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Abstract—To achieve a low computational cost when perform-
ing online metric learning for large-scale data, we presenta one-
pass closed-form solution namely OPML in this paper. Typically,
the proposed OPML first adopts a one-pass triplet construction
strategy, which aims to use only a very small number of triplets to
approximate the representation ability of whole original triplets
obtained by batch-manner methods. Then, OPML employs a
closed-form solution to update the metric for new coming sam-
ples, which leads to a low space (i.e.,O(d)) and time (i.e.,O(d2))
complexity, where d is the feature dimensionality. In addition,
an extension of OPML (namely COPML) is further proposed
to enhance the robustness when in real case the first several
samples come from the same class (i.e., cold start problem).In
the experiments, we have systematically evaluated our methods
(OPML and COPML) on three typical tasks, including UCI data
classification, face verification, and abnormal event detection in
videos, which aims to fully evaluate the proposed methods on
different sample number, different feature dimensionalities and
different feature extraction ways (i.e., hand-crafted anddeeply-
learned). The results show that OPML and COPML can obtain
the promising performance with a very low computational cost.
Also, the effectiveness of COPML under the cold start setting is
experimentally verified.

Index Terms—One-pass, Online metric learning, Triplet con-
struction, Face verification, Abnormal event detection.

I. I NTRODUCTION

I N computer vision and machine learning, learning a mean-
ingful distance/similarity metric on the original featurepre-

sentation of samples, with the given distance constraints (either
pairwise similar/dissimilar distance constraints or triplet based
relative distance constraints) at the same time, is usually
regarded as a crucial and challenging problem, which has been
actively studied over the decades. According to the different
measure functions (e.g., Mahalanobis distance function and bi-
linear similarity function), the current metric learning methods
can be roughly classified into two categories, i.e.,Mahalanobis
distance-based methodsandbilinear similarity-based methods.
The first class, Mahalanobis distance-based methods, refers
to learning a pairwise real-valued distance function, which is
parameterized by a symmetric Positive Semi-Definite (PSD)
matrix. The second class, bilinear similarity-based methods,
aims to learn a form of bilinear similarity function which does
not need to impose the PSD constraint on learned metrics.
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(Yang Gao), leiw@uow.edu.au (Lei Wang), lupingz@uow.edu.au (Luping
Zhou), huojing1989@gmail.com (Jing Huo), syh@nju.edu.cn(Yinghuan Shi).

Recently, instead of batch manner, learning the metric in an
online manner, which refers to online metric learning (OML),
has attracted lots of interests, with the goal of learning a
discriminative metric with partially known sampled data for
efficiently dealing with large-scale learning problem. Gen-
erally, to satisfy the online processing speed for large-scale
learning problem, OML methods are required to well tackle
the following two core issues: (1) how to fast construct the
triplet (or pair) in the original data, especially for the large-
scale data, and (2) how to fast update the metric with the new
coming samples in a real time manner.

For fast triplet (or pair) construction (first issue), existing
OML methods usually assume that pairwise or triplet con-
straints can be obtained in advance [1], or by employing the
random sampling strategy to reduce the size of triplets [2].
However, in real applications, it is usually infeasible to access
the entire training set at a time, especially when the training set
is relative large, constructing the constraints will be both time-
and space-consuming. To this end, we propose a novel one-
pass triplet construction strategy to rapidly construct triplets in
an online manner. In particular, the strategy selects two latest
samples from both the same and different classes of currently
available samples respectively, to construct a triplet. Compared
with Online Algorithm for Scalable Image Similarity (OASIS)
[2], which utilizes a random sampling strategy and stores
the entire training data in memory with space complexity of
O(md) (d is the feature dimensionality, andm is the data
size, which is very large for large-scale data), our one-pass
strategy can vastly reduce the space complexity toO(cd) (c is
the total number of classes, which is usually small). Also, the
time complexity of our triplet construction strategy isO(1),
which is truly fast.

For fast metric updating (second issue), several studies
[2], [3] try to adopt a closed-form solution for accurate
computation. Among them, OASIS adopts bilinear similarity
learning and has a closed-form solution, while it lacks a good
interpretability as Mahalanobis distance metric learning(i.e.,
linear projection) and the learned similarity function is asym-
metric. In contrast, LogDet Exact Gradient Online (LEGO)
[3] attempts to learn a Mahalanobis distance and has a closed-
form solution. In addition, LEGO is not required to maintain
the PSD constraint by using LogDet regularization, which is
time-consuming in some Mahalanobis distance metric learning
methods [1], [4], [5]. However, LEGO is designed for pairwise
constraints. Compared with LEGO, we developed a different
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TABLE I
THE COMPARISON OF DIFFERENTOML METHODS. MA/BI DENOTES THE

MAHALANOBIS DISTANCE-BASED/BILINEAR SIMILARITY -BASED

METHOD, RESPECTIVELY. THE LAST 3 COLUMNS DENOTE THE

PROCESSING TIME(THE UNIT IS MS) PER SAMPLE WITH DIFFERENT

DIMENSIONS

Method Type Constraint Solution d=21 d=64 d=310

POLA MA Pair approximate 8 6.2 120
RDML MA Pair approximate 0.040 0.043 2.4
LEGO MA Pair closed-form 0.159 0.472 47
OASIS BI Triplet closed-form 0.029 0.028 9.4
SOML BI Triplet approximate 0.032 0.094 21
OPML MA Triplet closed-form 0.026 0.023 1.7

COPML MA Pair&Triplet closed-form 0.027 0.024 1.7

Mahalanobis distance-based OML method for triplet-based
constraints, named as OPML, which also has the property
of closed-form solution and does not need projection steps
to maintain PSD constraint. Specifically, the proposed OPML
directly learns the transformation matrixL (M = LTL is the
symmetric PSD matrix usually learnt in Mahalanobis metric
learning), such a setting does not require imposing the PSD
constraint. By carefully analysing the structure of the triplets
based loss and using a few fundamental properties (Lemma 2,
Lemma 3), a closed-form solution at each step is obtained with
the time complexity ofO(d2). The major differences between
OPML and OASIS/LEGO can be found in Table I.

Also, in some tasks, e.g., abnormal event detection in
videos, the data is usually imbalanced: the first several samples
may belong to the same class, then the triplet construction
strategy will be invalid until the samples of different classes
appear. We call this case as cold start case. Furthermore, to
deal with the cold start issue, an extension namely COPML is
developed in this paper. Specifically, COPML includes a pre-
stage by constructing pairwise constraints for two adjacent
samples (from the same class) to update the metric.

To summarize, compared with previous OML methods,
the advantages of our work can be concluded as: First, the
proposed OPML and COPML are easy to implement. Second,
OPML and COPML are scalable to large datasets with a low
space (i.e.,O(d)) and time (i.e.,O(d2)) complexity, whered is
the feature dimensionality. Third, we have derived severalthe-
oretical explanations, including the difference bound between
learned metrics of ones-pass and batch triplet construction
strategies, the average loss bound between these two strategies
and the regret bound, to guarantee the effectiveness of our
methods.

The rest of this paper is organized as follows. In section
II, we present the related works of OML methods. Section
III provides the details of the proposed one-pass triplet con-
struction strategy, OPML and COPML algorithms. In section
IV, we give the theoretical guarantee of our algorithm. The
experimental results, comparisons and analysis are given in
section V, followed by conclusions in section VI.

II. RELATED WORK

Typically, all the previous online metric learning meth-
ods can be roughly classified into two categories: bilinear

similarity-based and Mahalanobis distance-based. A compar-
ison of the most related works is given in Table I for better
clarification.

In bilinear similarity-based methods, OASIS [2] is devel-
oped which is based on Passive-Aggressive algorithm [6],
aiming to learn a similarity metric for image similarity. Sparse
Online Metric Learning (SOML) [7] follows a similar setting
as OASIS, but learns a diagonal matrix instead of a full
matrix to handle very high-dimensional cases. In order to
deal with multi-modal data, an online kernel based method,
namely Online Multiple Kernel Similarity (OMKS), has been
proposed by Xia et al. [8]. All these above methods are based
on triplet constraints and they also assume that the constraints
can be gained beforehand or could be randomly sampled on
the entire dataset. Among them, OASIS is more relevant to
the proposed OPML as both of them are Passive-Aggressive
based. The differences between OASIS and the proposed
OPML mainly include that OASIS learns a bilinear similarity
metric (hard to interpret, and asymmetric) while OPML learns
a Mahalanobis metric (good interpretability, and symmetric),
OASIS randomly samples triplet constraints from the entire
training set (with space complexity ofO(md)), while OPML
constructs triplet constraints in an online manner (with space
complexity of O(cd) and time complexity ofO(1)), which
leads the solutions of objective functions largely different.

In Mahalanobis distance-based methods, Pseudo-Metric On-
line Learning Algorithm (POLA) [1] is the first OML method
which introduces the successive projection operation to learn
the optimal metric. LEGO [3] is an extended version of Infor-
mation Theoretic Metric Learning-Online (ITML-Online) [5],
by building the model with LogDet divergence regularization.
Jin et al. [4] presented a regularized OML method namely
RDML, with a provable regret bound. Also, Kunapuli and
Shavlik proposed an unified approach based on composite
mirror descent named as MDML [9]. These methods are all
based on pairwise constraints, and they all assume that the
pairwise constraints can be obtained in advance except RDML,
which exactly receives two adjacent samples as a pairwise
constraints at each time. In fact, pairwise constraints based
methods can be easily converted to an online manner for pair
construction by using the strategy of RDML. However, in
general, triplet constraints are more effective than pairwise
constraints for learning a metric [10], [2], [11], [12]. In
contrast, the proposed OPML is a triplet constraints based
Mahalanobis distance method. Besides, the proposed method
has the properties of closed-form solution and does not enquire
PSD constraint, making it more efficient.

III. T HE PROPOSEDMETHOD

We now first present our strategy for one-pass triplet con-
struction, and then discuss the technical details of OPML and
COPML, respectively.

A. One-Pass Triplet Construction

When dealing with large-scale data, how to fast obtain the
triplets is a crucial step, since the number of triplets usually
determines the tradeoff between the performance effectiveness
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Fig. 1. The illustration of one-pass triplet construction.x1,x2, . . . ,xt denote
the samples at the1-th, 2-th andt-th time steps, respectively

and time efficiency. Inspired by the impressive scalabilityof
one-pass strategies [13], [14], [15], we proposed a one-pass
triplet construction strategy, aiming to quickly obtain all the
triplets in a single pass over all data. Fig. 1 illustrates the main
idea of the one-pass strategy of triplet construction. Formally,
in an online manner, the sample at thet-th (t = 1, 2, . . . , T )
step is denoted asxt ∈ R

d. An arrayH = {h1, h2, . . . , hc}
is maintained, wherec is the total number of classes, and
hk ∈ R

d (k = 1, 2, . . . , c) means the latest sample of thek-th
class at thet-th time step.

For triplet construction, our goal is to obtain a typical
triplet 〈xt,xp,xq〉 (xt,xp and xq ∈ R

d), which satisfies
that xt and xp belong to the same class, whilext and xq

belong to the different classes. Specifically, in one-pass triplet
construction, at thet-th time step, givenxt belonging to
the k-th class, we assignhk as xp, and randomly pickhk′

(k′ = 1, 2, . . . , c., k′ 6= k) as xq. Then hk ∈ H will be
replaced byxt, and thusH consists of the latest sample of
each class. Please note that ifxt belongs to the(c + 1)-th
class, we will assignxt to hc+1, and also update the number
of classes as well asH accordingly.

We can observe that the space complexity of this strategy
is O(cd). Basically, when the value ofc is small, the space
complexity can be regarded asO(d). Also, the time complexity
of triplet construction at each time step isO(1).

B. OPML

We mainly focus on the Mahalanobis distance learning here,
which aims to learn a symmetric PSD matrixM ∈ S

d×d
+

(cone ofd× d real-valued symmetric PSD matrices) and can
be formally defined as follows:

DM (xi,xj) =
√

(xi − xj)⊤M(xi − xj), (1)

wherexi ∈ R
d andxj ∈ R

d are thei-th andj-th samples,
respectively.M can be mathematically decomposed asL⊤L,
whereL ∈ R

r×d (r is the rank ofM ) denotes the transfor-
mation matrix. Then, we can rewrite Eq. (1) as:

DL(xi,xj) = ‖L(xi − xj)‖22. (2)

Our goal is to learn a transformation matrixL that satisfies
the following large margin constraint:

DL(xi,xl) > DL(xi,xj) + 1, ∀xi,xj ,xl ∈ R
d, (3)

where xi and xj belong to the same class, whilexi and
xl belong to different classes. We can define the hinge loss
function as below:

G((xi,xj ,xl);L) = max
(

0, 1 +DL(xi,xj)−DL(xi,xl)
)

.

(4)
By applying the one-pass triplet construction, at thet-th

time step, we can obtain the triplet〈xt,xp,xq〉. Thus, the
online optimization formulation can be defined as follows by
using Passive-Aggressive algorithm [6]:

Lt = argmin
L

Γ(L)

= argmin
L

1

2
‖L−Lt−1‖2F +

γ

2
[1 + ‖L(xt − xp)‖22

− ‖L(xt − xq)‖22]+,

(5)

where γ is the regularization parameter, which is set into
the range of(0, 1

4 ) as a sufficient condition to theoretically
guarantee the positive definite property (see Lemma 2).‖·‖2F
means Frobenius norm,‖·‖2 denotesℓ2−norm, and[z]+ =
max(0, z), namely the hinge lossG((xt,xp,xq);L).

The optimal solution can be obtained when the gradient
vanishes∂Γ(L)

∂L
= 0, hence we have:

∂Γ(L)

∂L
=







L−Lt−1 + γLAt = 0 [z]+ > 0

L−Lt−1 = 0 [z]+ = 0,
(6)

whereAt = (xt − xp)(xt − xp)
⊤ − (xt − xq)(xt − xq)

⊤ ∈
R

d×d. Sincext,xp andxq are all nonzero vectors,xt 6= xp

andxt 6= xq, the rank of(xt − xp)(xt − xp)
⊤ and (xt −

xq)(xt − xq)
⊤ is 1. Hence, the rank ofAt is 1 or 2. When

xt − xp 6= µ(xt − xq), we can get thatrank(At) = 2.

Lemma 1. Let M1,M2 be two PSD matrices, andΩ =
M1 −M2, the eigenvalue ofΩ, denoted byλ(Ω), satisfies
the following equation:

− λmax(M2) ≤ λ(Ω) ≤ λmax(M1), (7)

whereλmax(M1) andλmax(M2) are the maximum eigenvalues
of M1 andM2, respectively.

Proof. ∀x ∈ R
d and x 6= 0, x⊤

Ωx = x⊤(M1 −M2)x.
SinceM1 andM2 are both PSD matrices,x⊤M1x ≥ 0 and
x⊤M2x ≥ 0. Thus,

− x⊤M2x

x⊤x
≤ x⊤

Ωx

x⊤x
≤ x⊤M1x

x⊤x
. (8)

According to Rayleigh quotient, we haveλmin(Ω) ≤ x
⊤
Ωx

x⊤x
≤

λmax(Ω). Assumex
⊤
Ωx

x⊤x
achieve its maximumλmax(Ω) when

x = e, i.e., e
⊤
Ωe

e⊤e
= λmax(Ω). By Eq. (8), we obtain

λmax(Ω) =
e⊤Ωe

e⊤e
≤ e⊤M1e

e⊤e
≤ λmax(M1) (9)

Hence,λmax(Ω) ≤ λmax(M1). In the similar way, we can
prove that−λmax(M2) ≤ λmin(Ω). Thus,

− λmax(M2) ≤ λmin(Ω) ≤ λ(Ω) ≤ λmax(Ω) ≤ λmax(M1).
(10)
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Lemma 2. If 0 < γ < 1
4 and samples are normalized,I+γAt

is a positive definite matrix and also it is invertible, where
I ∈ R

d×d is the identity matrix.

Proof. Let M1 = (xt − xp)(xt − xp)
⊤, M2 = (xt −

xq)(xt − xq)
⊤ and At = M1 −M2. It is easy to obtain

that,λmax(M1) = ‖xt − xp‖22 andλmax(M2) = ‖xt − xq‖22.
According to Lemma 1, we can obtain that−λmax(M2) ≤
λ(At) ≤ λmax(M1). Thus,

1− γλmax(M2) ≤ λ(I + γAt) ≤ 1 + γλmax(M1). (11)

For normalized samples, namely0 ≤ ‖xt‖ ≤ 1, the ranges of
λmax(M1) andλmax(M2) vary from [0,4]. Given0 < γ < 1

4 ,
λ(I + γAt) ≥ 1 − γλmax(M2) > 0. Obviously, I + γAt

is a symmetric matrix. Hence,I + γAt is a positive definite
matrix, and it is invertible.

According to Lemma 2, the optimalLt can be updated as
below:

Lt =







Lt−1(I + γAt)
−1 [z]+ > 0

Lt−1 [z]+ = 0.
(12)

It is known that the time complexity of the matrix inversion in
Eq. (12) isO(d3). However, the rank-2 property ofAt offers
us a nice way to accelerate the speed by applying Lemma 3.

Lemma 3. [16] Given G and G + B as two nonsingular
matrices, and letB have rankr > 0. LetB = B1+ · · ·+Br,
where eachBk has rank 1, also letCk+1 = G+B1+· · ·+Bk

is nonsingular fork = 1, . . . , r. If C1 = G, then

(G +B)−1 = C−1
r − grC

−1
r BrC

−1
r , (13)

where,

C−1
r+1 = C−1

r − grC
−1
r BrC

−1
r

gr =
1

1 + tr(C−1
r Br)

.
(14)

Theorem 1. If At is a rank-2 matrix and samples are
normalized, then

(I + γAt)
−1 = I − 1

η + β
[ηγAt − (γAt)

2], (15)

whereη = 1 + tr(γAt), β = 1
2 [(tr(γAt))

2 − tr(γAt)
2].

Proof. According to Lemma 3, we setG = I, B = γAt, and
rewriteB = B1 +B2, whereB1 = γ(xt − xp)(xt − xp)

⊤,
B2 = −γ(xt − xq)(xt − xq)

⊤. It is obvious that the rank of
B1 andB2 is 1. Utilizing the Lemma 3, we can obtain the
Theorem 1.

By using Theorem 1, plugging Eq. (15) back into the first
term of Eq. (12), we can obtain

Lt = Lt−1 −
ηγ

η + β
(Lt−1aa

⊤ −Lt−1bb
⊤)

+
γ2

η + β
[(a⊤a)Lt−1aa

⊤ − (a⊤b)Lt−1ab
⊤

− (b⊤a)Lt−1ba
⊤ + (b⊤b)Lt−1bb

⊤],

(16)

wherea = xt − xp, andb = xt − xq.

Complexity: The time complexity of calculatingη and
β in Eq. (16) isO(d2). In addition, a⊤a, a⊤b, b⊤a and
b⊤b are scalars, for all of which time complexity isO(d).
Also, the time complexity of calculatingLt−1aa

⊤, Lt−1bb
⊤,

Lt−1ab
⊤ andLt−1ba

⊤ is O(d2) respectively. Therefore, the
time complexity of Eq. (16) is stillO(d2). Now, we give the
pseudo-code of OPML in Algorithm 1.

Algorithm 1 OPML

Input: (xt, yt)|Tt=1, γ.
Output: L.

1: L0 ← I.
2: for t = 1, 2, . . . , T do
3: 〈xt,xp,xq〉 ← one-pass triplet construction
4: if G((xt,xp,xq);Lt−1) 6 0 then
5: Lt = Lt−1.

6: else
7: Lt ← solution by Eq. (16)
8: end if
9: end for

C. Extended OPML to Cold Start Case

In practice, there is a case that the first several available
samples belong to the same class, which is called as a cold
start case. When cold start happens, since the triplet cannot
be constructed, OPML will discard all these initial samples.
To address this issue, we extend the proposed OPML to
an enhanced version, namely COPML, which includes an
additional pre-stage before calling OPML. Specifically, in
the pre-stage, if the triplet cannot be constructed (i.e., the
samples coming from different classes are not available), the
metricL can only be updated based on the samples from the
same class, which usually adopts the pairwise constraint for
updating. Typically, pairwise constraint is mathematically set
to 〈xt,xt+1, y

∗
t,t+1〉, wherey∗t,t+1 = 1 if two adjacent samples

xt ∈ R
d andxt+1 ∈ R

d share the same class, andy∗t,t+1 = −1
otherwise. Actually, here we only need to consider the case
wheny∗t,t+1 = 1, because we can update the metric by calling
OPML if y∗t,t+1 = −1 (the new coming sample belongs to a
different class). After the pre-stage, OPML can be sequentially
adopted for the following learning process.

Formally, in the pre-stage when only the pairwise constraint
〈xt,xt+1, y

∗
t,t+1〉 can be used, the online optimization formu-

lation is formulated as follows:

Lt = argmin
L

Γ(L)

= argmin
L

1

2
‖L−Lt−1‖2F +

γ1

2
y∗t,t+1‖L(xt − xt+1)‖22,

(17)

where γ1 > 0 is the regularization parameter. The optimal
solution can be obtained when the gradient vanishes∂Γ(L)

∂L
=

0, hence

∂Γ(L)

∂L
= L−Lt−1 + γ1y

∗

t,t+1LΛt = 0, (18)

whereΛt = (xt − xt+1)(xt − xt+1)
⊤. It is obvious thatΛt

is a rank-1 PSD matrix forxt 6= xt+1. Then we can get that
I + γ1y

∗
t,t+1Λt is a symmetric positive definite matrix, which
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is invertible, wheny∗t,t+1 = 1. Then, the optimalLt can be
obtained as

Lt = Lt−1(I + γ1Λt)
−1. (19)

By using the Sherman-Morrison formula, Eq. (19) can be
equivalently rewritten as follows:

Lt = Lt−1 −
γ1Lt−1(xt − xt+1)(xt − xt+1)

⊤

1 + γ1(xt − xt+1)⊤(xt − xt+1)
, (20)

where we can observe that the time complexity of Eq. (20) is
O(d2) too. Algorithm 2 shows the pseudo-code of COPML.

Algorithm 2 COPML

Input: (xt, yt)|Tt=1, γ1, γ2.
Output: L.

1: L0 ← I, c← 0.
2: for t = 1, 2, . . . , T do
3: MaintainH = {h1, h2, · · · , hc}
4: if yt = c = 1 then
5: 〈xt,xt+1, y

∗
t,t+1〉 ← adjacent two samples

6: Lt = Lt−1 − γ1Lt−1(xt−xt+1)(xt−xt+1)
⊤

1+γ1(xt−xt+1)⊤(xt−xt+1)
.

7: else if 1 ≤ yt ≤ c andc ≥ 2 then
8: L← call OPML(xt, yt, γ2)
9: else

10: hc+1 ← xt

11: c← c+ 1
12: end if
13: end for

IV. T HEORETICAL GUARANTEE

The following theorems guarantee the effectiveness of our
methods. Theorem 2 shows that the difference of learned
metric between one-pass triplet construction strategy andbatch
triplet construction strategy is bounded. Note that, for a fair
comparison, the batch triplet construction strategy here is
considered in an online manner, that is to say, for each sample
xt at thet-th time step, all past samples are stored to construct
a triplet withxt (i.e., each triplet contains thisxt). Theorem
3 also tries to explain that the one-pass triplet construction
strategy can approximate the batch triplet construction, but
from another perspective. Moreover, a regret bound has been
proved for the proposed OPML algorithm, which can be found
in Theorem 4. All details of the proofs for the theorems are
provided in the appendix.

Theorem 2. Let Lt be the solution output by OPML based
on the one-pass triplet construction strategy at thet-th time
step. LetL∗

t be the solution output by OPML with the batch
triplet construction strategy at thet-th time step. Assuming that
‖x‖ ≤ R (for all samples),‖Lt‖F ≤ U and‖L∗

t ‖F ≤ U , the
bound of the difference between these two matrices is

‖Lt−L∗

t‖F ≤ U ·
∥

∥

∥

CN
∑

i=1

Bi+

CN
∑

i=1,j=1,i<j

BiBj+· · ·+
CN
∏

i=1

Bi

∥

∥

∥

F
,

(21)
where ‖B‖F ≤ 32

∣

∣

∣

γ2

η+β

∣

∣

∣
R4 + 4

√
2
∣

∣

∣

ηγ
η+β

∣

∣

∣
R2 ( for all

Bi,Bj, · · · ), γ ∈ (0, 1
4 ), η ∈ (1 − 5

4R
2, 1 + 5

4R
2), and

β ∈ (−R4, 2532R
4).

Theorem 3. Let 〈xt,xp,xq〉 be the triplet constructed by the
proposed one-pass triplet construction strategy at thet-th time
step. Let{〈xt,xpi

,xqi〉}|Ci=1 be the triplet set constructed by
the batch triplet construction strategy at thet-th time step.
Assuming‖x‖2 ≤ R (for all samples),‖L‖F ≤ U , ‖L∗‖F ≤
U and the angleθ between two samples coming from the same
class is very small after the transformation ofL or L∗ (i.e.,
cos θ = α, α ≥ 0 and α is close to 1), whileθ is very large
otherwise (i.e.,cos θ = −ξ, ξ ≥ 0 and ξ is close to 1). Then
the average loss bound between these two strategies at thet-th
time step is

Ψ1 −Ψ2 ≤ 2(α+ ξ + 1)R2U2, (22)

whereΨ1 denotes the average loss generated by the one-pass
triplet construction strategy, andΨ2 refers to the average loss
of the batch construction strategy.

Theorem 4. Let 〈x1,xp1
,xq1〉, . . . , 〈xT ,xpT

,xqT 〉 be a se-
quence of triplets constructed by the proposed one-pass strat-
egy. LetLt|Tt=1 be the solution output by OPML at thet-th
time step, andL∗ be the optimal offline solution. Assuming
‖x‖2 ≤ R (for all samples),‖L‖F ≤ U , ‖L∗‖F ≤ U

and the angleθ between two samples coming from the same
class is small after the transformation ofL or L∗ (i.e.,
cos θ = α, α ≥ 0 and α is close to 1), whileθ is large
otherwise (i.e.,cos θ = −ξ, ξ ≥ 0 and ξ is close to 1). Then
the regret bound is

R(L∗, T ) ≤ 2T (α+ ξ + 1)R2U2 (23)

V. EXPERIMENTS

To verify the effectiveness of our methods, we evaluate
OPML and COPML on three typical tasks, including (1)
UCI data classification, (2) face verification, and (3) abnormal
event detection in videos. Also, an additional experiment is
conducted to validate the robustness of COPML when the cold
start issue happens.

A. UCI Data Classification

We introduce twelve datasets from the UCI repository for
evaluation. Thek-NN classifier is employed, since it is widely-
used for classification with only one parameter. The detailed
information of these datasets is presented in Table II. All
these twelve datasets are normalized by Z-score. Also, for
each dataset,50% samples are randomly picked for training
while the rest is used for testing. We adopt the error rate as the
evaluation criterion, and to reduce the influence coming from
the random partition, all the classification results are averaged
over 100 individual runs.

To make an extensive comparison, we introduce several
state-of-the-art methods, including batch metric learning and
OML methods. Specifically, batch metric learning methods
include: (1)Euclidean distance metric (Eucli for short); (2)
Mahalanobis distance metric (Maha for short); (3)LMNN
(Large Margin Nearest Neighbor) [10]; (4)ITML [5]. OML
methods include: (1)OASIS [2]; (2) RDML [4]; (3) POLA
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TABLE II
ERROR RATES(MEAN±STD. DEVIATION ) OF A K-NN (K=5) CLASSIFIER ON THEUCI DATASETS. p−VALUES OF STUDENT’ S T-TEST ARE CALCULATED
BETWEEN OTHER METHODS AND OUR METHODS. •/◦ INDICATES OPML PERFORMS STATISTICALLY BETTER/WORSE THAN THE RESPECTIVE METHOD

ACCORDING TO THEp−VALUES. THE STATISTICS OF WIN/TIE/LOSS IS ALSO INCLUDED. THE VALUE IN THE BRACKET MEANS THE CORRESPONDING

TOTAL PROCESSING TIME IN SECOND. 0.00DENOTES THE VALUE IS VERY SMALL (< 0.005). ABBREVIATIONS: SAM , SAMPLE; DIM , DIMENSIONALITY ;
C, CLASSES

Data Sam Dim C Euclidean Mahalanobis LMNN
lsvt 126 310 2 0.234± 0.056• 0.238 ± 0.046• 0.196± 0.044 (46.08)
iris 150 4 3 0.050 ± 0.023 0.075 ± 0.025• 0.037± 0.017 ◦ ( 1.55)
wine 178 13 3 0.044 ± 0.020 0.046± 0.023 0.030± 0.016 ◦ ( 3.18)
glass 214 9 7 0.336 ± 0.036 0.349± 0.037 0.341 ± 0.038 ( 4.52)
spect 267 22 2 0.327 ± 0.035 0.348 ± 0.034• 0.336 ± 0.037 ( 2.48)
ionosphere 351 34 2 0.172± 0.019• 0.165± 0.016 0.131± 0.020 ◦ ( 3.81)
balance 625 4 3 0.146± 0.014• 0.133 ± 0.017• 0.124± 0.014 ◦ ( 1.42)
breast 683 9 2 0.034 ± 0.008 0.034± 0.007 0.033 ± 0.008 ( 1.26)
pima 768 8 2 0.273± 0.018• 0.271 ± 0.018• 0.272± 0.017 • ( 1.12)
segment 2310 19 7 0.067± 0.006• 0.101 ± 0.008• 0.047± 0.006 ◦ ( 5.59)
waveform 5000 21 3 0.187± 0.006◦ 0.158 ± 0.006◦ 0.182± 0.060 ◦ ( 6.04)
optdigits 5620 64 10 0.026± 0.003• 0.039 ± 0.003• 0.014 ± 0.002 ◦ (31.21)

win/tie/loss 6/5/1 7/4/1 1/4/7

ITML OASIS RDML POLA
0.175 ± 0.040 ◦ (142.3) 0.205± 0.043 • (0.84) 0.230± 0.053 • (0.17) 0.157± 0.036 ◦ ( 9.17)
0.034 ± 0.016 ◦ (11.16) 0.274± 0.050 • (0.10) 0.077± 0.027 • (0.00) 0.030± 0.016 ◦ ( 0.62)
0.035 ± 0.019 ◦ (14.15) 0.019± 0.014 ◦ (0.08) 0.039 ± 0.019 (0.00) 0.028± 0.018 ◦ ( 2.22)
0.358 ± 0.042 • (30.94) 0.485± 0.057 • (0.12) 0.349 ± 0.035 (0.00) 0.395 ± 0.042 ( 3.86)
0.337 ± 0.041 ( 3.44) 0.364± 0.050 • (0.13) 0.343± 0.032 • (0.01) 0.323 ± 0.040 • (19.22)
0.139± 0.025 ◦ ( 3.65) 0.124± 0.033 ◦ (0.12) 0.154± 0.016 ◦ (0.02) 0.147 ± 0.020 ◦ (17.65)
0.104 ± 0.019 ◦ (15.67) 0.126 ± 0.009 (0.10) 0.118± 0.012 ◦ (0.01) 0.156± 0.047 • ( 7.31)
0.035 ± 0.008 ( 2.68) 0.043± 0.021 • (0.09) 0.033 ± 0.007 (0.01) 0.038± 0.010 • ( 5.13)
0.279± 0.022 • ( 3.16) 0.346± 0.053 • (0.12) 0.269 ± 0.019 (0.01) 0.275 ± 0.021 • (12.40)
0.050 ± 0.008 ◦ (38.50) 0.343± 0.067 • (0.11) 0.082± 0.006 • (0.02) 0.057± 0.011 (22.89)
0.187 ± 0.008 ◦ (18.57) 0.357± 0.039 • (0.13) 0.186± 0.010 ◦ (0.12) 0.250 ± 0.030 • (28.38)
0.028 ± 0.006 • (122.4) 0.077± 0.009 • (0.15) 0.028± 0.003 • (0.13) 0.023 ± 0.003 • (19.76)

3/2/7 9/1/2 5/4/3 6/2/4

LEGO SOML OPML COPML
0.239± 0.050 • ( 2.33) 0.223± 0.057 • ( 2.23) 0.189± 0.048 (0.07) 0.189 ± 0.047 (0.07)
0.050 ± 0.021 ( 0.14) 0.287± 0.080 • ( 0.69) 0.049± 0.023 (0.00) 0.048 ± 0.023 (0.00)
0.031± 0.020 ◦ ( 0.23) 0.169± 0.093 • ( 0.92) 0.042± 0.020 (0.00) 0.041 ± 0.019 (0.00)
0.390± 0.034 • ( 0.31) 0.557± 0.117 • ( 1.16) 0.339± 0.032 (0.00) 0.341 ± 0.033 (0.00)
0.311± 0.038 ◦ ( 0.61) 0.393± 0.084 • ( 1.45) 0.326± 0.034 (0.01) 0.327 ± 0.035 (0.01)
0.154± 0.020 ◦ ( 1.09) 0.362± 0.116 • ( 2.18) 0.161± 0.019 (0.01) 0.163 ± 0.021 (0.01)
0.118± 0.011 ◦ ( 1.40) 0.378± 0.077 • ( 4.78) 0.129± 0.012 (0.01) 0.129 ± 0.014 (0.01)
0.035± 0.008 • ( 1.64) 0.054± 0.040 • ( 5.19) 0.032± 0.008 (0.01) 0.032 ± 0.007 (0.01)
0.266 ± 0.019 ( 1.96) 0.353± 0.060 • ( 5.89) 0.266± 0.017 (0.01) 0.265± 0.018 (0.02)
0.040 ± 0.006 ◦ (14.50) 0.541 ± 0.092 • (19.26) 0.059± 0.006 (0.03) 0.059± 0.006 (0.03)
0.233± 0.007 • ( 4.60) 0.368 ± 0.035 • (49.30) 0.224± 0.009 (0.08) 0.225± 0.010 (0.09)
0.022± 0.003 • ( 6.97) 0.239 ± 0.079 • (79.10) 0.019± 0.003 (0.09) 0.019± 0.003 (0.10)

5/2/5 12/0/0

[1]; (4) LEGO [3]; (5) SOML-TG (SOML for short) [7]. The
implementation of LMNN, ITML and OASIS was provided by
the authors in their respective papers, while the rest methods
were implemented by ourselves. The parameters of these
methods were selected by cross-validation, except LMNN
and ITML using the default settings. Since the pairwise or
triplet constraints of POLA, LEGO and SOML need to be
constructed in advance, we randomly sample 10000 constraints
for these three methods (same setting as LEGO [3]). The error
rates of the proposed methods and competitive methods are
presented in Table II.

Moreover, thep-values of student’s t-test were calculated to
check statistical significance. Also, the statistics of win/tie/loss
is reported according to the obtainedp-values (see Table II).
It is observed that (1) the performance of our methods is
comparable to LEGO, and slightly better than other OML
methods; (2) the performance of our methods is close to batch
metric learning methods, e.g., LMNN and ITML, and better

than Euclidean and Mahalanobis; (3) our methods are faster
than other OML methods except comparable with RDML,
since instead of constructing triplets, RDML only requiresthe
pairwise constraint by receiving a pair of samples in each time.

To illustrate the performance with different numbers of
triplet constraints on the learning of metric, we vary the num-
bers of triplet constraints as (100, 1000, 2000, 5000, 10000,
15000, 20000) for OASIS and SOML (see Fig. 2). Since the
number of triplet constraint in OPML is a constant by using
one-pass triplet construction, we can find that, OPML can
achieve better performance by using fewer triplet constraints
(except on UCI data 1, 3, 6).

B. Face Verification: PubFig

For face verification, we first evaluate our methods on the
Public Figures Face Database (PubFig) [17]. PubFig dataset
consists of two subsets: Development Set (7650 images of
60 individuals) and Evaluation Set (28954 images of 140
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Fig. 2. Error rates of different methods with different numbers of triplets on twelve UCI datasets (the number of triplets in OPML is a constant)

individuals). Following [17], we use the development set to
develop all these methods, including parameters tuning, while
the evaluation set is used for performance evaluation. The
goal of face verification in PubFig is to determine whether
a pair of face images belong to the same person. Please note
that, images coming from the same person will be regarded
as belonging to the same class. For all subsets, 10-fold cross
validation is adopted to conduct the experiments, and each fold
is disjoint by identity (i.e., one person will not appear in both
the training and testing set). For testing each fold (with rest
9 folds used for training), we randomly sample 10000 pairs
(5000 intra- and 5000 extra-personal pairs) for testing. Thus,
the total number of pairs is105. In each training phase, we
also randomly select 10000 pairwise or triplet constraintsfor
LEGO, POLA and SOML as the same settings on the UCI
datasets.

For sufficient and fair comparison, we use two forms of fea-
tures (i.e., attribute features and deep features) to evaluate the
performance of all algorithms, respectively. Attribute features
(73-dimension) provided by Kumar et al. [17] are ’high-level’
features describing nameable attributes such as gender, race,
age, hair etc., of a face image. For deep features, we use a
VGG-Face model [18] to extract a 4096-dimensional feature
for each face image which has been aligned and cropped. For
easier handling, the 4096-dimensional feature is reduced to
a 54-dimensional feature by Principal Component Analysis
(PCA) algorithm.

For each testing pair, we first calculate the distance (sim-
ilarity) between them by the learned metric obtained from

respective methods. Then, all the distances (similarities) are
normalized into the range[0, 1]. Receiver Operating Char-
acteristic (ROC) curves are provided in Fig. 3, with the
corresponding AUC (Area under ROC) values calculated. It
can be observed that OPML and COPML can obtain superior
results compared with the state-of-the-art online/batch metric
learning methods. Moreover, although the deep feature already
has a strong representation ability, our proposed methods can
still slightly improve the performance.

C. Face Verification: LFW

For face verification, we also evaluate our methods on the
Labeled Faces in the Wild Database (LFW) [19]. LFW is a
widely used face verification benchmark with unconstrained
images, which contains 13233 images of 5749 individuals.
This dataset has two views: View 1 is used for development
purposes (containing a training set and a test set); And, View
2 is taken as evaluation benchmark for comparison (i.e., a 10-
fold cross-validation set). There are two forms of configuration
in both views, that is, image restricted configuration and image
unrestricted configuration. In the first formulation, the training
information is restricted to the provided image pairs and
additional information such as actual name information can
not be used. In other words, we can only use the pairwise
images for training without any label information can be used
at all. While, in the second formulation, the actual name
information (i.e., label information) can be used and as many
pairs or triplets can be formulated as one desires. No matter
which configuration we choose, the test procedure is the same
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Fig. 3. ROC Curves of development set (left column) and evaluation set (right
column) on the PubFig dataset. first row: attribute features; second row: deep
features. AUC value of each method is presented in bracket
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Fig. 4. ROC Curves of our methods and contrastive methods on the LFW
dataset. left: sift features; right: attribute features. AUC value of each method
is presented in bracket

(i.e., using pairwise images for testing). In order to simulate
the real online environment and because our methods and
some methods (eg., OASIS [2], SOML [7]) are triplet-based
methods, we adopt the image unrestricted configuration to
construct the experiment. We use View 1 for parameter tuning
and then evaluate the performance of all the algorithms on
each fold (300 intra- and 300 extra-personal pairs) in View 2.
Other settings are similar with the ones on the PubFig dataset.

In this experiment, we adopt two types of features (i.e., SIFT
features and attribute features) to represent each face image,
respectively. The SIFT features are provided by Guillauminet
al. [20] by extracting SIFT descriptors [21] at 9 fixed facial
landmarks detected on a face, over three scales. Then we per-
form PCA algorithm to reduce the original 3456-dimensional
feature to a 100-dimensional feature. Like PubFig, the attribute
features of LFW are 73-dimensional ’high-level’ features
describing the nameable attributes of a face image [17]. To
evaluate our methods and the contrastive methods, we report
the ROC curves and AUC values of the corresponding methods
(see Fig. 4). The results of ITML [5] aren’t displayed for its
difficulty of convergence in the training data. We can see that
the proposed COPML method can achieve the-state-of-the-art
performance compared with the contrastive metric learning

methods. Especially, when using SIFT features, our methods
can significantly improve the AUC value over the Euclidean
distance by13% (5.8% with attribute features), showing the
validity of the proposed methods. It is worth noting that
some metric learning methods cannot even improve over the
Euclidean distance, which has happened on the PubFig dataset.
The reason why LMNN cannot achieve the best performance
may be over-fitting for lacking of regularization.

D. Abnormal Event Detection in Videos

The performance of the proposed methods is also evaluated
on UMN dataset for abnormal event detection. UMN dataset
contains 3 different scenes with 7739 frames in total: Scene1
(1453 frames), Scene2 (4144 frames) and Scene3 (2142
frames). In UMN dataset, people walking around is considered
as normal, while people running away is regarded as abnormal.
The resolution of the video is320 × 240. We divide each
frame into5 × 4 non-overlapping64 × 60 patches. For each
patch, the MHOF (Multi-scale Histogram of Optical Flow)
feature [22] was extracted from every two successive frames.
The MHOF is a 16-dimensional feature, which can capture
both motion direction and motion energy. For integrating the
multi-patches features, we combine features from all patches
in each frame, and form a 320-dimensional feature. For each
scene, we perform 2-fold cross validation for evaluation. The
distance metric is learnt from the training data in online way,
then we use the SVM classifier to classify the testing frames
after feature transformation by using the learned metricL.

Table III reports the AUC of all the methods. We can notice
that our methods is very effective and competitive, when com-
pared with other methods. Fig. 5 exhibits the sample frames of
normal and abnormal events in the 3 scenes respectively (top
row), and shows the abnormal event detection results of our
method (COPML) in the indication bars (green/red indicates
normal/abnormal event). It’s worth mentioning that in this
experiment, COPML performs better than OPML, because the
video data has the cold start issue especially at the beginning.

TABLE III
QUANTITATIVE COMPARISON OF OUR METHODS WITH OTHER ABNORMAL

EVENT DETECTION METHODS ON3 SCENES OFUMN DATASET

INDIVIDUALLY WITH AUC CRITERION

Method AUC

Optical flow [23] 0.84 (average)
Social Force [23] 0.96 (average)
Chaotic Invariants [24] 0.99 (average)
LSA [25] 0.985(average)
STCOG [14] 0.936/0.776/0.966
Sparse [22] 0.995/0.975/0.964
MP-MIDL [26] 0.99 /0.98 /0.99
SVDD-based [27] 0.993/0.969/0.988
OPML 0.993/0.983/0.973
COPML 0.995/0.989/0.977

E. COPML for Cold Start

We can observe that in the case free of the cold start issue
(e.g., UCI data classification, face verification), OPML and
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Fig. 5. Global abnormal event detection results of our method COPML and the ground truth on the UMN dataset

COPML can obtain comparable results, while in the case with
cold start issue (e.g., abnormal event detection in videos),
COPML is better than OPML. To further test the performance
of COPML on an extreme case with cold start issue, we
construct several datasets with specified structure to verify the
different performance of COPML and OPML. Three datasets
were picked from the UCI repository: (1) Image Segmentation
(seg for short), with 7 classes, 19 features and 2310 samples;
(2) EEG Eye State (eeg for short), with 2 classes, 15 features
and 14980 samples; (3) Sensorless (sen for short), with 11
classes, 49 features and 58509 samples.

For each dataset, the samples from different classes are
divided into disjoint 10/5/2 parts, then different parts of
different classes are crosswise put together to construct anew
dataset. Afterwards, the new dataset is divided into 2 folds.
The first fold is used for training and the second fold is used
for testing. As the previous setting for classification, we take
a k-NN (k=5) classifier to get the final test results, shown in
Table IV. The results prove that COPML performs better than
OPML when the data has the cold start issue. Since when cold
start occurs, COPML will incorporate both the pair and triplet
information, instead of only using triplet in OPML.

TABLE IV
ERROR RATES ON THREEUCI DATASETS

Data Euclidean OPML COPML

seg-10 0.069±0.006 0.062±0.006 0.057±0.007

seg-5 0.067±0.007 0.062±0.007 0.054±0.007

seg-2 0.067±0.006 0.064±0.007 0.059±0.007

eeg-10 0.185±0.004 0.181±0.004 0.161±0.023

eeg-5 0.213±0.004 0.205±0.005 0.185±0.018

eeg-2 0.185±0.004 0.178±0.007 0.178±0.007

sen-10 0.190±0.002 0.093±0.036 0.071±0.011

sen-5 0.196±0.002 0.097±0.032 0.082±0.014

sen-2 0.190±0.006 0.067±0.020 0.063±0.015

VI. CONCLUSION

We propose a one-pass closed-form solution for OML,
namely OPML. It employs the one-pass triplet construction
for fast triplet generation, together with a closed-form solution
to update the metric with the new coming sample at each time
step. Also, for cold start issue, COPML, an extended version
of OPML is developed. The major advantages of our methods
are: OPML and COPML are easy to implement. Also, OPML
and COPML are very scalable with low space (i.e.,O(d)) and
time (i.e., O(d2)) complexity. In the experiments, we show

that our methods can obtain superior performance on three
typical tasks, compared with the state-of-the-art methods.

APPENDIX A
PROOF OFTHEOREM 2

Proof. Recall that the metric update formula of OPML is

Lt =







Lt−1(I + γAt)
−1 [z]+ > 0

Lt−1 [z]+ = 0.
(24)

According to the Theorem 1, we can obtain that,

(I + γAt)
−1 = I − 1

η + β
[ηγAt − (γAt)

2], (25)

whereη = 1+tr(γAt), β = 1
2 [(tr(γAt))

2−tr(γAt)
2]. Here,

we only consider the case that[z]+ > 0. Then att-th time step,
the learned metricLt of one-pass strategy can be expressed
as below,

Lt = L0(I + γA1)
−1(I + γA2)

−1 · · · (I + γAt)
−1. (26)

Note that the batch triplet construction strategy here is con-
sidered in an online manner, that is to say, for each samplext

at thet-th time step, all past samples are stored to construct
a triplet withxt (i.e., each triplet contains thisxt). Similar to
Lt, the learned metricL∗

t of the batch strategy (att-th time
step,Ci|ti=1 triplets can be constructed) can be denoted as
follows,

L∗

t =L∗

0

C1
∏

i=1

(I+γA1i)
−1

C2
∏

i=1

(I+γA2i)
−1 · · ·

Ct
∏

i=1

(I+γAti)
−1.

(27)
Let 〈x1,xp1

,xq1〉, . . . , 〈xt,xpt
,xqt〉 be the sequence of

triplets constructed by the proposed one-pass strategy, which is
contained in the sequence of triplets constructed by the batch
strategy. If we let theL∗ learn on the sequence of triplets
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constructed by the one-pass strategy first, the Eq. (27) can be
reorganized as below,

L∗

t =L
∗

0(I+γA1)
−1· · ·(I+γAt)

−1 ·
C1+···+Ct−t

∏

i=1

(I+γAi)
−1

(L∗
t learn on the sequence ofLt first)

=Lt ·
C1+···+Ct−t

∏

i=1

(I + γAi)
−1

(L0 andL∗
0 are both initialized as identity matrices)

=Lt ·
C1+···+Ct−t

∏

i=1

(I +B)

(by Theorem 1, whereB= 1
η+β

[

(γAi)
2−ηγAi

]

)

=Lt

[

I +

CN
∑

i=1

Bi +

CN
∑

i=1,j=1,i<j

BiBj + · · ·+
CN
∏

i=1

Bi

]

(whereCN = C1 + · · ·+ Ct − t).
(28)

Then we can calculate that

‖Lt−L
∗
t ‖F =

∥

∥

∥Lt

[

CN
∑

i=1

Bi+

CN
∑

i=1,j=1,i<j

BiBj+· · ·+
CN
∏

i=1

Bi

]∥

∥

∥

F

≤‖Lt‖F ·
∥

∥

∥

CN
∑

i=1

Bi+

CN
∑

i=1,j=1,i<j

BiBj+· · ·+
CN
∏

i=1

Bi

∥

∥

∥

F
.

(29)

Recall thatAt = M1−M2 = (xt−xp)(xt−xp)
T − (xt−

xq)(xt − xq)
T ∈ R

d×d, which is a symmetry square matrix.
According to the definition of Frobenius norm,

‖At‖F =

√

√

√

√

d
∑

i=1

d
∑

i=1

|aij |2 =

√

√

√

√

d
∑

i=1

σ2
i , (30)

whereσi are the singular values ofAt, which are equal to the
eigenvalues ofAt. According to Lemma 1,−λmax(M2) ≤
λ(At) ≤ λmax(M1), whereλ(At) denotes the eigenvalue of
At, andλmax(M) indicates the maximum eigenvalue ofM .
Assuming that‖xt‖2 ≤ R, then λmax(M1) belongs to the
range of[0, 4R2]. And since the rank ofAt is 2 (which has
been proved in section III-B), there are at most two nonzero
eigenvalues. Thus we can easily obtain that‖A‖F ≤ 4

√
2R2.

Hence,

‖B‖F = ‖ γ2

η + β
A2

t +
ηγ

η + β
(−At)‖F

≤ ‖ γ2

η + β
A2

t ‖F + ‖ ηγ

η + β
(−At)‖F

≤
∣

∣

∣

γ2

η + β

∣

∣

∣
· ‖At‖F · ‖At‖F +

∣

∣

∣

ηγ

η + β

∣

∣

∣
· ‖At‖F

≤ 32
∣

∣

∣

γ2

η + β

∣

∣

∣
R4 + 4

√
2
∣

∣

∣

ηγ

η + β

∣

∣

∣
R2.

(31)

Then, we can also calculate the range ofη andβ respectively.

η = 1 + tr(γAt)

= 1 + γ · tr(At)

= 1 + γ
[

(xt − xp)
T (xt − xp)− (xt − xq)

T (xt − xq)
]

= 1 + γ
[

‖xp‖22 − ‖xq‖22 − 2‖xT
t ‖2 · ‖xp‖2 cos θ1

+ 2‖xT
t ‖2 · ‖xq‖2 cos θ2

]

.

(32)

Since the range ofγ is (0, 1
4 ), and0< ‖xt‖2≤R, we can

calculate to get the range oftr(γAt) (i.e.,(− 5
4R

2, 5
4R

2)), and
the range ofη which is (1− 5

4R
2, 1+ 5

4R
2). Recall that,

β =
1

2

[

(tr(γAt))
2 − tr(γAt)

2
]

( by the rule oftr(cA)=c·tr(A) )

=
1

2

[

(tr(γAt))
2 − γ2tr(A2

t )
]

( by the rule oftr(Ak)=
∑

i λk
i ,

whereλi is the eigenvalue ofA)

=
1

2

[

(tr(γAt))
2 − γ2

d
∑

i=1

λ2
i

]

( by the rule of‖At‖F=
√∑

d
i=1

λ2
i
)

=
1

2

[

(tr(γAt))
2 − γ2‖At‖2F

]

(33)

For 0 < ‖At‖2F ≤ 32R4 and− 5
4R

2 < tr(γAt) <
5
4R

2, the
range ofβ is (−R4, 25

32R
4).

APPENDIX B
PROOF OFTHEOREM 3

Proof. By applying the one-pass triplet construction strategy,
at the t-th time step, we can obtain one triplet〈xt,xp,xq〉.
While in the batch construction (all past samples will be
stored), we can get a triplet set{〈xt,xpi

,xqi〉}|Ci=1. The
average loss of these two strategies can be expressed as
follows:

Ψ1 =
[

1 + ‖L(xt − xp)‖22 − ‖L(xt − xq)‖22
]

+

Ψ2 =
1

C

C
∑

i=1

[

1+‖L∗(xt−xpi
)‖22−‖L∗(xt−xqi)‖22

]

+
,

(34)
where [z]+ = max(0, z), namely the hinge loss
G((xt,xp,xq);L). For Ψ1, we only consider the case that
z ≥ 0, which exactly affects the updating of the metricL.
However, inΨ2, some losses may be negative. Thus,

Ψ1 = 1 + ‖L(xt − xp)‖22 − ‖L(xt − xq)‖22

Ψ2 ≤
1

C

C
∑

i=1

[

1 + ‖L∗(xt − xpi
)‖22 − ‖L∗(xt − xqi)‖22

]

.

(35)
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Then we calculate the difference between the losses of these
two strategies. That is,

Ψ1 −Ψ2 ≤
1

C

C
∑

i=1

∆

≤ 1

C

C
∑

i=1

[

‖L(xt − xp)‖22 − ‖L∗(xt − xpi
)‖22

+ ‖L∗(xt − xqi)‖22 − ‖L(xt − xq)‖22
]

.

(36)

For simplicity, we just analysis the∆. By applying the rule of
dot product (i.e.,xTy = ‖x‖·‖y‖·cos θ), ∆ can be expanded
as follows,

∆ = ‖Lxp‖22 − ‖L∗xpi
‖22 + ‖L∗xqi‖22 − ‖Lxq‖22

− 2‖Lxt‖·‖Lxp‖·cos θ1+2‖L∗xt‖·‖L∗xpi
‖·cosθ2

− 2‖L∗xt‖ · ‖L∗xqi‖ · cos θ3 + 2‖Lxt‖ · ‖Lxq‖ · cos θ4.
(37)

In order to simplify the expression, we set

1© = −2‖Lxt‖ · ‖Lxp‖ · cos θ1
2© = 2‖L∗xt‖ · ‖L∗xpi

‖ · cos θ2
3© = −2‖L∗xt‖ · ‖L∗xqi‖ · cos θ3
4© = 2‖Lxt‖ · ‖Lxq‖ · cos θ4.

(38)

Assuming that the angleθ between two samples coming from
the same class is very small after the transformation ofL or
L∗ (i.e., cos θ = α, α ≥ 0 andα is close to 1), whileθ is
very large otherwise (i.e.,cos θ = −ξ, ξ ≥ 0 andξ is close to
1). Thus,

0 ≤ cos θ1 ≤ α

0 ≤ cos θ2 ≤ α

−ξ ≤ cos θ3 ≤ 0

−ξ ≤ cos θ4 ≤ 0,

(39)

where0 ≤ α ≤ 1, 0 ≤ ξ ≤ 1 and both of them are close to
1. Then, we can obtain that,

−2α‖Lxt‖ · ‖Lxp‖ ≤ 1© ≤ 0

0 ≤ 2© ≤ 2α‖L∗xt‖ · ‖L∗xpi
‖

0 ≤ 3© ≤ 2ξ‖L∗xt‖ · ‖L∗xqi‖
−2ξ‖Lxt‖ · ‖Lxq‖ ≤ 4© ≤ 0.

(40)

Here, we only consider the upper bound of∆,

∆ ≤ ‖Lxp‖22 − ‖L∗
xpi‖22 + ‖L∗

xqi‖22 − ‖Lxq‖22
+ 2α‖L∗

xt‖ · ‖L∗
xpi‖+ 2ξ‖L∗

xt‖ · ‖L∗
xqi‖

≤ ‖Lxp‖22 + ‖L∗
xqi‖22 + 2α‖L∗

xt‖ · ‖L∗
xpi‖

+ 2ξ‖L∗
xt‖ · ‖L∗

xqi‖.

(41)

According to the property of compatible norms, that is,

‖Ax‖2 ≤ ‖A‖F · ‖x‖2. (42)

For assuming that‖x‖2 ≤ R (for all samples),‖L‖F ≤ U

and‖L∗‖F ≤ U , we can obtain that,

∆ ≤ 2(α+ ξ + 1)R2U2

Ψ1 −Ψ2 ≤ 2(α+ ξ + 1)R2U2.
(43)

Thus, this theorem has be proved.

APPENDIX C
PROOF OFTHEOREM 4

Proof. The regret can be defined (according to the definition
of Chapter 3 in [28]) as below:

R(L∗, T ) =

T
∑

t=1

Gt(Lt)−
T
∑

t=1

Gt(L∗), (44)

whereGt(L) = [1+‖L(xt−xp)‖22−‖L(xt−xq)‖22]+. Here,
we also only consider the case that the loss is positive, which
exactly affects the updating of the metricL. However, one
triplet which generates a positive loss withL may incur a
negative loss withL∗. Thus, after expanding,

R(L∗, T ) ≤
T
∑

t=1

[

‖Lt(xt − xp)‖22 − ‖Lt(xt − xq)‖22

− ‖L∗(xt − xp)‖22 + ‖L∗(xt − xq)‖22
]

.

(45)

In the similar way of proving the Theorem 3, we can easily
prove this theorem.
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