
Elsevier required licence: © <2018>. This manuscript version is made available under the

CC‐BY‐NC‐ND 4.0 license http://creativecommons.org/licenses/by‐nc‐nd/4.0/

Accumulating regional density dissimilarity for concept drift detection in data
stream

Anjin Liua, Jie Lua,∗, Feng Liua, Guangquan Zhanga

aCentre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Australia

Abstract

In a non-stationary environment, newly received data may have different knowledge patterns to the data used to train

learning models. As time passes, the performance of learning models becomes increasingly unreliable. This problem is

known as concept drift and is a common issue in real-world domains. Concept drift detection has attracted increasing

attention in recent years, however, hardly any existing methods pay attention to small regional drifts, and their drift

detection accuracy may vary due to different statistical significance test. To address these problems, this paper presents

a novel concept drift detection method that is based on regional density estimation, named nearest neighbor-based

density variation identification (NN-DVI). It consists of three components. The first one is a k-nearest neighbor-

based space partitioning schema (NNPS) which transforms unmeasurable discrete data instances into a set of shared

subspaces for density estimation. The second one is a distance function that accumulates the density discrepancies

in these subspaces and quantifies the overall discrepancies. The last component is a tailored statistical significant test

by which the confidence interval of a concept drift can be accurately determined. The distance applied in NN-DVI

is sensitive to regional drift, and has been proven to follow a normal distribution. As a result, both the accuracy and

false alarm rate of NN-DVI are statistically guaranteed. In addition, several benchmarks have been used to evaluate the

method, including both synthetic and real-world datasets. The overall results show that NN-DVI has better performance

in terms of addressing concept-drift-detection-related problems.

Keywords: concept drift, dataset shift, changing environments, covariate shift, empirical density estimation

∗. Corresponding author
Email addresses: Anjin.Liu@student.uts.edu.au (Anjin Liu), Jie.Lu@uts.edu.au (Jie Lu),

Feng.Liu-2@student.uts.edu.au (Feng Liu), Guangquan.Zhang@uts.edu.au (Guangquan Zhang)

Preprint submitted to Pattern Recognition 17 avril 2018

1. Introduction

As technology advances, it has become increasingly easier to collect and organize data from different sources.

Details of daily life that were previously unavailable can now be acquired and stored in mobile devices [15]. These

seemingly insignificant details convey an enormous amount of valuable information and have certain patterns. When

these details come with timestamp, it becomes streaming data. In the absence of outside interference, the patterns

of a person’s daily routine will not change. However, this assumption usually does not hold [36, 44]. We live in an

interactive world. People’s daily routines are easily changed due to special events, as well as the impact of companies’

or countries’ new policies. Learning models trained to discover knowledge patterns have to consider pattern drifts as

time shifts [24, 39]. A wide range of machine learning problems need proper solutions to handle such a dynamic envi-

ronment, for example, personal assistance applications that deal with information filtering, macroeconomic forecasts,

bankruptcy prediction and individual credit scoring [15].

The term concept drift in machine learning field refers to a phenomenon in knowledge patterns where data dis-

tribution continues to change over time [41]. As concepts change, new data may no longer conform to the patterns

induced from historical data [45], and such conflicts will exert a negative impact on subsequent analysis tasks. More

importantly, in real-world scenarios, these types of changes are barely perceptible [46, 45]. For this reason, instead of

making an assumption in a stationary environment, an effective learning model must always be alert to concept drift,

and track and adapt to them quickly [18, 28, 47].

The root causes of concept drift is the variation in the distribution of the underlying data between different time

periods. So far, the various concept drift adaptation algorithms that have been developed can be divided into two

categories [15, 18, 44, 45] : 1) active drift detection and adaptive learning ; or 2) passive online learning with a for-

getting mechanism. Category 1) methods actively detect concept drifts at every time step and react after confirming

a drift. They can be further divide into three subcategories [46] : a) data distribution-based drift detection, b) learner

output-based drift detection and c) learner parameter-based drift detection. These detection algorithms are also called

drift trigger techniques. In contrast, category 2) methods attempt to learn drifts incrementally with each new piece

of arriving data, unlike active detection that attempts to detect a drift at each time step, this strategy assists learning

models to adapt to new environments gradually [18, 44].

In this paper, we focus on addressing the weaknesses in distribution-based drift detection algorithms. Since these

algorithms directly address the root causes of concept drift, and are capable of representing corresponding confidence

intervals, they have been reported as the most accurate drift detection methods [14, 34, 45, 53]. Although this type of

drift detection algorithm has made remarkable achievements, they still face the following bottlenecks :

1) Regional drifts were not taken into consideration and drift sensitiveness was increased at a cost of increasing

false alarms. Existing algorithms detect drifts in terms of the entire sample set, but do not consider any regional

2

changes in sub-sample sets. As a result, the test statistics of regional drifts may eventually be diluted by stable regions,

which decreases sensitivity [24]. Even if the algorithms can successfully capture a distribution drift caused by regional

density inequality, they are not able to distinguish whether this drift is caused by a serious regional drift or a moderate

global drift ;

2) Existing distribution-based drift detection methods lack tailored statistical significance test. For example, Dasu,

et al. [14] used bootstrapping [17] for statistical analysis, and Shao, et al. [53] used the Wilcoxon test. From their

experiments, we can see that different significance tests result in different performance outcomes. Statistical analysis

is critical to drift detection accuracy, and adequate explanation is indispensable to justify the relationship between

significance tests and test statistics [34]. Therefore, to improve the sensitivity of drift detection and to propose a

tailored significance test, this paper proposes a novel concept drift detection algorithm, called the nearest neighbor-

based density variation identification (NN-DVI). NN-DVI requires no prior knowledge of the data distribution, and

instead, estimates the dissimilarity between data sets in terms of instances’ neighbors. Compared to other distribution-

based drift detection algorithms, the proposed NN-DVI method demonstrates the following advantages :

— It is robust to one-dimensional data, as well as high-dimensional data.
— It is sensitive to concept drift caused by regional density changes and is robust to noise.
— The distribution of the proposed distance is proven theoretically which provides a statistical bound to guarantee

the number of false alarms.
— It can describe detected changes by highlighting suspicious regions, and has been tested in real-world applica-

tions.

The rest of this paper is organized as follows. In section 2, the problem of concept drift is formally defined and some

of the-state-of-art drift detection and adaptation algorithms are introduced. Section 3 introduces the preliminaries.

Section 4 formally defines the proposed nearest neighbor-based density variation identification (NN-DVI) algorithm.

Section 5 discusses how to select a proper neighborhood to construct the data model. Section 6 details the settings

for the experiments and outlines the performance of NN-DVI on both synthetic and real-world datasets. Section 7

concludes this study with a discussion of future work.

2. Literature Review

2.1. Problem Description : Concept Drift and Related Research Topics

Concept drift was first proposed by [52]. It is formally defined as follows : at a time step t, a batch of observations

is given, denoted as St = d1, . . . , dm, where m is the batch size, di = (Xi, yi) is one observation (or a data instance),

Xi is the feature vector, yi is the label, and St follows a certain distribution Ft(X, y). Concept drift occurs whenever

there is a statistically significant difference between two consecutive observation sets St, St+1 that have Ft(X, y) 6=

Ft+1(X, y), denoted as ∃t : pt(X, y) 6= pt+1(X, y) [21, 43, 44, 56]. If we further decompose pt(X, y) into two

parts as pt(X, y) = pt(X) × pt(y|X), we could say there are two sources of concept drift : one is the drift of pt(X)

3

along with the time variable t, which can also be written as p(X|t) ; and the other is pt(y|X), which is the drift of the

conditional probability of the feature vector X [46].

Concept drift has been given different names, such as dataset shift [48, 54] or concept shift [42, 50, 56]. Other

related terminologies were introduced in [49]’s work. The authors proposing that concept drift or shift is only one

subcategory of dataset shift and the dataset shift consists of covariate shift, prior probability shift and concept shift.

Moreover, they formally defined that : 1) dataset shift appears when training and testing joint distributions are different

which is ∃t : pt(X, y) 6= pt+1(X, y) ; 2) covariate shift appears only in X → y problems, and the research focus is

the drift in pt(X) while pt(y|X) remains unchanged ; 3) prior probability shift appears only in y → X problems, and

the research focus is the drift in pt(y) while pt(X|y) remains unchanged ; and 4) concept shift (drift) focuses on the

drift of pt(y|X) while pt(X) remains unchanged in X → y problems and the drift of pt(X|y) while pt(y) remains

unchanged in y → X problems. These definitions clearly state the research scope of each research topic. However,

since concept shift (drift) is usually associated with covariate shift and prior probability shift, an increasing number of

publications [21, 44, 45, 40] refer to the term concept drift in relation to the problem that ∃t : pt(X, y) 6= pt+1(X, y).

Therefore, we use the term concept drift, instead dataset shift, in this paper.

2.2. Concept Drift Detection and Adaptation Algorithms

A wide range of algorithms has been developed to address concept drift problems. Some popular ensemble

learning-based algorithms are the streaming ensemble algorithm (SEA) [55][dynamic weighted majority (DWM)

[35], Learner++ NSE [18], leverage bagging [9], Diversity for Dealing with Drifts (DDD) [47], Dynamic adaptation

to concept changes (DACC) [30], and Accuracy Updated Ensemble (AUE1, AUE2) [12, 13]. A detailed survey about

these algorithms can be found in [22]. These algorithms take the advantages of ensemble learning to minimize the

damage caused by concept drift. By changing the weights of committee members (base classifiers), they can smoothly

adapt to new concepts. Another large group of concept drift detection algorithms is learner accuracy-based drift de-

tection, which includes the drift detection method (DDM) [18], early drift detection method (EDDM) [4], adaptive

windowing (ADWIN) [6], CI-CUSUM [2, 3], exponentially weighted moving average charts for detecting concept

drift (ECDD) [51], concept drift detection through resampling [25], and Hoeffding’s inequality-based drift detection

method (HDDM) [19]. These algorithms track the fluctuations in a learner’s error-rate. If the fluctuations exceed the

predefined statistical bounds, a drift adaptation process is triggered. Other novel drift adaptation algorithms are : a)

recurrence drift adaptation : SAMkNN [44], Just-in-time classifiers for recurrent concepts [1] ; b) active learning al-

gorithms [38] ; c) time dependency algorithms : FISH1, FISH2, FISH3 [37] and some famous concept-drift friendly

incremental learners, such as Concept-adapting Very Fast Decision Tree (CVFDT) [27].

These algorithms can effectively detect and adapt to the changes of newly arrived data, once the changes are

considered significant. However, in some cases, if a drift happens in a local region, and the overall changes are not

4

considered significant, such changes will not be addressed. For example, in a spam filtering system, if one user only

changes her interest in car sales-related emails and all other topics remain stable, considering car sales-related emails

only comprise a very small percentage of all her emails, this small change may not be considered as significant to the

overall user’s interests.

To address local regional drifts, in some publications [7, 5], the authors applied a decision tree model to detect

changes in the online error-rate in each internal tree node to identify drifted nodes, and then updating the nodes res-

pectively. The experimental results showed a good performance in detecting and adapting the drifts. Similar algorithms

for regression problems can be found in [20, 28, 29]. However, these algorithms are based on decision tree models,

which may not be easy to highlight drifted data instances. In addition, for some decision tree models, constrains may be

applied to construct tree nodes. For example, CVFDT normally requires to observe 200 data instances before attemp-

ting to split the nodes [27]. If a regional drift occurs within the 200 data instances, the entire nodes will be updated, as

a result, regional drifts in this area will not be identified.

2.3. Drift Detection via Non-Parametric Distribution Analysis

In probability theory, the distribution of data is commonly described by a probability density function (PDF).

Admittedly, if a data stream fits a certain distribution, the best way of tracking concept drift is to monitor the change

in its PDF’s parameters [33, 43]. However, this presumption may not always hold. In most cases, it is impossible to

abstract a PDF from given data. Compared to tracking the parameter changes of PDFs, mapping data sets to non-

parametric models and detecting the difference between these models is a more flexible approach [33, 43].

According to the literature, the first formal treatment of drift detection in data streams was proposed by [34]. In

their study, they point out the most natural notion of distance between distributions is total variation as defined by :

TV (P1, P2) = 2supE∈ε|P1(E)− P2(E)| (1)

or equivalently, when the distributions have the density functions f1 and f2

distL1 =

∫
|f1(x)− f2(x)|dx (2)

This provides practical guidance on the design of a distance function for distribution discrepancy analysis. Ac-

cordingly, [34] proposed a family of distances, called relativized discrepancy, denoted as ØA and ΞA. In addition,

[34] also presents the significance level of the distance according to the number of data instances. The bounds on the

probabilities of missed detections and false alarms are theoretically proven, using Chernoff bounds and the Vapnik-

Chervonenkis dimension. However, experiment results show that the ØA, ΞA statistics only outperform other statistics

on uniform and normal distribution, while on exponential, binomial and Poisson distributions, ØA, ΞA performs si-

milar to or even worse than the others. With regard to the data modelling stage, [34] does not propose any novel

high-dimensional friendly data models. Instead, they stress that a suitable model choice is an open problem.

5

Later, [14, 46] published another two distribution-based algorithms for concept drift detection. In [14], a kdqTree-

based space partitioning algorithm was exploited to estimate data distributions empirically. Intuitively, each cell (a

leaf node on the kdqTree) can be seen as a bin of the empirical distribution. By dividing the number of instances

located in a cell by the total number of instances, an estimated empirical-PDF (epdf) can be acquired. They then adopt

the Kullback-Leibler divergence as the test statistics. Their statistical significance test is a form of bootstrapping. In

[46], the authors proposed an enhanced competence model and applied an empirical distance as the test statistics.

This statistical significance test is a non-parametric permutation test. According to their experiments, the competence

model achieved much better results. Nevertheless, regional concept drift has still not been resolved.

3. Preliminary

An important element of this research is the multiset theory [11]. In contrast to classic set theory, multiset theory

defines a multiset (or bag) as a collection of elements in which duplicates of the elements are allowed. The multiplicity

of an element, denoted as m(x), is the count of element x in a multiset. The cardinality is the total number of elements

in a multiset, including repeated memberships. For example, in the multiset A = {a, a, b, c, c, c}, the multiplicities of

the members a, b and c are respectively 2, 1 and 3, and the cardinality of A is 6. A multiset can be formally defined

as :

Definition 1. [11](Multiset) A multiset is defined as a 2-tuple (A, m) whereA is a set of elements andm : A→ N+

is the multiplicity function from A to the set N+ = {1, 2, 3, . . .}. Formally, a multiset is denoted as

M = {(a,m(a)) : a ∈ A,m : A→ N≥1} (3)

The multiplicity operations involved in this Chapter are listed below.

Definition 2. [11](Multiset Indicator Function) Indicator function IA : X → N, is defined by

IA(x) =

{
m(x), if x ∈ A
0, if x /∈ A

(4)

Definition 3. [11](Multiset Intersection) Intersection indicator function of multiset A and B on element x is

IA∩B(x) = min{IA(x), IB(x)} (5)

Definition 4. [11](Multiset Union) Union indicator function of multiset A and B on element x is

IA∪B(x) = max{IA(x), IB(x)} (6)

Definition 5. [11](Multiset Difference) The set difference indicator function of multiset A to B on element x is

IA\B(x) = max{0, IA(x)− IB(x)} (7)

Definition 6. [11](Multiset Element Sum) The sum indicator function of multiset A and B on element x is

IA]B(x) = IA(x) + IB(x) (8)

6

Incoming Data

New Abstracted Data

Model

Historical Abstracted

Data Model

Dissimilarity

Measurement

Dissimilarity

Significance Test

Historical Data

1) Data Modelling

2) Distance Function:

total variation

3) Statistical Significance Test:

permutation test

FIGURE 1: A general framework for distribution-oriented concept drift detection

Definition 7. [11](Multiset Cardinality) The cardinality of a multiset A is the sum of the indicator function values

|A| =
∑
x∈X

IA(x) (9)

where X is the set of unique element in A

These multiplicity functions provide the basic set of operators for our algorithm.

4. Nearest Neighbor-based Density Variation Identification

Data distribution-based concept drift detection has been reported as the most sensitive and convincing detection

method [46, 45] because it directly addresses the root causes of concept drift and can represent the corresponding

confidence interval. According to the literature, a typical distribution-based detection method consists of three compo-

nents. The first component is a data representation model through which critical information is retrieved and irrelevant

details are discarded. The second component is a specific dissimilarity function designed to measure the discrepancies

between the data models. One of the most natural notions for the distance between distributions is the total variation or

the L1 norm [33]. The third component is a statistical significance test. Statistical significance, namely the p-value, is

the probability of obtaining the least extreme result given that a null hypothesis is true. In drift detection, the null hypo-

thesis is true when the detected discrepancies are not caused by concept drift. As a non-parametric test, a permutation

test is a good option to empirically estimate statistical significance. An overall framework for distribution-oriented

concept drift detection is summarized in Figure 1.

In this section, we formally present the proposed drift detection method (NN-DVI). NN-DVI consists of three

parts. The first part is a data modeling approach which retrieves critical information and presents data sets as an

abstracted model. This is explained in detail in Section 4.1. The second part is a distance function that accumulates

regional density changes to quantify the overall discrepancy between data sets. Section 4.2 gives the definition and

theorems related to this distance. The third part is a tailored statistical significant test for the distance. In Section 4.3,

7

FIGURE 2: Conventional space partitioning schema maps data instances into larger bins, and uses these bins to measure the similarity between
datasets. Different bin sizes will give different answers. For example, the bin size of Figure 2 (c) is too small so that each block only contains one
instance. As a result, the intersection set of green dots and blue dots is empty. However, in Figure 2 (d), the intersection set has 2 elements.

we further discuss the property of the distance and theoretically prove its distribution. Finally, Section 4.4 provides the

implementation details of NN-DVI.

4.1. Modelling Data as a Set of High-Resolution Partitions

Space partitioning is defined as the process of dividing a feature space into two or more disjoint subsets. Any data

instance in the feature space can then be identified as residing in exactly one of the subsets. When dealing with discrete

datasets, it is often infeasible to directly estimate the similarity between data instances [14]. One of the most popular

solutions is to accumulate the differences of empirical probability density through the divided non-overlapping subsets

[14]. For example, a histogram is one of the most popular ways to assess the probability distribution of a given variable

by depicting the frequencies of observations occurring in certain ranges of values (bins), where the bins are the disjoint

subsets. In concept drift problems, if two sample sets are drawn from an identical distribution, every partition should

have a similar number of data points, namely the empirical probability density (num of data points in one partition
total num of data points) in

each partition will be similar. Otherwise, a statistical significant difference between their empirical probability density

will be found.

Currently, in related research, space partitioning methods directly contribute to the accuracy of drift detection [45].

As shown in Figure 2, if a partitioning schema cannot explicitly map similar items into the same partitions, like the

8×8 partitioning schema, the similarity between sample sets will always be zero. As a result, the detected density

change will be invalid. By the same token, if a partitioning schema mistakenly maps non-similar items into the same

partitions, the dissimilarity between testing sample sets will always be zero. A drift detection algorithm will lose its

sensitivity to density drifts, especially when only a few data instances are available for evaluating the partitioning

schema. Optimizing space partitioning methods for concept drift detection is still an open problem [34].

Motivated by this issue, we propose a novel nearest neighbor-based partitioning schema (NNPS). The fundamental

idea behind the NNPS is to find the minimum shared particles between instances instead of the shared partitions

to which instances belong. Instead of mapping a data instance into a lower granularity presented by partitions or

bins, expanding the data points into a hypersphere can preserve much more of the instance’s details. For example, as

shown in Figure 3(b), in terms of a two-dimensional feature space, the expanded data points are indicated by blue and

8

FIGURE 3: The proposed instance-oriented space partitioning schema aims to find the primary elements that consist of data instances, and then use
these elements to measure the similarity between datasets. In a 2d domain, let us consider each data instance as a circle rather than a dot and the
entire domain is a by n×n pixels square, as shown in Figure 3(b). Then the pixels are the primary elements which constitute the data instances, and
data instances can be represented by a set of pixels located in their circles. Therefore, the similarity between instances can be simply estimated by
counting the shared pixels located in the overlapping regions, such as the similarity between d1 and d2 can be estimated by |p2|

|p1|+|p2|+|p3|
, where

|p1| indicates the number of pixels in region p1 as shown in Figure 3(c)

green circles. The partitions are the non-overlapping regions, as shown in Figure 3(c), {p1, . . . , p15}, and the instance

particles are the pixels of the figure. Then, the probability density discrepancies can be estimated by accumulating the

number of overlapped pixels, namely the overlapping area.

This partitioning schema performs well with two-dimensional data. However, it becomes increasingly complex

as the dimensionality increases. This is because the intersecting regions between hyperspheres are difficult to expli-

citly calculate in high dimensional space. Therefore, to further optimize our partitioning schema, we use a k-nearest

neighbor model to replace the hyperspheres model.

An intuitive explanation for how a nearest neighbor model describes these instance particles is that close located

data instances have hidden connections, and such connections can be used as the most basic element to constitute data

instances. As shown in Figure 4(d), unlike conventional partitioning schemas, which group instances into different

partitions, NNPS slices an instance into several particles, and uses these particles to constitute instances. An overview

of the difference between the NNPS and conventional partitioning schemas is shown in Figure 4(e). To overcome the

bias caused by high granule mapping, we propose our NNPS to extend instances into a more detailed granule. This

process is also called instance discretization or instance quantization. Instead of measuring similarities in a conven-

tional space partitioning schema, applying shared instance particles can pass more instance details to the sample sets,

thereby making similarity measures more sensitive to small changes. The concept of instance particles is formally

defined as follows.

Definition 8. (Instance Particle) Given a di ∈ D, if the set Ki contains all neighbors of di, then an instance particle
based on di is defined as pdi = (di,Ki).

Example 1. Denote the data sample set as D = {d1, d2, d3, d4} and the neighbor sets are K1 = {d1, d2}, K2 =
{d1, d2, d3}, K3 = {d2, d3, d4}, K4 = {d3, d4}. Then the instance particles are :

pd1
= p(d1,K1) = (d1, {d1, d2})

pd2
= p(d2,K2) = (d2, {d1, d2, d3})

pd3
= p(d3,K3) = (d3, {d2, d3, d4})

pd4
= p(d4,K4) = (d4, {d3, d4})

(10)

9

FIGURE 4: Using a k-nearest neighbor data presenting model to replace the hyperspheres model, the arrow in (b) indicates the relationship of
k-nearest neighbors. For example, d1 → d4 indicates that d4 is a knn member of d1 while d1 is not a knn member of d4. As long as there is a
connection between two data instances, we consider that they are neighbors. Then the datasets can be presented as a set of connections, as shown
in (c). If we consider each connection as one component of a data instance, namely a slice of instance, then the data instance d1 is a composite of
one slice of itself, one slice from d2 and one slice from d4, as shown in (d). Then, (e) illustrates the difference between conventional partitioning
methods and the NNPS

The proposed NNSP breaks one data instance into a set of instance particles, thereby transforming each discrete

data instance into a set of shared instance particles. As a result, the differences between data instances can be preserved

for measuring the distance between sample sets.

Definition 9. (Instance Particle Group) Given an instance dk ∈ D, the particle group of dk is defined as P(dk) =
{pdi : if dk ∈ Ki, i = 1, 2, . . . , |D|}, where pdi = (di,Ki).

Example 2. Referring to example 1, the data instances belonging to D represented by the instance particles are :
P(d1) = {pd1

,pd2
}

P(d2) = {pd1 ,pd2 ,pd3}
P(d3) = {pd2 ,pd3 ,pd4}
P(d4) = {pd3

,pd4
}

(11)

Definition 10. (Instances Particle Group) Given a sample set Sk ⊆ D, the particle group of Sk is defined as
P(Sk) = {

⋃
di∈Sk P(di)}, where P(di) is the particle group of di.

Example 3. Referring to example 1, and given two sample sets S1 = {d1, d2}, S2 = {d3, d4}, then we have{
P(S1) = P(d1) ∪P(d2) = {pd1

,pd2
,pd3
}

P(S2) = P(d3) ∪P(d4) = {pd2
,pd3

,pd4
}

(12)

Since the data instances can be represented as a set of instance particles, this offers a higher resolution to calculate

the distance between the sample sets. The next step is to even out the weight of the instance particles and the weight

of instances represented by instance particles. As shown in Example 2, the number of particles in a data instance may

10

differ from instance to instance, |P(d1)| = 2, |P(d2)| = 3, |P(d3)| = 3, |P(d4)| = 2, resulting in inconsistencies

between the instances’ weight. To even out the weight of instance particles and instances simultaneously, we introduce

the lowest common multiple (LCM), LCM({|P(dj)| : ∀dj ∈ D}) as the multiplicity function. Then a uniform

weighted data instance can be represented by a multiset of particles.

Definition 11. (Instance Particle Set) Given an instance dk ∈ D, a multiset of instance particles of dk in terms of
NNPS is defined as

Mnnps
dk

= {(pdi ,m(pdi)) : pdi ∈ P(dk),m(pdi) =
Q

|P(dk)|
} (13)

where Q is the lowest common multiple of {|P(dj)| : ∀dj ∈ D}.

Example 4. Referring to Example 1, we have multiset represented data instances :
Mnnps

d1
= {(pd1

, 3), (pd2
, 3)}

Mnnps
d2

= {(pd1
, 2), (pd2

, 2), (pd3
, 2)}

Mnnps
d3

= {(pd2
, 2), (pd3

, 2), (pd4
, 2)}

Mnnps
d4

= {(pd3
, 3), (pd4

, 3)}

(14)

Remark. The multiplicity function can be generalized as LCM({w · |P(dj)| : ∀dj ∈ D}), where w is the weight of

instance di and w ∈ N. If a data set is uniformly weighted, the w will equal to one.

Theorem 1. Mnnps
di

= Mnnps
dj

if and only if P(di) = P(dj)

Proof. Obviously

Accordingly, a data sample set S represented by instance particles is a cumulative multiset sum of Mnnps
dk

that

∀dk ∈ S, namely Mnnps
S =]dk∈SM

nnps
dk

Definition 12. (Instances Particle Set) Given a sample set S ⊆ D, a multiset of instance particles of S in terms
of NNPS is defined as

Mnnps
S = {(pdi ,m(pdi)) : pdi ∈ ∪dk∈SP(dk),m(pdi) =

∑
dk∈S

IMnnps
dk

(pdi)} (15)

Example 5. Referring to Example 1 and 3, we have multiset represented sample sets :{
Mnnps

S1
= Mnnps

d1

⊎
Mnnps

d2
= {(pd1

, 5), (pd2
, 5), (pd3

, 2)}
Mnnps

S2
= Mnnps

d3

⊎
Mnnps

d4
= {(pd2

, 2), (pd3
, 5), (pd4

, 5)}
(16)

Theorem 2. Given a data instance di and a data sample set S, if di ∈ S, then Mnnps
di

⊆Mnnps
S

Proof. Obviously

Corollary 1. Given a sample set Si ⊆ D, then Mnnps
Si

⊆Mnnps
D

Proof. Obviously

In summary, NNPS aims to extend instances into a lower granularity to provide a more detailed shared subspace for

measuring similarity and dissimilarity. In NNPS, each data instance is a partition, and the hidden relationships between

11

instances are the primary elements that lie in the regions. Compared to conventional “bin”-based partitioning methods,

which only consider the similarity between data instances as 1 (located in the same bin) or 0 (located in different bins),

NNPS can preserve the similarity between data instances, therefore becoming more sensitive to small discrepancies.

In addition, the datasets presented by NNPS are the accumulation of instance particles from every partition. As a

result, the density discrepancies in partitions will also be accumulated and reflected in the similarity or dissimilarity

measurement.

4.2. The Distance Measurement of Sample Sets in terms of NNPS

Since data instances and datasets are now presented by multisets, the distance between them can be quantified

by set-related metrics in terms of Definition 1, Definition 2, Definition 3, Definition 4, Definition 6, Definition 5,

Definition 7. The distance function applied in this paper quantifies the number of different instance particles between

two given multisets, denoted as dnnps.

Definition 13. (NNPS dissimilarity measurement) Given two sample sets A,B ⊆ D, the NNPS-based dis-
tance between them is calculated by accumulating the differences in the number of instance particles, and it can be
normalized by dividing the number of unique instance particles, denoted as

dnnps(Mnnps
A ,Mnnps

B) =
1

|P(A) ∪P(B)|
∑

pdi∈P(A)∪P(B)

|IMnnps
A

(pdi)− IMnnps
B

(pdi)|
IMnnps

A
(pdi) + IMnnps

B
(pdi)

(17)

Example 6. Referring to Example 5, we have the

dnnps(Mnnps
S1

,Mnnps
S2

) =
1

|P(S1) ∪P(S2)|
·

(
|IMnnps

S1
(pd1)− IMnnps

S2
(pd1)|

IMnnps
S1

(pd1) + IMnnps
S2

(pd1)

+
|IMnnps

S1
(pd2

)− IMnnps
S2

(pd2
)|

IMnnps
S1

(pd2
) + IMnnps

S2
(pd2

)
+
|IMnnps

S1
(pd3

)− IMnnps
S2

(pd3
)|

IMnnps
S1

(pd3
) + IMnnps

S2
(pd3

)
+
|IMnnps

S1
(pd4

)− IMnnps
S2

(pd4
)|

IMnnps
S1

(pd4
) + IMnnps

S2
(pd4

)

)

=
1

4
(
|5− 0|

5
+
|5− 2|

7
+
|2− 5|

7
+
|0− 5|

5
) =

5

7
(18)

4.3. A Tailored Statistical Significance Test for dnnps

Measuring the difference between two sample sets is only one aspect of detecting concept drift. Another aspect is

to provide adequate evidence to determine how likely it is that there will be such a difference if the given sample sets

are drawn from an identical distribution. Null hypothesis testing, or the so-called p-value approach, is widely used

to address similar problems. In our case, the null hypothesis H0 is : “It is very likely to observe such a dnnps, if two

given sample sets are independently drawn from the same distribution”. The smaller the probability (the p-value), the

stronger the evidence against H0.

The most intuitive way to achieve this goal is using the Monte Carlo permutation test [16]. The achieved signifi-

cance level (ASL), also known as the p-value, can be attained by observing all possible values of the test statistics. A

12

permutation test holds no assumptions for the test statistics, however, as the sample size increases, it become unfeasible

to calculate the exact ASL, and it can only be roughly estimated which may increase the error rate.

Alternatively, if a given test statistics fit a known distribution, then the decision regions (to accept/reject the null

hypothesis) can be obtained explicitly from its distribution function. In this research, according to Definition 13, we

prove that the dnnps of two i.i.d. sample sets fits a normal distribution. As a result, we can use max likelihood to

estimate the mean and variance of its distribution and determine the critical region with less Monte Carlo error.

Lemma 1. ∀A and B ⊆ D, if pdi ∈ P(A) ∪ P(B), then the random variable IMnnps
A

(pdi) ∼ N(µi, σ
2
i) if the

following conditions can be satisfied :

1. |D| → ∞ ;

2. there is no elements dk0
∈ D, such that IMnnps

dk0

(pdi) � IMnnps
dk

(pdi), k = 1, . . . , k0 − 1, k0 + 1, . . . , |D|,
where A ∪B = D and A ∩B = ∅.

Proof. Because IMnnps
dk

(pdi) is unchangeable no matter what A is selected (k = 1. . . . , |D|), IMnnps
A

(pdi) =∑
dk∈A IMnnps

dk

(pdi) is only related to elements in A. Considering a random variable Ik, expressed as follows,

Ik =

{
IMnnps

dk

(pdi), if dk ∈ A
0, otherwise.

, k = 1, . . . , |D|

so we have IMnnps
A

(pdi) =
∑|D|

k=1 Ik and all of Ik(k = 1, . . . , |D|) are independent. For each Ik we can express its
distribution as follows :

Ik IMnnps
dk

(pdi) 0
p pdi∈A pdi∈B

where pdi∈A is the probability that data instance di belongs to sample set A. Because A∪B = D and A∩B = ∅, we
have pdi∈A + pdi∈B = 1. Thus, E(Ik) = IMnnps

dk

(pdi) · pdi∈A and Var(ik) = I2Mnnps
dk

(pdi) · [pdi∈A · (1− pdi∈A)2 +

pdi∈B · p2di∈A]. Because Condition 2 can be satisfied and L2 norm is grater than L3 norm when |D| → ∞, meaning
that

lim
|D|→∞

∑|D|
k=1 E

((
Ik −E(Ik)

)3)
s3|D|

= 0, s2|D| =

|D|∑
k=1

Var(Ik)

based on Lyapunov central limit theorems, when |D| → ∞, we have

1

s|D|

|D|∑
k=1

(Ik −E(Ik))→ N(0, 1)

so, IMnnps
A

(pdi) =
∑|D|

k=1 Ik ∼ N(µi, σ
2
i).

Remark. In this paper, we assume that instances in time windows are independent. So the constructed random variable
Ik is independent.

Theorem 3. ∀A and B ⊆ D, if pdi ∈ P(A) ∪ P(B), then the random variable (IMnnps
A (pdi)

− IMnnps
B (pdi)

) ∼
N(µi, σ

2
i) if following conditions can be satisfied :

1. |D| → ∞ ;

2. there is no elements dk0
∈ D, such that IMnnps

dk0

(pdi) � IMnnps
dk

(pdi), k = 1, . . . , k0 − 1, k0 + 1, . . . , |D|,
where A ∪B = D and A ∩B = ∅.

13

Proof. Based on Lemma 1, IMnnps
A

(pdi) and IMnnps
B

(pdi) satisfy normal distributions, therefore (IMnnps
A

(pdi) −
IMnnps

B
(pdi)) ∼ N(µi, σ

2
i).

Theorem 4. ∀A andB ⊆ D, if pdi ∈ P(A)∪P(B), then dnnps(Mnnps
A ,Mnnps

B) ∼ N(µ, σ2) if following conditions
can be satisfied

1. |D| → ∞ ;

2. there is no elements dk0
∈ D, such that IMnnps

dk0

(pdi) � IMnnps
dk

(pdi), k = 1, . . . , k0 − 1, k0 + 1, . . . , |D|,
where A ∪B = D and A ∩B = ∅.

Proof. Based on the definition of dnnps(Mnnps
A ,Mnnps

B), Definition 13, and Theorem 3, we know dnnps(Mnnps
A ,Mnnps

B)
is the sum of |D| independent half-normal distributions. Thus, we need to verfy whether the sum of half-normal dis-
tributions can satisfy the Lyapunov condition. We denote σi as the parameter of the ith half-normal distribution and
ri = |IMnnps

A
(pdi)− IMnnps

B
(pdi)− µi| ∼ HalfN(0, σ2

i) as the ith random variable. We have

E(r3i) =

+∞∫
0

√
2

σi
√
π
· e
− r2i

2σ2
i · r3i dri =

√
2

σi
√
π

+∞∫
0

e
− r2i

2σ2
i · r3i dri

using integration by parts, we arrive at the following equations

E(r3i) =
σi
√

2√
π

+∞∫
0

e
− r2i

2σ2
i ·
(
− r1i
σ2
i

)
· (−r2i) dri =

σi
√

2√
π

(
e
− r2i

2σ2
i

∣∣∣∣∣
+∞

0

+ 2

+∞∫
0

e
− r2i

2σ2
i · ri dri

)

thus,

E(r3i) =
σi2
√

2√
π

(−σ2
i) · e

− r2i
2σ2
i

∣∣∣∣∣
+∞

0

=
2
√

2√
π
σ3
i

Because L2 norm is greater than L3 norma when |D| → ∞,

lim
|D|→∞

∑|D|
i=1 E(r3i)

s3|D|
= 0, s2|D| =

|D|∑
i=1

σ2
i

Hence
∑|D|

i=1 ri satisfies the Lyapunov condition, meaning dnnps(Mnnps
A ,Mnnps

B) ∼ N(µ, σ2).

4.4. Stream Learning with Nearest Neighbor-based Density Variation Identification

In this section, we explain the implementation of NN-DVI from the computer logic perspective. The overall stream

learning algorithm is given in Algorithm 1 and illustrates how NN-DVI is integrated with online learning models.

Then, the implementation of the NN-DVI and the calculation of dnnps are given in Algorithm 2 and Algorithm 3,

respectively.

The proposed algorithm considers data stream learning as two scenarios. One is concept drift in which a drift

adaptation process has to be initialized to correct the entire system. The other is static online learning which requires

no intervention from an extra process. In the first scenario, the proposed algorithm applies a sliding windowing strategy

to detect concept drift. The sliding window is initialized with training data or the first wmin elements in the data

stream, where wmin is an input parameter used to decide the minimum drift detection window size. This process is

implemented in Algorithm 1, lines 5-13, where the winfix is the fixed time window while winslide is the sliding time

14

Algorithm 1: Stream Learning with NN-DVI
input : training data, Dtrain

data stream, D = {d0, . . . , dn}
min drift detection window size, wmin (default wmin = 100)
base learner, L (default L is set as Naive Bayes Classifier)
distance function, (default dist(di, dj) is set as Euclidean distance)
k value for NNPS, (default k = 30, an optimization of k is discussed in Section 5)
sampling times, (default s = 500)
drift significance level, α (default α = 0.01)

output: classification results Ŷ = {ŷ0, . . . , ŷn}
1 Initial winfix = Dtrain, winslide = null, bufftrain = Dtrain;
2 Initial buildLearner(L, bufftrain);
3 while not end of stream, dt ∈ D do
4 Ŷ = Ŷ ∪ {classify(L, dt)};
5 if size(winfix < winmin) then
6 insert dt at the end of winfix;
7 add dt into bufftrain;
8 else
9 if winslide = null then

10 winslide = winfix;

11 insert dt at the end of winslide;
12 remove the first element of winslide;
13 if nndviDriftDetection(winfix, winslide, dist(di, dj), k, s, α) is true then
14 winfix = winslide;
15 bufftrain = winfix;
16 winslide = null;
17 else
18 add dt into bufftrain;
19 if size(bufftrain > wmax) then
20 remove the first size(bufftrain)− wmax elements form bufftrain;

21 updateLearner(L, bufftrain);

22 return Ŷ

window. If a concept drift is detected, the current time window, namely winslide will become the representation of

current concept, and the training buffer (bufftrain) will be the rest, as shown in lines 14-17. In contrast, lines 18-23

are the implementation of the second scenario. If no concept drift is detected, the newly arrived data will be kept in the

training buffer. Once the training buffer has reached the maximum allowed buffer size, which is an input parameter

denoted as wmax, the oldest training instance will be removed.

According to Theorem 4, the core idea of nndviDriftDetection is to estimate the mean (µ) and variance (σ2)

of dnnps of the normal distribution, then use the cumulative distribution function to compute the drift threshold θdrift

with a certain confidence level, namely the significant level α. Algorithm 2 lines 1-4 are the construction of NNPS,

where I|D|×|D| is a |D| by |D| Identity Matrix. Line 5 computes the actual distance between sample sets S1 and S2.

From line 6 to line 9, we shuffle S1 and S2 to create two new sample sets. The shuffling process will ensure the new

sample sets are i.i.d. Finally, in lines 10 to 12, we compare the actual NNPS distance with the drift threshold and

determine if a significant drift is observed.

Algorithm 3 is the pseudo-code of Definition 13. Lines 2 and 3 transform the NNPS matrix to sample sets presented

by normalized multiset. Then the discrepancies are accumulated as shown in Line 4-6.

15

Algorithm 2: Nearest Neighbor based Density Variation Identification (nndviDriftDetection)
input : two data sample sets S1 and S2

distance function, (default dist(di, dj) is set as Euclidean distance)
k value for NNPS, (default k = 30, an optimization of k is discussed in Section 5)
sampling times, (default s = 500)
drift significant level, (default α = 0.01)

output: drift detection results {True | False}
1 merge sample sets, D = S1 ∪ S2, and save the indices of S1, S2 as VS1 , VS2 ;
2 constructing adjacent matrix, Madj

D = nearestNeighbors(dist(di, dj), k,D);
3 constructing particle matrix, PnnpsD =Madj

D + I|D|×|D|;
4 constructing NNPS matrix Mnnps

D by normalizing PnnpsD according to instances weights;
5 compute actual NNPS distance dact = distancennps(Mnnps

D , VS1
, VS2

);
6 for i = 1 : s do
7 V ′S1

, V ′S2
= shuffle(VS1

, VS2
);

8 compute shuffled NNPS distance dshufflei = distancennps(Mnnps
D , V ′S1

, V ′S2
);

9 estimate the distribution of dshuffle ∼ N(µ, σ2);
10 compute the drift threshold θdrift according to N(µ, σ2) with significant level α;
11 if dact > θdrift then
12 return True;

13 return False;

Algorithm 3: NNPS distance measurement (distancennps)
input : NNPS matrix of samples D = S1 ∪ S2, denoted as Mnnps

D
indices vectors of sample sets S1 S2, denoted as VS1

, VS2

output: dnnps

1 Initial initial dnnps = 0;
2 Mnnps

S1
= VS1

·Mnnps
D ;

3 Mnnps
S2

= VS2 ·M
nnps
D ;

4 for di ∈ |D| do
5 dnnps = dnnps + |IMnnps

S1

(pdi)− IMnnps
S2

(pdi)|;

6 return dnnps = dnnps/|P(S1) ∪P(S2)|

5. Information Granularity Indicator for NNPS

The selection of the number of nearest neighbors (the k value of knn) is critical to controlling the resolution

and is the only parameter of the NNPS. To select the best resolution to construct NNPS, we propose a novel

discretization controlling method, called the instance particle independence coefficient, or simply independence, to

quantify the granule information contained at different granule levels.

In the context of theNNPS, we define the granule information indicator as how likely it is that a group of instance

particles will appear together, namely the joint probability of a group of instance particles occurring. Intuitively, in the

proposed data model, the primary element of a data set is the instance particles. The NNPS is constructed based on

these elements. If a group of such elements is always shown together, with a joint probability equal to 1, it would be

impossible to detect drifts inside this group, as shown in Figure 5.

In other words, the granule information indicator of the proposed data model describes the average region size as-

sumed to have no concept drift. From a practical point of view, investigating the joint probability of every combination

is neither computationally-friendly nor storage efficient. Alternatively, such indicators can be acquired through mea-

16

FIGURE 5: An example of grouped instance particles. Since p(d2) and p(d3) are always grouped together, the difference between d2 and d3 is
equal to zero. If such a group is large enough, it will be impossible to identify whether there is a drift within them. Consequently, the sensitiveness
of NNPS on concept drift will decrease.

suring the independence of every instance particle. The higher the probability that an instance particle will appear in a

certain instance particle group, the less independence that instance particle has. To estimate the overall independence

of a given instance particle p(di), we define the indicator of its independence as the average value of the conditional

probability of its connected instance particles.

Definition 14. (Independence of Instance Particle) The independence indicator of a given instance particle is
defined as

independence(pdi) = 1− 1

|P(di)|
∑

pdk∈P(di)

p(pdk ,pdi) (19)

where p(pdk ,pdi) is the probability that pdk ∈ P(di) and pdi ∈ P(di)

Definition 15. (Independence of NNPS) The independence of the NNPS is defined as the average value of
instance particles’ independence, denoted as :

independence =
1

|D|
∑

pdi∈
⋃
dk∈D P(dk)

independence(pdi) (20)

With information granularity indicator, we can recognize and exploit the meaningful pieces of knowledge present

in data so that different features and regularities can be revealed. This provides theoretical guidance for selecting the

k-value, which is max
k
{independence}.

6. Experiments and Evaluation

The evaluation of NN-DVI for concept drift detection consists of four sections, through twelve experiments.

Section 6.1 Evaluating the effectiveness of dnnps. To achieve this goal, we generated three synthetic drifting

17

data streams and compared the performance of dnnps with the test statistics of two-sample Kolmogorov-Smirnov (KS)

test.

1. Experiment 6.1 : Sudden drift streams by varying the data mean

2. Experiment 6.2 : Gradual drift streams by varying data variance

3. Experiment 6.3 : Regional drift streams by varying regional data mean

Section 6.2 Comparing NN-DVI with other distribution-oriented drift detection algorithms. To evaluate the

performance of NN-DVI, we compared it with Dasu et al’s [14] and Lu et al.’s work [46]. Since it is important to know

the drift severity in advance, we generated 10 synthetic data sets with different predefined drift margins.

1. Experiment 6.4 : Drift streams with normal distributions

2. Experiment 6.5 : Drift streams with Poisson distributions

3. Experiment 6.6 : Drift streams with higher dimensional distributions

Section 6.3 Evaluation of NN-DVI in terms of real-world datasets. We applied NN-DVI on four real-world

applications that consist of five datasets and compared the results to six state-of-the-art concept drift adaptation algo-

rithms. The selected algorithms include two distribution-based, four learner output-based drift detection algorithms,

one ensemble-based drift adaptation algorithm, one decision tree-based drift adaptation algorithm, and one drift adap-

tation algorithm considered all past concepts.

1. Experiment 6.7 : Electricity price prediction [19, 44]

2. Experiment 6.8 : Weather prediction [18, 44, 45]

3. Experiment 6.9 : Spam filtering with concept drift [19, 31]

4. Experiment 6.10 : UCI twenty newsgroups datasets [19, 32]

Section 6.4 Evaluating the performance of NN-DVI with different parameters In this section, we selected

different parameters for NN-DVI to evaluate the parameters’ sensitiveness.

1. Experiment 6.11 : Evaluating the performance of NN-DVI with different window size

2. Experiment 6.12 : Evaluating the performance of NN-DVI with different distance functions

6.1. Evaluating the Effectiveness of dnnps

In this sub-section, we test and verify whether the proposed dnnps can reflect the dissimilarity between sample sets.

The experiments aim to : 1) establish how dnnps varies according to changes between two distributions ; 2) investigate

the impact of the selection of k on dnnps ; and 3) evaluate the sensitiveness of dnnps on regional drifts. We ran three

experiments with generated artificial data sets following 1D normal distributions and compared the results with the

test statistics of the two-sample K-S test. All the results were calculated as the mean of 100 independent tests.

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

timestep

0

0.05

0.1

0.15

0.2

te
st

 s
ta

tis
tic

Two Sample K-S Test

FIGURE 6: The test statistics of Two-sample K-S test between normal distributed data with varying µ. For each odd timestep, we compared two
i.i.d. sample sets, while for each even timestep, we compared two sample sets with drifted mean (µ+0.06). All the statistics were computed based
on the average of 100 runs.

0 100 200 300 400 500 600 700 800

Selection of k

0

0.2

0.4

0.6

0.8

1

in
de

pe
nd

en
ce

k=39 k=100

k=400

FIGURE 7: The relationship between independence and the selection of k

Experiment 6.1. (Varying the mean µ) In this experiment, we compared the test statistics acquired by dnnps with

different k values. The experimental setting was as follows : a series of instances was generated from a synthetic

data stream with 22 timestamps from 11 consecutive 1-D normal distributed data, with a batch size of 400 at each

timestamp, and with 22× 400 = 8800 data instances in total. Each normal distribution had a fixed standard deviation

of σ = 0.2 and a moving mean of µ = 0.2 + 0.06 × (i − 1), where i denotes the ith distribution. As a result, when

time step t = 2 × i − 1, we compared two samples that were both drawn from the ith distribution. When time step

t = 2 × i, we compared two samples drawn from the ith distribution and (i + 1)th distribution. We ran the two-

sample K-S test on 100 synthetic data sets with the same setup, then plotted the average test statistics in Fig.6. The

results demonstrate how the two-sample KS test statistics change as the distributions vary. Because the difference only

depends on the mean values, we found a similar height on all peaks and valleys for each series. Thus, for any valid

distance measurement we should be able to construct a similar graph.

As outlined in Section 5, we chose the following k values for our distance measurement. The selections of k

were : 39 (independence = 0.46), 100 (independence = 0.45) and 400 (independence = 0.3), as shown in Fig.7.

independence reached its max at k = 39, while k = 100 and k = 400 belongs to the independence decreasing stage,

which means that the sensitivity of the distance is decreasing (Fig.7). The corresponding test statistics are outlined in

Fig.8.

The dnnps has the same pattern as the two-sample K-S test. For larger k values, the test statistic values are smaller

(shown in blue). This is because larger k values have a larger number of instance particles, therefore, the ratio between

the intersection set and union set will decrease. Even though the test statistic means are different, this will not affect

the discrepancy measurement, as long as the peak-valley difference between the data structures is correctly reflected.

By the same token, we reduced the batch size to 50 at each time step and selected the k with the highest indepen-

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

timestep

0

0.05

0.1

0.15

0.2

0.25

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=39 dnnps k=100 dnnps k=400

FIGURE 8: The dnnps between normal distributed data (400 instances each time step) with varying µ. For each odd timestep, we compared two
i.i.d. sample sets, while for each even timestep we compared two sample sets with drifted mean (µ+ 0.06). All the statistics were computed based
on the average of 100 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

timestep

0.1

0.15

0.2

0.25

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=17

FIGURE 9: The dnnps between normal distributed data (50 instances each time step) with varying µ.

dence value. The corresponding test statistics are plotted in Fig.9. The red lines with red triangles are the dnnps with

k = 17, the black lines with black dots is the two-sample K-S test. This experiment illustrates that dnnps can perform

well with an extremely small sample size.

Experiment 6.2. (Varying the standard deviation σ). In this experiment, we fixed the mean µ = 0.5, but varied the

standard deviation σ = 0.1+0.02×(i−1) for the ith distribution, i = 1, 2, . . . , 11. Again, when time step t = 2×i−1,

we compared two samples drawn from the ith distribution ; when time step t = 2× i, we compared two samples drawn

from the ith and (i+ 1)th distribution. The batch size was set as 1000.

We show the two-sample K-S test statistics in Fig.10. In this figure, the valley values are similar, while the peak

values gradually decrease. Since the valley values are determined by two identical distributions, they are steady and

smooth. The peak values, by contrast, are calculated by two distributions with an increasing σ. As a result, the diffe-

rence between these distributions will shrink as σ increases. Intuitively, this is because the distribution becomes less

concentrated, thus the relative test statistic is smaller. The test statistics of dnnps are shown in Fig.11. It can be seen

that dnnps has the same pattern as the two-sample K-S test, indicating that dnnps is capable of precisely representing

differences in distribution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

timestep

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

te
st

 s
ta

tis
tic

Two Sample K-S Test

FIGURE 10: The test statistics of two-sample K-S test between normal distributed data with varying σ. For each odd timestep, we compared two
i.i.d. sample sets, while for each even timestep we compared two sample sets with drifted standard deviation (σ + 0.02). All the statistics were
computed based on the average of 100 runs.

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=50 dnnps k=100 dnnps k=400

FIGURE 11: dnnps between normal distributed data that varies σ.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

te
st

 s
ta

tis
tic

Two Sample K-S Test dnnps k=35

pValue = 0.9999

pValue = 0.024pValue = 0.232

FIGURE 12: 1-D normal distribution with regional drift detection. At each timestep, we changed the mean (µ+ 0.06) of a group of data instances
and plot the dnnps between the current timestep and last timestep. The proposed dnnps reported a significant difference at after 19 groups drifted,
whereas the K-S test cannot detect such a difference.

Experiment 6.3. (Varying the regional mean µj). In this experiment, we compared the distances between two data

samples that comprise 30 independent 1-D normal distributed data groups. In the first data group, the normal dis-

tribution was set as µ = 0.2, σ = 0.2. For the remaining 29 data groups, the normal distribution was set as

µ = 0.2 + j × (20 × σ), σ = 0.2 for j = 2, 3, . . . , 30. We intentionally left a (20 × σ) gap between each group

to ensure that a change occurring in one group would not affect the others. Each group contained 100 data instances,

equating to 3000 instances for each time step. In the first-time step, we compared two data sample sets without any

drift in any data group. Later, we manually changed the mean of each data group by µj + 0.06 successively for each

time step to create 30 minor regional drifts.

Fig.12 shows the test statistics for the two-sample K-S test and the dnnps at different time steps. At t = 1, we

compared 30 data groups with another 30 groups that were generated by the same distribution. At t = 2, we compared

30 data groups with another 29 + 1 groups where the mean µ1 of group 1 was changed to µ1 + 0.06, and so on till

t = 31. It can be clearly seen that dnnps increased after each local drift occurred. In fact, the K-S test statistics also

increased slightly. However, as the value of its test statistics is too small, the trend cannot be observed in this figure.

In addition, to compare the test statistics, we also applied the corresponding significance test to examine whether the

drifts were statistically significant. The p-value of the two-sample K-S test was above 95% all the time while the

p-value of dnnps dropped below 5% after timestep 19, which means that dnnps can detect simulated drifts after 19/30

local drifts. This experiment demonstrates that the proposed dnnps is sensitive to regional drifts.

6.2. Evaluating the NN-DVI Drift Detection Accuracy

In the above experiments, we have shown how the dnnps varies as the underlying distribution changes. To deter-

mine whether a given measurement is statistically significant as a drift, we compute the ASL as described in Section

21

4.3. Given a desired significance level α, we say there is a concept drift when the ASL < α. In the following experi-

ments, we compare NN-DVI with Dasu [14] and Lu’s [46] work in terms of drift detection accuracy on 10 synthetic

drifting data streams. The reason we choose these two algorithms for comparison is that all three methods (including

NN-DVI) detect concept drift based on the estimated data distribution, and do not hold assumptions on the distribution

of data. In addition, we also compared one of the most popular two-sample tests for multivariate data, maximum mean

discrepancy (MMD) [23], as the base line. NN-DVI(permutation) represents that using permutation test to estimate

the ASL of NN-DVI, and NN-DVI(normal) represents that using the tailored significance test, which has been proven

following normal distribution, to calculate the ALS of NN-DVI.

For a fair comparison, we used the same experimental configurations and evaluation criteria as introduced in Dasu

and Lu’s papers [14, 46]. The evaluation criteria are : detected, late, false, and missed. Given a concept that exists

for a period of time [t+1, t+z], where z is the length of the concept. In this experiment, the distribution parameters are

updated at t+1 and t+z+1, that is, a new concept starts from t+1 and ends at t+z. For each timestep, it involves three

processes : updating distribution parameters if new concept starts, generating data and detecting drift. The detected

indicates the number of times that a drift detection algorithm reports a drift at t + 1. The late indicates the number

of times a drift reported at t + 2 or t + 3. The false accumulates the number of false alarms that multiple drifts are

reported in [t+1, t+z]. Amissed detection is counted if no drift reported within [t+1, t+3]. A detected drift within

[t+4, t+z] is marked asmissed because such a detection is considered as too late to be useful [46]. We denote Dasu et

al.’s algorithm as KL (Kullback-Leibler distance) and Lu et al.’s work as CM (competence model). With regard to the

data source, we implemented the same synthetic data sets introduced by Dasu et al. [14] and adopted by Lu et al. [46].

For each data stream, we generated 5,000,000 data instances, and for every 50,000 instances, the parameters of the

corresponding distribution were varied randomly within a certain interval. These variations produced 99 controllable

drifts for each data stream. For ease of comparison, we kept all the parameters the same for both the bootstrapping

test and the permutation test, including the desired significance level of α = 1%, and the size of bootstrapping and

permutationN = 500. KL and CM’s parameters were set as per their papers. The distance function used in this section

is Euclidean distance, as the same as the distance used by [14, 46]. Because the permutation test does not hold any

assumptions and can be applied on KL without modification, we also ran KL with a permutation test for comparison.

To avoid any bias in NNPS-DVI caused by parameter selection, we first conducted an experiment with a k-value that

was chosen based on the average number of instances within the same partitioning size as KL and CM. Then we

ran our algorithm with a dynamic k-value that we selected based on max
k
{independence}, and applied the normal

distribution estimation described in Section 4.3 as the significance test.

Experiment 6.4. (Normal distributions). In this experiment, we compared KL, CM and NN-DVI using five bivariate

normal distributed data streams, denoted as M(4) and C(4) streams. Drift severity was controlled by a predefined

22

TABLE 1: Drift detection results on M(4) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed
M(0.02) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 76 13 2 10

KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 68 14 3 17
CM (permutation) dε : 0.05 10000 87 5 12 7
NN-DVI (permutation) k : 185 10000 90 8 9 1
NN-DVI normal) k : max{independence} 10000 91 6 6 2
MMD RBF kernel, σ median 10000 99 0 3 0

M(0.05) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 99 0 9 0
KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 99 0 3 0
CM (permutation) dε : 0.05 10000 99 0 2 0
NN-DVI (permutation) k : 185 10000 99 0 5 0
NN-DVI (normal) k : max{independence} 10000 99 0 5 0
MMD RBF kernel, σ median 10000 99 0 3 0

TABLE 2: Drift detection results on C(4) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late FALSE Missed
C (0.1) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 33 18 4 48

KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 30 16 1 53
CM (permutation) dε : 0.05 10000 33 19 2 47
NN-DVI (permutation) k : 160 10000 41 19 0 39
NN-DVI (normal) k : max{independence} 10000 54 12 3 33
MMD RBF kernel, σ median 10000 34 19 1 46

C (0.15 KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 85 8 9 6
KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 77 13 4 9
CM (permutation) dε : 0.05 10000 81 10 7 8
NN-DVI (permutation) k : 160 10000 87 10 7 2
NN-DVI (normal) k : max{independence} 10000 89 9 4 1
MMD RBF kernel, σ median 10000 81 13 3 5

C (0.15) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 5000 79 7 15 13
KL (permutation) δ : 2−10, τ : 100, γ : 5% 5000 63 14 6 22
CM (permutation) dε : 0.05 5000 55 21 14 23
NN-DVI (permutation) k : 80 5000 67 19 13 13
NN-DVI (normal) k : max{independence} 5000 70 19 5 10
MMD RBF kernel, σ median 5000 31 6 1 62

C (0.2) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 5000 96 2 11 1
KL (permutation) δ : 2−10, τ : 100, γ : 5% 5000 89 6 10 4
CM (permutation) dε : 0.05 5000 82 9 8 8
NN-DVI (permutation) k : 80 5000 93 3 13 3
NN-DVI (normal) k : max{independence} 5000 93 3 10 3
MMD RBF kernel, σ median 5000 44 5 2 50

drift margin 4. In the M(4) streams, the features x1 and x2 followed an independent normal distribution with the

means µ1 and µ2 moving within [0.2, 0.8]. For every 50,000 instances, µ1 and µ2 were randomly updated with a step

size [−4,−4/2 ∪ [4/2,4]. In the C(4) streams, the two features have a moving correlation ρ, which started at

0 and then was randomly walked within [−1, 1], with step size chosen randomly from [−4,−4/2] ∪ [4/2,4]. To

investigate the impact of the window size on drift detection accuracy, we conducted the experiment on the C(0.15)

stream twice with two window sizes. All the results are summarized in Tables 1 and 2.

From the results, we can see that our method outperformed the others in most cases. In terms of the false and

missed rates, only bootstrapped KL on the C(0.2) stream is slightly better than ours. With regard to the other streams,

our results are much better. If we only consider drift detection based on permutation tests, no other methods can

surpass ours. According to the results, the excellent performance of KL with bootstrap is more likely attributed to the

bootstrap test rather than to their drift detection model. Nevertheless, Dasu et al. [14] did not give any explanation

23

TABLE 3: Drift detection results on P (4) stream

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed
P(0.1) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 64 7 1 28

KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 66 8 4 25
CM (permutation) dε : 10 10000 63 8 1 28
NN-DVI (permutation) k : 545 10000 81 7 7 11
NN-DVI (normal) k : max{independence} 10000 81 9 5 9
MMD RBF kernel, σ median 10000 61 8 2 30

P(0.2) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 95 1 11 3
KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 98 0 1 1
CM (permutation) dε : 10 10000 99 0 5 0
NN-DVI (permutation) k : 545 10000 99 0 6 0
NN-DVI (normal) k : max{independence} 10000 99 0 6 0
MMD RBF kernel, σ median 10000 98 1 10 0

concerning the selection of the significance test, instead, they only suggest researchers investigate the pros and cons in

other publications. It is also noteworthy that all the detection algorithms achieved high detection rates onM(0.05) and

C(0.2). According to the data generation settings,M(0.05) and C(0.2) have relatively large drift margins. This would

make the drifts easier to detect, and the drift detection results may be very similar as long as the drift margins exceed

the sensitivity thresholds of the tested algorithms. For example, in this experiment, the drift margins for M(0.05)

exceed the sensitivity threshold of all the tested algorithms, therefore, all the results are very close (the missed rate are

all zero and the false rate are all low). By the same token, we infer that the C(0.2) reached the sensitivity threshold

of both KL with bootstrap and NN-DVI. Unlike the M(0.05) and C(0.2) streams, the rest of the streams have smaller

drift margins. The high detection rates on those streams prove that NN-DVI is more sensitive to small concept drifts.

Experiment 6.5. (Poisson distributions). InP (4) streams, the two features follow a Poisson distributionPoisson(500(1−

ρ), 500(1 − ρ), 500ρ), where ρ starts at 0.5 and then performs a random walk between 0 and 1 with step size

4 = 0.2, 0.1. The evaluation results are shown in Table 3.

From Table 3, we can see that KL using a bootstrap test suffers a manifest failure on Poisson distributions. On one

hand, KL using a permutation test detected most drifts correctly on P (0.2). It is evident that the P (0.2) drift margin

is larger than the KL sensitivity threshold. On the other hand, KL suffers high false rate on P (0.2) when combined

with the bootstrap test. This paradox indicates that a null hypothesis test could affect the sensitivity of a drift detection

algorithm, and the bootstrap test may not be suitable for the KL algorithm in all circumstances. In general, according

to the results in Table 3, NN-DVI clearly outperforms the others.

Experiment 6.6. (Higher dimensional distributions). To test the scalability and performance of NN-DVI in high

dimension space, we extended the C(0.2) stream to three d-dimensional multivariate normal distributed streams as per

[14, 46]. Only the first two dimensions had a correlation value equal to ρ, and the remaining (d-2) dimensions were

configured with correlation values equal to zero. Additionally, the standard deviation of all the added dimensions was

configured to be the same as the C(4) streams. These settings are managed to retain the same marginal distribution of

all dimensions, so that the overall distance between the instances contributed by each dimension is equally important

24

TABLE 4: Drift detection results on HD C(4) streams

Data Stream Drift Detection Method Parameters Window Size Detected Late False Missed
4D C(0.2) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 91 5 5 3

KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 87 8 5 4
CM (permutation) dε : 0.15 10000 89 3 8 7
NN-DVI (permutation) k : 95 10000 94 5 5 0
NN-DVI (normal) k : max{independence} 10000 95 4 6 0
MMD RBF kernel, σ median 10000 83 10 2 6

6D C(0.2) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 84 5 6 10
KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 65 11 3 23
CM (permutation) dε : 0.3 10000 91 4 7 4
NN-DVI (permutation) k : 200 10000 97 2 6 0
NN-DVI (normal) k : max{independence} 10000 95 4 6 0
MMD RBF kernel, σ median 10000 69 12 7 18

10D C(0.2) KL (bootstrap) δ : 2−10, τ : 100, γ : 5% 10000 81 7 4 11
KL (permutation) δ : 2−10, τ : 100, γ : 5% 10000 68 13 5 18
CM (permutation) dε : 0.5 10000 78 10 4 11
NN-DVI (permutation) k : 220 10000 89 5 3 5
NN-DVI (normal) k : max{independence} 10000 88 6 5 5
MMD RBF kernel, σ median 10000 26 18 0 55

TABLE 5: Average Drift Detection Results

Drift Detection Method Detected Late FALSE Missed
KL (bootstrap) 80.27 6.64 7 12.09
KL (permutation) 73.64 9.36 4.09 16
CM (permutation) 77.91 8.09 6.36 13
NN-DVI (permutation) 85.18 7.09 6.73 6.73
NN-DVI (normal) 86.73 6.55 5.82 5.73
MMD 65.91 8.36 3.09 24.73

[14, 46]. As a result, it will be easier to calculate the distance between instances, and the drift detection results will not

be affected by the selection of the distance functions used to compare data instances.

The experimental results for different dimensions are listed in Table 4. As expected, as more stationary dimensions

are added, the missed rates of all detection algorithms increase, implying that such a change makes drift detection

harder. However, NN-DVI preserves much of its power as the number of dimension increases. It is very likely that this

can be attributed to the k-nearest neighbor-based data representation model defined in Section 4.1.

To summarize, we calculated the average detected, late, false and missed rates of all synthetic streams, as shown

in Table 5. It shows that the proposed NN-DVI makes a notable improvement on drift detection in various situations.

Although the false rate of NN-DVI is slightly higher than the existing methods under the permutation test, the missed

rate is almost halved. The performance of NN-DVI with normal distribution as significance test is even better. It shows

higher accuracy with less false rate which indicates the tailored significance test introduced in Section 4.3 is more

reliable. In addition, the complexity of data model construction can be reduced to O(knlog(n)) with a kd-Tree data

structure while CM is O(n2log(n)) [46], KL is O(dnlog(1/δ)) where the d is the number of data dimensions and δ is

the given parameter of KL [14] and MMD is O(n2) [23].

25

6.3. Evaluating the NN-DVI on Real-world Datasets

To demonstrate how our drift detection algorithm improves the performance of learning models in real-world

scenarios, we compared our detection method with the other two closely related algorithms, 1) KL [14] and 2) CM

[46]), on five benchmark real-world concept drift data sets. These datasets are the top referenced benchmark and

include both low and high dimensionality data. In addition, we also compared NN-DVI with four state-of-the-art

drift adaptation algorithms that address concept drift using different strategies. These algorithms are 3) SAMkNN

[44] which keeps past concepts in memory and considers all past concept to make final prediction ; 4) AUE2 [13]

which uses ensemble methods to handle concept drift ; and 5) HDDM family tests (HDDM-A, HDDM-W) [19] which

detects drift by monitoring learner outputs ; 6) ADWIN-Volatility (ADW-Vol) [26] which first introduced volatility

shift into concept drift detection. At last, we use HAT [7] and ADWIN [6] as the base line. The algorithms were

implemented with the authors’ recommended settings. The selection of the base learner for the HDDM family tests,

KL, CM and NN-DVI is independent of the drift detection algorithm, therefore, we implement these algorithms with

Naïve Bayes, Hoeffding Tree and IBk classifiers. Because the SAMkNN is only compatible with IBk and AUE2 is

only compatible with Hoeffding Tree, these two algorithms were only compared with their own base learners. All

algorithms were implemented based on MOA platform [8] which is written in Java. The parameters of IBk were set

as k = 5 and instances weighting method is uniformly weighted. All the distance function used in this section is

Euclidean distance. The parameters of Heoffding Tree were set as the same as those recommended by AUE2. Table

6 summarizes the classification accuracy and gives the overall rank of different algorithms. The average processing

time in second and average memory usage (RAM-Hour in Gigabyte) are also listed, since the computational resources

management is also an important issue for data stream learning [10].

Experiment 6.7. (Electricity Price Prediction) The electricity data set contains 45,312 instances, collected every thirty

minutes from the Australian New South Wales Electricity Market between 7 May 1996 and 5 Dec 1998. In this market,

prices are not fixed and are affected by demand and supply. This data set contains eight features and two classes (up,

down) and has been widely used for concept drift adaptation evaluation [19, 44]. The data set is available from MOA’s

website [8]

Experiment 6.8. (Spam Filtering)This data set is a collection of 9,324 email messages derived from the Spam As-

sassin collection, which is available at http ://spamassassin.apache.org/. The original data set contains 39,916 features,

and 9,324 emails (around 20% spam emails and 80% legitimate emails). It is commonly considered to be a typical

gradual drift data set [31]. According to Katakis’s work [31], 500 attributes were retrieved using the chi-square feature

selection approach.

Experiment 6.9. (Weather Prediction)The Nebraska weather prediction data set was compiled by the U.S. National

Oceanic and Atmospheric Administration. It contains 8 features and 18,159 instances with 31% positive (rain) classes,

26

TABLE 6: Classification accuracy of real-world datasets. The rank of each algorithm is shown in the brackets. The final score is the average rank of
that algorithm combined with different base learners. The Time (s) and RAM-Hour (GB) are calculated on the average of the five datasets.

Algorithms Learner Elec Spam Weather Usenet1 Usenet2 AVG. Rank Score Time RAM-Hour
NB 84.10 (6) 92.03 (9) 72.50 (12) 68.93 (12) 77.13 (2) 8.2 (2) 190.6 2.85E-05

NN-DVI IBk 87.39 (2) 93.47 (2) 74.63 (7) 66.80 (17) 72.47 (7) 7.0 (1) 2.0 (1) 208.5 2.85E-05
HTree 82.85 (10) 92.06 (8) 71.68 (17) 70.27 (9) 76.73 (4) 9.6 (3) 195.2 2.85E-05

SAMkNN IBk 82.54 (14) 95.67 (1) 78.26 (1) 66.13 (19) 70.33 (17) 10.4 (5) 5.0 (2) 266.5 3.75E-02
NB 84.09 (7) 91.65 (14.5) 72.82 (11) 75.07 (2) 70.93 (16) 10.1 (4) 1.4 4.91E-08

HDDM-W IBk 82.47 (15) 92.93 (3) 75.04 (6) 69.67 (10) 67.93 (22) 11.2 (10) 6.7 (3) 249.9 2.07E-03
HTree 85.06 (4) 91.65 (14.5) 72.41 (13) 74.73 (3) 70.00 (18) 10.5 (6) 1.4 7.52E-08
NB 84.92 (5) 90.79 (20) 72.38 (14) 75.20 (1) 71.00 (14.5) 10.9 (8) 1.4 4.97E-08

HDDM-A IBk 82.10 (16) 92.00 (10) 76.13 (4) 69.33 (11) 68.00 (21) 12.4 (11.5) 9.5 (4) 132.2 1.05E-04
HTree 85.71 (3) 91.78 (13) 71.71 (16) 74.60 (4) 68.87 (19.5) 11.1 (9) 1.6 7.55E-08
NB 82.66 (12) 91.10 (19) 71.89 (15) 71.07 (7) 77.20 (1) 10.8 (7) 137.2 4.54E-04

CM IBk 78.98 (23) 89.34 (23) 73.71 (8) 67.47 (14) 71.33 (13) 16.2 (23) 14.7 (5) 133.3 4.54E-04
HTree 81.33 (20) 91.11 (18) 71.23 (20) 71.73 (5) 76.27 (5) 13.6 (14) 144.8 4.54E-04
NB 82.62 (13) 91.19 (16) 71.00 (22) 70.73 (8) 77.06 (3) 12.4 (11.5) 191.7 7.90E-05

KL IBk 78.95 (24) 89.37 (22) 73.68 (9) 67.27 (15) 71.00 (14.5) 16.9 (24) 16.8 (6) 186.7 7.91E-05
HTree 81.34 (19) 91.16 (17) 71.18 (21) 71.33 (6) 76.20 (6) 13.8 (15) 171.7 7.94E-05
NB 80.64 (22) 91.83 (12) 71.40 (18) 68.13 (13) 72.27 (8.5) 14.7 (21) 1.3 5.73E-08

ADW-Vol IBk 81.72 (18) 92.81 (4) 76.20 (2.5) 59.73 (23.5) 67.27 (23.5) 14.3 (17.5) 17.2 (7) 201.5 5.93E-05
HTree 82.84 (11) 92.59 (5) 71.28 (19) 66.67 (18) 72.00 (10.5) 12.7 (13) 1.5 9.28E-08

AUE2 HTree 87.74 (1) 84.29 (24) 75.24 (5) 63.47 (22) 68.87 (19.5) 14.3 (17.5) 17.5 (8) 4.4 5.37E-06
HAT HTree 83.39 (8) 90.69 (21) 73.51 (10) 63.93 (21) 71.87 (12) 14.4 (19) 19.0 (9) 2.0 7.92E-08

NB 81.03 (21) 91.90 (11) 70.31 (24) 67.00 (16) 72.27 (8.5) 16.1 (22) 1.4 5.04E-08
ADWIN IBk 81.76 (17) 92.46 (6) 76.20 (2.5) 59.73 (23.5) 67.27 (23.5) 14.5 (20) 19.3 (10) 200.7 5.63E-05

HTree 83.23 (9) 92.29 (7) 70.88 (23) 64.47 (20) 72.00 (10.5) 13.9 (16) 1.4 7.90E-08

and 69% negative (no-rain) classes. This data set is summarized in [18] and is available at http ://users.rowan.edu/ po-

likar/research/NSE

Experiment 6.10. (Usenet1 and Usenet2) The Usenet datasets were first introduced by [32], and were used to evaluate

HDDM family algorithms [19]. They are two subsets of the 20 newsgroups collection which is owned by the UCI

Machine Learning Repository. Each data sets consists of 1500 instances and 99 features. In these data sets, each

instance is a message from different newsgroups that is sequentially presented to a user, who then labels it as interesting

or not interesting. These messages involve three topics : medicine, space and baseball. The user was simulated with a

drifted interest for every 300 messages. A more detailed explanation of these datasets can be found in [32].

To better demonstrate the improvements of NN-DVI on real-world problems, we used a ranking method to sum-

marize the overall performance, which is similar to [44]. The average rank shows that NN-DVI achieves the best

performance with the IBk classifier and has the best final score, which is the average of all base classifiers’ ranks.

The analysis results of Table 6 can be summarized as follows :

— The performance of base learners is variable on different data sets. For example, under the same drift adaptation

algorithm, the IBk classifier always outperforms the other classifiers on the Weather data set while it performs

the worst on Usenet1 and Usenet2 data sets. In some situations, the selection of base learners may be more

important than the selection of drift detection methods. This outcome inspired us to reconsider the learning

strategy of using the same base classifier settings after a drift. Instead, changing a base learner or updating the

base learner’s parameters may further improve the overall prediction accuracy.

27

— The proposed NN-DVI method with IBk, NB and HTree have the best performance in terms of accuracy.

Considering the overall performance, it is evident that the highlighted results of NN-DVI do not depend on the

base classifiers and NN-DVI contributes to the learning process in dynamic environment.

— Regarding to computational complexity, it can be seen that distribution-based drift detection algorithms (NN-

DVI, CM, KL) have very similar computational costs, namely the Time and RAM-Hour, for all the tested three

base learners. The reason is that these algorithms have to keep the representative data instances in memory

to detect the distribution changes. It looks like a common issue of distribution-based drift detection methods.

Nevertheless, they have shown no manifest disadvantages comparing to other drift detection methods using

IBk learner. Although error-rate based and ensemble-based drift adaptation methods can handle concept drift

in an online manner, using IBk as base learner may slow down their learning speed.

6.4. Evaluating the Stream Learning with NN-DVI with Different Parameters

In general, the algorithm for stream learning with NN-DVI has six input parameters : 1) minimum drift detection

window size ; 2) base learner ; 3) distance function for constructing NNPS; 4) the number of nearest neighbours for

NNPS; 5) the sampling times for estimate the σ of dnnps ; and 6) drift significance level. Amount these parameters, the

parameter 2) is evaluated in Section6.3, parameter 4) is discussed in Section 5, parameter 5) is related to Monte Carlo

Error which has been discussed in details in the section 5.2 of [46] parameter 6) is a drift sensitivity setting chosen

by users which is highly depend on the system requirements. Therefore, in this section, we focus on evaluating the

impacts of the parameters : 1) minimum drift detection window size and 3) distance functions for constructing NNPS.

The rest of the parameters are fixed as the default values.

Experiment 6.11. (Changing window size) As a critical parameter of time window-based drift detection algorithms,

the window size or chuck size [53] controls the length of the most recent concept, namely thewinslide in our algorithm.

On the one hand, if the window size is too small, the most recent concept may be incomplete, as a result, false alarms

will be raised. On the other hand, if the window size is over large, multiple concepts may be included in one window,

and such mixed data will lead to bad performance. To evaluate how window size affects NN-DVI, we setwinmin =50,

75, 100, 150, 200, and plotted the classification accuracy of the five real-world datasets in Figure 13.

Experiment 6.12. (Changing distance functions) To evaluate how distance function affects NN-DVI on real-world

datasets, we choose another four most commonly used distance functions to replace Euclidean distance, which are

Manhattan distance, Chebyshev distance, Jaccard distance, and Radial basis function kernel distance. The overall

classification accuracy of these distances with different window size is plotted in Figure 13.

It can be seen that along with the increasing of window size, the average accuracy is decreasing, especially for

dataset Usenet1. It could be caused by there are mixed concepts in time windows. In contrast, the accuracy of Spam

28

50 100 150 200 250

window size

65

70

75

80

85

90
ac

cu
ra

cy
 (

%
)

(a) Elec dataset

Euc Man Che Jac RBF

50 100 150 200 250

window size

75

80

85

90

95

ac
cu

ra
cy

 (
%

)

(b) Spam dataset

Euc Man Che Jac RBF

50 100 150 200 250

window size

66

68

70

72

74

76

78

ac
cu

ra
cy

 (
%

)

(c) Weather dataset

Euc Man Che Jac RBF

50 100 150 200 250

window size

50

55

60

65

70

ac
cu

ra
cy

 (
%

)

(d) Usenet1 dataset

Euc Man Che Jac RBF

50 100 150 200 250

window size

66

67

68

69

70

71

72

73

ac
cu

ra
cy

 (
%

)

(e) Usenet2 dataset

Euc Man Che Jac RBF

0 50 75 100 150 250

window size

65

70

75

80

85

ac
cu

ra
cy

 (
%

)

(f) Average Accuracy of Five Datasets

Euc Man Che Jac RBF

FIGURE 13: Classification accuracy of real-world datasets with different window size and different distance functions. Each line represents a
distance function. A marker on a line represents the classification accuracy of NN-DVI with a given distance function and on the window size. The
figure (f) shows the average accuracy of the tested five datasets for each distance function with different window size.

and Weather dataset is slightly increasing along with the window size. We consider that NN-DVI might overly trigger

false alarms with small window size in these datasets. Increasing the window size will reduce the overall false alarms

so that the accuracy can be increased. Regarding to the distance functions, Euclidean and Manhattan has very similar

performance and are the top two best distance for the evaluated datasets, while Jaccard distance performs the worst all

the time. Therefore, we recommend to use Euclidean or Manhattan distance for most situation.

7. Conclusions and Further Work

In this paper, we analyzed distribution-based drift detection algorithms, and summarized the fundamental compo-

nents of this type of drift detection methods. Under the guidance of the summarized framework (Fig. 1), we proposed

a novel space partitioning schema, called NNPS, to improve the sensitiveness of regional drift detection. Accordingly,

a novel distance dnnps and a nearest neighbor-based density variation identification (NN-DVI) algorithm is proposed.

This research also defines a k-nearest neighbor-based data discretization controlling method to represent the granu-

lar information in data samples. Regarding the drift significance test, this study theoretically proved the proposed

measurement, namely the dnnps, fits a normal distribution. According to this finding, an efficient and reliable critical

interval identification method has been integrated. The experiment results show that NN-DVI can detect concept drift

accurately on the synthetic datasets and is beneficial to solving real-world concept drift problems.

The innovation and contributions of this paper lie in its aims to discover the relationships between distribution

drifts and the changes in data instances’ neighbors. A regional density-oriented similarity measurement is given. This

measurement can effectively detect concept drift caused by either regional or global distribution changes.

Future research endeavors will aim to improve the current sliding windowing method by proposing an online

version of dnnps, so that the performance of NN-DVI will not be limited by window size. Another improvement may

29

be achieved by parallelizing the calculation of dnnps, through which overall complexity can be further reduced. Finally,

this paper is part of our work on adaptability learning for data stream mining. Successive instance selection methods

and adaptive learning methods that can take advantage of drift detection are desired.

Acknowledgment

The work presented in this paper was supported by the Australian Research Council (ARC) under Discovery

Project DP150101645.

References

[1] C. Alippi, G. Boracchi, M. Roveri, Just-In-Time classifiers for recurrent concepts, IEEE Transactions on Neural
Networks and Learning Systems 24 (4) (2013) 620–634, ISSN 2162-237X.

[2] C. Alippi, M. Roveri, Just-in-Time Adaptive Classifiers Part I : Detecting Nonstationary Changes, IEEE Tran-
sactions on Neural Networks 19 (7) (2008) 1145–1153, ISSN 1045-9227 1941-0093.

[3] C. Alippi, M. Roveri, Just-in-Time adaptive classifiers part II : designing the classifier, IEEE Transactions on
Neural Networks 19 (12) (2008) 2053–2064, ISSN 1045-9227.

[4] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, R. Morales-Bueno, Early drift detection
method, in : Fourth International Workshop on Knowledge Discovery from Data Streams, Vol. 6, pp. 77–86,
2006.

[5] J. P. Barddal, H. Murilo Gomes, F. Enembreck, B. Pfahringer, A. Bifet, On dynamic feature weighting for feature
drifting data streams, in : Proceedings of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, ISBN 978-3-319-46227-1, 129–144, 2016.

[6] A. Bifet, R. Gavaldà, Learning from Time-Changing Data with Adaptive Windowing, in : Proceedings of the
Seventh SIAM International Conference on Data Mining, vol. 7, SIAM, 2007, 2007.

[7] A. Bifet, R. Gavaldà, Adaptive Learning from Evolving Data Streams, in : The Proceedings of the Eighth Interna-
tional Symposium on Intelligent Data Analysis, Springer Berlin Heidelberg, ISBN 978-3-642-03915-7, 249–260,
2009.

[8] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA : Massive online analysis, Journal of Machine Learning
Research 99 (2010) 1601–1604.

[9] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data streams, in : Proceedings of the 2010
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 135–150,
2010.

[10] A. Bifet, G. Holmes, B. Pfahringer, E. Frank, Fast Perceptron Decision Tree Learning from Evolving Data
Streams, in : Proceedings of the Fourteenth Pacific-Asia Conference on Knowledge Discovery and Data Mi-
ning, Springer Berlin Heidelberg, ISBN 978-3-642-13672-6, 299–310, 2010.

[11] W. D. Blizard, Multiset theory, Notre Dame Journal of Formal Logic 30 (1) (1988) 36–66, ISSN 0029-4527.

[12] D. Brzeziński, J. Stefanowski, Accuracy updated ensemble for data streams with concept drift, in : Proceedings
of the 2011 International Conference on Hybrid Artificial Intelligence Systems, Springer, 155–163, 2011.

[13] D. Brzeziński, J. Stefanowski, Reacting to different types of concept drift : the accuracy updated ensemble
algorithm, IEEE Transactions on Neural Networks and Learning Systems 25 (1) (2014) 81–94, ISSN 2162-237X.

30

[14] T. Dasu, S. Krishnan, S. Venkatasubramanian, K. Yi, An information-theoretic approach to detecting changes
in multi-dimensional data streams, in : Proceedings of the Symposium on the Interface of Statistics, Computing
Science, and Applications, Citeseer, 1–24, May 24-27, 2006.

[15] G. Ditzler, M. Roveri, C. Alippi, R. Polikar, Learning in nonstationary environments : a survey, IEEE Computa-
tional Intelligence Magazine 10 (4) (2015) 12–25, ISSN 1556-603X.

[16] M. Dwass, Modified randomization tests for nonparametric hypotheses, The Annals of Mathematical Statistics
(1957) 181–187ISSN 0003-4851.

[17] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press, ISBN 0412042312, 1994.

[18] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary environments, IEEE Transactions on
Neural Networks 22 (10) (2011) 1517–31, ISSN 1941-0093 (Electronic) 1045-9227 (Linking).

[19] I. Frias-Blanco, J. d. Campo-Avila, G. Ramos-Jimenes, R. Morales-Bueno, A. Ortiz-Diaz, Y. Caballero-Mota,
Online and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds, IEEE Transactions on
Knowledge and Data Engineering 27 (3) (2015) 810–823, ISSN 1041-4347.

[20] J. Gama, G. Castillo, Learning with local drift detection, in : International Conference on Advanced Data Mining
and Applications, Springer, 42–55, 2006.

[21] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation, ACM
Computing Surveys 46 (4) (2014) 1–37, ISSN 03600300.

[22] H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble learning for data stream classification,
ACM Computing Surveys 50 (2) (2017) 1–36, ISSN 0360-0300.

[23] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. Smola, A kernel two-sample test, Journal of Machine
Learning Research 13 (Mar) (2012) 723–773.

[24] A. Haque, L. Khan, M. Baron, B. Thuraisingham, C. Aggarwal, Efficient handling of concept drift and concept
evolution over stream data, in : Proceedings of the Thirty-second IEEE International Conference on Data Engi-
neering, 481–492, 2016.

[25] M. Harel, S. Mannor, R. El-Yaniv, K. Crammer, Concept drift detection through resampling, in : Proceedings of
the Thirty-first International Conference on Machine Learning, 1009–1017, 2014.

[26] D. T. J. Huang, Y. S. Koh, G. Dobbie, A. Bifet, Drift Detection Using Stream Volatility, in : Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer International
Publishing, ISBN 978-3-319-23528-8, 417–432, 2015.

[27] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in : Proceedings of the Seventh ACM
International Conference on Knowledge Discovery and Data Mining, ACM, ISBN 158113391X, 97–106, 2001.

[28] E. Ikonomovska, J. Gama, S. Džeroski, Learning model trees from evolving data streams, Data Mining and
Knowledge Discovery 23 (1) (2011) 128–168, ISSN 1384-5810.

[29] E. Ikonomovska, J. Gama, R. Sebastião, D. Gjorgjevik, Regression Trees from Data Streams with Drift Detection,
in : Proceedings of the Twelfth International Conference on Discovery Science, Springer, Berlin, ISBN 978-3-
642-04747-3, 121–135, 2009.

[30] G. Jaber, A. Cornuéjols, P. Tarroux, Online learning : searching for the best forgetting strategy under concept
drift, in : Proceedings of the Twentieth International Conference on Neural Information Processing, Springer,
Berlin, Heidelberg, ISBN 978-3-642-42042-9, 400–408, 2013.

[31] I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades, I. Vlahavas, An adaptive personalized news dissemination
system, Journal of Intelligent Information Systems 32 (2) (2009) 191–212, ISSN 0925-9902.

[32] I. Katakis, G. Tsoumakas, I. P. Vlahavas, An ensemble of classifiers for coping with recurring contexts in data
streams, in : ECAI, 763–764, 2008.

31

[33] Y. Kawahara, M. Sugiyama, Sequential change-point detection based on direct density-ratio estimation, Statisti-
cal Analysis and Data Mining 5 (2) (2012) 114–127, ISSN 1932-1872.

[34] D. Kifer, S. Ben-David, J. Gehrke, Detecting change in data streams, in : Proceedings of the Thirtieth Internatio-
nal Conference on Very Large Databases, vol. 30, VLDB Endowment, ISBN 0120884690, 180–191, 2004.

[35] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority : An ensemble method for drifting concepts, Journal of
Machine Learning Research 8 (2007) 2755–2790, ISSN 1532-4435.

[36] P. Li, L. He, X. Hu, Y. Zhang, L. Li, X. Wu, Concept based short text stream classification with topic drifting
detection, in : Proceedings of the Sixteenth International Conference on Data Mining, 1009–1014, 2016.

[37] I. Žliobaitė, Combining similarity in time and space for training set formation under concept drift, Intelligent
Data Analysis 15 (4) (2011) 589–611, ISSN 1088-467X.

[38] I. Žliobaitė, A. Bifet, B. Pfahringer, G. Holmes, Active Learning with drifting streaming data, IEEE Transactions
on Neural Networks and Learning Systems 25 (1) (2014) 27–39, ISSN 2162-237X.

[39] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, G. Holmes, Evaluation methods and decision theory for classification
of streaming data with temporal dependence, Machine Learning 98 (3) (2015) 455–482, ISSN 1573-0565.

[40] I. Žliobaitė, J. Hollmén, Optimizing regression models for data streams with missing values, Machine Learning
99 (1) (2015) 47–73, ISSN 1573-0565.

[41] A. Liu, Y. Song, G. Zhang, J. Lu, Regional concept drift detection and density synchronized drift adaptation, in :
Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence, Accept, 2280–2286,
2017.

[42] B. Liu, Y. Xiao, S. Y. Philip, L. Cao, Y. Zhang, Z. Hao, Uncertain one-class learning and concept summarization
learning on uncertain data streams, IEEE Transactions on Knowledge and Data Engineering 26 (2) (2014) 468–
484, ISSN 1041-4347.

[43] S. Liu, M. Yamada, N. Collier, M. Sugiyama, Change-point detection in time-series data by relative density-ratio
estimation, Neural Networks 43 (2013) 72–83, ISSN 0893-6080.

[44] V. Losing, B. Hammer, H. Wersing, KNN classifier with self adjusting memory for heterogeneous concept drift,
in : Proceedings of the Sixteenth IEEE International Conference on Data Mining, 291–300, 2016.

[45] N. Lu, J. Lu, G. Zhang, R. L. De Mantaras, A concept drift-tolerant case-base editing technique, Artificial Intel-
ligence 230 (2016) 108–133, ISSN 0004-3702.

[46] N. Lu, G. Zhang, J. Lu, Concept drift detection via competence models, Artificial Intelligence 209 (2014) 11–28,
ISSN 0004-3702.

[47] L. L. Minku, Y. Xin, DDD a new ensemble approach for dealing with concept drift, IEEE Transactions on
Knowledge and Data Engineering 24 (4) (2012) 619–633, ISSN 1041-4347.

[48] B. Mirza, Z. Lin, Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting
data classification, Neural Networks 80 (2016) 79–94, ISSN 0893-6080.

[49] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, F. Herrera, A unifying view on dataset shift
in classification, Pattern Recognition 45 (1) (2012) 521–530, ISSN 0031-3203.

[50] H. Raza, G. Prasad, Y. Li, EWMA model based shift-detection methods for detecting covariate shifts in non-
stationary environments, Pattern Recognition 48 (3) (2015) 659–669, ISSN 0031-3203.

[51] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand, Exponentially weighted moving average charts for detecting
concept drift, Pattern Recognition Letters 33 (2) (2012) 191–198, ISSN 0167-8655.

[52] J. C. Schlimmer, R. H. Granger Jr, Incremental learning from noisy data, Machine Learning 1 (3) (1986) 317–
354, ISSN 0885-6125.

32

[53] J. Shao, Z. Ahmadi, S. Kramer, Prototype-based learning on concept-drifting data streams, in : Proceedings of the
Twentieth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2623609,
412–421, 2014.

[54] A. Storkey, When training and test sets are different : characterizing learning transfer, Dataset Shift in Machine
Learning (2009) 3–28.

[55] W. N. Street, Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in : Proceedings of
the Seventh ACM International Conference on Knowledge Discovery and Data Mining, ACM, 502568, 377–382,
2001.

[56] G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23 (1)
(1996) 69–101, ISSN 0885-6125.

33

	Introduction
	Literature Review
	Problem Description: Concept Drift and Related Research Topics
	Concept Drift Detection and Adaptation Algorithms
	Drift Detection via Non-Parametric Distribution Analysis

	Preliminary
	Nearest Neighbor-based Density Variation Identification
	Modelling Data as a Set of High-Resolution Partitions
	The Distance Measurement of Sample Sets in terms of NNPS
	A Tailored Statistical Significance Test for dnnps
	Stream Learning with Nearest Neighbor-based Density Variation Identification

	Information Granularity Indicator for NNPS
	Experiments and Evaluation
	Evaluating the Effectiveness of dnnps
	Evaluating the NN-DVI Drift Detection Accuracy
	Evaluating the NN-DVI on Real-world Datasets
	Evaluating the Stream Learning with NN-DVI with Different Parameters

	Conclusions and Further Work

