number of image patches in the group Gr.

After we obtain the patch tree in each group, the next step is to construct the deep tree-like 

dictionary layer by layer. For each group Gr, we stack top-level representative image 

patches, column by column, and build the label-specific dictionary Dr in the first layer. From 

the second layer, we construct one residual dictionary Eh (2≤h ≤ H) for each layer in two 

steps: (1) for each group Gr, we compute the voxel-wise difference between each node 

(image patch in the current layer) with its parent node (cluster center in the previous layer); 

and (2) we stack the residual patches from all groups to build the residual-dictionary Eh (2≤h 
≤ H). The residual dictionaries {Eh} are equally shared by each label-specific dictionary Dr. 
After that, we can obtain tree-like dictionary TDr for each label as TDr = {Dr, E2,…,EH}. It 

is worth noting that our deep dictionary allows both completion and collaboration. The 

label-specific patterns are not shared across different label-specific dictionary Dr in the top 

layer. On the contrary, they compete each other to tag the underlying target image patch. 

From the second layer, the variation patterns are shared for all Drs since we consider the 

remaining information (after excluding the principle pattern) is not specific to any label.
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It is worth noting that each atom in the label-specific dictionary Dr represents one of the 

exemplar atlas patch in group Gr. However, all tree-like dictionaries TDr share the same 

residual dictionaries from E2 to EH, where each node only encodes the residual information 

w.r.t. the cluster center. The information in {E2,…,EH} conveys the variations in different 

scales (from major to minor variations) as layer h increases. The toy example in Fig. 1(b) 

shows 2 layers. The two exemplars, one from box face (in green) and another one from 

round face (in red), form the label-specific dictionary D1 and D2, respectively. The residual 
dictionary E2 conveys various patterns of ears and is shared by D1 and D2. Apparently, box 

face with ear(s) on the top is still box face, and vice versa. Since these variation patterns are 

not specific to labels (not related to box face or round face), this knowledge can be shared 

across different groups to represent the target image patch, as detailed next.

2.3. Hierarchical sparse patch label fusion

Since we alter the conventional flat dictionary B into a set of deep tree-like dictionary {TD1,

…,TDR}, we develop the hierarchical sparse patch representation algorithm to represent 

target image patch  via certain dictionary TDr:

(3)

where  and  are the weighting vectors for label-specific dictionary Dr and Eh, 

respectively. The intuition behind Eq. (3) is that we first only use the label-specific 

dictionary Dr to represent the principal part of target image patch . The residual part 

 is then recursively presented by a set of residual dictionaries Eh (h = 2, …, H), 

which utilizes the variations of the observed residual patterns from all other groups.

After achieving the optimal weighting vectors  and , we can compute the 

overall representation error εr regarding TDr by . The group 

with minimal representation error εr wins for tagging the target image point x with label 

f=ξr. The principle behind such hierarchical sparse patch label fusion is that we only allow 

the label-specific dictionaries Dr to compete against each other to vote for the target image 

point x. Other variation patterns in the residual dictionaries collaborate, by sharing the 

variation patterns across groups, to fit the remaining part . As shown in Fig. 

1(b), after well fitting the variations of ears by E2, we can accurately find the target face 

belongs to box face although the pattern of ear variations do not exist in the box face group. 

But the conventional sparse representation with flat dictionary B fails since it enforces the 

very strict whole-part matching such that the discrepancies of ears may mis-label the target 

face as round face.
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To solve the minimization problem in Eq. (3), we resort to the Augmented Lagrange 

Multiplier (ALM) scheme [22,23] by converting Eq. (3) to minimize the following function:

(4)

where ϕ is a vector of Lagrange multipliers and θ is a penalty parameter. Then, we 

iteratively optimize  by the algorithm summarized below.

Algorithm for solving Eq.4 by ALM _

Input: TDr, , and parameters λh (h = 1, …, H).

Initialization: , , ξ = 1.0, θmax = 104, η=10−4, and σ = 1.5.

While not converged do

1.

Fix others and update  by:

  

2. h=2;

3. while h < = H do

Fix others and update  by:

h = h+1;

end;

4.
Update the multipliers by:

  

5. Update θ by θ=min (θmax,σ•θ)

6.

Check the converge condition: 

End

Output: 

2.4. Discussion

Tree-Guided Group Lasso [24,25] (tree-lasso) also organizes the dictionary into the tree-like 

structure, in order to reflect the correlations among the dictionary atoms. However, our 

hierarchical sparse representation method has several significant differences from the tree-
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lasso: (1) Our method uses the residual image patches, instead of the original ones after the 

first layer, while every node in tree-lasso keeps the original information. (2) In tree-lasso, the 

children nodes only share the information with their own parent node. However, our method 

allows the knowledge of variation patterns to transfer across different groups, i.e., each atom 

in the label-specific dictionary can borrow the variation patterns derived from other groups 

to avoid the dilemma of mis-representation due to the lack of variation patterns presented in 

the target image patch. (3) In our method, we adaptively construct the tree by hierarchical k-

means. In tree-lasso, the tree is usually manually constructed based on certain priori 

knowledge.

Notice that we sequentially solve weighting vectors  and  from the roots to 

the leaf of the tree. Since we use sparsity constraint in each layer, it is highly possible that a 

large number of weights in each weighting vector are zero. For those atoms with zero 

weights, we do not include their children in the next layer. In this way, we dynamically form 

the new dictionary in transition to the next layer and keep solving the very-small-scale 

sparse representation problem in each layer. Therefore, the computational cost is comparable 

to the conventional sparse representation methods that use flat and large dictionary.

3. Experiments

In the following experiments, we compare our label fusion with the non-local [9,16] and 

sparse label fusion methods [18]. To label the target image, we first use FLIRT in FSL 

package to linearly register all atlas images onto the target image and then use diffeomorphic 

Demons [26] to compute the remaining local deformations. The main parameters for running 

diffeomorphic Demons are: 15, 10, and 5 iterations in low, middle, and high resolutions, 

respectively. The smoothing kernel size is 2.0. The patch size is 9 × 9 × 9 for all the patch-

based label fusion method. To assess label accuracy, the Dice ratio is used to measures the 

degree of overlap between two ROIs O1 and O2 as follows:

(5)

where |·| means the volume of the particular ROI.

3.1. Image Preprocessing and Parameter Setting

After register all atlases the to-be-segmented target image, histogram matching is performed 

on each registered atlas image, in order to normalize the intensity range. The label fusion is 

independently deployed on each target image voxel. Since we have specifically evaluated the 

influence of patch size and search neighborhood in our previous work [20,27], we fix the 

patch size to 5 × 5 × 5 voxel in each direction and the search neighborhood is set to 5 × 5 × 

5mm3 in linear registration scenario and 5 × 5 × 5mm3 in non-linear registration scenario, 

which are found optimal in terms of labeling accuracy and computation time. As we will 

demonstrate in Fig. 3, four layers (H = 4) is optimal in balancing label fusion accuracy and 

computational cost. Thus, we use patch pre-selection procedure [9] to keep at least 1,000 
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candidate atlas patches. In building the patch tree by hierarchical k-means, we allow each 

group to use 30 clusters (kr=30) in the top layer. The branching factors are set to b1= 3 and 

b2= 4, which means 90 (30 × 3) nodes in the second layer and 360 (90 × 4) nodes in the third 

layer. The sparsity constraint (λ in Eq. 1) for the conventional sparse patch-based label 

fusion method is set to 0.1. For our method, the sparse constraint in each layer is set to 

λ1=0.1, λ2=0.5, λ3=0.5, and λ4=0.5, respectively. It is worth noting that we will keep using 

the same parameter setting in the following experiment.

3.2. Experimental Result of Hippocampus Labeling

In this experiment, we randomly select 66 high resolution 3D T1-weithted MR images of 

elderly brains from ADNI dataset,1 where the left and right hippocampi have been manually 

labeled for each brain. Specifically, these MR images were acquired on a 3.0T GE scanner in 

the sagittal plane using an IR-FSPGR pulse sequence, 8-channel coil, TR = 650 ms, TE = 

min full, flip-angle = 8°, slice thickness = 1.2 mm, resolution =256 × 256 mm, and FOV =26 

cm. We evaluate label fusion performance in a leave-one-out manner. Specifically, we apply 

the label fusion accuracy by using affine registration and deformable registration separately. 

Here, we follow patch pre-selection condition in [9] to discard the less-similar image 

patches. Table 1 shows the mean and standard deviation of Dice ratio and surface distance 

on hippocampus (left and right combined) by non-local, sparse, and our hierarchical sparse 

label fusion method, where the atlas images are aligned to the target image by affine 

registration. Our method achieves the highest Dice ratio and lowest surface distance over 

other two counterpart methods, where the improvement of Dice ratio is significant. 

Similarly, as shown in Table 2, our method beat other two in the deformable registration 

scenario, where we obtain 1.7% and 1.0% improvements of Dice ratio over non-local and 

sparse patch-based methods, respectively. The typical surface distance maps in labeling one 

individual subject are shown in Fig. 2, where the red and blue denote for low and large 

surface distance. It is clear that our proposed label fusion method has smallest mean surface 

distance (Fig. 2(c)) than non-local (Fig. 2(a)) and sparse patch-based label fusion methods 

(Fig. 2(b)).

We test all label fusion methods on a workstation with 8 CPU cores (@3.0 G Hz) and 16 G 

memory. Since the label fusion procedure is independent at each target image point, we use 

OpenMP2 to parallel the whole process. The computational cost for 3 label fusion methods 

by affine and deformable registrations (excluding the registration time) are shown in the 

bottom rows of Table 1 and Table 2, respectively.

Furthermore, we specifically evaluate the effect of tree layers in our sparse hierarchical label 

fusion method. Fig. 3 shows the curve of Dice ratio vs computation cost as the layer number 

H increases from 1 to 6. It is worth noting that only using the top layer (H = 1) is the 

degraded version of our method. Without the support from the residual dictionaries, it is not 

surprising to see that the labeling accuracy is the lowest (84.6%). As H increases, the Dice 

ratio is improved significantly to 88.3% at H = 4, which indicates that the deep tree-like 

structure is very useful to deal with the complex patch representation problem in label 

1www.adni-info.org
2http://openmp.org/wp/
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fusion. Apparently, more layers can continue improving the Dice ratio, but the performance 

increase is marginal at the expense of computational cost. In all experiments, we find that 4 

layers are sufficient to encode the label-specific and individual variations.

3.3. Experimental Result on Segmenting Basal Ganglia Structures and Brainstem

The main components in basal ganglia include dorsal striatum (caudate and putamen), global 

pallidus, substantial nigra, and red nucleus. In terms of anatomy, brainstem can be 

partitioned to midbrain, pons, medulla oblongata and superior cerebellar peduncle. These 9 

regions, as shown in Fig. 4, are closely related with the development of Parkinson’s disease. 

In this experiment, 3T T1-weighted MR images from 11 PD patients are used as the atlases, 

each of them have the above 9 ROIs manually delineated by two radiologists. The total scan 

time is expected to be in the range from between 20–30 min. The field of view must include 

the vertex, cerebellum and pons. The image size is 512 × 512 × 176 and the image resolution 

is 0.5 × 0.5 × 1mm3. We evaluate the label fusion results in a leave-one-out manner. The 

overall Dice ratios and averaged surface distance in 9 ROIs are shown in Table 3 and Table 

4, respectively. It is clear that our proposed method has achieved the highest label fusion 

accuracy in all 9 ROIs.

4. Conclusion and future work

In this paper, we propose a novel hierarchical sparse representation method for multi-atlas 

patch-based label fusion. The main contribution of our work is that we alter the flat 

dictionary into a tree-like structure. Specifically, the most representative image patches 

within each group (label) form the top layer label-specific dictionary and the variation 

patterns across groups (label) are hierarchically encoded layer after layer. Since the data 

(candidate image patches) have been hierarchically organized into a major to minor manner, 

we substantially improve the representation power of sparse representation. In label fusion, 

we only allow the atoms in the label-specific dictionary delegating the whole group and 

competing against each other for voting the label. The variation patterns collected from 

different groups are shared across different groups and collaborate to alleviate the 

misrepresentation risk due to the lack of certain variation patterns in some groups. We have 

applied our new label fusion method to hippocampus segmentation and also the parcellation 

of basal ganglia and brainstem regions. Compared to the counterpart label fusion method, 

our proposed method has achieved more accurate labeling results.
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Fig. 1. 
The toy example of (a) conventional patch representation by single-layer dictionary and (b) 

our hierarchical patch representation by deep tree-like dictionary.
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Fig. 2. 
The surface distance in labeling one individual subject image using Non-local mean (a), 

sparse (b), and our proposed label fusion methods (c). Blue and red color denote for low and 

large surface distance respectively.
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Fig. 3. 
The Dice ratio vs computation cost by using different number of layers in our hierarchical 

sparse label fusion method.
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Fig. 4. 
Nine typical ROIs in basal ganglia and brainstem.
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Table 1

The statistics of Dice ratios, average surface distance, and computation costs in hippocampus labeling by non-

local, sparse, and our patch-based methods, with affine registration.

Non-Local Sparse Our method

Dice Ratio 85.8±4.1* 86.1±3.3* 87.9±2.9

Average surface distance (0.59±0.13)mm (0.45±0.09)mm (0.40±0.08)mm

Time 153 s 248 s 518 s

*
incidate that our proposed label fusion method achieves significant improvement over the underlying counterpart method under paired t-test with p 

< 0.05.
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Table 2

The statistics of Dice ratios, average surface distance, and computation costs in hippocampus labeling by non-

local, sparse, and our patch-based methods, with deformable registration.

Non-Local Sparse Our method

Dice Ratio 86.6±3.5* 87.3±3.4 88.3±2.6

Average surface distance (0.43±0.09)mm (0.39±0.08)mm (0.35±0.06)mm

Time 75 s 128 s 465 s

*
incidate that our proposed label fusion method achieves significant improvement over the underlying counterpart method under paired t-test with p 

< 0.05.
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Table 3

The mean and standard deviation of Dice ratios in 9 ROIs by non-local, sparse, and our patch-based methods.

Non-Local Sparse Our method

Mdbrain 85.2±2.6* 87.5±1. 8 87.7±1.7

Pons 86.6±3.8 88.1±2.9 88.5±2.8

Sup. Cere. Peduncle 65.1±5.4* 67.9±4.1 68.4±3.8

Medulla Oblongata 84.5±3.0* 86.1±2.4 86.6±1.6

Caudate 75.2±2.9 76.1±2.4 77.6±1.8

Putamen 76.7±1. 8 77.4±1.8 77.6±1.5

Global Pallidus 70.0±2.4 71.5±2.1 71.8±1.9

Substantial Nigra 53.3±6.5* 55.2±5.1* 57.5±4.4

Red Nucleus 53.6±5.9* 55.6±5.5 55.9±4.2

*
incidate that our proposed label fusion method achieves significant improvement over the underlying counterpart method under paired t-test with p 

< 0.05
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Table 4

The mean and standard deviation of surface distance in 9 ROIs by non-local, sparse, and our patch-based 

methods. (unit: mm).

Non-Local Sparse Our method

Mdbrain 0.33±0.07 0.31±0.05 0.30±0.06

Pons 0.41±0.09 0.38±0.05 0.35±0.06

Sup. Cere. Peduncle 0.61±0.13 0.59±0.12 0.55±0.10

Medulla Oblongata 0.34±0.05 0.34±0.05 0.34±0.06

Caudate 0.36±0.06 0.33±0.04 0.31±0.03

Putamen 0.36±0.06 0.35±0.06 0.34±0.06

Global Pallidus 0.59±0.09 0.54±0.08 0.51±0.07

Substantial Nigra 0.62±0.11 0.60±0.09 0.58±0.07

Red Nucleus 0.63±0.09 0.61±0.09 0.59±0.08
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