
Clustering-based k-Nearest Neighbor Classification for
Large-Scale Data with Neural Codes Representation

Antonio-Javier Gallego, Jorge Calvo-Zaragoza∗, Jose J. Valero-Mas, Juan
Ramón Rico-Juan

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Carretera
San Vicente del Raspeig s/n, Alicante, 03690, Spain

Abstract

While standing as one of the most widely considered and successful supervised

classification algorithms, the k-Nearest Neighbor (kNN) classifier generally de-

picts a poor efficiency due to being an instance-based method. In this sense,

Approximated Similarity Search (ASS) stands as a possible alternative to im-

prove those efficiency issues at the expense of typically lowering the performance

of the classifier. In this paper we take as initial point an ASS strategy based

on clustering. We then improve its performance by solving issues related to

instances located close to the cluster boundaries by enlarging their size and

considering the use of Deep Neural Networks for learning a suitable represen-

tation for the classification task at issue. Results using a collection of eight

different datasets show that the combined use of these two strategies entails a

significant improvement in the accuracy performance, with a considerable re-

duction in the number of distances needed to classify a sample in comparison

to the basic kNN rule.

Keywords: Efficient kNN classification, Clustering, Deep Neural Networks

∗Corresponding author: Tel.: +349-65-903772; Fax: +349-65-909326
Email addresses: jgallego@dlsi.ua.es (Antonio-Javier Gallego), jcalvo@dlsi.ua.es

(Jorge Calvo-Zaragoza), jjvalero@dlsi.ua.es (Jose J. Valero-Mas), juanramonrico@ua.es
(Juan Ramón Rico-Juan)

Preprint submitted to Pattern Recognition March 7, 2018

Usuario
Texto escrito a máquina
This is a previous version of the article published in Pattern Recognition. 2018, 74: 531-543. doi:10.1016/j.patcog.2017.09.038

http://dx.doi.org/10.1016/j.patcog.2017.09.038

1. Introduction

The k-Nearest Neighbor (kNN) classifier represents one of the most widely

used schemes for supervised learning tasks [6]. This method only requires that

a dissimilarity can be defined between two given instances. Basically, kNN

classifies a given input element by assigning the most common label among its5

k-nearest prototypes of the training set according to that dissimilarity.

Most of its popularity comes from its conceptual simplicity and straightfor-

ward implementation, that deals surprisingly well in many pattern recognition

tasks. In addition, it is well suited to problems facing multi-class classifica-

tions, that is, those in which the set of possible labels contains more than two10

elements [7]. In this sense, unlike other algorithms such as Support Vector Ma-

chines, which have to choose some kind of strategy to adapt to this scenario [8],

the kNN rule does not have to make any adjustment since it is naturally multi-

class.

As a representative example of instance-based algorithm, the kNN classifier15

does not perform an explicit generalization process (i.e., building a model) out of

the initial training data but directly considers those samples for classification [9].

The classifier therefore improves its performance as the training set increases,

having been demonstrated its consistency as the number of training instances

approaches to infinity [10].20

Fortunately, our society is strongly characterized by the large amount of

information surrounding us. Since the start of the information-related tech-

nologies, data production has been reported as constantly growing [11], being

this effect more remarkable in recent years. Therefore, a kNN classifier may be

able to exploit these large-scale sources of information to improve classification25

performance.

Nevertheless, since the kNN classifier needs to compute a distance between

the input sample and every single sample of the training data, it entails low

efficiency in both classification time and memory usage. This constitutes the

main drawback for this classifier, which becomes an insurmountable obstacle30

10

when considering such large-scale training corpora.

In this work we use an efficient search based on a clustering strategy. The

main assumption is that the k-nearest neighbors of a given instance lie in the

same cluster. Thus, the kNN search can be efficiently performed in two steps:

i) reaching the nearest cluster; and ii) finding the k-nearest neighbors within35

the cluster. In a large-scale scenario, this would eventually save a huge amount

of distance computations, thereby performing the process more efficiently [12].

Yet there is a possibility that this search entails some accuracy loss if part of

the k-nearest neighbors fall in different clusters. To alleviate this situation, we

consider a strategy so that this possibility is more unlikely. Our idea is that40

clusters are not necessarily disjoint but there are instances that can belong to

more than one. For achieving that, we apply an additional step after the initial

clustering process: (i) focusing on one cluster, we iterate through each of the

instances; (ii) for each element of the cluster we check the k-nearest neighbors

considering the entire training set; (iii) in case any of the k neighbors of the45

instance at issue is not part of the cluster being examined, we include it inside

the cluster, thus approaching the space partitioning to something similar to

a fuzzy clustering; (iv) this process is done for each of the clusters obtained.

This strategy increases the likelihood of making all the k-nearest neighbors of a

given test instance fall in the same cluster. Also note that both the clustering50

process and the proposed enlargement are done as a preprocessing stage, thus

not affecting the efficiency of the classification process. As it shall be later

experimentally checked, this process of increasing the cluster size approaches

the brute-force kNN scenario in terms of accuracy with far less computational

cost.55

Furthermore, recent advances in feature learning, namely deep learning, have

made a breakthrough in the ability to learn suitable features for classification.

That is, instead of resorting to hand-crafted features extracted, the models are

trained to infer out of the raw input signal the most suitable features for the

task at hand. This representational learning is performed by means of Deep60

Neural Networks (DNN), consisting of a number of layers which are able to

11

represent different levels of abstraction out of the input data. Some authors

[13, 14], however, have shown that it is interesting to use these DNNs only as

feature extractor engines, that is, feeding the network with the input data and

taking one of the intermediate representations, most typically the second-to-last65

layer output, as features for the classification task.

The kNN method may obtain more complex decision boundaries than the

common softmax activation used in the last layer of a DNN. However, it re-

quires the features and/or the distance considered to be adequate for the task.

Taking into account that DNN and kNN are totally complementary in terms70

of feature extraction and decision boundaries, it is interesting to propose a hy-

brid system in which both algorithms can exploit their potential and see their

drawbacks mitigated by the other. The goodness of a hybrid approach has been

demonstrated with other classifiers such as Support Vector Machines [15], yet

a comprehensive study in the case of large-scale data with kNN remains open.75

Note that defining input data with the most appropriate features might have a

considerable impact on the performance of the clustering algorithm. Therefore,

it is to be expected that these suitable features will also help to improve the

approximate search of the kNN.

For all the above, this document presents the following contributions:80

1. A new scheme to conduct cluster-based kNN search. We also extend this

search with overlapped clusters, and demonstrate that this extension is

able to achieve better classification rates than the regular one without

significantly increasing the number of distances to compute.

2. The use of DNN for extracting meaningful features as a general framework85

to improve both accuracy and efficiency of the proposed cluster-based kNN

search.

3. A comprehensive experimentation on the issues described above, including

several scenarios and heterogeneous datasets, with an in-depth analysis of

the reported results supported by statistical significance tests.90

The rest of the paper is organized as follows: related background to the topic

12

of the paper is introduced in Section 2; our proposed approach is developed

thoroughly in Section 3; Section 4 describes the experimental set-up considered;

the results obtained as well as their analysis are introduced in Section 5; finally,

general conclusions obtained from the work are discussed in Section 6.95

2. Background

2.1. Efficiency of the k-Nearest Neighbor rule

As a representative example of lazy learning, the kNN classification rule

generally exhibits a very poor efficiency: since no model is built from the training

data, all training information has to be consulted each time a new element is100

classified. This fact has two clear implications: on the one hand, high storage

requirements; on the other hand, an elevated computational cost. Some variants

of the kNN include a training process, such as the work of Zhang et al. [3], in

which a model is build to infer the optimal k for each sample. However, it does

not reduce the cost when predicting a sample.105

These shortcomings have been widely analyzed in the literature and sev-

eral strategies have been proposed to tackle them. In general, they can be di-

vided into three categories: Fast Similarity Search (FSS) [16], Data Reduction

(DR) [17], and Approximated Similarity Search (ASS) [18].

FSS is a family of methods that bases its performance on the creation of110

search models for fast prototype retrieval in the training set. Generally, these

strategies are further subdivided into indexing algorithms [19] and AESA fam-

ily [20]. The former family represents the set of algorithms which iteratively

partition the search space and build tree structures for an efficient search; for a

new element to be classified, the search throughout the tree selects the proper115

space partition (leaf node in the tree) for then performing an exhaustive search

within the prototypes in that region; this implies that only a subset of the total

number of examples has to be queried for classifying a new instance. Some

examples of these methods and structures are k-d tree [19], ball tree [21], and

metric-trees [22], among others. The problem, however, is that they are ex-120

13

tremely sensitive to the curse of dimensionality. Also, they require that input

data is represented as feature vectors. AESA algorithms, on the other hand,

only need a metric space, i.e. that in which a pairwise distance can be defined.

These strategies make use of pre-computed distances and the triangle inequality

to discard prototypes. The main disadvantage of these algorithms is that only125

deal with searches involving k = 1 and become inefficient with large-scale data.

In addition to these techniques, there are also studies that considered specific

computing engines like Apache Spark 1 to perform this search efficiently [5, 4].

DR comprises a subset of the Data Preprocessing strategies that aim at re-

ducing the size of the initial training set while keeping the same recognition130

performance [17]. The two most common approaches are Prototype Genera-

tion and Prototype Selection [23]. The former creates new artificial data to

replace the initial set while the latter simply selects certain elements from that

set. The Condensed Nearest Neighbor [24] was one of the first techniques devel-

oped for this purpose, yet a number of proposals can be found in the literature135

under both selection [25] and generation [26] paradigms. More recently, there

have been a number of new proposals such as Instance Reduction Algorithm us-

ing Hyperrectangle Clustering [27], Reduction through Homogeneous Clusters

[1], or Edited Natural Neighbor [2]. The main problem with these methods is

that they generally carry a significant loss of accuracy in the classification [17].140

Thus, different strategies have been proposed for solving those deficiencies as,

for instance, considering boosting schemes [28], merging feature and prototype

selection by means of genetic algorithms [29, 26], or considering the results of

these reduction algorithms as a means of constraining the space of prototypes

to assess by the classifier, namely kNNc [30].145

ASS approaches work on the premise of searching sufficiently similar proto-

types to a given query in the training set, instead of retrieving the exact nearest

instance, at the cost of slightly decreasing the classification accuracy. When

large datasets are present in a Pattern Recognition task, the ASS framework

1https://spark.apache.org/

14

rises as a suitable option to consider since possible drawbacks as, for instance,150

accuracy loss because of not retrieving the actual nearest prototype, are miti-

gated by the huge amount of information available. Some particular successful

principles within this family are the use of hashing techniques to codify the

prototypes of the training set. Typical examples comprise the Local Sensitive

Hashing (LSH) forest [31], Spectral Hashing [32] or Product Quantization [33].155

A different approach is the use of approximate k-d trees for the search (e.g., the

Fast Library for Approximate Nearest Neighbors [34]).

Within the context of improving the efficiency of the nearest neighbor search,

we also propose an approximate search based on the use of clusters.

2.2. Neural Codes representation160

Deep Neural Networks (DNN) are multi-layer architectures designed to ex-

tract high-level representations of a given input. They have drastically improved

the state-of-the-art in a number of fields and applications such as image, video,

speech and audio recognition tasks [35]. Due to their high generalization power,

transfer learning can be used to apply DNN models trained on a domain to165

a different task where data are similar but the classes are different [36]. This

transfer can be done by fine-tuning the weights of the pre-trained network on

the new dataset by continuing the back-propagation [37] or, alternatively, it

can also be performed by using the DNN as a fixed feature extractor to obtain

a mid-level representation, forwarding samples through the network to get the170

activations from one of the last hidden layers, usually a pooling one.

Although extracting such deep representations, referred to as Neural Codes

(NC) [38], and then apply kNN search is a common transfer learning technique,

to our knowledge there are few comprehensive studies of the kNN classifier

outperforming the network in the same domain in which it was trained as, for175

instance, the work by Ren et al. [39]. In addition, representing input data

appropriately not only affects kNN performance, which relies almost exclusively

on data representation, but also might have a big impact on the approximate

search algorithm. As this fact is especially relevant in clustering approaches —

15

which is another process strongly dependent on data representation — in this180

work we study the effect of a NC representation in both the effectiveness and

efficiency of the proposed approximate search of the kNN classifier.

3. Clustering-based k-Nearest Neighbor classification with Neural

Codes representation

This section presents the proposed scheme to apply kNN effectively and185

efficiently by means of NC representations and a space partition based on clus-

tering.

The justification of our scheme can be explained by the following terms. The

last layer of a neural network used for classification only learns a linear function.

That is, it is necessary that the data is presented to this layer in a way that190

is linearly separable. Therefore, the rest of the layers of a deep neural network

behave mainly as a feature extractor, which maps the input to a space in which

categories are expected to be linearly separable.

This provides a number of advantages over other procedures. The idea of

using hand-crafted features can be useful in a given context, but has to be195

performed for each possible task independently. In addition, features tend to be

meaningful for humans, which is not necessary appropriate for machine learning.

Furthermore, a kernel function, such as those typically used in Support Vector

Machines, also maps data onto a linearly separable space, but these functions

must also be chosen from a limited set of options. The idea, therefore, of deep200

neural networks is that they provide a rather general approach to learn this

mapping, which does not require a priori knowledge of the problem.

Thus, these NC are not only useful in the context of a last neural layer

but actually allow a good representation for the problem. This is especially

interesting in the case of clustering-based classification since the distribution of205

the samples in the space is the key aspect in the composition of the clusters.

It will be proved during the experimentation that the use of NC obtained by

deep networks not only achieves a higher classification accuracy, but also favors

16

efficiency by producing more suitable clusters for classification.

Below we thoroughly describe the two involved stages: the extraction of NC210

representation and the data clustering.

3.1. Extraction of Neural Codes representation

Although there are several ways to use deep models for unsupervised learning

(such as auto-encoders), we focus on using deep neural networks to learn the

aforementioned NC, that is, a feature-based representation of the input data215

directly derived from the network. Thus, the first step in our process is to train

the network in a supervised fashion by providing pairs that contain the element

itself (input) and its label.

Note that the intrinsic characteristics of deep neural networks make them

especially suitable for the problem at issue. Generally, these models derive220

similar feature-based representations for different instances of the same class.

In principle, this fact supposes an additional advantage in terms of performance

when applying a clustering-based search process as most instances representing

the same class shall be gathered in a single partition rather than being spread

among several of them.225

As will be seen below, several heterogeneous datasets will be used to validate

the goodness of our proposal. Therefore, a network model has been tuned for

each of dataset. This tuning process is aim at obtaining a network that reports

competitive results with respect to the state of the art. More details about these

models are facilitated in Section 4.230

3.2. Space partitioning with clustering

An efficient, yet approximate kNN can be straightforward achieved by us-

ing clusters. Let c be the number of clusters chosen, a c-clustering process is

performed so that data is grouped into c different partitions trying to mini-

mize some specific criteria (which depend on the particular clustering strategy).235

Once this process has been performed, the k-nearest neighbor search for a given

17

sample x consists of, first, retrieving the nearest cluster (represented by its cen-

troid). Subsequently, the conventional kNN search is performed but restricted

to those elements that belong to that cluster.

If m denotes the size of the training set, the expected or theoretical number240

of distances for classifying an input can be estimated as:

f(m, c) = c+
m

c

The first step is to retrieve the nearest cluster, and so c distances are needed.

Then, since all the samples must belong to a cluster, an average of m
c distances

are needed to search within the retrieved cluster in the next step. The actual

number of distances for a given test sample, however, depends on both the245

cluster retrieved in the first step and the distribution of the samples within the

different clusters.

Note that the expected number of distances does not always decreases as the

number of clusters increases but there is a point in which the number of distances

to each cluster centroid is higher than the cluster itself. Since m is not a free250

parameter, the optimum number of clusters to minimize the expected number

of distances is
√
m (for which 2

√
m distances are needed, on average). Note,

however, that fixing c to this value minimizes the expected number of distance

but it does not mean that this configuration leads to the best classification

accuracy.255

For our work, the clustering process will be performed following the c-means

algorithm [40], one of the most common and successful algorithms for data

clustering [41].2

This algorithm follows an expectation-maximization approach, in which it-

eratively samples are assigned to their nearest centroid, and then a set of new260

centroids are computed to minimize the distance to their samples. In order to

provide a more robust clustering, the initialization of the method is performed

2This method is also referred to as k-means, but we do not want to mislead the meaning

of the parameter k of kNN classification.

18

as described for c-means++ method [42]. This algorithm proposes an initial-

ization (first centroids) that is expected to provide better results and faster

convergence. The algorithm starts with a single random center and the rest of265

the centers are chosen randomly following a decreasing probability with respect

to the distance to the nearest centroid already selected.

Furthermore, as discussed above, these approximated approaches allow to

perform the search more efficiently but they usually lead to a loss of accuracy in

the classification. Considering the operation of the aforementioned clustering-270

based search, this loss would be given by those prototypes that, even being in

the k-nearest neighborhood of the input query, belong to a different cluster of

that selected in the first step.

To alleviate this effect, we propose an extension to the cluster-based ap-

proach described that consists in slightly increasing the size of the clusters to275

allow them to overlap. A description of this step is given in Algorithm 1.

Specifically, the c-means++ returns the set C of clusters computed (line 1).

Note that |C| = c. An iteration is done for every cluster (line 2), after which

all its samples are consulted (line 3). Then, all the k-nearest neighbors of these

samples are incorporated to that cluster (lines 4-5). Therefore, the probability280

for the k-nearest neighbors of a test sample to belong to different clusters is

reduced.

Algorithm 1 ckNN+ clustering process

Require: c ∈ N, k ∈ N;T = (xi, yi)
|T |
i=1

1: C ← cMeans++(T, c)

2: for Ci ∈ C do

3: for xj ∈ Ci do

4: Nxj ← kNNsamples(xj , k, T)

5: Ci ← Ci ∪Nxj

6: end for

7: end for

8: return C

19

(a) Initial set of instances. (b) Search in the initial clus-

ter case, ckNN.

(c) Search in the augmented

cluster case, ckNN+.

Figure 1: Visual illustration of the cluster augmentation process.

Throughout the rest of the work we refer to this strategy as ckNN+ whereas

we use the name ckNN to the case in which the cluster augmentation process

is not applied (avoiding lines from 2 to 7 in Algorithm 1. Figure 1 shows a285

graphical example of the difference.

It should be noted that, despite adding a measure that aims at improving the

accuracy of the classification, this new approach requires a slightly higher num-

ber of distances, so finding the best trade-off between efficiency and accuracy

must be measured experimentally.290

3.3. Classification

The two previous stages (deep network training and creation of extended

clusters) can be seen as preprocesses, since only the training set is necessary

and can be performed completely before the classification stage. In other words,

they do not affect the efficiency of the algorithm in practice.295

At the time of classifying unseen samples, our proposal comprises a series of

sequential stages (shown at a glance in Fig. 2):

1. The raw sample is propagated through the learned network and its feature

vector is extracted from the second-to-last layer (NC representation).

2. The nearest cluster of the sample is calculated and the training instances300

belonging to it are retrieved.

20

Clustering
Cluster

augmentation

Cluster
selection

kNN
D
N
N

Training
data

Test
sample

Preprocess

Figure 2: Diagram of the process.

3. A conventional kNN search is performed within these retrieved data.

The idea of the approach is that these processes complement each other per-

fectly and exploit several synergies for the case of searching in large-scale. On

the one hand, such amount of information allows the deep network to learn a305

good internal representation, while also tending to show the asymptotic guar-

antees of the kNN. On the other hand, the disadvantages of the approximate

search are palliated by both the good representation of the data and the large

amount of data, which in addition to the extended version of the clusters may

mitigate such disadvantages.310

4. Experimental set-up

In this section, we describe the experimental set-up considered for our ex-

periments. This includes the data collection and representation, the neural

network topologies, the evaluation methodology, and the related works used for

comparative purposes.315

All the experiments are performed on Python programming language, us-

ing TensorFlow (neural network library, version 1.2) and Scikit-learn (ma-

chine learning library, version 0.18). The machine used consists of an Intel(R)

Core(TM) i7-4790K CPU running at 4.00GHz. For high-computing perfor-

mance, we used a GeForce GTX 980 GPU with the cuDNN library. However,320

for the results to be more independent of this environment, the efficiency of

the algorithms will not be measured in time but in the number of distances to

21

be computed. We believe that this metric provides a better indicative of the

theoretical efficiency of the algorithms.

4.1. Datasets and representations325

In order to exhaustively assess the proposed method, we have considered a

set of eight data collections that remarkably differ in their number of samples,

classes, and features. A 5-fold cross-validation partitioning has been imple-

mented, being the different classes equally represented in each of the partitions.

At each experiment, one fold is used as test set, whereas the rest are used for330

training. For all cases, the Euclidean distance has been considered as distance

measure for the kNN classifier.

The precise datasets considered are the United States Postal Service (USPS)

digit dataset [43] that consists of images of 16x16 pixels of single handwritten

digits, the Handwritten Online Musical Symbol (HOMUS) dataset [44] with im-335

ages of 40x40 pixels of isolated handwritten music shapes, the NIST SPECIAL

DATABASE (NIST) [45] of handwritten characters from which a subset of the

upper case ones was randomly selected, the MNIST collection that contains im-

ages of 28x28 pixels representing isolated handwritten digits, and four datasets

of the UCI repository [46]: the Gisette dataset of isolated handwritten digits340

that focuses on exclusively separating digits ‘4’ and ‘9’, the Letter collection

that contains handwritten examples of the capital characters from the English

language, the Landsat dataset that comprises satellite images analyzed in four

spectral bands in image neighborhoods of 3x3 pixels, and the Pendigits compila-

tion of handwritten isolated digits. Table 1 summarizes the information related345

to the datasets in terms of their number of samples, classes, descriptors, and

optimal clustering configuration.

For obtaining the NC of each dataset we initially define a series of DNN

architectures. The specific configuration of each network is experimentally

determined—inspired by topologies proposed in similar tasks. The idea, how-350

ever, is that the base DNNs perform similarly close to the state of the art in each

dataset. The precise DNN architectures considered for each dataset are listed in

22

Table 1: Summary of the datasets used in the assessment of the proposed method in terms of

their number of samples, classes, and features. Notation (c×w×h) denotes that the features

are directly the pixels of the image, representing c the number of channels, w the width, and

h the height in pixels. The Optimal clustering column represents the theoretical optimum

number of clusters for each set.

Dataset Samples
Optimal

Classes Features
clustering

USPS 9298 96 10 256 (1× 16× 16)

HOMUS 15200 123 32 1600 (1× 40× 40)

NIST 44951 212 26 1024 (1× 32× 32)

MNIST 70000 265 10 784 (1× 28× 28)

Gisette 7000 84 2 5000

Letter 2000 141 26 16

Landsat 6435 80 6 36 (4× 3× 3)

Pendigits 10992 105 10 16

Average 22985 138 - -

Table 2. While these architectures differ in a number of parameters, all of them

comprise a final fully-connected layer of 128 neurons. Therefore, the NC rep-

resentation considered always consist of a 128-dimensional vector. We checked355

that this length was the one that depicted a generally better performance taking

into account the data collections considered.

The learning of the network weights is performed during 200 epochs by

means of stochastic gradient descent [47] with a mini-batch size of 128 samples,

considering the adaptive learning rate proposed by Zeiler [48] (with default360

parameterization).

4.2. Evaluation methodology

For quantitatively assessing the classification goodness of the system we

consider the F-measure (F1) class-wise measure. Taking one class at a time as

reference, this metric summarizes the correctly classified elements (True Posi-

tive, TP), the misclassified instances from the other classes as being from the

reference one (False Positive, FP), and the misclassified elements from the ref-

23

Table 2: DNN architectures considered for mapping the initial data features of the datasets

to their respective NC representations. Notation Conv(f, w, h) stands for a layer with f

convolution operators of size w × h pixels, FC(n) represents a fully-connected layer of n

neurons, Drop(d) implements a dropout stage with a value of d %, MaxPool(w, h) stands

for the max-pooling operator of dimensions w × h pixels, and UpSamp(w, h) represents an

up-sampling process of size w × h pixels.

Dataset
Network architecture

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

USPS

MNIST
Conv(32x3x3)

Conv(32x3x3)

MaxPool(2x2)

Drop(0.25)

FC(128)

Drop(0.5)

Letter

Pendigits

FC(512)

Drop(0.2)

FC(1024)

Drop(0.2)

FC(512)

Drop(0.2)

FC(256)

Drop(0.2)

FC(128)

Drop(0.2)

Landsat

Conv(64x1x1)

UpSamp(2x2)

Drop(0.3)

Conv(64x2x2)

UpSamp(2x2)

Drop(0.3)

Conv(64x2x2)

UpSamp(2x2)

MaxPool(2x2)

Drop(0.3)

FC(256)

Drop(0.3)

FC(128)

Drop(0.3)

Gisette
FC(4096)

Drop(0.5)

FC(2048)

Drop(0.5)

FC(1024)

Drop(0.5)

FC(512)

Drop(0.5)

FC(256)

Drop(0.5)

FC(128)

Drop(0.5)

HOMUS

NIST

Conv(256x3x3)

MaxPool(2x2)

Drop(0.2)

Conv(128x3x3)

MaxPool(2x2)

Drop(0.2)

Conv(128x3x3)

Drop(0.2)

Conv(64x3x3)

Drop(0.2)

FC(512)

Drop(0.1)

FC(256)

Drop(0.1)

FC(128)

Drop(0.1)

erence class as being examples of one of the others (False Negative, FN) in a

single value as:

F1 =
2 · TP

2 · TP + FP + FN
.

In addition, as the proposed method is based on improving the classification

performance at the expense of including additional instances in the process, we

also analyze the efficiency of the model. When it comes to measuring the effi-365

ciency of the kNN search, it is typical to use the number of distances needed

throughout the process. This is done for several reasons. On the one hand,

it is less dependent on the underlying computer in which the experiments are

conducted. On the other hand, it unifies the criterion when using heteroge-

neous datasets, with a different number of features or even different distances370

(Euclidean, Mahalanobis, Hamming, etc.). In our case, in addition, NC repre-

24

sentations contain always 128 values, thereby being equivalent for all datasets,

and less than the number of features of the original space (with exceptions that

are negligible).

Hence we may be able to assess the improvement achieved in relation to the375

total set size measured as the number of distances computed.

Note that classification performance and set size are generally opposing goals

as improving one of them generally implies a deterioration of the other one, be-

ing then difficult to select an optimal number of clusters c that optimizes the

task. In this regard, additional insights may be gained by assessing this proposal380

from a Multi-objective Optimization Problem (MOP) perspective in which both

the number of distances to compute (or training set size) and the classification

performance are meant to be optimized at the same time. Usually this evalua-

tion is carried out by means of the non-dominance concept: one solution (in this

case, tuple of the classification performance and number of distances computed385

for a number of clusters c) is said to dominate another if, and only if, it is better

or equal in each goal function and, at least, strictly better in one of them. The

Pareto frontier stands for the set of all non-dominated elements and represents

the different optimal solutions to the MOP. Each of these solutions, which is

referred to as Pareto-optimal configuration, are considered the best solutions to390

the problem without any particular priority among them.

4.3. Comparative approaches

In order to comparatively assess the performance of the proposed ckNN+

strategy we shall study and compare the behavior obtained when considering

different configurations. For that we shall initially analyze the improvement395

that the use of the NC representation implies by comparing it to the case when

using the initial feature representations of the datasets.

Additionally, we consider different values of the number of clusters c to study

the influence of that parameter. More precisely, the values studied are 1, 10,

15, 20, 25, 30, 100, 500, and 1000. For all these cases we also examine the400

implications of the cluster augmentation process, that is ckNN+ against ckNN,

25

both in terms of performance and number of distances. Note that the case of

c = 1 is equivalent to performing an exhaustive kNN search as all instances are

grouped into one single cluster.

Finally, we contemplate different values of the number of neighbors k for405

both the cluster augmentation and the final classification stage. More precisely,

the set of values considered are 1, 3, 5, and 7.

5. Results

This section introduces the different experimental results for assessing the

performance of the proposed strategy. For that, we perform three different410

experiments: a first one devoted to thoroughly assess the behavior of the method

proposed in the paper; a second one in which we compare our proposal to other

existing strategies for improving the deficiencies found in the kNN classifier; and

a third set of experiments in which we assess the influence of the use of Neural

Codes in the goodness of the clustering process.415

5.1. Evaluation of the proposed method

This first part of the section analyzes the performance of the proposed

method when considering the experimental scheme introduced in Section 4.2.

These results are shown in Table 3 as the average performance values and per-

centage of distances for all datasets considered. Labels Original and NC de-420

note the use of either the initial feature representation or the neural codes,

respectively. With the same idea, ckNN and ckNN+ represent the cases when

classification is done using the partitions obtained with the initial clustering

process or with the augmented one, respectively. Values in bold represent the

non-dominated solutions obtained.425

Let us initially focus on the case with a single cluster (i.e., clustering process

configured to c = 1), which shall act as a reference to compare with throughout

this analysis section. Note that for this case, no difference in terms of per-

formance or number of distances computed may be appreciated between the

26

Table 3: Average results across the datasets considered for the F1 and number of distances

metrics for each configuration given by the number of clusters c and number of neighbors

k. Original and NC stand for the initial feature space and the neural code representations,

respectively. ckNN and ckNN+ represent the result of the clustering process and the cluster

augmentation stage, respectively. Non-dominated elements are highlighted.

c k

F1 (%) Distances (%)

Original NC Original NC

ckNN ckNN+ ckNN ckNN+ ckNN ckNN+ ckNN ckNN+

1

1 90.0 90.0 98.9 98.9 100.0 100.0 100.0 100.0

3 89.5 89.5 99.1 99.1 100.0 100.0 100.0 100.0

5 89.4 89.4 99.1 99.1 100.0 100.0 100.0 100.0

7 89.1 89.1 99.1 99.1 100.0 100.0 100.0 100.0

10

1 88.8 88.9 98.7 98.7 12.6 14.0 12.3 12.6

3 87.7 88.4 98.8 98.9 12.6 16.8 12.3 13.1

5 87.2 88.2 98.7 98.9 12.6 19.7 12.3 13.9

7 86.6 88.0 98.7 98.9 12.6 22.4 12.3 14.9

15

1 88.3 88.6 98.7 98.7 8.2 9.3 8.5 8.7

3 87.0 87.9 98.8 98.9 8.2 11.7 8.5 9.2

5 86.3 87.8 98.7 98.9 8.2 14.0 8.5 9.8

7 85.6 87.4 98.6 98.9 8.2 16.2 8.5 10.6

20

1 88.2 88.4 98.7 98.7 6.1 7.0 6.6 6.8

3 86.8 87.8 98.7 98.9 6.1 9.0 6.6 7.3

5 86.0 87.5 98.6 98.9 6.1 10.9 6.6 7.9

7 85.1 87.2 98.6 98.9 6.1 12.8 6.6 8.6

25

1 88.0 88.2 98.7 98.7 5.1 5.9 5.0 5.2

3 86.6 87.6 98.7 98.8 5.1 7.5 5.0 5.7

5 85.7 87.3 98.6 98.8 5.1 9.2 5.0 6.2

7 84.9 86.9 98.6 98.8 5.1 10.8 5.0 6.8

30

1 87.8 88.1 98.7 98.7 4.4 5.1 4.2 4.4

3 86.3 87.4 98.7 98.8 4.4 6.6 4.2 4.9

5 85.4 87.1 98.6 98.8 4.4 8.1 4.2 5.4

7 84.6 86.8 98.6 98.8 4.4 9.6 4.2 6.0

100

1 87.1 87.2 98.7 98.7 2.3 2.6 2.3 2.4

3 85.3 86.4 98.7 98.8 2.3 3.3 2.3 2.7

5 84.3 86.1 98.7 98.8 2.3 3.9 2.3 3.1

7 83.5 85.6 98.7 98.8 2.3 4.5 2.3 3.4

500

1 86.7 86.8 98.7 98.7 5.4 5.5 5.4 5.4

3 84.8 85.7 98.8 98.8 5.4 5.7 5.4 5.6

5 84.0 85.4 98.7 98.8 5.4 5.9 5.4 5.7

7 83.3 84.9 98.7 98.8 5.4 6.1 5.4 5.8

1000

1 86.9 87.0 98.7 98.7 10.3 10.4 10.3 10.3

3 85.2 85.9 98.8 98.9 10.3 10.5 10.3 10.4

5 84.5 85.4 98.8 98.8 10.3 10.7 10.3 10.5

7 83.9 85.0 98.7 98.9 10.3 10.8 10.3 10.6

27

initial and augmented clustering schemes (labeled as ckNN and ckNN+ respec-430

tively) as the entire training set is considered for the classification (distances

computed during the classification stage constitute the maximum expected). As

it may be checked, when considering the Original feature space, performance

results are considerably elevated with values around F1 = 90 % for the different

configurations of the kNN algorithm. In addition, the fact that the maximum435

performance is achieved for the k = 1 configuration and that increasing k lowers

the performance somehow suggests that datasets may be hardly noisy, but there

is still room for improvement. In this context, the use of the Neural Code (NC)

representation entails a clear advantage in terms of performance: for all cases,

performance results are improved in up to a 10 %, which leads to error values440

of just 1 % in the F1 metric.

While the aforementioned configuration stands for the one in which the best

accuracy results may be achieved, this is also the most computationally complex

situation since all instances are examined at the classification stage. Thus, it

would be expectable that the use of the clustering-based search (that is, ckNN)445

should provide a more efficient method (less instances are queried during the

classification stage) at the expense of a decrease in the classification perfor-

mance. We shall now examine the obtained results to verify this premise.

As it may be checked, the ckNN cluster-based strategy entails a decrease

in the performance of the system. For instance, focusing on the k = 1 for the450

Original feature representation: in this situation the performance degrades from

a value of F1 = 90 % for c = 1 to a value of F1 = 86.9 % with c = 1000 clusters;

however, paired with that performance decrease, the number of distances is

also reduced from the exhaustive search in the former case to values of roughly

10 % of the distances for the latter. Note that global minimum in the number455

of distances (around 2 % of the total computation) is achieved when selecting

c = 100, which is the closest value to the c = 138 that results from averaging

the optimal number of clusters for each of the datasets studied (cf. Table 1).

In order to tackle this decrease in the performance we consider the ckNN+

cluster augmentation process proposed. As it can be observed, the inclusion460

28

of the neighboring instances for each of the clusters improves the classification

performance of the system: for instance, performance in the case when con-

sidering c = 20 clusters and k = 7 neighbors increases from, roughly, a value

of F1 = 85 % to a value of F1 = 87 % at the expense of computing approx-

imately 13 % of the total number of distances instead of a 6 %. In general465

terms, this cluster augmentation process entails improvements up to a 2 % in

the performance with increases of as much as 10 % in the number of distances.

Considering now the NC feature representation, the situation subtly changes.

The first point to comment is that, as it happened in the case of c = 1, the

use of NC entails a remarkable improvement with respect to the use of the470

raw features of each dataset, reaching an improvement around 10 % and 15 %

in the F1, depending on the particular case. However, the most remarkable

point to highlight is that, with these NC representations, the performance of

the classifier stays relatively steady independently of the number of clusters

considered. This fact suggests that the NC representation involves features that475

properly gather instances representing the same class, thus the clustering process

does not appreciably affect the overall performance but still the number of

distances is remarkably reduced. For example, with 1000 clusters and comparing

with the exact search (c = 1), there is an accuracy loss of only 1% with NC,

instead of the 5% that occurs with the original representation.480

The cluster augmentation process also entails an additional improvement on

the performance of the system that, while less accused than in the case when

considering the raw feature space, also supposes an increase of, as much, a 2 %

in the number of distances.

Having analyzed the classification performance and computational reduction485

as stand-alone measures of merit, we shall now study them jointly considering

the MOP scenario. For the sake of clarity, Fig. 3 graphically shows the results

obtained: Pareto frontiers are obtained separately for each feature representa-

tion (raw features as Original and neural codes as NC); initial and augmented

clusters (ckNN and ckNN+, respectively) are represented by the shape and color490

of the point as depicted in the legend; non-dominated elements are highlighted

29

and their configuration in terms of the number of clusters c and amount of

neighbors k is shown.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

F1
 (

%
)

Distances (%)

Original : Clustering
VC : Clustering

Augmented
Augmented

Non-dominated
Non-dominated

 85

 90

 95

 100

 0 2 4 6 8 10 12 14

b10-k1

b10-k1

b15-k1

b20-k1

b20-k1

b30-k1

b30-k1

b100-k1

b100-k1

b10-k3

b15-k3

b20-k3

b25-k3

b30-k3

b100-k3

b100-k1

Figure 3: Graphical representation of the results obtained. Non-dominated elements are

highlighted.

As a first point to comment is that this graphical representation clearly

shows the advantage of the use of the NC if compared to the case of the raw495

feature: while the latter representation shows a tendency that approaches to a

value of F1 = 90 %, the former method shows a similar asymptotic trend but

approaching a value F1 = 99 %. Also, as previously commented, this represen-

tation allows to easily check that the use of the ckNN+ cluster augmentation

process entails a larger performance improvement in the case when considering500

raw features rather than in the NC one.

The analysis of the non-dominated elements depicts some additional con-

clusions to the aforementioned ones. Focusing on the NC representation case

as it is the one achieving the best overall performance, it can be checked that

most solutions in the Pareto frontier are configurations of the augmented clus-505

ter approach. Such results point out that this enlargement process applied to

the initial clusters obtained endows the system with the precise additional in-

30

stances necessary for the proper compromise between classification performance

and computational complexity, measured as the number of distances computed

at the classification stage.510

Finally, to rigorously analyze the results obtained and derive strong conclu-

sions out of them, we now perform a statistical significance analysis by consider-

ing the non-parametric Wilcoxon signed-rank test [49]. More precisely, the idea

is to assess whether the improvement observed in the classification performance

with the use of the ckNN+ cluster augmentation and the NC representations is515

statistically relevant. Thus, this analysis shall not consider the computational

complexity of the strategy at issue.

Table 4 shows the statistical comparison of the classification performance of

the ckNN+ cluster-augmentation strategy against the initial ckNN cluster-based

method for the raw initial features (Original) and the NC representation (NC).520

For each cluster configuration c, the value of k that maximizes the classification

rate has been selected. Configuration c = 1 is obviated since results for both

strategies are equivalent. Statistical significance has been fixed to a value p <

0.01.

Table 4: Results of the Wilcoxon test comparing the classification performance of the cluster-

augmentation strategy against the initial cluster-based method for the raw initial features

(Original) and the Neural Codes representation (NC). Symbols ✓and its absence represent

that the cluster-augmentation strategy (ckNN+) significantly improves or not over the initial

cluster-based method (ckNN), respectively. The case c = 1 is obviated since results for both

strategies are equivalent. A significance level p < 0.01 has been considered for the analysis.

Feature space
Number of clusters c

10 15 20 25 30 100 500 1000

Original ✓ ✓ ✓ ✓ ✓ ✓

NC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The results of the Wilcoxon test show that, in general, the ckNN+ clus-525

ter augmentation process significantly improves the initial ckNN cluster-based

method, for both the raw feature and NC representation spaces. The only cases

in which this assertion is not accomplished are the configurations of c = 500

31

and c = 1000 clusters when considering the raw initial features in which the

improvement is not as sharp as in the rest of the cases. This fact clearly states530

the advantage and usefulness of the proposed combined strategy of NC rep-

resentations and ckNN+ cluster augmentation compared to the regular ckNN

cluster-based kNN search.

Finally, note that this analysis has considered a statistical significance thresh-

old of p < 0.01, which is more restrictive than the typical threshold of p < 0.05535

commonly found in the Pattern Recognition field. This decision has been mo-

tivated by the fact that with the threshold p < 0.05 all cluster-augmentation

cases (ckNN+) significantly improved over the initial clustering process (ckNN)

for both the Original and NC cases. Thus, using the more restrictive threshold

of p < 0.01 provided additional insights that are not observed in the former540

case.

5.2. Comparison with other strategies for the kNN limitations

Once we have studied the performance of the proposed method we shall

comparatively assess it against other existing strategies which also aim at im-

proving the aforementioned limitations of the kNN classifier. For that we have545

selected a set of representative strategies from the different optimization families

introduced in Section 2.1:

- FSS: In terms of this family of space partitioning techniques we have

selected the k-d tree [19] and ball tree [21] methods. We have configured

them to examine 10, 20, 30, and 40 prototypes in each leaf node.550

- ASS: As of approximate search approaches, we have considered the use

of hashing techniques. Since these techniques also learn a mapping out of

data, its approach is similar to ours, and so they are suitable for compar-

ison. Specifically, we choose LSH forest algorithm [31], Spectral Hashing

[32] and Product Quantization [33]. For the former, we tweaked the algo-555

rithm to consider 10, 20, 30, and 40 trees in the search process.

32

- DR: For this particular family of approaches we have assessed two different

options: on the one hand, we consider the Reduction through Homoge-

neous Clusters (RHC) algorithm [1], which is interesting for this paper

because it is based on clustering; on the other hand, we test the meta-560

algorithm kNNc [30], which receives a DR method as parameter for its

operation. For this latter option, the following DR strategies have been

considered:

– Condensing Nearest Neighbor [24], Multi-Edit Condensing Nearest

Neighbor [50], and Fast Condensing Nearest Neighbor [51].565

– Editing Nearest Neighbor [52] and Multi-Editing [53].

– Farther Neighbor and Nearest to Enemy rank methods [54].

– Decremental Reduction Optimization Procedure 3 [55].

– Iterative Case Filtering Algorithm [56].

– Cross-generational elitist selection, Heterogeneous recombination, and570

cataclysmic mutation algorithm introduced in [57] as a representative

of Genetic Algorithms for DR.

For the comparative, all the methods consider the initial feature space of the

data collections. As in the previous section, we have tested the influence of the

parameter k with values k = 1, 3, 5, and 7.575

The results obtained by these algorithms considering the same evaluation

methodology as in the previous section (data collections, cross-validation schemes,

and metrics) together with the results obtained by the ckNN+method are shown

in Fig. 4. Non-dominance analysis is performed separately for both our approach

and the rest of the algorithms.580

As it can be checked, the results obtained by the proposed ckNN+ method

outperform the rest of the strategies considered in both classification perfor-

mance and number of distances. In terms of classification performance, the

family which achieved the closest results to the ones obtained by the ckNN+ is

the FSS one. Nevertheless note that, while this FSS family of methods achieved585

33

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100

F1
 (

%
)

Reduced size (%)

Non-dominated
ckNN+

DR
FSS

ASS

Figure 4: Comparison of the proposed ckNN+ strategy against other kNN strategies in terms

of number of distances computed and classification performance. Non-dominated elements

are highlighted for each kNN strategy.

results of F1 ≈ 90 %, these results are noticeably far from the performance of

the ckNN+ (almost a 10 % in the F1 measure).

As regards the number of distances computed, the ASS family showed com-

petitive results compared to the ckNN+ method. Distances computed are

around a 5 % of the total number of comparisons to perform. Nevertheless,590

this approximated search is also reflected on the fact that the accuracy of the

classifier is decreased with respect to the FSS methods.

Finally, most of the DR strategies are clearly not competitive against any of

the other strategies considered since the number of distances computed is larger

than the ones computed by the other strategies paired with lower classification595

rates. However, one of the them, namely RHC, is able to achieve very good

results in both accuracy and efficiency, and so it belongs to the non-dominance

front of the compared methods.

34

5.3. Impact of Neural Codes on clustering

As a final analysis of the proposed strategy, in this section we focus on600

studying the clustering performed as a first step of the ckNN+. More precisely,

our intention is to measure the goodness produced by the use of NC within this

stage. To carry out this analysis, we consider the following set of measures,

commonly used for this purpose:

Silhouette Coefficient [58] (SCoeff) takes into account both the average

intra-cluster distance a and the average extra-cluster distance b. Then,

a coefficient is computed as

b− a

max(a, b)
.

Values close to 1 represent compact clusters, whereas negatives values are605

obtained when samples are assigned to wrong clusters.

Calinski-Harabaz Index [59] (CHI) considers the between-clusters disper-

sion and the within-cluster dispersion, depicting a score that is higher

when clusters are dense and well separated.

Homogeneity Score [60] (HSc) is a supervised metric that indicates the av-610

erage homogeneity (ratio of samples from the same class) of the clusters.

Completeness Score [60] (CSc) is also a supervised metric that approaches

to 1 as the completeness (ratio of the samples of the same class that are

assigned to the same clusters) is increased.

Table 5 shows the evaluation performed, comparing the process of clustering615

with the original characteristics or NC. On the one hand, it is observed that

for each comparison, and for every metric, the clustering performed with NC is

better than the corresponding one with original features. On the other hand,

it is also observed that, according to the metrics SCoeff, HSc, and CSc, the

process is degraded as the number of clusters increases. This is reflected even620

in the case of considering NC. However, the CHI measure reflects, unlike the

35

previous ones, that increasing the number of clusters is beneficial as long as NC

is used (the opposite occurs with the original features), reinforcing once again

the use of this type of representation within the proposed approach.

Table 5: Evaluation of the quality of the clustering performed in the first step of ckNN+ as

regards the use of the original features (Original) or the Neural Codes (NC) representation.

Values represent the average with respect to the considered datasets. The higher the values,

the better the performance of the clustering.

c
SCoeff CHI HSc CSc

Original NC Original NC Original NC Original NC

10 0.16 0.38 1395.66 6961.50 0.46 0.78 0.47 0.78

15 0.14 0.38 1147.36 8531.80 0.45 0.73 0.46 0.73

20 0.13 0.37 980.45 9805.35 0.43 0.70 0.44 0.70

25 0.13 0.35 872.00 11288.86 0.42 0.67 0.43 0.67

30 0.12 0.35 793.94 12676.63 0.42 0.65 0.43 0.65

100 0.10 0.23 406.63 23611.29 0.37 0.50 0.39 0.50

500 0.09 0.16 159.17 15659.51 0.32 0.37 0.34 0.38

1000 0.09 0.14 108.00 11731.73 0.30 0.34 0.33 0.35

Results reported above, however, only reflect average values. In order to625

minimize the possibility that the differences are due to chance variation, we

perform again the Wilcoxon signed-rank test. We considered the 8 independent

results (one per number of clusters c) to perform these tests. It resulted in p-

values below 0.01 in all pairwise comparisons assuming that NC provides better

metrics than original features. Therefore, the use of NC leads to better cluster-630

ing processes—according to the metrics considered—with an alpha confidence

level of 99%.

5.4. Evaluation in the presence of attribute noise

Given that the clustering process is a key aspect of our proposal, this section

studies the effect that noise in the instances has on the overall success of the635

task. In this case, the interest is in the noise at the attribute level, since it is

the one that influences the composition of the clusters.

36

c = 1
c = 10
c = 15

c = 20
c = 25
c = 30

c = 100
c = 500

c = 1000

 85

 90

 95

 100

 0 10 20 30 40

F1
 (

%
)

Attribute noise rate (%)

(a) Accuracy

 0

 10

 20

 30

 0 10 20 30 40

D
is

ta
n
ce

s
(%

)

Attribute noise rate (%)

(b) Efficiency

Figure 5: Performance of the ckNN+ with respect to the number of clusters in the presence

of attribute noise.

We perform this evaluation as in the work of Zu and Whu [61], in which

attribute noise is generated synthetically to study its effects in a controlled

environment. The process consists in randomly disturbing the attributes of the640

data set. This perturbation modifies an attribute randomly within the range of

the possible values of that attribute in the domain of the problem. The process

is guided by the parameter attribute noise rate, which indicates the likelihood

that an attribute is modified.

Figure 5 shows the accuracy and efficiency trends of the ckNN+ in the645

presence of attribute noise, with rates of 0, 10, 20, 30, and 40 (%). In each case,

the best value obtained for the different values of k is presented.

As expected, Fig. 5a reports that the accuracy degrades as the noise in-

creases. However, it can be seen that the tendencies are similar for the original

kNN (c = 1). Therefore, we can conclude that performance is equally affected650

than in the brute-force approach.

Concerning efficiency, Fig. 5b shows the average number of distances (in

percentage with respect to c = 1, which computes 100 % of the distances)

needed to classify a sample. Here a clear trend is observed with respect to

parameter c. In the case of few clusters (c = 10, 15, 20, 25, 30), the efficiency655

seems to slightly degrade as the noise at the attribute level increases. However,

37

Original ckNN+

 70

 80

 90

 100

 0 10 20 30 40

F1
 (

%
)

Attribute noise rate (%)

(a) Accuracy

 15

 20

 25

 30

 0 10 20 30 40

D
is

ta
n
ce

s
(%

)

Attribute noise rate (%)

(b) Efficiency

Figure 6: Comparison of performance between the use of original features and ckNN+ in the

presence of attribute noise.

when the number of clusters is high (c = 100, 500), the scheme is much more

robust to this phenomenon.

On the other hand, we depict in Fig. 6 a comparison of the degradation

suffered by our method and that of the original representation of the data.660

For the sake of clarity, both results are shown with the average values of the

different c.

It is observed that our approach is much more robust with respect to ac-

curacy (Fig. 6a), since the trends are much more stable. This is because the

data mapping onto NC alleviates the effects caused by noise at the attribute665

level. Obviously, if the noise is mitigated, the classification is more reliable; in

addition, as presented in the previous Section 5.3, the use of more appropriate

features (in this case, reducing the effects of noise) contributes to a better dis-

tribution of the data in the clusters, and therefore a higher average efficiency in

the search is attained (Fig. 6b).670

6. Conclusions and Future Work

The k-Nearest Neighbor (kNN) rule represents a widely considered super-

vised classification scheme due to its conceptual simplicity and straight-forward

implementation as well as its statistical properties regarding its error bounds and

38

classification performance. As a representative example of instance-based clas-675

sification, kNN does not derive a model out the initial training data considered.

This fact constitutes a disadvantage when large-scale datasets are considered as

all instances of the training data have to be queried whenever a new prototype

has to be classified.

In this paper we take as initial point a two-stage search strategy based on680

clustering for lowering the computational cost of the kNN classifier. The idea

is that the clustering process distributes the prototypes in the training data

in a set of groups and their centroids are retrieved; a query to be classified is

assigned to the cluster according to its closest centroid and the eventual class

is retrieved applying the kNN rule using the elements in the cluster.685

Given that the aforementioned strategy usually entails a decrease in the clas-

sification performance, two modifications are proposed to that scheme: on the

one hand, we propose a strategy for improving the classification rate by solving

issues with instances located close to the cluster boundaries by enlarging their

size; on the other hand, we consider the use of Deep Neural Networks for the690

automatic extraction of feature-based representations (Neural Codes), which

properly gather instances of the same class so that they fall within the same

cluster. Results using a collection of several datasets show that the combined

use of these two strategies entails a considerable reduction in the number of dis-

tances performed at the classification stage with a significant improvement in695

the classification performance when compared to the basic kNN rule. Addition-

ally, the proposed scheme has been exhaustively compared to a set of well-known

strategies for solving the aforementioned kNN deficiencies. Results obtained re-

inforce the conclusions previously gathered about the competitive performance

and low computational as, for both performance and computational cost cri-700

teria, the proposed methods outperforms the rest of the strategies considered.

In addition, the use of Neural Codes has been evaluated according to the qual-

ity of the clusters obtained and tolerance to noise at attribute level. In both

cases, it has been empirically demonstrated that the performance improvement

is remarkable.705

39

Future works consider further analysis of Deep Neural Networks for deriving

the optimal feature representations by studying other loss functions and more

advanced architectures. Also, given the great separability achieved by the deep

feature representations, it seems interesting to apply Prototype Selection and

Generation techniques for the kNN classifier as they may remarkably reduce the710

number of instances in the training set with minimal accuracy losses.

Acknowledgments

This work has been supported by the Spanish Ministerio de Economı́a y

Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R supported

by EU FEDER funds), the Spanish Ministerio de Educación, Cultura y Deporte715

through a FPU Fellowship (Ref. AP2012–0939), and by the Universidad de Ali-

cante through the FPU program (UAFPU2014–5883) and through the Instituto

Universitario de Investigación Informática (IUII).

References

[1] S. Ougiaroglou, G. Evangelidis, RHC: a non-parametric cluster-based data720

reduction for efficient k-NN classification, Pattern Analysis and Applica-

tions 19 (1) (2016) 93–109.

[2] L. Yang, Q. Zhu, J. Huang, D. Cheng, Adaptive edited natural neighbor

algorithm, Neurocomputing 230 (2017) 427–433.

[3] S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient kNN Classification725

With Different Numbers of Nearest Neighbors, IEEE Transactions on Neu-

ral Networks and Learning Systems [Online] (2017) 1–12.

[4] J. Maillo, S. Ramı́rez, I. Triguero, F. Herrera, kNN-IS: An Iterative Spark-

based design of the k-Nearest Neighbors classifier for big data, Knowledge-

Based Systems 117 (2017) 3–15.730

40

[5] S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, J. M. Beńıtez,

F. Herrera, Nearest Neighbor Classification for High-Speed Big Data

Streams Using Spark, IEEE Transactions on Systems, Man, and Cyber-

netics: Systems.

[6] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE transac-735

tions on information theory 13 (1) (1967) 21–27.

[7] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[8] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support

vector machines, IEEE Transactions on Neural Networks 13 (2) (2002)

415–425.740

[9] T. M. Mitchell, Machine Learning, McGraw-Hill, Inc., 1997.

[10] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd Edition,

John Wiley & Sons, New York, NY, 2001.

[11] X. Wu, X. Zhu, G.-Q. Wu, W. Ding, Data mining with big data, IEEE

Trans. on Knowl. and Data Eng. 26 (1) (2014) 97–107.745

[12] Z. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient knn classification

algorithm for big data, Neurocomputing 195 (2016) 143–148.

[13] F. Huang, Y. LeCun, Large-scale learning with SVM and convolutional nets

for generic object categorization, in: Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, CVPR750

2006, Vol. 1, 2006, pp. 284–291.

[14] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN Features Off-

the-Shelf: An Astounding Baseline for Recognition, in: Proceedings of

the 2014 IEEE Conference on Computer Vision and Pattern Recognition

Workshops, CVPRW ’14, IEEE Computer Society, Washington, DC, USA,755

2014, pp. 512–519.

41

[15] Y. Tang, Deep learning using linear support vector machines, arXiv

preprint arXiv:1306.0239.

[16] P. Jain, B. Kulis, I. S. Dhillon, K. Grauman, Online metric learning and

fast similarity search, in: Proceedings of the 21st International Conference760

on Neural Information Processing Systems, NIPS’08, Curran Associates

Inc., USA, 2008, pp. 761–768.

[17] S. Garćıa, J. Luengo, F. Herrera, Data Preprocessing in Data Mining,

Springer, 2015.

[18] J. Wang, H. T. Shen, J. Song, J. Ji, Hashing for similarity search: A survey,765

arXiv preprint arXiv:1408.2927.

[19] J. H. Friedman, J. L. Bentley, R. A. Finkel, An Algorithm for Finding Best

Matches in Logarithmic Expected Time, ACM Transactions on Mathemat-

ical Software 3 (3) (1977) 209–226.

[20] E. Vidal, An algorithm for finding nearest neighbours in (approximately)770

constant average time, Pattern Recognition Letters 4 (3) (1986) 145–157.

[21] T. Liu, A. W. Moore, A. Gray, Efficient exact k-nn and nonparametric

classification in high dimensions, in: Proceedings of the 16th International

Conference on Neural Information Processing Systems, MIT Press, 2003,

pp. 265–272.775

[22] P. Ciaccia, M. Patella, P. Zezula, M-tree: An efficient access method for

similarity search in metric spaces, 1997, pp. 426–435.

[23] L. Nanni, A. Lumini, Prototype reduction techniques: A comparison among

different approaches, Expert Systems with Applications 38 (9) (2011)

11820–11828.780

[24] P. Hart, The condensed nearest neighbor rule (corresp.), IEEE Transactions

on Information Theory 14 (3) (1968) 515–516.

42

[25] S. Garcia, J. Derrac, J. Cano, F. Herrera, Prototype selection for nearest

neighbor classification: Taxonomy and empirical study, IEEE Transactions

on Pattern Analysis and Machine Intelligence 34 (3) (2012) 417–435.785

[26] J. Derrac, C. Cornelis, S. Garćıa, F. Herrera, Enhancing evolutionary in-

stance selection algorithms by means of fuzzy rough set based feature se-

lection, Information Sciences 186 (1) (2012) 73–92.

[27] J. Hamidzadeh, R. Monsefi, H. S. Yazdi, Irahc: instance reduction algo-

rithm using hyperrectangle clustering, Pattern Recognition 48 (5) (2015)790

1878–1889.

[28] N. Garćıa-Pedrajas, A. De Haro-Garćıa, Boosting instance selection algo-

rithms, Knowledge-Based Systems 67 (2014) 342–360.

[29] C.-F. Tsai, W. Eberle, C.-Y. Chu, Genetic algorithms in feature and in-

stance selection, Knowledge-Based Systems 39 (2013) 240–247.795

[30] J. Calvo-Zaragoza, J. J. Valero-Mas, J. R. Rico-Juan, Improving kNN

multi-label classification in prototype selection scenarios using class pro-

posals, Pattern Recognition 48 (5) (2015) 1608–1622.

[31] M. Bawa, T. Condie, P. Ganesan, Lsh forest: self-tuning indexes for simi-

larity search, in: Proceedings of the 14th international conference on World800

Wide Web, ACM, 2005, pp. 651–660.

[32] Y. Weiss, A. Torralba, R. Fergus, Spectral Hashing, in: Advances in Neural

Information Processing Systems, 2008, pp. 1753–1760.

[33] H. Jegou, M. Douze, C. Schmid, Product quantization for nearest neighbor

search, IEEE transactions on pattern analysis and machine intelligence805

33 (1) (2011) 117–128.

[34] M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high di-

mensional data, IEEE Transactions on Pattern Analysis and Machine In-

telligence 36 (11) (2014) 2227–2240.

43

[35] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)810

436–444.

[36] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, S. Carlsson, Factors of

transferability for a generic convnet representation, IEEE transactions on

pattern analysis and machine intelligence 38 (9) (2016) 1790–1802.

[37] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features815

in deep neural networks?, in: Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, K. Q. Weinberger (Eds.), Advances in Neural Information Pro-

cessing Systems (NIPS), 2014, pp. 3320–3328.

[38] A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, Neural Codes for

Image Retrieval, Springer International Publishing, Cham, 2014, pp. 584–820

599.

[39] W. Ren, Y. Yu, J. Zhang, K. Huang, Learning convolutional nonlinear

features for k nearest neighbor image classification, in: Pattern Recognition

(ICPR), 2014 22nd International Conference on, IEEE, 2014, pp. 4358–

4363.825

[40] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Third Edition, Aca-

demic Press, Inc., Orlando, FL, USA, 2006.

[41] L. Rokach, A survey of clustering algorithms, in: Data Mining and Knowl-

edge Discovery Handbook, 2nd ed., 2010, pp. 269–298. doi:10.1007/

978-0-387-09823-4_14.830

[42] D. Arthur, S. Vassilvitskii, K-means++: The advantages of careful seed-

ing, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’07, Society for Industrial and Applied Math-

ematics, Philadelphia, PA, USA, 2007, pp. 1027–1035.

[43] J. Hull, A database for handwritten text recognition research, IEEE Trans-835

actions on Pattern Analysis and Machine Intelligence 16 (5) (1994) 550–554.

44

[44] J. Calvo-Zaragoza, J. Oncina, Recognition of Pen-Based Music Notation:

the HOMUS dataset, in: Proceedings of the 22nd International Conference

on Pattern Recognition (ICPR), Stockholm, Sweden, 2014, pp. 3038–3043.

[45] R.-A. Wilkinson, J. Geist, S. Janet, P.-J. Grother, et al., The first census840

optical character recognition system conference, Tech. rep., US Department

of Commerce (1992). doi:10.18434/T4H01C.

[46] M. Lichman, UCI Machine Learning Repository (2013).

URL http://archive.ics.uci.edu/ml

[47] L. Bottou, Large-scale machine learning with stochastic gradient descent,845

in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[48] M. D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint

arXiv:1212.5701.

[49] J. Demsar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine Learning Research 7 (2006) 1–30.850

[50] B. V. Dasarathy, J. S. Sánchez, S. Townsend, Nearest Neighbour Editing

and Condensing Tools-Synergy Exploitation, Pattern Anal. Appl. (2000)

19–30.

[51] F. Angiulli, Fast Nearest Neighbor Condensation for Large Data Sets Clas-

sification, Knowledge and Data Engineering, IEEE Transactions on 19 (11)855

(2007) 1450–1464.

[52] D. L. Wilson, Asymptotic Properties of Nearest Neighbor Rules Using

Edited Data, Systems, Man and Cybernetics, IEEE Transactions on SMC-

2 (3) (1972) 408–421. doi:10.1109/TSMC.1972.4309137.

[53] P. A. Devijver, J. Kittler, Pattern recognition: A statistical approach, Pren-860

tice Hall, 1982.

45

[54] J. R. Rico-Juan, J. M. Iñesta, New rank methods for reducing the size

of the training set using the nearest neighbor rule, Pattern Recognition

Letters 33 (5) (2012) 654–660.

[55] D. R. Wilson, T. R. Martinez, Instance pruning techniques, in: Proceedings865

of the Fourteenth International Conference on Machine Learning, ICML

’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997,

pp. 403–411.

[56] H. Brighton, C. Mellish, On the Consistency of Information Filters for Lazy

Learning Algorithms, in: J. Żytkow, J. Rauch (Eds.), Principles of Data870

Mining and Knowledge Discovery, Vol. 1704 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 1999, pp. 283–288. doi:10.1007/

978-3-540-48247-5_31.

[57] J. R. Cano, F. Herrera, M. Lozano, On the Combination of Evolutionary

Algorithms and Stratified Strategies for Training Set Selection in Data875

Mining, Appl. Soft Comput. 6 (3) (2006) 323–332. doi:10.1016/j.asoc.

2005.02.006.

[58] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis, Journal of Computational and Applied Math-

ematics 20 (1987) 53–65.880

[59] T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Commu-

nications in Statistics-theory and Methods 3 (1) (1974) 1–27.

[60] A. Rosenberg, J. Hirschberg, V-measure: A conditional entropy-based ex-

ternal cluster evaluation measure, in: EMNLP-CoNLL 2007, Proceedings

of the 2007 Joint Conference on Empirical Methods in Natural Language885

Processing and Computational Natural Language Learning, June 28-30,

2007, Prague, Czech Republic, 2007, pp. 410–420.

[61] X. Zhu, X. Wu, Class noise vs. attribute noise: A quantitative study, Arti-

ficial Intelligence Review 22 (3) (2004) 177–210.

46

