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Topic Driven Multimodal Similarity Learning with
Multi-view Voted Convolutional Features

Xinjian Gao1, Tingting Mu2, John Y. Goulermas3, Meng Wang1

Abstract

Similarity (and distance metric) learning plays a very important role in many artifi-

cial intelligence tasks aiming at quantizing the relevance between objects. We ad-

dress the challenge of learning complex relation patterns from data objects exhibiting

heterogeneous properties, and develop an effective multi-view multimodal similarity

learning model with much improved learning performance and model interpretability.

The proposed method firstly computes multi-view convolutional features to achieve

improved object representation, then analyzes the similarities between objects by oper-

ating over multiple hidden relation types (modalities), and finally fine-tunes the entire

model variables via back-propagating a ranking loss to the convolutional layers. We

develop a topic-driven initialization scheme, so that each learned relation type can be

interpreted as a representative of semantic topics of the objects. To improve model in-

terpretability and generalization, sparsity is imposed over these hidden relations. The

proposed method is evaluated by solving the image retrieval task using challenging

image datasets, and is compared with seven state-of-the-art algorithms in the field. Ex-

perimental results demonstrate significant performance improvement of the proposed

method over the competing ones.
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multimodal similarity learning.
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1. Introduction

Learning robust measures that can accurately characterize and quantize the rele-

vance between objects plays an important role in many artificial intelligence tasks [1,

2]. For instance, automatic image annotation, retrieval and classification [3, 4, 5], intel-

ligent recommendation systems [6], knowledge graph completion [7], image sentence5

mapping [8], etc. Conventional similarity (or distance metric) learning approaches

usually quantize the relevance between objects via a distance measure, such as Maha-

lanobis distance [9] or a kernel function [10]. Such measures are usually parameterized

on a set of variables, such as the covariance matrix or various kernel parameters. How-

ever, the expressive power of such approaches can be insufficient when processing10

complex relations and data patterns, and therefore, it is necessary to seek alternative

strategies for constructing more robust similarity models.

In addition to improving the similarity learning model, it is also important to im-

prove the quality of the input information that is fed into the model. In many real-world

applications, raw data is usually collected from domains or sensors possibly including15

redundant information and noise. Therefore, representation learning becomes an es-

sential stage with the benefit of eliminating redundancy, denoising, and reducing data

dimensions. Typical example algorithms for representation learning, include deep neu-

ral networks, such as auto-encoders (AE) [11], convolutional neural networks (CNN)

[12, 13], and their mixture convolutional auto-encoders (CAE) [14, 15].20

With the goals of designing a more robust similarity model and improving the qual-

ity of the raw data information, we develop a multi-layered algorithm that sequen-

tially achieves representation learning and similarity learning. A CNN is used as the

basic template to decompose the objects of interests into local patterns. Heteroge-

neous neighboring structures between objects characterized by multiple feature views25

are globally preserved over multiple modalities. The whole algorithm design aims to

cope more effectively with complex data patterns and improve learning performance.

From the input point of view, the analyzed objects can exhibit heterogeneous prop-

erties when dealing with a complex problem. Therefore, it is beneficial to characterize

the objects from multiple perceptions, corresponding to multi-view feature represen-30
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tations [16]. A simple example in image retrieval is as follows. Given the query of

a bear, in order to retrieve pictures including both brown and polar bears, shape view

is preferred over the color view, whilst to retrieve bears in different poses, colour in-

formation becomes more important than shape. Success of capturing complementary

information across different views has the potential of improving the learning perfor-35

mance [17]. Therefore, we incorporate a multi-view mechanism in the training of the

CNN in order to improve representation learning.

From the model point of view, objects are not necessarily connected under a fixed

type of relation examined with a single distance/kernel function. There exist multiple

types of high-level relations based on image appearance and semantics. Again, we40

use an image retrieval task as the example. Given the query image of an apple, hu-

mans are able to infer multiple types of relations, such as the apple company, the apple

logo, apple juice or different colors or shapes of apple fruits. This thus, motivates the

machine to use multimodal similarity measures to model different high-level relation

types. Example algorithms of such types, include transfer distance metric learning [18]45

and multiple kernel similarity learning [19] that utilize different kernel functions or

base distance metrics to represent different relations. However, intermediate results

of these algorithms, such as the meaning of the learned relation types and their con-

trolling parameters, can be difficult to interpret. To improve the interpretability of the

similarity learning model (i.e., avoiding treating it along with the learned parameters50

as a black box), and meanwhile maintain robust model expressive power, we propose

a topic-driven multimodal similarity learning algorithm. This firstly employs a clus-

tering algorithm to explore hidden data topics and subsequently encodes the resulting

topics as different relation types to construct multimodal similarities.

To summarize, the goal of this work is to design a powerful learning system with55

layered architecture that possesses both representation and similarity learning func-

tions. The system output along with the learned parameters offer: (1) low-dimensional

data representation that manages reduced redundancy and noise and is refined by con-

sidering complementary information from multiple low-level feature views, and (2)

multimodal similarities with each modality closely related to a latent data topic. Specif-60

ically, the input layer corresponds to the raw representation of the object pair (obji, objj),
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e.g., the image pixels or low-level features. The hidden layers are divided into two

components. The first component achieves representation learning, and is constructed

by taking advantage of the CAE and the multi-view local voting [17] techniques. The

second component translates a set of hidden relations {relt}ct=1 into a set of hidden65

neurons. The numerical operation defined over each neuron quantizes the confidence

level of whether the corresponding hidden relation exists between the two objects. It is

controlled by both the relation embedding that interactively characterizes the property

of the corresponding hidden relation, and the projection vector that has the potential to

increase expressive power. The relation embeddings {relt}ct=1 are initialized by cluster70

centers, (e.g., obtained by simple k-means clustering), so that inherent topic structure

within the data can be encoded and drive the multimodal similarity learning. The output

of the system exhibits an accumulation of the validities of all the hidden relations. To

improve the model regularization and interpretability, it is reasonable to assume that

only a few of the learned hidden relation types contribute to an existing relationship75

between objects, instead of all the types. Therefore, sparsity is enforced in the hidden

relation layer. Finally, to boost the model performance, a fine-tuning procedure of the

whole system is conducted to propagate the changes of the similarity model backward

to the CNN network.

Overall, the preservation of the multi-view data structure and the construction of the80

multiple hidden relation operations allow the proposed system to be able to examine

the relationships between objects under multiple feature views and also enable the dis-

covery of diversified relations with multimodality. The remaining paper is organized

as follows. Section 2 briefly introduces related previous work. Section 3 describes

in detail the proposed algorithm. Experimental results and comparative analyses are85

included in Section 4, while Section 5 concludes the presentation.

2. Related Works

2.1. Representation Learning

Deep learning techniques have been successful in learning numerical representa-

tions to characterize objects. AEs are a commonly used deep learning architecture90
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for unsupervised representation learning [20]. Their advantages have been shown in

various existing works [14, 15]. A conventional AE usually focuses on learning the

global data distribution, but ignores the useful local structure information and there-

fore, it may not be suitable to process data with highly structured local information,

such as imagery. Therefore, CAEs [21] take advantage of the CNN mechanism and95

capture better local data structure. In a CAE, the encoder and decoder layers of the

AE are replaced with convolutional layers. The learned representations offer more

balanced characterization between the global and local structures. Alternatively, super-

vised representation learning is usually capable of offering better performance than the

unsupervised one, e.g., by training a CNN to solve an image classification task [22],100

supported by a sufficient amount of labeled training instances.

Here, we review some successful applications of deep representation learning. In

speech emotion recognition, CNNs are applied to learn local invariant features [23].

Different scales of kernels are learned, with which the entire spectrogram fragment is

convolved to form a series of feature maps. In synthetic aperture radar image classi-105

fication, a CAE is applied to generate high-level features, using convolutional kernels

initialized by Gabor filters [24]. Another example is to learn the 3D shape feature de-

scriptor using a neural network [25]. The Fisher criterion is used to train the hidden

layers, so that the learned features can be discriminative and insensitive to geometric

structure variations. Recently, CNNs have been successfully used to analyze complex110

events in untrimmed videos [26]. After characterizing video keyframes with a CNN de-

scriptor trained with labeled examples, a novel prioritization procedure and algorithm

are developed to correspondingly order the keyframes and exploit the obtained order

information for event analysis.

Instead of following the classical CNN training through either an unsupervised or a115

supervised scheme as in the previous works [21, 26], we develop an effective stage-wise

CNN training strategy utilizing a mixture of unsupervised and supervised schemes to

solve better the targeted similarity learning task. Built upon the CAE network, we keep

improving the pre-trained CNN by AE, via following another unsupervised training

scheme that considers a multi-view learning strategy. To boost the model performance,120

a fine-tuning of the model variables is conducted to improve the learned representation,
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and the CNN that is initialized by its unsupervised training output, is connected to

another multimodal similarity model.

2.2. Multi-view Learning

The development of contemporary sensor and computer modelling techniques has125

enabled data information, that may characterize heterogeneous properties of the stud-

ied objects, to be collected from various domains, feature collectors and extractors.

These are often referred to as multi-view representations of the objects and lead to

multi-view learning tasks in machine learning. This facilitates complex data analysis

in a multitude of areas, such as video surveillance, multimedia, and image classifica-130

tion. Each representation (view) has different physical meaning and concrete statistical

properties. It has the potential to improve the performance of a given task by enabling

effective collaboration between multiple views; for instance, a view can be enhanced

by its complementary views.

We review some recent advances on multi-view feature representation learning.135

In image classification, multiple discriminative dictionaries are jointly learned with

redundancy among dictionaries from different reduced views [27]. Aiming at recon-

structing incomplete views through multi-view learning, [28] assumes that all the views

are generated by a shared subspace and proposes to estimate the incomplete views by

learning the shared subspace from the complete views. Another example, is a unified140

multi-view approach for robust classifier training [29], which utilizes different types

of weakly labeled multi-view data collected from a broad range of relevant tasks. To

simultaneously reduce data dimensionality and infer label information, [30] solves a

multi-view multi-label learning task. For each view, a weakly labeled learning prob-

lem is modelled, and an optimal classifier is learned from a set of pseudo-label vectors145

generated by using the classifiers trained from the other views. Recently, a multi-view

approached is developed to improve semantic annotation of video street view, where

the 2D and 3D features are combined to reduce the amount of used training data and

introduce computational efficiency [31].

Multi-view approaches have been shown to be effective in the improvement of un-150

supervised and semi-supervised learning. For instance, unsupervised alignment hash-
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ing is developed based on regularized kernel matrix factorization in [32]. It seeks a

compact representation to uncover hidden semantics, preserve joint probability data

distribution, and learn low-dimensional embeddings by multi-view weight learning.

Another unsupervised example, is [33] which adaptively selects multi-view embed-155

dings or individual features to improve clustering. Working with a small amount of

labeled data, [34] develops a semi-supervised multi-view feature fusion method. This

preserves the manifold structure for each feature type during the training phase and

relies on a statistical approach to exploit the manifold structure elements. Another

semi-supervised example, is [35] which utilizes multimedia information, such as vi-160

sual features and text features to enhance image classification.

In the presented work, we attempt to improve CNN-based representation learn-

ing without seeking support from label information as it is not always available in

real-world applications. An effective strategy is to take advantage of the multi-view

paradigm. Different from most existing works that utilize the multi-view information165

in the input layer, we take advantage of such information in the training phase of the

CNN. The multiple feature views are encoded as a composite neighbor structure, that

is used to formulate the objective function of the optimization. One advantage of em-

bedding the multi-view mechanism within the CNN training phase, is that it can be

conveniently integrated with existing CNN training schemes (e.g., unsupervised train-170

ing by an AE and supervised training using label information) through pre-training and

fine-tuning to achieve improved system regularization and robustness.

2.3. Multimodal Similarity Learning

Multimodal similarity (or distance metric) learning constitute a type of algorithms

that can measure similarity or distance between objects from different aspects. Typ-175

ically, different modalities can be modelled as different kernel functions or distance

metrics. Such techniques have been shown effective in many real-world applications.

For instance, in image ranking, different modalities of the image connections can be

modelled by different kernel functions, and the overall similarity function can be for-

mulated as a weighted sum of these kernel functions [19]. In person re-identification180

from camera networks, different cameras are usually affected by different types of
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noise. Therefore, the work [36] designs multiple Mahalanobis distance metrics to cope

with the multiple noise modalities, and these metrics are related and handled for over-

fitting by enforcing joint regularization. In image retrieval, the multimodality mecha-

nism is used to realize feature fusion, where different distance metrics are optimized in185

different feature spaces to find the optimal combination of diverse feature types [37].

Multimodality is also considered in transfer learning to overcome the lack of informa-

tion in a target task [18]. Given multiple related source tasks, objects can be connected

in multiple ways, and these connections are modelled as multiple base metrics, whereas

the overall metric as their weighted sum.190

In the recent years, multimodal design has been adopted in deep learning. For

instance, [38] employs different neural networks to model different input modalities

that achieve multimodal gesture segmentation and recognition, where the input modal-

ities include the observed skeleton joint information, depth and RGB images. Another

example, is multimodal recurrent neural network developed to improve image cap-195

tioning [39]. This work introduces a multimodal layer to compute the activation from

multiple input modalities, such as word embeddings and image features. For image

retrieval, [40] develops a multimodal similarity learning model, which encodes the dif-

ferent similarity modalities with different nonlinear transformations of the input fea-

tures modelled by different neural networks. So far, most existing multimodal learning200

algorithms are designed as a black box, of which the intermediate results, (e.g., the

learned parameters for controlling the modalities and hidden layer output) are usually

hard to interpret. In this work, one of our objectives is to develop a model with much

improved interpretability, so that its intermediate results can be conveniently observed

and analyzed by the user, while maintaining the expressive power of the model.205

3. Proposed Method

The proposed similarity learning system consists of two components. The first cor-

responds to the unsupervised feature representation learning. The improved represen-

tation is used as the input to the second component of supervised multimodal similarity

learning. The two components are first trained separately, and then the whole system210
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is fine-tuned by back-propagating a supervised ranking loss. The overall system archi-

tecture is illustrated in Figure 1.
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Figure 1: System architecture of the proposed similarity learning algorithm.

3.1. Unsupervised Feature Representation Learning

Given a collection of n objects {xi}ni=1, each is characterized by its raw features,

that is, the image pixels. We employ a CNN network to compute the high-level repre-

sentation from these raw features. For each object, we assume that its input features

are arranged into a l × l 2D matrix, also denoted by xi. To take advantage of the local

distribution and also to reduce the amount of parameters to be learned, we compute

the output representation by convolutional means [15]. Convolving a kc × kc kernel

E with the input matrix, the dimension of the output convolutional feature map h is

(l − kc + 1) × (l − kc + 1). Assuming that m kernels are used in the convolutional

layer and letting the subscript j index the j-th map, the output averaged over different

maps can be expressed as

hi =
1

m

m∑
j=1

sigmoid(convn(xi,Ej) + bj), (1)
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where convn(·, ·) denotes the convolutional operation, and the matrix bj of size (l −

kc + 1) × (l − kc + 1) denotes the bias parameter. Training of the network relies on215

an appropriate choice of the objective function to optimize the network weights (e.g.,

{Ej , bj}mj=1). Here, we provide the equation for one convolutional layer, and more

layers can be added accordingly.

3.1.1. Training by Multi-view Voted Neighbor Preservation

The deep embedding method [41] is commonly used to pre-train a neural network220

by uncovering a similarity structure between objects computed using the original fea-

tures xi to improve the learning performance and prevent the algorithm from getting

stuck in local minima or plateaus [42]. The method pushes the intermediate representa-

tions of the objects, which are learned at the hidden layer of a neural network, to move

towards each other or apart from each other depending on whether the two objects225

are neighbors or not. Motivated by these, we employ a similar approach to learn the

high-level feature representation hi. However, differently from the traditional task, we

attempt to generate a representation capable of taking into account heterogeneous prop-

erties of the objects under different view perceptions. Thus, we propose to construct a

composite similarity structure by seeking augmented neighborhood relations through230

the examination under different view representations. Network weights are trained to

generate high-level features that can preserve optimally such a similarity structure.

To construct different views, different feature extraction methods or different infor-

mation resources can be used. For instance, given an image retrieval task, the low-level

feature extraction methods, such as image color histogram, color correlogram, edge

direction histogram, wavelet texture, block-wise color moments, bag of words based

on the scale-invariant feature transform (SIFT) descriptions, etc., can characterize dif-

ferent properties of the images. We use {Xs}as=1 to denote the different view matrices,

whose rows correspond to the different feature vectors of the objects. We then mini-

mize the following objective function based on a penalized distance error sum

min
{Ej ,bj}mj=1

rij
({

x
(s)
i

}a

s=1
,
{
x

(s)
j

}a

s=1

)
‖Φi(hi)−Φj(hj)‖22 . (2)

For each object, Φi is the vector version of the feature matrix hi, which is generated

by simply arranging the elements of hi in a single row vector. The penalty weight rij
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quantizes the similarity/neighborhood information between two objects. It is computed

by taking into account all the feature representations offered by the a views through

a confidence-driven voting scheme developed in our previous work [17]4, and is a

function of {x(s)
i }as=1 and {x(s)

j }as=1. The voting scheme basically assumes that, when

there are more views agreeing on the existence of the neighborhood relation between

two objects, this object pair is considered to be more reliable and thus, it is awarded a

higher weight. Specifically, the penalty weight rij can be computed by

rij =

m∑
α=1

α

m
r
(α)
ij , (3)

with

r
(α)
ij =

 0, if the Iαij = ∅,
1
α

∑
s∈Iαij

P
(s)
r , otherwise,

(4)

where α represents the number of the views that are expected to agree with each other.

The set I(α)ij records the indices of the α views agreeing that the i-th object and the

j-th object are neighbors through the distance comparison using the features of these235

corresponding views. The matrix P
(s)
r stores local proximity information for the s-th

view. Its nonzero element stores the similarity value between two neighboring objects

computed under the s-th feature view, whereas, its zero elements indicate not neigh-

boring object pairs. By minimizing Eq. (2), the network weights are able to offer

high-level features that preserve a composite neighborhood structure computed from240

multiple views.

3.1.2. Auto-encoder based Pre-training

The above training procedure encodes an augmented neighborhood structure com-

bining multiple views within the computed high-level feature representation. Instead of

random initialization in training, we start from a pre-trained solution that captures the

global data distribution, aiming at improving the balance between the local and global

4 An alternative weighting scheme used in [43, 44], is to set the weights to the retrieval performance (e.g.,

the precision score), obtained using each corresponding feature view. This approach is supervised, requiring

knowledge on the label information of the training objects. Given that our goal in this stage is to perform an

unsupervised training of the CNN, we adopt the unsupervised weighting scheme in [17].
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patterns and facilitate generalization. This can be achieved by implementing an AE-

based pre-training procedure. A decoding layer is added consisting of m convolutional

kernels, which takes the output of the CNN as its input. This is given as

x̃i =
1

m

m∑
j=1

sigmoid(convn(hi,Dj) + cj), (5)

where the l × l matrix x̃i represents the decoded representation of the i-th object, the

kc × kc matrix Dj and the l × l matrix cj denote the decoder convolutional kernel

and bias, respectively, for the j-th map. By treating the CNN network described in

Eq. (1), as an encoder that is connected to the above decoder, the network parameters

{Ej , bj}mj=1 and {Dj , cj}mj=1 can be optimized together by minimizing a reconstruc-

tion error, such as

min
{Ej ,bj ,Dj ,cj}mj=1

∑
i

‖ x̃i − xi ‖2F . (6)

This corresponds to the stage 1 training of the representation learning component

shown in Figure 1. The obtained solution of {Ej , bj}mj=1 is then used as an initializa-

tion, and then a further training of the weights {Ej , bj}mj=1 but based on the different245

objective function of Eq. (2) is conducted. This corresponds to the stage 2 training of

the representation learning shown in Figure 1. This two-stage training reflects a learn-

ing procedure that shifts its focus from the preservation of the global pattern to local.

The entire representation learning procedure can also be viewed as a CAE network

with its hidden layer training enhanced by a weighted distance error minimization in250

order to better reflect a multi-view voted local neighbor structure.

3.2. Supervised Multimodal Similarity Learning

Operating on the high-level feature representation {Φi}ni=1 of the objects, the sub-

sequent step is to build a score function sij = f(Φi,Φj) that measures the similarity

between two objects. A major motivation of designing this is to reflect the validities255

of multiple hidden relations. This is important, for instance, for an image retrieval task

because the searched images can be related to the query image under different relation

types (examples are mentioned in Section 1). In order to model such multimodal simi-

larity, we introduce a set of hidden neurons, each representing one hidden relationship

between objects.260
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We consider a total of c hidden relation neurons in the model. Unlike conventional

similarity learning algorithms that lack interpretability, we attempt to relate different

hidden neurons with different clusters of the training objects, so that the resulting rela-

tion modalities can correspond to hidden topics amongst the objects. To achieve this,

one convenient way is to parameterize each neuron with a row embedding vector et

(t = 1, 2, . . . c) in the same space as the high-level convolutional features Φi. This

allows the building of links between neurons and object clusters through a straight-

forward initialization scheme using the cluster center vector (explained at the end of

this subsection). The sought task is to examine whether the objects i and j are linked

via a hidden relation type t ∈ {1, 2, . . . , c}. A score function can be designed for a

given relation triplet (obji, relt, objj), so that a high score indicates the existence of

relt between obji and objj , whereas a low score otherwise. Inspired by the success of a

bilinear similarity score used in deep text matching in answer selection [45], we adopt

a rank-1 formulation eTt et to parameterize the bilinear similarity, such that

s
(t)
ij = Φi

(
eTt et

)
ΦT
j =

(
Φie

T
t

) (
Φje

T
t

)
. (7)

This formulation first evaluates separately the similarities between the head object and

the relation and also between the tail object and the relation via the inner product func-

tion. Finally, it derives a composite quantity based on the multiplication of the two

similarity values.

To improve the expressive power of the model, when computing the similarity in-

duced by inner product, we allow a deviation from the targeted relation embedding by

introducing a row projection vector pt over each hidden neuron. It is embedded in the

same space as the relation embedding vector et and the convolutional feature vector

Φi. The similarity between the head object and the targeted relation embedding can be

formulated as the inner product between the projected object Φip
T
t pt and the relation

embedding et. Therefore, the modified similarity formulation becomes

s
(t)
ij =

(
Φip

T
t pte

T
t

) (
Φjp

T
t pte

T
t

)
= Φip

T
t pte

T
t etp

T
t ptΦ

T
j . (8)

By comparing Eqs. (7) and (8), we can see that both formulations represent a bilin-265

ear operator between two vectors. The first is parameterized over a rank-1 positive
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semidefinite (PSD) matrix Et = eTt et, while the second is parameterized over a ma-

trix that can be factorized as two rank-1 PSD matrices in the form of PtEtPt with

Pt = pTt pt.

Finally, a composite similarity is computed by combining these hidden similarities

as

sij = ln

(
1 + exp

(
c∑
t=1

s
(t)
ij

))
. (9)

In the above, the smoothed version of the rectifier activation function, know as the270

softplus function, is used to enforce sparsity over the hidden similarities {s(t)ij }ct=1. The

reason sparsity is enforced over the learned similarities, is that it is more reasonable to

have only several hidden relation types contribute to the final similarity instead of all

the types, which in a way has the potential to obtain improved regularization [46].

To optimize the relation embeddings and projection vectors {et,pt}ct=1, we employ

the following optimization problem, that minimizes a ranking loss computed from the

stochastic margin error [47] as

L
(
{et}ct=1, {pt}ct=1

)
=

∑
(i,j+)∈I+

∑
(i,j−)∈I−

max(sij− − sij+ − 1, 0). (10)

The index set I+ contains the truly related object pairs in the training set, referred to

as the positive training pairs, while I− the truly unrelated object pairs referred to as the

negative training pairs. In general, I+ can be set to be the collection of image pairs with

each pair containing a query image and one of its correct images to be retrieved, while

I− the collection with each pair including a query image and an image that should

not be retrieved given this query. The loss function evaluates the difference between

the similarity scores of the negative and positive pairs. The optimization drives the

differences (margin errors) to be less than 1 to facilitate the discrimination between

the positive and negative pairs. Stochastic gradient descent is employed for the opti-

mization. In each update, the gradients are computed by a positive pair and a negative

pair denoted by (obji, objj+) and (obji, objj−), respectively, where (i, j+) ∈ I+ and

(i, j−) ∈ I−. Below, we include the corresponding gradient equations for updating the
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relation embeddings and projection vectors

p
(new)
t = pt − η

∂L

∂pt
= pt − η

(
∂sij−
∂pt

− ∂sij+
∂pt

)
, (11)

e
(new)
t = et − η

∂L

∂et
= et − η

(
∂sij−
∂et

− ∂sij+
∂et

)
, (12)

where η > 0 controls the learning rate. We further have
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It is straightforward to extend the above update to batch training.275

To offer interpretability to relation modalities, instead of optimizing the relation

embeddings {et}ct=1 with random initialization, we propose to initialize each embed-

ding with the centre vector ct of a cluster of the training objects. For an image retrieval

task, these clusters can be manually defined according to the training data (e.g., the

collection of a real animal, such as bear (or a similar toy, or logo) images for a bear280

query). This enables the opportunity to include all different types of images to the re-

trieved image set other than focusing on one type only. One can also derive the clusters

by applying a clustering algorithm (e.g., k-means clustering) based on the high-level

object representation Φi. After identifying c clusters corresponding to a semantic topic

structure within the observed data, these clusters (topics) are used to drive the formu-285

lation of the similarity measure.
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3.3. Model Fine-tuning

As previously described, the proposed model includes two components. The for-

mer is the unsupervised feature representation learning that generates high-level con-

volutional features by optimizing the CNN network weights. Its training includes the290

AE-based pre-training followed by the proposed multi-view training. The later is the

multimodal similarity component, taking the learned convolutional features as the in-

put. It learns a similarity function by optimizing the model parameters {et,pt}ct=1 in a

supervised manner. After training these two components separately, we connect them

and seek a better solution by performing a supervised fine-tuning for the entire model.295

Specifically, the entire model is initialized with the separately trained CNN network

weights and similarity model parameters. Then, all the model variables carry on be-

ing optimized via the minimization of the ranking loss in Eq. (10). This procedure

propagates the changes of the sparse hidden similarities backward to the CNN model.

4. Experimental Results and Analysis300

We conduct various experiments to verify and analyze the performance of the pro-

posed algorithm through the image retrieval task, and compare it with seven existing

algorithms including online multiple kernel similarity learning (OMKS) [19], the con-

ventional approach of iterative quantization (ITQ) [48], mutliview alignment hashing

(MAH) [32], deep regularized similarity comparison hashing (DRSCH) [49], deep se-305

mantic ranking hashing (DSRH) [50], kernel based supervised hashing (KSH-CNN)

[51] and neighborhood discriminant hashing (NDH) [52]. Some of these methods

focus on multi-view or deep representation learning, some on multimodal similarity

learning, while some are specialized in image retrieval.

Two benchmark image datasets are used for evaluation. One is the CIFAR-10 [53],310

containing 60,000 colour images belonging to 10 object classes, such as airplane, truck,

bird, cat, deer, horse, etc., with each class containing 6,000 images. The other is NUS-

WIDE [54], which is a large collection of Flickr web images containing 269,648 im-

ages belonging to 81 concepts, such as garden, street, tower, dancing, tree, etc. For

CIFAR-10, four different feature extraction methods are employed, including the 900-315
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D local binary pattern (LBP) [55], the 256-D colour histogram (CH) [56], the 324-D

histogram of gradient (HoG) [57] and the 1024-D wavelet texture (WT) [58]. These

are the different views to compute the neighbor weights through multi-view voting as

explained in Section 3.1.1. To generate the LBP features, the input image is divided

into 3 × 3 cells, discarding the remaining pixels. To generate the binary numbers for320

preparing the LBP features, the center pixel is compared with its 8 neighboring pixels

in each cell. To generate the CH features, after transforming the RGB image into HSV

image, 16 bins for the hue space, 4 bins for the saturation space and 4 bins for the

value space are used; this leads to features of pixel counts in 16 × 4 × 4 = 256 bins.

To generate the HoG feature, the input image is divided into 8 cells. Gradients from325

36 angles within 180 degrees are computed in each cell and 9 bins are set for each

angle. This leads to features of gradient counts in 9 × 36=324 bins. To generate the

WT features, the 20× 20 Gaussian filter is used on the input image. For NUS-WIDE,

six groups of readily extracted features5 are used as the different feature views, includ-

ing 64-D CH,144-D color correlogram (CORR) [59], 73-D edge direction histogram330

(EDH) [60], 128-D WT, 225-D block-wise color moments (CM) [61] and the 500-D

bag-of-word model based on SIFT descriptions [62]. In the experiments, for CIFAR-

10, 1,000 images per class are randomly selected as query images, 1,000 as training

images, while all the remaining ones as testing images. For NUS-WIDE, 2,000 ran-

domly selected images are used as queries, 5,000 as training images and 260,000 as the335

testing ones to evaluate the retrieval performance.

For the proposed method, to compute the multi-view convolutional features, the

5 × 5 kernel size and m = 5 maps are used in both encoding and decoding layers.

For the auto-encoder based pre-training, all the parameters are randomly initialized.

To implement the topic-driven multimodal similarity learning, the k-means clustering340

is first applied to the training images to obtain a preview of the topic structure of the

images; then, the resulting cluster centers are used to initialize the relation embeddings

so that different types of hidden relations can potentially be linked to different image

topics. Different numbers of hidden relation types k ∈ {5, 10, 15, 20}, corresponding

5These features can be downloaded from http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

17



to different numbers of hidden relation neurons, are tested. To optimize the network345

parameters, stochastic gradient descent based on batch training is applied, where the

batch size is set to 50 and the learning rate to η = 0.1. For the competing methods,

we use the same parameters as in their corresponding published works. The retrieval

performance is assessed by the precision of the top 500 retrieved images (500AP) and

the mean average precision (mAP).350

4.1. Performance Comparison and Analysis

The two main components of the proposed algorithm are referred to as multi-view

convolutional (MVC) feature descriptor and multimodal similarity (MS). To quanti-

tatively evaluate the effectiveness of the proposed design, we compare with various

alternative design options. Firstly, we examine a baseline retrieval system referred to355

as CAE-E that employs the convolutional winner-take-all (CONV-WTA) AE [15] to

generate the convolutional features, and computes the similarity score using Euclidean

distances. We test this baseline system with different types of input, such as the raw

image pixels, different types of features extracted by different methods, and the multi-

view features that include all the extracted features in one concatenated vector. Perfor-360

mance of CAE-E with different types of input features is reported in Table 1 (right side

of→). We also compare with the original performance of these features without using

CAE to de-noise the data (left side of →). The improved performance (from the left

to right) shows the effectiveness of CAE-based representation learning in this baseline

system. It can also be seen from Table 1 (comparison between the last row and the365

previous ones) that the simple multi-view processing of combining different types of

features in a single vector does not improve the retrieval performance and fails to take

advantage of the multiple feature views.

To compare the superiority of the proposed MVC features over CAE, the same re-

trieval operation as used above, which is the Euclidean distance based similarity com-370

parison, is applied using MVC features as the input. The resulting system is referred

to as as MVC-E, and its performance is reported in the second row of Table 2. For

comparison purposes, we also display the best performance achieved by CAE-E in the

first row of of Table 2. It can be seen that the proposed MVC features prove to have

18



Effectiveness of CAE
NUS-WIDE NUS-WIDE CIFAR-10 CIFAR-10

500AP (%) mAP (%) 500AP (%) mAP (%)

Raw Pixels 0.05→ 0.12 0.05→ 0.10 0.11→ 0.21 0.11→ 0.23

CH Features 0.12→ 0.25 0.13→ 0.24 0.11→ 0.15 0.13→ 0.16

CORR Features 0.14→ 0.22 0.14→ 0.23 N/A N/A

EDH Features 0.18→ 0.30 0.19→ 0.23 N/A N/A

WT Features 0.16→ 0.25 0.16→ 0.23 0.14→ 0.20 0.16→ 0.20

CM Features 0.16→ 0.30 0.15→ 0.29 N/A N/A

SIFT Features 0.15→ 0.21 0.16→ 0.20 N/A N/A

LBP Features N/A N/A 0.15→ 0.26 0.16→ 0.24

HoG Features N/A N/A 0.12→ 0.18 0.08→ 0.15

All Features 0.18→ 0.24 0.16→ 0.23 0.13→ 0.20 0.16→ 0.20

Table 1: Performance comparison of the baseline system using auto-encoder based representation learning.

significantly better retrieval performance than the CAE features.375

We further examine the proposed system with the two components of MVC and

MS trained separately without fine-tuning under different settings of k; we refer to

this as MVC-MS. It can be seen from Table 2 that similarly good performance has

been achieved using k ≥ 10. Compared to MVC-E, MVC-MS replaces the simple

Euclidean distance based comparison by the more sophisticated MS learning, and leads380

to significantly better performance.

Next, we examine the effectiveness of the sparsity design in MS and the unsuper-

vised training of MVC features under the dimension setting of k = 15. Table 2 reports

the performance of MVC-MS, but replacing Eq. (8) with the simpler setting of Eq.

(7); this is referred to as MVC-MS-Eq.(7). The results show that Eq. (8) is a more385

effective score formulation than Eq. (7), offering thus a better retrieval performance.

We also replace the proposed MVC features with the features extracted using the deep

learning network Caffe, based on supervised training using the ImageNet data [22] and

report its performance in Table 2; this is referred to as Caffe-MS. Although Caffe is

trained in a supervised way, it is trained to solve a different task of image classification390
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Methods
NUS-WIDE NUS-WIDE CIFAR-10 CIFAR-10

500AP (%) mAP (%) 500AP (%) mAP (%)

CAE-E 0.30 0.29 0.26 0.24

MVC-E 0.37 0.39 0.29 0.32

MVC-MS (k = 5) 0.65 0.66 0.67 0.65

MVC-MS (k = 10) 0.66 0.66 0.64 0.65

MVC-MS (k = 15) 0.67 0.67 0.68 0.65

MVC-MS (k = 20) 0.67 0.66 0.67 0.65

MVC-MS-Eq.(7) (k = 15) 0.65 0.63 0.61 0.62

MVC-MS-sig (k = 5) 0.61 0.62 0.55 0.56

MVC-MS-sig (k = 10) 0.62 0.61 0.56 0.56

MVC-MS-sig (k = 15) 0.63 0.62 0.56 0.58

MVC-MS-sig (k = 20) 0.62 0.61 0.59 0.60

Caffe-MS (k = 15) 0.62 0.64 0.63 0.65

MVC-MS-fn (k = 15) 0.68 0.68 0.70 0.67

OMKS [19] 0.60 0.62 0.58 0.55

ITQ [48] 0.28 0.28 0.22 0.25

MAH [32] 0.35 0.32 0.38 0.40

DRSCH [49] 0.63 0.64 0.65 0.63

DSRH [50] 0.62 0.63 0.64 0.63

KSH-CNN [51] 0.62 0.62 0.52 0.47

NDH [52] 0.30 0.32 0.26 0.32

Table 2: Comparison of the retrieval performance for different methods and datasets. The best and sec-

ond best performance of the proposed method under different settings are highlighted in bold. The best

performance of the existing methods is underlined!!.

other than image retrieval, and offers lower retrieval performance than the proposed

MVC features as seen in Table 2. To demonstrate the effectiveness of the sparsity de-

sign over the hidden relation neurons, we evaluate the system by replacing the softplus

activation function in the relational learning layer with the standard sigmoid activation

function; this modified system is referred to as MVC-MS-sig. It can be seen from Ta-395

ble 2 that the softplus function (see MVC-MS performance) offers significantly better

results than the sigmoid (see MVC-MS-sig performance). By setting the mean value

of all the computed hidden similarities as the threshold to classify the active and in-
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Query Images Retrieved Images 

Birds

Airport

Castle

Temple

Figure 2: Example images retrieved by the proposed method are displayed in rows, given different NUS-

WIDE query images belonging to different concepts.

active relation neurons and compute the percentage of the active neurons, we observe

that softplus outputs 35%, 33%, 30% and 30% active relation neurons, given a total400

of k = 5, 10, 15, 20 neurons, respectively. In contrast, the sigmoid function outputs a

higher percentage of active neurons, e.g., values of 45% and 44% for varying k. This

shows that the use of softplus to enforce sparsity not only provides higher retrieval per-

formance, but also returns a more highlighted picture of the active relation types that

can potentially lead to improved model interpretability.405

To further boost the performance, we fine-tune the whole system using the sepa-

rately trained MVC and MS as its initialization. The corresponding performance is re-

ported in Table 2 and is referred to as MVC-MS-fn, and offers good improvement over

the separate training. Finally, we compare the performance of seven existing methods

in Table 2 with the proposed one. It is observed that both MVC-MS and MVC-MS-fn410

outperform all the competing methods satisfactorily for both datasets, in terms of not

only the precision computed using the top 500 retrieved images (500AP), but also the

mean averaged precision (mAP) computed using all the test images.

4.2. Example Demonstration

In addition to the quantitative comparison of the retrieval performance in Section415

4.1, we further illustrate and compare some examples of the system output and inter-

mediate results, to contrast the proposed method with some competing ones. First,
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128-D Wavelet Texture

Single-View

Retrieved Images by

CAE-MS

64-D Colour Histogram

Query Image

Concept: Temple

Multi-View

Retrieved Images by

MVC-MS

Figure 3: Examples of the retrieved images by CAE-MS with single-view features of 128-D WT and 64-D

CH and by the proposed method, using both views given a temple image as the query.

we illustrate four examples of the query image along with their retrieved images by

the proposed method in Figure 2, using the NUS-WIDE data. These examples show a

good level of diversity among the retrieved images, facilitated by the multi-view and420

multimodal similarity design.

To demonstrate the advantages of the proposed multi-view training, we replace

the proposed MVC features with the CAE features generated by taking two types of

single-view features (128-D WT and 64-D CH) as the input. Similarity computation

is performed using MS. Two examples are illustrated using the NUS-WIDE dataset,425

corresponding to two randomly selected query images belonging to the temple and

waterfall concepts (Figures 3 and 4). It can be seen that the images retrieved by a

single view are similar to the query image under a specific feature type, and this is

insufficient to measure the similarities between images. On the contrary, the proposed

method takes into account complementary information across views, resulting in more430
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Figure 4: Examples of the retrieved images by CAE-MS with single-view features of 128-D WT and 64-D

CH and by the proposed method, using both views given a waterfall image as the query.

mixed retrieval output.

To demonstrate the advantages of introducing multimodality to compute similarity,

we illustrate example images retrieved by MVF-MS using different ways of initializ-

ing the relation embeddings {et}ct=1 with the NUS-WIDE data. When the number of

neurons is reduced to c = 1, the images are retrieved based on a unimodal relation con-435

troled by e1. When initializing e1 with different example images selected randomly,

the retrieved images can be different. For example, given an ocean image as query, we

experiment with initializing e1 with a fish image, a beach image and a scene image

separately. We display the three sets of retrieved images in the left part of Figure 5. It

can be seen that the images retrieved using a single relation embedding are only sim-440

ilar to the query image in a specific way. When multiple relation neurons (c > 1) are

used, relevance between objects becomes more diverse benefiting from the multimodal

setup. We experiment with c = 3, allowing the inclusion of three relation types. Their
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Concept: Ocean

Query Image
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Beach

Scene

Relation Types
Single-Relation 

Retrieved Images

Multi-Relation 

Retrieved Images

Figure 5: Examples of the retrieved images by learning under the single relation type and multiple relation

types, given an ocean image as the query.

corresponding relation embeddings {et}3t=1 are initialized by the same three example

images (fish, beach, scene) as used to initialize the unimodal relation. The retrieved445

images are demonstrated in the right part of Figure 5, from which it can be seen that a

diverse range of images are retrieved.

In addition to the example of an ocean query as shown in Figure 5, we provide

another example for the unimodal and multimodal comparison, following exactly the

same way as above, but using a temple image as query. Three example images from the450

pillar, carving and Buddhism concepts are used to initialize the relation embeddings.

The retrieved images are displayed in Figure 6. It can be observed from both Figures 5

and 6 that a unimodal relation exhibits a narrow perspective for measuring the similar-

ities between images. On the contrary, the use of multiple relation neurons controlled

by different embeddings, enables to measure more diverse similarity types and leads to455

improved retrieval performance.
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Figure 6: Examples of the retrieved images by learning under the single relation type and multiple types,

given a temple image as the query.

5. Conclusion

In this work, we have proposed a novel similarity learning model with layered

architecture, possessing significantly improved learning performance and model inter-

pretability. By computing topic driven multimodal similarity scores from multi-view460

voted convolutional features, the model captures not only the individual object charac-

teristics under different view perceptions but also the multimodal nature of the high-

level semantics in object interactions.

Overall, the proposed model contains two learning components; an representation

learning one and a supervised similarity learning component. The former refines the465

input data by firstly de-noising and removing redundant information through the AE-

based pre-training, and then mining the complementary information across different

views, by training the convolutional features to preserve a voted composite neighbor

structure. The second component characterizes multiple relation modalities (relation

types) with a set of hidden neurons that are parameterized over a set of relation embed-470

ding and projection vectors. The model is capable of exploring both straightforward
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and hidden semantic relations through the initialization control of the relation embed-

dings. Model interpretability is improved by initializing the relation embeddings with

center vectors of the semantic clusters discovered, based on either human expertise

knowledge or data-driven approaches (such as clustering algorithms). Sparsity is im-475

posed over the similarities computed for the multiple modalities to further improve

model interpretability and enhance generalization.

Evaluated using the CIFAR-10 and NUS-WIDE datasets and compared with seven

state-of-the-art algorithms, the proposed algorithm offers the best retrieval performance

(around 4-5% improvement over state-of-the-art). Comparative analyses and illustra-480

tive examples demonstrate the advantages of the various novel elements in the proposed

method, such as the proposed MVC features over the CAE and Caffe features, multi-

view over single-view, multimodal over unimodal.

The proposed similarity learning method is fairly generic. In addition to image

retrieval, it can be used for other interesting applications, such as image captioning,485

text matching, etc., and has the potential to analyze similarities between not only image

objects, but also text and video objects. This is part of future work direction, which

also includes investigation of how to further improve the model design by, for instance,

taking into account attention mechanisms to capture salient object parts that contribute

to different modalities of the object relevance, and memory mechanisms to improve490

problem solving by selectively utilizing historical training information.
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