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Abstract—To achieve a low computational cost when perform- Recently, instead of batch manner, learning the metric in an
ing online metric learning for large-scale data, we presena one-  online manner, which refers to online metric learning (OML)
pass closed-form solution namely OPML in this paper. Typiclly, a5 attracted lots of interests, with the goal of learning a

the proposed OPML first adopts a one-pass triplet constructin discriminati i ith tally k led data f
strategy, which aims to use only a very small number of triples o~ @!SCriminative metric with partiafly known sampled data 1o

approximate the representation ability of whole original triplets ~ €fficiently dealing with large-scale learning problem. Gen
obtained by batch-manner methods. Then, OPML employs a erally, to satisfy the online processing speed for largdesc
closed-form solution to update the metric for new coming sam  |earning problem, OML methods are required to well tackle
ples, which leads to a low space (i.eQ(d)) and time (i.e.,O(d"))  he following two core issues: (1) how to fast construct the
complexity, where d is the feature dimensionality. In addition, . o - .

an extension of OPML (namely COPML) is further proposed triplet (or pair) in the original data, especially for t_hqga'

to enhance the robustness when in real case the first severaiScale data, and (2) how to fast update the metric with the new
samples come from the same class (i.e., cold start problemy coming samples in a real time manner.

the experiments, we have systematically evaluated our meths For fast triplet (or pair) construction (first issue), ekigt
(OPML and COPML) on three typical tasks, including UCl data o\ methods usually assume that pairwise or triplet con-

classification, face verification, and abnormal event detéion in traint be obtained in advange [1 b loving th
videos, which aims to fully evaluate the proposed methods on Straints can be obtained in advanCe [1], or by employing the

different sample number, different feature dimensionaliies and fandom sampling strategy to reduce the size of triplets [2].

different feature extraction ways (i.e., hand-crafted anddeeply- However, in real applications, it is usually infeasible txass

learned). The results show that OPML and COPML can obtain  the entire training set at a time, especially when the tngjisiet

the promising performance with a very low computational cos.  ig ya|ative large, constructing the constraints will betbiime-

Also, the effectiveness of COPML under the cold start settig is . .

experimentally verified. and space-consuming. To this end, we propose a nov_el one-

pass triplet construction strategy to rapidly construptets in

an online manner. In particular, the strategy selects tuesta

samples from both the same and different classes of cuyrentl

available samples respectively, to construct a tripletm@ared

. INTRODUCTION with Online Algorithm for Scalable Image Similarity (OASIS
[2], which utilizes a random sampling strategy and stores

N computer vision and machine learning, learning a meaji entire training data in memory with space complexity of
ingful distance/similarity metric on the original featysee- O(md) (d is the feature dimensionality, and is the data

sentation of samples, with the given distance constragiiisel  gjze hich is very large for large-scale data), our onespas
pairwise similar/dissimilar distance constraints orleipased strategy can vastly reduce the space complexited) (c is
relative distance constraints) at the same time, is USUalfys total number of classes, which is usually small). Albe, t

regarded as a crucial and challenging problem, which has begne complexity of our triplet construction strategy G&(1),
actively studied over the decades. According to the differe, hich is truly fast.

measure functions (e.g., Mahalanobis distance functiorban  £o¢ tast metric updating (second issue), several studies
linear similarity function), the current metric learningethods 2], [3] try to adopt a closed-form solution for accurate
can be roughly classified into two categories, Mahalanobis - ¢ompytation. Among them, OASIS adopts bilinear similarity
distance-based methodadbilinear similarity-based methods learning and has a closed-form solution, while it lacks adyoo
The first class, Mahalanobis distance-based methodssrefgferpretability as Mahalanobis distance metric learn(ing,

to learning a pairwise real-valued distance function, WH& jinear projection) and the learned similarity function &/m-
parameterized by a symmetric Positive Semi-Definite (PSQetric. In contrast, LogDet Exact Gradient Online (LEGO)
matrix. The second class, bilinear similarity-based meé#no (31 atempts to learn a Mahalanobis distance and has a closed
aims to learn a form of bilinear similarity function which@® ¢, solution. In addition, LEGO is not required to maintain
not need to impose the PSD constraint on learned metricSihe pSp constraint by using LogDet regularization, which is

, _ o _ - _ time-consuming in some Mahalanobis distance metric legrni
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TABLE | similarity-based and Mahalanobis distance-based. A compa

THE COMPARISON OF DIFFERENTOML METHODS. MA/BI DENOTES THE  json of the most related works is given in Table | for better
MAHALANOBIS DISTANCE-BASED/BILINEAR SIMILARITY -BASED

METHOD, RESPECTIVELY THE LAST 3 COLUMNS DENOTE THE Cla”f'c_a_t'on' o ] )
PROCESSING TIME(THE UNIT IS MS) PER SAMPLE WITH DIFFERENT In bilinear similarity-based methods, OASIS [2] is devel-
DIMENSIONS oped which is based on Passive-Aggressive algorithm [6],

aiming to learn a similarity metric for image similarity. &ge
Online Metric Learning (SOML)(7] follows a similar setting
POLA  MA Pair — approximate 8 6.2 120 | a5 OASIS, but learns a diagonal matrix instead of a full
Flfggé '\,(IA'AA Tgirr iﬁ’gggé’_’gﬁ:ﬁ 8:%8 8:%;’ 24';1 matrix _to han(_jle very high-dimengional cases. In order to
OASIS BI Triplet  closed-form 0.029 0.028 9.4 deal with multi-modal data, an online kernel based method,
SOML Bl Triplet ~ approximate 0.032 0.094 21 namely Online Multiple Kernel Similarity (OMKS), has been
OPML MA  Triplet  closed-form 0.026 0.023 1.7 proposed by Xia et al[]8]. All these above methods are based
COPML MA Pair& Triplet closed-form0.027 0.024 1.7 | on triplet constraints and they also assume that the camistra
can be gained beforehand or could be randomly sampled on
Mahalanobis distance-based OML method for triplet-baséite entire dataset. Among them, OASIS is more relevant to
constraints, named as OPML, which also has the propette proposed OPML as both of them are Passive-Aggressive
of closed-form solution and does not need projection stepased. The differences between OASIS and the proposed
to maintain PSD constraint. Specifically, the proposed OPMbPML mainly include that OASIS learns a bilinear similarity
directly learns the transformation matdx (M = L L is the metric (hard to interpret, and asymmetric) while OPML learn
symmetric PSD matrix usually learnt in Mahalanobis metrig Mahalanobis metric (good interpretability, and symnagtri
learning), such a setting does not require imposing the PSJASIS randomly samples triplet constraints from the entire
constraint. By carefully analysing the structure of thelgis training set (with space complexity &#(md)), while OPML
based loss and using a few fundamental properties (Lelma@nstructs triplet constraints in an online manner (withcsgp
Lemmd[3), a closed-form solution at each step is obtained wgomplexity of O(cd) and time complexity ofO(1)), which
the time complexity ofD(d?). The major differences betweenleads the solutions of objective functions largely differe
OPML and OASIS/LEGO can be found in Talfle I. In Mahalanobis distance-based methods, Pseudo-Metric On-
Also, in some tasks, e.g., abnormal event detection fine Learning Algorithm (POLA)[[L] is the first OML method
videos, the data is usually imbalanced: the first severap&sn which introduces the successive projection operation d@onle
may belong to the same class, then the triplet constructithie optimal metric. LEGQO[3] is an extended version of Infor-
strategy will be invalid until the samples of different d@s mation Theoretic Metric Learning-Online (ITML-Onling)[[5
appear. We call this case as cold start case. Furthermorepyobuilding the model with LogDet divergence regularizatio
deal with the cold start issue, an extension namely COPMLJ# et al. [4] presented a regularized OML method namely
developed in this paper. Specifically, COPML includes a pr&DML, with a provable regret bound. Also, Kunapuli and
stage by constructing pairwise constraints for two adjaceBhavlik proposed an unified approach based on composite
samples (from the same class) to update the metric. mirror descent named as MDML][9]. These methods are alll
To summarize, compared with previous OML method®ased on pairwise constraints, and they all assume that the
the advantages of our work can be concluded as: First, th&irwise constraints can be obtained in advance except RDML
proposed OPML and COPML are easy to implement. Secondhich exactly receives two adjacent samples as a pairwise
OPML and COPML are scalable to large datasets with a loyonstraints at each time. In fact, pairwise constraintetas
space (i.e.Q(d)) and time (i.e.0(d?)) complexity, wherel is methods can be easily converted to an online manner for pair
the feature dimensionality. Third, we have derived sevii@! construction by using the strategy of RDML. However, in
oretical explanations, including the difference boundiesn general, triplet constraints are more effective than pagw
learned metrics of ones-pass and batch triplet constructiconstraints for learning a metri¢_[10]1[2][11]C112]. In
strategies, the average loss bound between these twaygtsatecontrast, the proposed OPML is a triplet constraints based
and the regret bound, to guarantee the effectiveness of ®gihalanobis distance method. Besides, the proposed method
methods. has the properties of closed-form solution and does notiesmqu
The rest of this paper is organized as follows. In sectid?SD constraint, making it more efficient.
M we present the related works of OML methods. Section
[MMprovides the details of the proposed one-pass triplet-co I1l. THE PROPOSEDMETHOD

struction strategy, OPML and COPML algorithms. In section We now first present our strategy for one-pass triplet con-

Y/ we give the theoretical gl_Jarantee of our a_Igonthm_. Thgtruction, and then discuss the technical details of OPML an
experimental results, comparisons and analysis are givendopmL respectively

section[ Y, followed by conclusions in sectibn] VI.

[ Method Type Constraint  Solution] d=21 d=64 d=310

A. One-Pass Triplet Construction

II. RELATED WORK When dealing with large-scale data, how to fast obtain the

Typically, all the previous online metric learning methiriplets is a crucial step, since the number of triplets ligua
ods can be roughly classified into two categories: bilinedetermines the tradeoff between the performance effectase



. Class 1 where z; and z; belong to the same class, white; and
|:| < Xt, Xp, Xgq > x; belong to different classes. We can define the hinge loss
Class 2

function as below:
Class 3 }k G((wi, xj,@); L) = max (0,14 Dg(x;, @;) — Dr(mi, ).
T e —— B 4)

:. . : By applying the one-pass triplet construction, at thih
[ el e a time step, we can obtain the triplék;, x,,x,). Thus, the

X1 X2 Xt—3Xt—2 Xt—1 Xt online optimization formulation can be defined as follows by
Time > using Passive-Aggressive algorithim [6]:
Fig. 1. The illustration of one-pass triplet constructien., 2, .. ., 2; denote .
the samples at thé-th, 2-th andt-th time steps, respectively L= arg min I'(L)
and time efficiency. Inspired by the impressive scalabitify = argmin —HL Li |7+ = 5 T+ || (e — z,)|3 (3
one-pass strategies [13[, [14[. [15], we proposed a one-pas
triplet construction strategy, aiming to quickly obtain tile — || L(x — 24) 3]+

triplets in a single pass over all data. fig. 1 illustratesitiain - where ~ is the regularization parameter, which is set into

idea of the one-pass strategy of triplet construction. fdlsm  the range of(0, 1) as a sufficient condition to theoretically

in an online manner, the sample at théh (¢ = 1,2,...,T) guarantee the positive definite property (see Leriing|-2¢

step is denoted as; € R?. An array# = {h',h* ..., h°} means Frobenius norni,||> denotest,—norm, and|z], =
is maintained, where: is the total number of cIasses andnax(0, z), namely the hinge los§((x;, z,, z,); L).
h* e R? (k=1,2,...,c) means the latest sample of theh  The optimal solution can be obtained when the gradient
class at the-th time Step. Varnshesar—l’) =0, hence we have:
For triplet construction, our goal is to obtain a typical
triplet (z;, z,,z,) (zi,x, and z, € RY), which satisfies ar(L) L—-Li1+vLA; =0 [2]4 >0
that z; and , belong to the same class, while. and z, L (6)
belong to the different classes. Specifically, in one-pagket L—-L;,=0 [z]+ =0,

construction, at the-th time step, givenx; belonging to

the k-th class, we assigh* asx,, and ral?domly pickh”  paxd_ Ginceq, x, andx, are all nonzero vectors;, # z,
A / . 9

(k" = 1,2,...,c, k' # k) asx,. Thenh” € H will be andz, # x,, the rank of (z; — x,)(z; — x,)" and (z; —

replaced bymt, and thusH consists of the latest sample of (@ —x,)" is 1. Hence, the rank aft, is 1 or 2. When

q .

each class. Please note t?f{xl,f belongs to thec + 1)-th 2, — @, # p(@, — x,), We can get thatank(A,) = 2.

class, we will assigm; to h and also update the number

of classes as well a& accordmgly, Lemma 1. Let J\_/Il,Mg be two PSD matrices, and_z =
We can observe that the space complexity of this strate§f — Mo, the eigenvalue of2, denoted byA(£2), satisfies

is O(cd). Basically, when the value of is small, the space the following equation:

complexity can be regarded &%d). Also, the time complexity B < <

of triplet construction at each time stepGx1). Ama( M) < A(2) < Amar( M), ()

where A, = (x; —x,) (e — )" — (e — ) (e — )" €

whereAmax(M; ) and Amax(M>) are the maximum eigenvalues
of M, and M., respectively.

Proof. V& € R andx # 0, z'Qx = =" (M; — M,)=x.
@nceMl and M, are both PSD matrices;” M2 > 0 and
TMQ(L‘ > (. Thus,

B. OPML

We mainly focus on the Mahalanobis distance learning he
which aims to learn a symmetric PSD matid < S%*¢
(cone ofd x d real-valued symmetric PSD matrices) and can

be formally defined as follows: _z Mz - z' Qu - z' Mix ®)
z'x ~ x'x - x'x
) = T R
D (@i, ;) = \/(ml ;) M(x; — ;). @ According to Rayleigh quotient, we havwgn(2) < 5’3;—9: <

wherez; € R andz; € R? are thei-th andj-th samples, Amax(€2)- AssumewTTnmw achieve its maximummax(£2) when
respectivelyM can be mathematically decomposedlasL, * =e¢, i.e., < &£ — \nax(€2). By Eq. [B), we obtain

rXxd H -
whereL € R (r is the rank of M) denotes the transfor e e ) e Me

mation matrix. Then, we can rewrite E@J (1) as: Amax(2) = —= -
e e e e

< Amax(M1) )

Dr(zi, ;) = | L(z; — x;)||3. (2) Hence, \max(2) < Amax(M7). In the similar way, we can
prove that—Amax(M2) < Amin(€2). Thus,
Our goal is to learn a transformation matiixthat satisfies
the following large margin constraint: = Amax(M2) < Amin(£2) < A(€2) < Amax(£2) < Amax(M1).
(10)
Dy (xi,x;) > Dp(x;, ;) + 1,V x;, %) € R, 3) O



Lemma2.1f0< vy < % and samples are normalizefi+~ A, Complexity: The time complexity of calculating; and

is a positive definite matrix and also it is invertible, wheres in Eq. (18) is O(d?). In addition,a'a, a'd, b'a and

I € R¥¥4 is the identity matrix. b'b are scalars, for all of which time complexity 8(d).
Also, the time complexity of calculating;_,aa ', L;_bb",

_ _ _ T _ _

Proof. Let JVITI = (@ —zp)(@ — zp) ", My (: — L; 1ab" andL, 1ba’ is O(d?) respectively. Therefore, the

2q)(@ — @) and A, = M, — M. Itis easy to obtain ;o complexity of Eq.[(T) is stilD(d?). Now, we give the

that, Amax(M1) = ||z — @, |3 and Amax(M2) = || — 24 |3 ' ' '

According to Lemmd]l, we can obtain that\max(M>) < pseudo-code of OPML in Algorithii 1.

MA;) < Amax(M7). Thus, Algorithm 1 OPML
Input: L.
L= Ma) £ AT +940) £ 14 D). @1) GO (0l

For normalized samples, namely< ||z;| < 1, the ranges of 1. Ly« I.
Amax(M1) and Amax(M>) vary from [0,4]. Given0 <y < 4, 22 for t=1,2,...,7 do
AMI + ~vAy) > 1 — YAmax(M2) > 0. Obviously, I + vy A, 3 (x4, xp, xy) < ONe-pass triplet construction

is a symmetric matrix. Hencd, + vA; is a positive definite 4:  if G((@;, z,, x4); Li—1) < 0 then
matrix, and it is invertible. O 5 L, =L,; ;.
. . 6 else
Ach)rdlng to Lemmd]2, the optimdl, can be updated as . L, « solution by Eq. [T6)
below: .
. 8: endif
Ly (I+~A)~" [2]+>0 9: end for
Lt,1 [Z]Jr =0.

C. Extended OPML to Cold Start Case

In practice, there is a case that the first several available
samples belong to the same class, which is called as a cold
start case. When cold start happens, since the triplet tanno
Lemma 3. [IL6] Given G and G + B as two nonsingular be constructed, OPML will discard all these initial samples
matrices, and leB have rankr > 0. LetB = B, +---+ B,, To address this issue, we extend the proposed OPML to
where eachB), hasrank 1, also l1eC} ., = G+B;+---+B), an enhanced version, namely COPML, which includes an

It is known that the time complexity of the matrix inversion i
Eq. (12) isO(d?). However, the rank-2 property o, offers
us a nice way to accelerate the speed by applying Leldma

is nonsingular fork = 1,...,r. If Cy = G, then additional pre-stage before calling OPML. Specifically, in
. o o . the pre-stage, if the triplet cannot be constructed (ilee, t
(G+B) =C," —g9C, BC. ", (13) samples coming from different classes are not availakie), t

metric L can only be updated based on the samples from the

where, . S .
same class, which usually adopts the pairwise constramt fo
Cl=C'-g¢C 'BC;! - - irwi int | i
r+1 r grCy " BrC, updating. Typically, pairwise constraint is mathematicaket
o = 1 (14)  to (@¢, @111, y;,41), Wherey;,,; = 1if two adjacent samples
" 14tr(C'B,) x, € RYandx, 1 € R share the same class, afjd, , = —1

otherwise. Actually, here we only need to consider the case
Theorem 1. If A, is a rank-2 matrix and samples arewheny;, , =1, because we can update the metric by calling

normalized, then OPML if y;,,, = —1 (the new coming sample belongs to a
1 different class). After the pre-stage, OPML can be seqakiyti
(I+~A) ' =1- Tﬁ[mAt — (vA)?], (15) adopted for the following learning process.
K Formally, in the pre-stage when only the pairwise constrain
wheren = 1+ tr(vAy), B = 3[(tr(vAL))? — tr(vA.)?. (z¢,@¢41,;,41) Can be used, the online optimization formu-

Proof. According to Lemmal3, we s& = I, B = vA,, and lation is formulated as follows:

rewrite B = B; + By, where B; = y(z; — x,)(x; — x,)", Lt¢=argmin I'(L)

By = —(z; — z4)(z: — ) " It is obvious that the rank of E 1

B, and B, is 1. Utilizing the Lemm413, we can obtain the = argmin —|| L — L;_||f + ﬂythHL(wt — )13,
TheorentdL. O L2 2 (17)

By using Theorenil1, plugging Eq.{15) back into the firs{here o, ~ 0 is the regularization parameter. The optimal
term of Eq. [(12), we can obtain solution can be obtained when the gradient vanisHgs) =

Li=Li - Z_—WB(LtflaaT —L,_1bb") 0, hence
, ON(L) ¢, . g DA = 0 (18)
+ 15[(‘1TG)Lt—1aaT - (aTb)Lt_lab—r (16) oL tt+1 )
n

T T T - whereA; = (x¢y — x4 1)(xr — 2441) . It is obvious thatA,
— (b a)Li—1ba’ + (b b)L;—1bb |, is a rank-1 PSD matrix fow; # ;... Then we can get that
wherea = x; — z,, andb = x;, — x,. I +vyf 1A is @ symmetric positive definite matrix, which



is invertible, wheny;,,, = 1. Then, the optimalL; can be Theorem 3. Let (x;, x,, x,) be the triplet constructed by the
obtained as proposed one-pass triplet construction strategy attttie time
. step. Let{(zy, z,,, x4 )}, be the triplet set constructed by
Li=LiaI+mA) (19)  the batch triplet construction strategy at thieth time step.

By using the Sherman-Morrison formula, EGJ(19) can b@ssuming|z(|; < R (for all samples)||L||r < U, [L*||r <

equivalently rewritten as follows: U and the anglé between two samples coming from the same
T class is very small after the transformation bfor L* (i.e.,
L,=L, . YL (w — Teg1) (@ — i) . (20) cost =a,a >0anda is close to 1), whilg) is very large
L+ yi(me — 2e41) (T — @es1) otherwise (i.e.cosf = —¢£,& > 0 and¢ is close to 1). Then

where we can observe that the time complexity of Egl (20) e average loss bound between these two strategies adthe
O(d?) too. Algorithm2 shows the pseudo-code of COPML.time step is

Input: I :
OE':qut'(mLt’ Yol 1072 whereV; denotes the average loss generated by the one-pass

triplet construction strategy, and, refers to the average loss

1. Lo« I,c+ 0. .
0 - of the batch construction strategy.

2. fort=1,2,...,7 do

3 Maintain H = {RY,h2, - K¢} Theorem 4. Let (z1,Tp,, Tg, ), - - -, (TT, Tpy, Typ) DE A SE-
4. if yy=c=1then guence of triplets constructed by the proposed one-past str
5: (mt, e 41,97 441) < adjacent two samples egy. LetL,;|]_, be the solution output by OPML at theth

6: Lo—L. .— 71LH(wt—wm)(:ct—wmf_ time step, andL, be the optimal offline solution. Assuming
! t_ t—1 I4+y1 (e —2ig1) T (e —@ip1) f Il |

7. elseifl <y, <candc>2 then [zl < R (for all samples),|[L|lr < U, ||[L|r < U

8: L + call OPML(z¢, y¢,72) and the angle? between two samples coming from the same
o else class is small after the transformation df or L* (i.e.,

10: hetl g, cosf) = a,a > 0 and « is close to 1), whiled is large

11: cec+1 otherwise (i.e.cosf = —¢,£ > 0 and ¢ is close to 1). Then

12 end if the regret bound is

13: end for R(L.,T) < 2T(a + € + 1)R2U? (23)

IV. THEORETICAL GUARANTEE

The following theorems guarantee the effectiveness of our
methods. Theorerfil 2 shows that the difference of learned V. EXPERIMENTS
metric between one-pass triplet construction strategyoath ~ To verify the effectiveness of our methods, we evaluate
triplet construction strategy is bounded. Note that, foa& f OPML and COPML on three typical tasks, including (1)
comparison, the batch triplet construction strategy here WCl data classification, (2) face verification, and (3) atnair
considered in an online manner, that is to say, for each samglent detection in videos. Also, an additional experiment i
x; at thet-th time step, all past samples are stored to constru@gnducted to validate the robustness of COPML when the cold
a triplet with z, (i.e., each triplet contains thig;). Theorem start issue happens.
also tries to explain that the one-pass triplet constucti
strategy can approxm_1ate the batch triplet constructiar, bA. UCI Data Classification
from another perspective. Moreover, a regret bound has béen™ _
proved for the proposed OPML a|gorithm, which can be found We introduce twelve datasets from the UCI I’epOSItOI’y for

in TheorenT#. All details of the proofs for the theorems ar@valuation. Thé-NN classifier is employed, since it is widely-
provided in the appendix. used for classification with only one parameter. The detaile

) information of these datasets is presented in Tagfle II. All

Theorem 2. Let L, be the solution output by OPML baseqpese twelve datasets are normalized by Z-score. Also, for
on the one-pass triplet construction strategy at thiy ime  g5ch datasef0% samples are randomly picked for training
step. LetL; be the solution output by OPML with the batChypjje the rest is used for testing. We adopt the error ratbas t
triplet construction strategy at thieth time step. Assuming thate, a|yation criterion, and to reduce the influence comingnfro
|| < R (for all samples)||L.||r < U and|[Li||r < U, the he random partition, all the classification results are@yed
bound of the difference between these two matrices is over 100 individual runs.

, state-of-the-art methods, including batch metric leagraimd

Cn Cn Cn
|L—Li||r < UH S B+ S BBy+-+[[Bi
i=1 i=1,j=1,i<j i=1 " OML methods. Specifically, batch metric learning methods
R (21) include: (1) Euclidean distance metricEucli for short); (2)
where ||Bllp < 32 771—6’}# + 4\/5‘,71—”6’32 ( for all  pahalanobis distance metric Nlaha for short); (3)LMNN
B;,B;,--), v € (0,3), n € (1-2R%1+2R?%, and (Large Margin Nearest Neighbor) [10]; (4JML [5]. OML

B e (—R' ZRY. methods include: (1PASIS [2]; (2) RDML [4]; (3) POLA

To make an extensive comparison, we introduce several




TABLE I
ERROR RATES(MEAN=£STD. DEVIATION) OF A K-NN (K=5) CLASSIFIER ON THEUCI| DATASETS. p—VALUES OF STUDENT S T-TEST ARE CALCULATED
BETWEEN OTHER METHODS AND OUR METHODSe /o INDICATES OPML PERFORMS STATISTICALLY BETTERWORSE THAN THE RESPECTIVE METHOD
ACCORDING TO THEp—VALUES. THE STATISTICS OF WINTIE/LOSS IS ALSO INCLUDED THE VALUE IN THE BRACKET MEANS THE CORRESPONDING
TOTAL PROCESSING TIME IN SECONDO.OODENOTES THE VALUE IS VERY SMALL(< 0.005). ABBREVIATIONS: SAM, SAMPLE; DIM, DIMENSIONALITY;;

C, CLASSES
Data Sam Dim C Euclidean Mahalanobis LMNN
Isvt 126 310 2 0.234 £+ 0.056e 0.238 + 0.046e 0.196 £ 0.044 (46.08)
iris 150 4 3 0.050 4+ 0.023 0.075 £ 0.025e 0.037 £ 0.017 o ( 1.55)
wine 178 13 3 0.044 4+ 0.020 0.046 £ 0.023 0.030 £ 0.016 o ( 3.18)
glass 214 9 7 0.336 4+ 0.036 0.349 4 0.037 0.341 +£0.038 ( 4.52)
spect 267 22 2 0.327 +0.035 0.348 + 0.034e 0.336 +0.037 ( 2.48)
ionosphere 351 34 2 0.172 £ 0.019e 0.165 4+ 0.016 0.131 £0.020 0 ( 3.81)
balance 625 4 3 0.146 4+ 0.014e 0.133 £ 0.017e 0.124 £ 0.014 o ( 1.42)
breast 683 9 2 0.034 4+ 0.008 0.034 4+ 0.007 0.033 +0.008 ( 1.26)
pima 768 8 2 0.273 £ 0.018e 0.271 £ 0.018e 0.272 £0.017 e ( 1.12)
segment 2310 19 7 0.067 4+ 0.006e 0.101 + 0.008e 0.047 £ 0.006 o ( 5.59)
waveform 5000 21 3 0.187 4 0.0060 0.158 + 0.0060 0.182 £ 0.060 o ( 6.04)
optdigits 5620 64 10 0.026 4 0.003e 0.039 + 0.003e 0.014 4+ 0.002 o (31.21)
win/tie/loss 6/5/1 71411 1/417
ITML OASIS RDML POLA
0.175 £ 0.040 o (142.3) 0.205 £ 0.043 e (0.84) 0.230 £0.053e (0.17) | 0.157 £0.0360( 9.17)
0.034 £ 0.016 o (11.16) 0.274 £ 0.050 e (0.10) 0.077 £ 0.027 e (0.00) 0.030 £ 0.016 o ( 0.62)
0.035 £ 0.019 o (14.15) 0.019 + 0.014 o (0.08) 0.039 £0.019 (0.00) | 0.028+0.0180 ( 2.22)
0.358 £ 0.042 e (30.94) 0.485 £ 0.057 e (0.12) 0.349 +0.035 (0.00) 0.395 +0.042 ( 3.86)
0.337 +£0.041 ( 3.44) 0.364 £ 0.050 e (0.13) 0.343 £+ 0.032 e (0.01) 0.323 4 0.040 e (19.22)
0.139 £ 0.025 0 ( 3.65) 0.124 + 0.033 0 (0.12) 0.154+0.016 0 (0.02) | 0.147 +0.020 o (17.65)
0.104 £ 0.019 o (15.67) 0.126 4+ 0.009 (0.10) 0.118 £+ 0.012 0 (0.01) 0.156 £+ 0.047 e ( 7.31)
0.035 +0.008 ( 2.68) 0.043 £ 0.021 e (0.09) 0.033 +0.007 (0.01) 0.038 £ 0.010 e ( 5.13)
0.279 £ 0.022 ¢ ( 3.16) 0.346 + 0.053  (0.12) 0.269 £0.019 (0.01) | 0.275+0.021 e (12.40)
0.050 £ 0.008 o (38.50) 0.343 £+ 0.067 e (0.11) 0.082 £ 0.006 e (0.02) 0.057 £0.011 (22.89)
0.187 £ 0.008 o (18.57) 0.357 + 0.039 e (0.13) 0.186 + 0.010 0 (0.12) | 0.250 % 0.030 e (28.38)
0.028 + 0.006 o (122.4) 0.077 + 0.009 o (0.15) 0.028 + 0.003 e (0.13) | 0.023 +0.003 e (19.76)
3217 97172 57473 6/2/4
LEGO SOML OPML COPML
0.239 £0.050 e ( 2.33) 0.223£0.057 e ( 2.23) | 0.189 £0.048 (0.07) 0.189 £ 0.047 (0.07)
0.050 +0.021 ( 0.14) 0.287 4 0.080 e ( 0.69) 0.049 £+ 0.023 (0.00) 0.048 +0.023 (0.00)
0.031 £0.020 0 ( 0.23) 0.169 £0.093 e ( 0.92) | 0.042+0.020 (0.00) 0.041 £0.019 (0.00)
0.390 4 0.034 ¢ ( 0.31) 0.557 4+ 0.117 ¢ ( 1.16) 0.339 4 0.032 (0.00) 0.341 +0.033 (0.00)
0.31140.038 0 ( 0.61) 0.393 4 0.084 ¢ ( 1.45) 0.326 4 0.034 (0.01) 0.327 +0.035 (0.01)
0.154 £ 0.020 0 ( 1.09) 0.362+£0.116 e ( 2.18) | 0.161+0.019 (0.01) 0.163 £0.021 (0.01)
0.118 +0.011 0 ( 1.40) 0.378 £ 0.077 e ( 4.78) | 0.129+0.012 (0.01) 0.129 +0.014 (0.01)
0.035 £ 0.008 @ ( 1.64) 0.054 £ 0.040 @ ( 5.19) 0.032 £+ 0.008 (0.01) 0.032 +0.007 (0.01)
0.266 £0.019 ( 1.96) 0.353 £ 0.060 e ( 5.89) | 0.266+0.017 (0.01) 0.265 £+ 0.018 (0.02)
0.040 £ 0.006 o (14.50) 0.541 £ 0.092 e (19.26) 0.059 £ 0.006 (0.03) 0.059 £ 0.006 (0.03)
0.233 £ 0.007 o ( 4.60) 0.368 £ 0.035 e (49.30) 0.224 + 0.009 (0.08) 0.225 £ 0.010 (0.09)
0.022 £ 0.003 e ( 6.97) 0.239 £ 0.079 o (79.10) 0.019 + 0.003 (0.09) 0.019 £ 0.003 (0.10)
525 12/0/0

[1]; (4) LEGO [3]; (5) SOML-TG (SOML for short) [7]. The than Euclidean and Mahalanobis; (3) our methods are faster
implementation of LMNN, ITML and OASIS was provided bythan other OML methods except comparable with RDML,
the authors in their respective papers, while the rest nasthesince instead of constructing triplets, RDML only requites
were implemented by ourselves. The parameters of thgssrwise constraint by receiving a pair of samples in eadle ti
methods were selected by cross-validation, except LMNNTo illustrate the performance with different numbers of
and ITML using the default settings. Since the pairwise driplet constraints on the learning of metric, we vary thenau
triplet constraints of POLA, LEGO and SOML need to béers of triplet constraints as (100, 1000, 2000, 5000, 10000
constructed in advance, we randomly sample 10000 contstraibs000, 20000) for OASIS and SOML (see Higl. 2). Since the
for these three methods (same setting as LEGO [3]). The ermumber of triplet constraint in OPML is a constant by using
rates of the proposed methods and competitive methods ane-pass triplet construction, we can find that, OPML can
presented in Table]ll. achieve better performance by using fewer triplet constsai

Moreover, thep-values of student's t-test were calculated t§&XCept on UCI data 1, 3, 6).
check statistical significance. Also, the statistics offtiéfloss o )
is reported according to the obtainpevalues (see Tablglll). B- Face Verification: PubFig
It is observed that (1) the performance of our methods isFor face verification, we first evaluate our methods on the
comparable to LEGO, and slightly better than other OMPublic Figures Face Database (PubFig) [17]. PubFig dataset
methods; (2) the performance of our methods is close to baminsists of two subsets: Development Set (7650 images of
metric learning methods, e.g., LMNN and ITML, and betteB0O individuals) and Evaluation Set (28954 images of 140
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Fig. 2. Error rates of different methods with different nuwerd of triplets on twelve UCI datasets (the number of triplet OPML is a constant)

individuals). Following [17], we use the development set teespective methods. Then, all the distances (similayites
develop all these methods, including parameters tuningewhnormalized into the rangé0, 1]. Receiver Operating Char-
the evaluation set is used for performance evaluation. Theteristic (ROC) curves are provided in Fig. 3, with the
goal of face verification in PubFig is to determine whetharorresponding AUC (Area under ROC) values calculated. It
a pair of face images belong to the same person. Please raate be observed that OPML and COPML can obtain superior
that, images coming from the same person will be regardesbults compared with the state-of-the-art online/batetrim

as belonging to the same class. For all subsets, 10-fold crtearning methods. Moreover, although the deep featuradyre
validation is adopted to conduct the experiments, and ezldh fhas a strong representation ability, our proposed methanls ¢
is disjoint by identity (i.e., one person will not appear ot still slightly improve the performance.

the training and testing set). For testing each fold (witkt re

9 folds used for training), we randomly sample 10000 paiB. Face Verification: LFW

(5000 intra- and 5000 extra-personal pairs) for testingisTh  £qr tace verification, we also evaluate our methods on the

the total number of pairs i$0°. .In _each trgining phase, We| aheled Faces in the Wild Database (LFWY[19]. LFW is a
also randomly select 10000 pairwise or triplet constraats \igely used face verification benchmark with unconstrained
LEGO, POLA and SOML as the same settings on the UGhqes which contains 13233 images of 5749 individuals.
datasets. This dataset has two views: View 1 is used for development
For sufficient and fair Comparison, we use two forms of feq;urposes (Containing a training set and a test Set); Andy Vie
tures (i.e., attribute features and deep features) to ateathe 2 js taken as evaluation benchmark for comparison (i.e.-a 10
performance of all algorithms, respectively. Attributetieres fold cross-validation set). There are two forms of configjora
(73-dimension) provided by Kumar et &l. [17] are "high-IBve jn poth views, that is, image restricted configuration andgen
features describing nameable attributes such as gender, ranrestricted configuration. In the first formulation, thaiting
age, hair etc., of a face image. For deep features, we usgf@rmation is restricted to the provided image pairs and
VGG-Face model[18] to extract a 4096-dimensional featugg(ditional information such as actual name information can
for each face image which has been aligned and cropped. kgt be used. In other words, we can only use the pairwise
easier handling, the 4096-dimensional feature is reduoedigages for training without any label information can bedise
a 54-dimensional feature by Principal Component Analysig all. While, in the second formulation, the actual name
(PCA) algorithm. information (i.e., label information) can be used and asyman
For each testing pair, we first calculate the distance (simpairs or triplets can be formulated as one desires. No matter
ilarity) between them by the learned metric obtained fromvhich configuration we choose, the test procedure is the same
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Fig. 3. ROC Curves of development set (left column) and etadn set (right
column) on the PubFig dataset. first row: attribute featusesond row: deep
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Fig. 4. ROC Curves of our methods and contrastive methodherLFW
dataset. left: sift features; right: attribute featurebl\value of each method

is presented in bracket

methods. Especially, when using SIFT features, our methods
can significantly improve the AUC value over the Euclidean
distance by13% (5.8% with attribute features), showing the
validity of the proposed methods. It is worth noting that
some metric learning methods cannot even improve over the
Euclidean distance, which has happened on the PubFig tlatase
The reason why LMNN cannot achieve the best performance
may be over-fitting for lacking of regularization.

D. Abnormal Event Detection in Videos

The performance of the proposed methods is also evaluated
on UMN dataset for abnormal event detection. UMN dataset
contains 3 different scenes with 7739 frames in total: Stene
(1453 frames), Scene2 (4144 frames) and Scene3 (2142
frames). In UMN dataset, people walking around is considlere
as normal, while people running away is regarded as abnormal
The resolution of the video i820 x 240. We divide each
frame into5 x 4 non-overlapping4 x 60 patches. For each
patch, the MHOF (Multi-scale Histogram of Optical Flow)
feature [22] was extracted from every two successive frames
The MHOF is a 16-dimensional feature, which can capture
both motion direction and motion energy. For integrating th
multi-patches features, we combine features from all petch
in each frame, and form a 320-dimensional feature. For each
scene, we perform 2-fold cross validation for evaluatione T
distance metric is learnt from the training data in online/wa
then we use the SVM classifier to classify the testing frames
after feature transformation by using the learned mdkic

Table[ reports the AUC of all the methods. We can notice
that our methods is very effective and competitive, when-com
pared with other methods. Fi{g. 5 exhibits the sample frarfies o
normal and abnormal events in the 3 scenes respectively (top
row), and shows the abnormal event detection results of our
method (COPML) in the indication bars (green/red indicates

(i.e., using pairwise images for testing). In order to siatel hormal/abnormal event). It's worth mentioning that in this
the real online environment and because our methods ghgperiment, COPML performs better than OPML, because the
some methods (eg., OASIS| [2], SOMLI [7]) are triplet-baseydeo data has the cold start issue especially at the begjnni

methods, we adopt the image unrestricted configuration to
construct the experiment. We use View 1 for parameter tuning
and then evaluate the performance of all the algorithms
each fold (300 intra- and 300 extra-personal pairs) in View 2
Other settings are similar with the ones on the PubFig datase
In this experiment, we adopt two types of features (i.e.TSIF
features and attribute features) to represent each facgeima
respectively. The SIFT features are provided by Guillauatin
al. [20] by extracting SIFT descriptors [21] at 9 fixed facial
landmarks detected on a face, over three scales. Then we per-
form PCA algorithm to reduce the original 3456-dimensional
feature to a 100-dimensional feature. Like PubFig, thébaiie
features of LFW are 73-dimensional ’high-level' features
describing the nameable attributes of a face imagé [17]. To
evaluate our methods and the contrastive methods, we report
the ROC curves and AUC values of the corresponding methods
(see Fig[h). The results of ITML]5] aren't displayed for its

TABLE Il

&JIJANTlTATNE COMPARISON OF OUR METHODS WITH OTHER ABNORMAL
EVENT DETECTION METHODS ON3 SCENES OFUMN DATASET

INDIVIDUALLY WITH AUC CRITERION

Method

AUC

Optical flow [23]
Social Force[[23]
Chaotic Invariants[[24]
LSA [25]

STCOG [14]
Sparse[[22]

MP-MIDL [26]
SVDD-based[[2]7]

0.84 (average)
0.96 (average)
0.99 (average)
0.985(average)
0.936/0.776,/0.966
0.995/0.975,/0.964
0.99 /0.98 /0.99
0.993/0.969/0.988

0.993/0.983/0.973
0.995/0.989/0.977

difficulty of convergence in the training data. We can see thg: COPML for Cold Start

the proposed COPML method can achieve the-state-of-the-arWe can observe that in the case free of the cold start issue
performance compared with the contrastive metric learnirfg.g., UCI data classification, face verification), OPML and




Scenel A Scene2 A Scene3 A

Fig. 5. Global abnormal event detection results of our mt@B@®PML and the ground truth on the UMN dataset

COPML can obtain comparable results, while in the case withat our methods can obtain superior performance on three
cold start issue (e.g., abnormal event detection in videog)pical tasks, compared with the state-of-the-art methods
COPML is better than OPML. To further test the performance

of COPML on an extreme case with cold start issue, we

construct several datasets with specified structure tdyvire

different performance of COPML and OPML. Three datasets APPENDIX A

were picked from the UCI repository: (1) Image Segmentation PROOF OETHEOREM 2

(seg for short), with 7 classes, 19 features and 2310 samples

(2) EEG Eye State (eeg for short), with 2 classes, 15 features

and 14980 samples; (3) Sensorless (sen for short), with Rfioof. Recall that the metric update formula of OPML is
classes, 49 features and 58509 samples.

For each dataset, the samples from different classes are
divided into disjoint 10/5/2 parts, then different parts of
different classes are crosswise put together to constroeta
dataset. Afterwards, the new dataset is divided into 2 folds
The first fold is used for training and the second fold is used
for testing. As the previous setting for classification, \aket According to the Theorem 1, we can obtain that,

a k-NN (k=5) classifier to get the final test results, shown in

Table[IM. The results prove that COPML performs better than 1

OPML when the data has the cold start issue. Since whencold (I +~vA;)™' =T - ——[nvA; — (YA:)?], (25)
start occurs, COPML will incorporate both the pair and &tpl n+tp

information, instead of only using triplet in OPML.

Lt_l(I +’}/At)_1 [Z]+ >0
L, , [2]+ = 0.

wheren = 1+tr(vAy), 8 = 3[(tr(vAy))* —tr(vA:)?]. Here,

TABLE IV we only consider the case tHaf, > 0. Then ati-th time step,
ERROR RATES ON THREECI DATASETS the learned metrid., of one-pass strategy can be expressed
i as below,
| Data Euclidean OPML COPML |
seg-10  0.069£0.006 0.062£0.006  0.057+0.007
seg-5  0.067+0.007  0.062+0.007  0.05440.007 L= Lo(I +vA) Y (I +7As) " (I +~A)" . (26)

seg-2  0.067+0.006 0.064+0.007 0.05940.007
eeg-10 0.185+0.004 0.181+0.004 0.16110.023
eeg-5 0.213+0.004 0.205+0.005 0.18540.018

eeg-2  0.18540.004 0.17840.007 0.178+0.007 Note that the batch triplet construction strategy here is-co
Se”'éo gggig-ggg 8'83%8'833 8-8;;;8-8}411 sidered in an online manner, that is to say, for each sample
sen- . . . . . . .

sen-2  0.190+0.006 0.067+0.020 0.063+0.015 at the¢-th time step, all past samples are stored to construct

a triplet withx, (i.e., each triplet contains this;). Similar to
L,, the learned metrid.; of the batch strategy (atth time
step, C;|!_, triplets can be constructed) can be denoted as
follows,

We propose a one-pass closed-form solution for OML,
namely OPML. It employs the one-pass triplet construction o Cs e,
for fast triplet generation, together with a closed-forrtuson -1 -1, -1
to update the metric with the new coming sample at each tlr#é =L E(IﬂAli) H(IHAQI') E(IﬂAti)
step. Also, for cold start issue, COPML, an extended version B B B (27)
of OPML is developed. The major advantages of our metholst (x1,x,,, %4, ), ..., (X, ©p,, z,) be the sequence of
are: OPML and COPML are easy to implement. Also, OPMiriplets constructed by the proposed one-pass stratedghvig
and COPML are very scalable with low space (i®(d)) and contained in the sequence of triplets constructed by thehbat
time (i.e., O(d?)) complexity. In the experiments, we showstrategy. If we let theL* learn on the sequence of triplets

VI. CONCLUSION
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constructed by the one-pass strategy first, the [E4. (27) eanThen, we can also calculate the range)@nd 3 respectively.
reorganized as below,
n=1+tr(yA)
Ci+-+Ci—t — 1+'7t7°(At)
Li=Li(I+7A) " (I+7A) - [ d+r4a)™
i=1
(L; learn on the sequence df, first)

=14 [(e = @) (@0~ @) = (20— @) (210 — @)

:1+7[||wp|\§—|\walz 2|z} |2 - [l2zp||2 cos 61

Ci+-+Cr—t
=L;- H (I+~4;)"" +2|2f |2 - ||z4]|2 cos fa | .
= (32)
(Lo and L are both initialized as identity matrices)
C Ct_t . i
L 1+1_+[ (4B Since the range of is (0, 1), and0 < ||z|» < R, we can
¢ 11 calculate to get the range 6f(yA,) (i.e., (- 2R?, 3 R?)), and
the range ofy which is (1—2R? 1+ 2 R?). Recall that,
(by Theorem 1, wheres_— [@A ) 771’yA} )
1
—L, [I+ ZNB- + XN: BB+ & ﬁB} p=5 [(tr(vA1))? — tr(vA:)?]
i=1 i=1,j=1,i<j ’ i=1 ( by the rule oftr(ca)=c-tr(Aa))
hereCy = Cy + -+ Cy — 1). 1
(whereCy = Crt G2 28) =5 [(tr(yA0))* = tr(A3)]

( by the rule oftr(ak)=x, A%,
Then we can calculate that where \; is the eigenvalue ofA) (33)

Lt[ZBJ“ Z BB+ +HB] ;{(trvAt _722)‘2}

== “<J ( by the rule Of||At||F_ ST,

<Ll ZBﬁ =5 [tr40) —714%]

ILe—Li |l =]

i=1 1,i<
= J (29)
For 0 < ||A;||% < 32R* and —2R? < tr(vA;) < 2R?, the
i 4 25 p4
Recall thatA; = My — My = (x; — x,) (2 — mp)T — (¢ — range offf is (—R*, 55R%). =
z,)(x; — z,)T € R4, which is a symmetry square matrix.
According to the definition of Frobenius norm,
APPENDIXB

PROOF OFTHEOREM 3

d d
|AL F = Z Z la;;|? = Zo—?, (30) Proof. By applying the one-pass triplet construction strategy,
i=1 i= i= at the¢-th time step, we can obtain one triplét,, x,, ).

While in the batch construction (all past samples will be
whereo; are the singular values of,, which are equal to the stored), we can get a triplet sz, z,,, x4 )}|{,. The
eigenvalues ofA;. According to Lemma 1-\max(M>) < average loss of these two strategies can be expressed as
A(A;) < Amax(M7), where \(A;) denotes the eigenvalue offollows:

A, and A\max(M) indicates the maximum eigenvalue .

Assuming that||x;||; < R, then A\max(M;) belongs to the {1 + | L(zs — xp)||5 — || L(z: — a:q)l\%}
range of[0,4R?]. And since the rank ofd; is 2 (which has ) *
been proved in sectidn 1IAB), there are at most two nonzero g, _ 1 [ “ M2 L* (s — .. 2}
eigenvalues. Thus we can easily obtain thaf| » < 4v/2R2. v T C g I (@e =2y )l = [ L7 (@e =gl

Hence, (34)
where [z];y = max(0,z), namely the hinge loss
A2 G((xy, @y, xq); L). For Uy, we only consider the case that
|BllF = || Aj +ﬁ( Ad)llr z > 0, which exactly affects the updating of the metiic
2 However, in¥,, some losses may be negative. Thus,
< ll=—7Ailr+ l——=(Ad)llF
747 747 @Y =1 L a1 )

2
i m
<[l e A + [ ) A e . )
§:[1+|\ (e = @)}~ 11" (@0 — 24)[13].

<32‘—‘R4+4\/_‘ ‘RQ = (35)



Then we calculate the difference between the losses of these

two strategies. That is,

1 C
\1/1—\1:2<—ZA
=1

C
<3 Z 1L (e = 23 = 11" (@1 — @33

+ 1 (@e = ) = 1D — 20)113]-

(36)

whereG, (L) =
we also only consider the case that the loss is positive, whic
exactly affects the updating of the metrle. However, one
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APPENDIXC
PROOF OFTHEOREM4

Proof. The regret can be defined (according to the definition
of Chapter 3 in[[28]) as below:

R(L,,T) (44)

th L)

[+ | L@y — )13 = || Lz —24) 3]+

|
-
&

. Here,

For simplicity, we JUSt analysis tha. By applying the rule of triplet which generates a positive loss wifh may incur a
dot product (i.e.z”y = ||z - ||y| - cos #), A can be expanded negative loss withL... Thus, after expanding,

as follows,
A = [ L3 — 1L7 @y, |13 + | L g, [I3 — | Lag 13
— 2| Lay||-|| Ly -cos 61 +2|| L x| - || L @y, || - cos 2
— 2| L7z - | L g, || - cosbs + 2||Lay|| - || Lyl - cosOa.
(37)
In order to simplify the expression, we set
@ = 2| La| - [| Lap|| - cos 0
=2||L*x|| - ||L*x,,]|| - cos b
@ =2 L] - | Ly, | - costy a8)

@ = —2|[L7a|| - [ L7 @q,]| - cos O3
@ = 2||Lay|| - || Lyl - cosb4.

Assuming that the anglé between two samples coming from [2]
the same class is very small after the transformatioi afr
L* (i.e.,cosf = a,a > 0 and « is close to 1), whiled is
very large otherwise (i.ecosf = —¢&,& > 0 and¢ is close to
1). Thus,

(1]

[3]
0<cost <« [41
0 <cosby <a

—&<cosf3 <0
—& <cosfy <0,
where0 < a <1, 0 < ¢ <1 and both of them are close to
1. Then, we can obtain that,
~20||Lay|| - | Layl| < D <0
0<@<20|La|-||L,

(39) 18]
(6]

(7]

<@ <2a|Lml L, O P
~2¢| Lai| - | Lyl < @ < 0. o
Here, we only consider the upper boundof
A < ||Lapl = |1 L @, |15 + |1 L@, |15 — || L2413 (10]
+ 20| L7 @] - [ L @y, || + 2] L7 ]| - | 1"y, | (a1)
<N\ Laplf3 + | L g, |I2 + 20| L @ - |1 " @y, | (11]

+ 2L || - [|[ L7, |
According to the property of compatible norms, that is,
[Az|ly < [|Al|F - [l2]]2- (42)

For assuming thafjz|| < R (for all samples)||L||r < U
and|| L*||r < U, we can obtain that,

[12]

(23]

[14]
A <2(a+ &+ 1)R*U? 43)
Uy — Uy < 2(a+ &+ 1)R*UZ. [15]
Thus, this theorem has be proved. O

RL.T) <Y (1Ze(@: = 2,3 = 1 Le(@: — )1

t=1

— (@ = @) I3 + e (@0 — 20)113).

(45)

In the similar way of proving the Theorel 3, we can easily
prove this theorem.

O
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