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Highlights

• A scalable graph compression algorithm for image segmentation proposed.

• The input image is represented by a region graph model.

• Texton dictionaries capture the local texture features in decoupled sub-

graphs.

• A graph compression algorithm reduces the graph size and segments the

image.

• Local graph decoupling and recoupling operations lead to an efficient

method.
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Abstract

Dealing with large images is an on-going challenge in image segmentation, where

many of the current methods run into computational and/or memory complexity

issues. This work presents a novel decoupled sub-graph compression (DSC)

approach for efficient and scalable image segmentation. In DSC, the image is

modeled as a region graph, which is then decoupled into small sub-graphs. The

sub-graphs undergo a compression process, which simplifies the graph, reducing

the number of vertices and edges, while keeping the overall graph structure.

Finally, the compressed sub-graphs are re-coupled and re-compressed to form a

final compressed graph representing the final image segmentation. Experimental

results based on a dataset of high resolution images (1000 × 1500) show that

the DSC method achieves better segmentation performance when compared to

state-of-the-art segmentation methods (PRI=0.84 and F=0.61), while having

significantly lower computational and memory complexity.

Keywords: Segmentation, graph compression, decoupling, scalability.

1. Introduction

Image segmentation is a challenging problem where the goal is to partition

an image into disjoint segments containing pixels that share similar character-
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istics. This becomes more challenging when dealing with images containing

complex textures, which usually demand more accurate models and representa-

tions. Furthermore, it is particularly challenging to segment large images, which

is becoming especially important with the recent prevalence of digital cameras

capable of megapixel resolutions (e.g., 15MP ≈ 4800 × 3200). Addressing the

problem associated with large images with complex textures efficiently is crucial

to all sorts of real-world applications such as object detection and recognition

(faces, pedestrians, foreground, etc.) video surveillance, visual biometrics (iris,

fingerprints), and medical image analysis (localization of tumors and lesions,

measurement of tissue damage, surgical planning, etc.)[1]. On the other hand,

current state-of-the-art methods for image segmentation are typically validated

with small images (e.g., ≤ 480×320 ≈ 0, 15MP) and face great difficulty scaling

to large images due to high computational costs and memory requirements.

For instance, methods based on graph cuts [2, 3, 4] or probabilistic graph

matching [5] usually require building an affinity matrix, which indicates the

measured similarity between every two regions in the image (e.g., ranging from

pixels to sets of pixels). Once this affinity matrix is obtained, the minimum

graph cut can be determined using efficient algorithms [2] that minimize the

graph cut energy. The drawback of this approach is the high memory and

computation costs associated with computing the affinity matrix.

To evaluate all pairs of regions has quadratic complexity of O(N2) on an

image of size N (in pixels). But as the image size tends to increase by rows or

columns, rather than by single pixels, we consider the image size as N = m×n,

where m and n denote the image dimensions (rows and columns). Since both

dimensions usually have comparable magnitudes (i.e., m/n u 1), we assume

that N u n2. Hence, computing the affinity matrix becomes expensive (O(n4))

for larger images, especially in terms of memory. While this limitation can be

overcome by excluding from the computation the pixels that are not neighbors

and unlikely to be similar (e.g., pixels that are far apart), it is still costly to

allocate the memory for computing the affinity matrix. Even though sparse

matrix representations provide a trade off between memory usage and processing
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time as the number of elements to be processed is reduced, for larger images

a large amount of memory is still required for computing the affinity matrix.

Also, the segmentation quality rapidly downgrades as the number of similarities

evaluated for each pixel decreases, i.e. as the number of non-zero elements per

row/column in the affinity matrix diminishes by discarding pixels that are not

neighbors and unlikely to be similar from the computation.

An alternative approach relies solely on the similarity of individual pixel

feature vectors [6, 7, 8]. Similar to data clustering algorithms, these methods

allow more efficient implementations by ignoring the spatial relationships and

spatial constraints in the segmentation process, and usually lead to a decay in

segmentation quality. To mitigate these effects, Zhu et al. [9] proposed the use of

a very sophisticated version of the Expectation-Maximization algorithm (EM),

combining multiple types pixel wise frequency and contrast features. Although

it does produce better segmentation than other cluster based methods, it is not

as good as graph cuts or region based techniques, and has high computational

cost, due to the complexity of EM. Already [10] proposed a combination of non-

negative matrix factorization (NMF) to cluster the image pixels, and level-set

segmentation using an energy function based on the NMF coefficients. However,

this method does not account for color information, and the NMF makes it

computationally expensive even for small grayscale images.

Region based segmentation methods have been proposed for image [11, 12,

13, 14, 15], and object segmentation [16, 17, 18]. These techniques rely heavily

on the spatial relationships between pixels, and often require the evaluation of

pairwise pixel relationships, which tends to lead to computationally expensive

methods. On the other hand, these methods tend to require less memory than

graph cuts, since the segmented regions are obtained by processing local sets of

pixels, rather than processing all image pixels (e.g., using global methods).

To tackle the efficiency problems mentioned above, recent works have ap-

proached the segmentation problem using multi-level models [19, 20]. On a

lower level, the image is evaluated locally, dividing it in a large number of ho-

mogeneous segments with some over segmentation method. Then, in an upper
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level, these segments are globally evaluated with some clustering technique that

aggregates them into larger regions. This strategy is able to reduce the segmen-

tation time significantly without large compromises in terms of segmentation

quality.

In a similar fashion, [21] used the Voronoi diagram of the image, to obtain

smaller regions, and then used a split and merge technique to assemble these

Vorono regions in larger ones. In another study [22], a combination of super-

pixels, fuzzy c-means and graph cuts was used to produce hierarchical segmen-

tation. As these algorithms allow efficient implementations, it can achieve fast

segmentation, but at expense of boundary accuracy, that is limited by the super-

pixels quality. Another approach, proposed in [23], also assembles superpixels

into larger regions, but it uses an multilevel graph to represent both, pixel-wise,

region-wise and pixel-region relations. On the other hand, the evaluation of all

edges in this graph largely increases the algorithms complexity.

Reliable over-segmentations (e.g., based on superpixels) can be obtained

with a variety of algorithms, such as nCuts [24] or watersheds [25], and recent

developments have enabled segmentations to be made at low computational

costs [26]. On the other hand, the over-segmentation becomes a critical stage

since the accuracy of these approaches depends on the quality of the initial

over-segmentations. Therefore, unsatisfactory superpixels tend to not lead to

the desired segmentation quality. To deal with this issue, the combination of

multiple superpixel methods was proposed in [20] to increase the robustness

to the initial over-segmentation. However, such an approach still does not al-

low for pixel-wise precision, and has high memory costs as the integration of

multiple segmentations uses spectral clustering to combine them into a single

segmentation.

Among the graphical models and approaches proposed for image processing,

graph compression techniques remain mostly unexplored in the image segmen-

tation domain. These techniques aim to summarize a given graph using fewer

graph vertices and edges, and in this work we show that with an appropriate

graph setup, this approach can be used successfully to perform image segmenta-
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Figure 1: Overview of the proposed method: (a) initial region adjacency graph (large and

dense); (b) sub-graph decoupling (small and dense); (c) sub-graph compression; (d) com-

pressed sub-graphs (small and sparse); (e) recoupled graph (medium size and sparse); (f)

recoupled graph re-compression; (g) recompressed graph F (small and sparse).

tion. However, this type of graph analysis requires the evaluation of all vertices

and edges in the graph, leading to computationally expensive algorithms. Some-

times graph based methods may turn to be unfeasible for massive and dense

graphs that frequently arise in image processing, especially in high resolution

imagery.

In order to achieve scalability of the segmentation method, with a pixel-wise

precision and without compromising the quality of the segmentation, a novel

decoupled sub-graph compression (DSC) approach for efficient and scalable seg-

mentation is proposed in this work. Rather than using a fully connected graph

of pixel-wise similarities to represent the image, the method proposed here mod-

els the image using a region adjacency graph [11] that iteratively adapts to fit
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the desired image segments. This region graph is decoupled in smaller sub-

graphs, which are independently compressed and then recombined into the final

segmentation, as illustrated in Fig. 1.

The DSC strategy allows the implementation of scalable segmentation algo-

rithms with pixel-wise boundary precision. It also exploits the local maxima of

the distribution of the proposed texture features that are observed when only

small portions of the image are evaluated independently. By employing texton

dictionaries [14] to represent the texture regions, the DSC strategy is able to

explore feature locality, generating more efficient local dictionaries for compress-

ing individual sub-graphs, which allows to consider also weaker boundaries and

obtain more accurate final segmentations.

The main contributions of this work can be summarized as follows:

1. Propose a novel, fast and scalable graph compression algorithm for image

segmentation;

2. Present an extension of the region graph model to explore the features

locality (allowing to process weaker boundaries), as well as to robustly

encompass the graph decoupling and recoupling operations (essential to

the proposed strategy);

3. Introduce a robust graph recoupling methodology that correctly combines

the compressed sub-graphs during the segmentation, regardless of the or-

der in which the sub-graphs are decoupled or compressed.

This paper is organized as follows. In Sec. 2 we present the proposed graph-

ical model and segmentation method via graph compression. Sec. 3 discusses

the computational complexity of the proposed method in terms of time and

memory. Afterwards, Sec. 4 presents the experiments and key findings of this

work. Finally, Sec. 5 draws conclusions from the performed experiments and

proposes future developments.
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2. Proposed Scalable Segmentation Strategy

In this work, the image segmentation is processed as the compression of a

graph G that represents the intrinsic characteristics of the evaluated image I. A

graph compression algorithm transforms a given graph G into a smaller graph

F with the same topological information (relative position of the vertices and

length of the edges), as presented bellow.

Definition 1 (Graph Compression). Let G = (V,E) be an arbitrary connected

graph, formed by a set of vertices V and a set of edges E connecting those

vertices. A graph compression is a function H : G → F that receives as input

the graph G, and outputs another graph F = (VF , EF ) (called the compressed

graph), composed of a vertex set VF and an edge set EF , such that:

1. |V | < |VF |,
2. |E| < |EF |,
3. F has the same topology as G,

where | · | denote the number of elements of the set.

In the proposed method an image I is modeled as a region graph G = (V,E),

where the vertices vi ∈ V = {vi : ri ∈ S0} represent texture regions ri (1 ≤ i ≤
|S0|) contained in an arbitrary image segmentation S0, and the edges eij ∈ E =

{eij : ri, rj ∈ R and ri is adjacent to rj} indicate the boundaries between the

regions ri and rj . Although any partition of I can be represented in this fashion,

in this work we wish to focus on the representation of the local interactions

between neighboring pixels (and sets of pixels). Therefore, we restrict S0 to be

a superset of non-empty and pairwise disjoint sets of connected pixels from the

image I.

Moreover, each edge has a weight wij , indicating the interaction strength

between a pair of region vertices ri and rj . As illustrated in Fig. 2, the weights

associated to the edges can be seen as the geometric distance between the ver-

tices in a topological representation of the graph. When defined in this way,
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(a) Original Image; (b) Initial Region Interactions;

(c) Weighted Region Graph; (d) Compressed Region Graph.

Figure 2: Region graph setup: (a) the original image (50 × 63), (b) initial pixel-wise regions

interactions using a Markov Random Field, (c) initial weighted region graph, with edges length

proportional to the boundary strength, (d) compressed region graph, overlaid to the image

segmentation.

the graphical structure of the image regions will be clearly related to the im-

age structure, with similar regions vertices placed closer, and distinct regions

vertices placed further away.

Consequently, any changes in this graph will lead to a new segmentation

state. Since the graph compression F = H(G) is a transformation that pre-

serves the topology of G, it groups together the vertices connected by smaller

edges. Since in G smaller edges indicate greater similarity of the regions, the

compressed vertices represent connected groups of pixels that of similar charac-
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teristics in I. Hence, compressing G is equivalent to segmentation of image I,

and the configuration of the compressed graph F yields the segmentation map

SF . Furthermore, to compute the compressed graph F , all the initial edges in

E must be evaluated. Since S0 must be a partition of I in a set of connected

components, the region graph will have |V |2 ≥ |E| ≥ |V | − 1, what may result

in significant computational complexity.

To make the graph compression process more efficient, this work employs

a divide-and-conquer-like strategy, as illustrated in Fig. 1. The initial graph G
is first decoupled in a collection of small sub-graphs G1, G2, · · · , GB that can

be processed efficiently. Next, each sub-graph Gp is transformed in a small

compressed subgraph Cp = H(Gp) using Def. 1. Then, the compressed sub-

graphs are recoupled together in a single connected graph C, that approximates

H(G) from the local compressions of the previous stage. Finally, a last graph

compression is applied to C to ensure robustness to errors in the previous stages.

To implement this algorithm, we propose two operations, one for dividing

the initial graph into smaller sub-graphs, called decoupling; and another for

recombining the sub-graphs into a single graph, called recoupling. The graph

decoupling operation is defined as follows:

Definition 2 (Graph Decoupling). Let G = (V,E) be an arbitrary connected

graph, formed by a set of vertices V and a set of edges E, connecting those

vertices. A decoupling of G is a partition of V into B non-empty subsets of

vertices {V1, V2, · · · , VB} with 1 ≤ B ≤ |V |, resulting in the decoupled graph

G′ = ((V1, E1), (V2, E2), · · · , (VB , EB)), where (Vp, Ep) is a decoupled sub-graph.

Def. 2 implies two additional concepts that are essential to the graph re-

coupling. The first concept is the decoupled sub-graph, which is related to the

connected components of G′, and is formalized in Def. 3. The second concept is

the residual edges, and addresses the edges removed from a graph to disconnect

the connected components. These concepts are formalized as follows in Defs. 3

and 4:

Definition 3 (Decoupled Sub-Graph). Let G = (V,E) be an arbitrary connected

10
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graph, and G′ = ((V1, E1), (V2, E2), · · · , (VB , EB)) its decoupled graph. A decou-

pled sub-graph Gp = (Vp, Ep) is a sub-graph of the initial connected graph G,
composed of the vertices in a single subset of vertices Vp ∈ G′ of the decoupling

partition, and the set of edges Ep that connect these vertices:

Ep = {eij ∈ E : vi, vj ∈ Vp : 1 ≤ p ≤ B}.

Definition 4 (Decoupled Residual Edges). Let G = (V,E) be an arbitrary

connected graph, and G′ = ((V1, E1), (V2, E2), · · · , (VB , EB)) its decoupled graph.

The residual edges of G′ are the edges that have one end in one of the decoupled

vertex subsets Vp and the other end in another decoupled subset Vq, with 1 ≤
p, q ≤ B and p 6= q. The residual edges set ER is formally given by:

ER = {eij ∈ E : vi ∈ Vp ∧ vj ∈ Vq ∧ p 6= q}.

Using the concepts above, the decoupled sub-graphs can be re-assembled

into a single graph with a graph recoupling operation, formally defined as:

Definition 5 (Graph Recoupling). Let C1, C2, · · · , CB be a list of B pairwise

distinct decoupled sub-graphs, and let ER = {eij ∈ EC : vi ∈ Cp∧vj ∈ Cq∧p 6= q}
be a set of residual edges for those decoupled sub-graphs, with Cp = (V ′p , E

′
p). The

recoupling of C1, C2, · · · , CB is the process of assembling all these sub-graphs in

a single connected graph C = (VC , EC), composed respectively by the following

vertex and edge sets:

VC =
B⋃

p=1

[V ′p ] and EC =
B⋃

p=1

[E′p] ∪ E′R.

The decoupling, compression, and recoupling operations are combined in

Alg. 1, that summarizes the proposed decoupled sub-graph compression algo-

rithm for scalable image segmentation. In the remainder of this section, we

describe the details of the algorithms associated to Defs. 1, 2, 4 and 5.
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Algorithm 1 Decoupled Sub-Graph Compression Segmentation Algorithm
Input: Image I

Output: Segmentation map SF

1: G = a region graph from image I

2: (G1, G2, · · · , GB) = decouple G into B sub-graphs . Using Def. 2

3: ER = residual edges of (G1, G2, · · · , GB) . Using Def. 4

4: for p = 1 to B do

5: Gp = H(Cp) . H(·): graph compression Using Def. 1

6: end for

7: E′R = updated residual edges

8: C = C1 ∪ C2 ∪ · · · ∪ CB ∪ E′R . Using Def. 5

9: F = H(C)
10: SF = segmentation yielded by F
11: return SF .

2.1. Initial Region Graph

Since in the proposed graphical model a region vertex is allowed to represent

any number of pixels, as well as be connected to any number of other vertices,

several strategies can be used to set up the initial regions S0 to be represented

in G, each with distinct effects. Using a single over-segmentation may produce

incorrect boundaries that are hard to correct, and multiple over-segmentations

require the use complex models, and cannot achieve pixel-wise precise bound-

aries.

In order to precisely represent the image I (of size M × M), the region

graph G = (V,E) is initially set to represent each pixel li as a unique region

vertex vi ∈ V , labeled ri ∈ S0 = {1, · · · ,M2}, and the edge set E is initially

configured to represent the interactions of a 4-neighborhood Markov Random

Field [27] (see in Fig. 2-b the relations and in Fig. 2-c the initial graph). This

scheme allows the potential to achieve fine boundary detection at pixel-wise

precision. The edge weights wij , that define the topology of G, are obtained

comparing the texture descriptors of the region vertices associated to it. That

will be discussed in detail in Section 2.3, as the edges are computed locally and

are closely related to the compression process.
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The scheme above leads to a large and dense region graph, as illustrated in

Fig. 1-a. But compressing a graph requires evaluating all its vertices and edges,

what could make the process computationally expensive, and even unfeasible for

high resolution images. To deal with this potential issue, we propose a strategy

that uses graph decoupling (Def. 2) and recoupling (Def. 5) to make the process

scalable for large graphs. Moreover, by defining a large graph we intent to show

that it can be handled nicely within the proposed approach.

2.2. Graph Decoupling

From definitions 3 and 4, the graph decoupling of G into G′ implies in re-

moving a cut-set of residual edges ER ⊂ E from the initial graph, so that G
is partitioned into B sub-graphs Gp = (Vp, Ep), 1 ≤ p ≤ B. We desire all

sub-graphs to be small enough to allow compression at low cost, as illustrated

in Fig. 1-b.

Furthermore, according to Def. 2, the decoupling of a graph divides its ver-

tices in B pairwise disjoint sub-sets. As in G each vertex is associated to exactly

one pixel on I, decoupling this graph is equivalent to partitioning the image

into disjoint groups of connected pixels, which is the very definition of image

segmentation. Therefore, graph decoupling may be obtained as a coarse im-

age over-segmentation, which we denote by SD. In this scheme, each segment

sp ∈ SD indicates one of the sub-graphs Gp to be decoupled.

In the experiments of the proposed strategy, we evaluated a few distinct

decoupling methods, for which the results are reported in Table 1. They are:

• Coarse Compression (C-DSC): The image is down-scaled by a factor

of κ and then segmented recursively using the proposed DSC algorithm.

Each decoupled sub-graph corresponds to an image segment obtained at

this lower scale segmentation;

• Mori Superpixels [24] (SP-DSC): An over-segmentation method based

on normalized graph cuts [28], which is set to find a large number of parti-

tions, that will be the superpixels. Each decoupled sub-graph corresponds

13
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Table 1: Comparison of Decoupling Strategies on 500× 750 images

Strategy PRI F-measure Time (s)

No Decoupling (Full-GC) 0.635± 0.161 0.333± 0.127 3419.2± 839.4

Block (B-DSC) 0.805± 0.088 0.533± 0.109 2954.6± 3113.4

Coarse Compression (C-DSC) 0.812± 0.084 0.568± 0.132 6217.2± 1390.5

Waterpixels [25] (WP-DSC) 0.805± 0.088 0.552± 0.115 3116.3± 505.0

Superpixels [24] (SP-DSC) 0.812± 0.082 0.559± 0.118 4229.1± 773.3

Bold values indicate the best result.

to a single superpixel;

• Waterpixels [25] (WP-DSC): An over-segmentation methods based on

watersheds. It combines a regular grid gradient to the image gradient in

order to reinforce the generation of small, homogenous connected com-

ponents on the watershed transform [29], which are image segments or

superpixels. Each decoupled sub-graph corresponds to a single superpixel;

• Block Partitioning (B-DSC): The image is divided in non-overlapping

square blocks of size B × B. Each decoupled sub-graph corresponds to

one of these image blocks;

• No Decoupling (Full-GC): In this case, there is a single “sub-graph”

G1 = G, thus the graph compression is applied directly to the initial

graph G. This is included as a reference to evaluate the performance of

the other decoupling methods.

As shown in Table 1, each decoupling method produces a slightly different

result, regarding the cost and the quality of the decoupled segmentation SD.

But in all cases decoupling the initial graph is more efficient than a full graph

compression of G, both in terms of quality (PRI and F-measure) and cost (time).

The benefits and issues of each of decoupling segmentation method will be more

deeply discussed in Sec. 4.

Furthermore the proposed sub-graph compression uses a fine scale and local

maxima of the edge weights (i.e. vertices interactions), that are easier to detect

14
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within small portions of the image. In this way, the decoupled sub-graphs pre-

vent over-compression (i.e. avoiding misrepresenting relevant boundaries), while

the recoupling stage prevents under-compression (avoiding the representation of

false boundaries). This makes the decoupling strategy advantageous not only

in terms of efficiency, but also adds to it a potential for providing better image

segmentations.

2.3. Sub-graph Compression

While graph compression have been well defined in Def. 1 it is restricted to

connected graphs. Since the decoupled graph G′ is not connected, we expand

the definition of graph compression to disconnected graphs, as:

Definition 6 (Disconnected Graph Compression). Let G = (V,E) be an ar-

bitrary graph with B ≥ 1 connected components, and G1, G2, · · · , GB be the

sub-graphs of G containing exactly one connected component of G. The graph

compression of G is equal to the individual compression of each of its connected

components Gp, with p = 1, 2, . . . , B.

Therefore, the individual compression of all decoupled sub-graphs Gp can

be used to approximate the compression of G, at least to a certain degree. The

difference between these segmentations will be addressed in the Sec. 2.5.

Consider the compression of a decoupled-sub-graph Gp = (Vp, Ep), as shown

in Fig. 1-c (local graph compression). The proposed sub-graph compression has

three main steps. First, one edge eij ∈ Ep is selected to be evaluated. Then, its

weight wij is computed locally. Finally if wij indicates a strong interaction, then

the corresponding vertices are compressed (combined) into a new super-vertex.

This steps are repeated for all edges in Ep. When no more compressions are

possible, the compressed sub-graph Cp is obtained.

Because this process gradually transforms Gp in the compressed sub-graph

Cp, we denote the sub-graph state after t vertex compressions by Gtp, with

G0
p = Gp being the initial state, and GΩ

p = Cp being the final state after all

edges have been evaluated. The compression process is summarized in Alg. 2.

Details of each step are addressed in one of the following sub-sections.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Graph Compression Algorithm
Input: Region graph Gp = (Vp, Ep)

Output: Compressed graph Cp = (V ′p , E
′
p)

1: Let G0
p = Gp; t = 0;

2: φ(vi) = 1, ∀vi ∈ Vp
3: Dp = texton dictionary for Gp; . Using Alg. 3

4: P = sort(E0
p);

5: for eij = pop(P ) do

6: Let vi, vj be the vertices connected by eij ;

7: P = P − {eij};
8: Compute wij ; . Using (1)

9: if wij is small enough then

10: vu = vi + vj ; t = t+ 1;

11: Gt
p = (Gt−1

p − {vi, vj}) ∪ {vu};
12: end if

13: end for

14: return Gt
p.

2.3.1. Edge Evaluation Order

Because the vertex compression is a local optimization, the order in which

the edges are evaluated is determinant to the outcome. Since vertices with

stronger interactions (smaller edge sweights) are more likely to be compressed,

such edges should be analyzed first. Initially, all edges in Ep are placed in a

adjacency priority queue, that will keep them sorted in ascending order of their

weights wij . After an edge is analyzed, it is removed from the queue. If a

compression occurs, the remaining edges are updated to reflect the new graph

configuration. In this way, the next edge to be evaluated is always the one on

top of the queue. When the queue becomes empty the compression ends, with

the sub-graph at state GΩ
p = Cp, and the compressed graph Cp is obtained.

Moreover, compressing only directly connected vertices ensures that the com-

pressed sub-graph is also a region graph (represents an image segmentation).

Therefore, vertices vi ∈ Gp and vj ∈ Gq form distinct decoupled sub-graphs

Gp 6= Gq, cannot be compressed. Consequently, each sub-graph Gp can be

compressed independently from any other sub-graphs, as stated in Def. 6.
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(a) Original image; (b) Decoupled region;

Texture B
(Pyramid)

Texture A
(Sand)

(c) Generic Texton Dictionary; (d) Localized Texton Dictionary;

0	
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0,6	

0,8	

1	

BD(A,B) = 0.21098

(e) Texton Histogram;
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(f) Texton Histogram.

Figure 3: Impact of local dictionaries in the texture representation. From the original image

(a) we select two adjacent textures from distinct objects within the decoupled region (b): the

sand (Texture A) and the pyramid (Texture B). When using (c) the generic texton dictionary

both textures have similar (e) texture histograms, but with (d) the specialized dictionary

(f) their texton histograms can be distinguished from each other. BD is the Bhattacharyya

distance in (1).

2.3.2. Edge Weight Computation

The proposed bottom-up strategy allows edge weights to be computed dy-

namically (on demand) and helps to mitigate the memory cost of the dense

graphs. For this purpose, we define two properties associated to each vertex

vi: the compression level Φ(vi) and the texton histogram H(vi). The com-

pression level Φ(vi) is a count of how many vertices have been compressed into

that vertex, and indicates the portion of the initial graph that is contained in

the super-vertex vi. An uncompressed vertex vi ∈ Vp, in the initial state of

sub-graph G0
p, has Φ(vi) = 1. As the graph compression progresses and the

graph configuration changes, the compressed vertices will have different values

of compression levels (see (2) and (3) for details on compression updates).
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Algorithm 3 Texton Dictionary Algorithm
Input: Image I, Region of interest r, Number of textons K

Output: Texton dictionary D

1: for Every pixel l ∈ r do

2: Let N (l) be a patch around the pixel l

3: Ψ = random matrix (m× n) . See [30] for details

4: f(l) = Ψ ∗ N (l)

5: end for

6: D = centroids of k-means(f(:),K)

7: return D.

The second property, texton histogram H(vi), is a statistical descriptor of

the contents of the image region ri associated to the region vertex vi. The

histograms arise from the texton dictionary approach [31, 32, 14], that use bag-

of-features to represent low level texture features of the regions. To construct

this dictionary, the stochastic patch features [14] are extracted from the image

pixels. The extracted feature vectors are then clustered using k-means [33], and

the resulting cluster centroids will be the textons (atoms) composing the texton

dictionary D. The algorithm for building this dictionary is described in Alg. 3,

where the region of interest r is a binary mask for image, indicating the pixels

to be considered.

The texture within a region is then represented by the occurrence probability

of each texton of the dictionary. More precisely, each pixel l is assigned to the

texton most similar to its feature vector f(l) (using L2 norm), and H(vi) =

{hc(vi) : 1 ≤ c ≤ |D|} counts how many pixels l ∈ ri, was assigned to each

dictionary texton. Also, these histograms are normalized to have
∑
c hc(vi) = 1,

so the vertices with distinct compression level Φ can be compared fairly.

When compressing a single sub-graph Gp, the texton histograms can be

made more precise and computed faster by using a dictionary Dp optimized

to represent the textures of that sub-graph specifically. This Dp is obtained

by providing a better set of feature samples f(·) to k-means when construct-

ing the dictionary. Since Gp represents the over-segment sp of the decoupling

segmentation (SD), pixels outside sp are not relevant when compressing Gp.
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Therefore, clustering only the feature vectors of pixels within sp to build Dp is

enough to produce a specialized dictionary, as illustrated in Fig. 3. In Alg. 3

this is achieved by selecting the region of interest as r = sp, the over-segment

associated to Gp. This is one of the main contributions of this work, that creates

more accurate representation of the sub-graph textures that helps to dynami-

cally detect the local maxima of the region interactions. Moreover, building Dp

is faster, as there are less samples to cluster.

We then define the edge weight wij for an edge eij , linking a given pair of

vertices vi and vj , as the measure of similarity between the histograms using

the Bhattacharyya distance [34]:

wij = −ln
(∑

c

√
hc(vi) · hc(vj)

)
. (1)

2.3.3. Vertex Compression

In the proposed method, if the weight wij of the edge on top of the priority

queue is small enough, the vertices vi and vj are compressed into a new vertex

vu, representing the union of their associated image regions ri and rj , such that:

Φ(vu) = Φ(vi) + Φ(vj), (2)

H(vu) =
H(vi)× Φ(vi) +H(vj)× Φ(vj)

Φ(vu)
. (3)

Also, the edges of Gtp are updated to reflect the new vertex, so all edges that

previously connected vi or vj to other vertices in Gt−1
p are directed to vu, and

any edges from vu to itself are discarded. The graph structure and its operations

(compress vertices, redirect edges and remove loop edges) are efficiently handled

with a union-find structure [35] for the vertices and a list of adjacencies for the

edges.

In the union-find structure, the vertices are represented by tree nodes in a

vector v̄, with one element v̄(i) for each vertex vi ∈ Vp, containing the index of

its parent. At state G0
p, every vertex vi is uncompressed, so v̄(i) = i, meaning it

is the root of that tree. When vertices vi and vj are compressed, we simply need

to combine their trees, by making the root of one tree as the child of the other,

such as v̄(i) = j, and vj becomes a new compressed super-vertex. Therefore,
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if a vertex vi has v̄(i) 6= i, it has been compressed into a super-vertex, which

will be the root of that tree. The operation of finding the root of the tree that

contains node i is called find(i) and provides the index of the root node. The

find operation has a worst case complexity of O(n), but in this scenario the

average case takes constant time, and the tree combination can also be done in

constant time O(1). By using the find(·), the adjacency list does not have to be

updated often when updating the graph. Moreover, the union-find also allows

to track the correspondence between the initial vertices vi ∈ G0
p = Gp and the

final super-vertices vx ∈ GΩ
p = Cp. This will be useful in the recoupling stage

(see Sec. 2.4).

For the sake of efficiency, the proposed DSC is designed as a greedy algo-

rithm, and compressed vertices are never uncompressed in the process. It shall

be observed that local DSC optimizations may not lead to the global optimum

individually, but the DSC process tends to avoid getting stuck in local minima

as discussed below. To prevent undesirable excessive compressions, a statistical

penalty Λ is computed based on the compression level of the vertices linked by

the evaluated edge:

Λ(vi, vj) =
f2

2Q

[
ln(|V 0

p |2)

Φ(vi)
+
ln(|V 0

p |2)

Φ(vj)

]
, (4)

where |V 0
p | is the number of vertices in G0

p, Q is the regularization term control-

ling the size of the compressed graph, and f = 256 is the number of intensity

levels in the image I.

Using this penalty Λ(vi, vj) and the edge weights wij from (1), all pairs of

region vertices (vi, vj) that are connected by a single edge eij are evaluated,

and compressed if the vertex compression likelihood α(vi, vj) is greater than a

random number u ∼ U(0; 1), as discussed in [11]:

α(vi, vj) = exp

[
− wij

Λ(vi, vj)

]
. (5)

This stochastic graph compression strategy accounts for information uncer-

tainty (such as noisy feature samples, and the lack of information about the

image contents), and thus makes the DSC less prone to local minima [14, 11].
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Once all edges eij ∈ Ep (the edge set of Gp) have been evaluated, the sub-graph

will be in a state GΩ
p , which contains fewer vertices and edges. this state is

called the compressed sub-graph Cp = GΩ
p .

2.4. Graph Recoupling

While compressing the decoupled sub-graphs Gp is more efficient than com-

pressing the initial G, it produces only disconnected components. To obtain a

single segmentation map for the image I, the compressed sub-graphs C1, C2, · · · , CB
must be combined in a single connected region graph C = (VC , EC) (see Fig. 1-

e). Using Def. 5 it is possible to recreate a connected graph from decoupled

sub-graphs, given that a set of residual edges E′R is provided.

Let us consider the compressed sub-graph Cp = (V ′p , E
′
p). The graph com-

pression algorithm presented in Sec. 2.3 ensures that its compressed vertex set

V ′p represents the same image pixels as the uncompressed vertex set Vp of sub-

graph Gp. Consequently, the recoupled vertex set VC , given by the union of all

compressed vertex sets:

VC =
B⋃

p=1

V ′p , (6)

as proposed in Def. 5, represents all pixels in the image I.

Furthermore, the union find structure used in the compression stage tracks

the correspondence between each uncompressed vertex vi ∈ Vp and its com-

pressed super-vertex vx ∈ V ′p , where x = find(i). Therefore, the set of recouple

residual edges E′R for recoupling the compressed subgraphs, is obtained updat-

ing the decoupled residual edge set ER, as:

E′R = {exy : eij ∈ ER ∧ vx = find(vi) ∧ vy = find(vj)}. (7)

Since VC has much less vertices than V , repeated edges are expected to arise

from (7), of which only one sample is included in E′R.

Combining E′R with the edges of all compressed subgraphs E′1, E
′
2, · · · , E′B

into Def.5, we obtain the edge set EC for the recoupled graph:

EC =
B⋃

p=1

E′p
⋃
E′R. (8)
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With this configuration, the recoupled graph C = (VC , EC) has a single con-

nected component, and therefore is a region graph the input image I. As such,

there is a segmentation map SR associated to C, which we call the recoupled

segmentation.

2.5. Graph Re-compression

The decoupling and recoupling operations make the compression of G more

efficient, but it is also limited to sub-optimal solutions. Because the recoupled

graph includes edges from E′R, that have not been evaluated in the sub-graph

compression, C is only a loose approximation of a full compression of the initial

graph G. Similarly, SR does not represent the optimal detection of boundaries.

To address issue, a final graph compression is performed on the recoupled

graph C. Given that the C = (VC , EC) will be small (compared to G) and sparse

(with few edges in comparison to the number of the vertices), this compression

can be computed efficiently. In this stage, Alg. 2 is used to transform C into the

final graph F = H(C). This stage enhances the region graph compression in a

global scale, making the segmentation robust to errors in the decoupling stage

at low computation cost, which is one of the contributions of this work.

Similarly to the sub-graph compression, the re-compression stage has the

same three steps — select an edge, update its weight and, if it indicates a

strong interaction, compress the related vertices into a new supervertex — that

are repeated for all graph edges exy ∈ EC . Once all edges have been evaluated,

final re-compressed region graph F is obtained, and the final image segmentation

SF is yielded by the union-find structure used to represent the vertices.

Since Alg. 2 does not uses any property of the decoupled sub-graphs that is

not present in C, it can be employed in this stage, using the same data structures

(priority queue, union-find). In the re-compression stage, however, the weights

wxy of all edges exy ∈ EC must be updated to reflect the state of C rather than

the sub-graph Cp. To achieve this, the properties of all vertices vx ∈ VC must

be adjusted accordingly. Because (6) does not change the sub-graph vertices, in

the graph recoupling, it suffices to preserve the same compression level Φ(vx)
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available in Cp for every vx ∈ V ′p .

To compute the weights of any residual edge exy ∈ E′p added in the re-

coupling stage, the histograms H(vx) and H(vy) must be updated using the

same texton dictionary. Because the specialized dictionaries D1, D2, · · · , DB

cannot properly represent textures classes outside their respective sub-graphs,

they are not appropriate for this stage. Hence, a global texton dictionary D is

constructed using Alg. 3. But because C is associated to all image pixels l ∈ I,

D must be constructed using samples form the whole image. This is achieved

by setting the region of interest r represent the whole image evenly.

Given the complexity of a clustering process, building the global dictionaryD
could compromise the scalability of the proposed method, especially in terms of

memory. But since the image I is expected to be large and have high resolution,

it is reasonable to presume that I presents large information redundancy within

pixels neighborhoods. Therefore, region of interest r is set to uniformly select

only 1 out of every κ ≥ 1 pixels in the image (both vertically and horizontally).

By doing so, the number of features vectors is down-sampled at a rate of
1

κ2
,

without any significant loss of representativeness of the new texton dictionary

and histograms. Using D, the histograms H(vx) of all vertices in VC are updated,

and the edge weights of C can be computed dynamically using (1), as the graph

compression progresses.

3. Computational Complexity

In this section, we evaluate the time and memory asymptotic growth rate of

the proposed method. As the algorithm has three stages (decoupling, compres-

sion and recoupling), their combination will result in the total processing cost.

Without loosing generality, let us consider an image of size n × n = n2 pixels,

where the initial graph will also have n2 vertices, and approximately 2n2 edges

(as it is assumed a 4-neighborhood at each pixel).

In the simplest approach for decoupling, the initial graph is divided into B

sub-graphs of size b×b = b2 = n2/B vertices, with approximately 2b2 edges. This
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operation is trivial, and can be done in constant time TD = O(n). The same

operation can be done by indexing the regions of the image to be processed, i.e.

the memory growth rate also is MD = O(n2).

On the proposed compression algorithm each edge leads to one evaluation

of vertices. For a graph of 2n2 edges, this algorithm has a complexity of

O(2n2) = O(n2). On the sub-graph compression stage, however, there are

2b2 edges, leading to a time growth rate of O(2b2) = O(b2) for each sub-graph.

Consequently, if b � n (as proposed in the decoupling stage) this algorithm

will be large graphs will be much more expensive to compress than many small

graphs. On the other hand, the memory growth rate of this stage will be O(Kb2)

per sub-graph, where K is a large constant related to the method parameters

used for texture representation. Although there may be many sub-graphs for

a single image, they are independent of each other and only the features and

histograms pertaining the sub-graph that is being compressed need to be loaded

at one time, allowing better memory management. Considering G divided in B

sub-graphs, each with a size b2 = n2/B, the sub-graph compression stage time

and memory growth will be bounded, respectively, by:

TS = O(Bb2) = O(B(n/B)2) = O(n2/B),

MS = O(Kb2) = O(K(n/B)2) = O(Kn
2/B2).

In the recoupling stage, the complexity comprises the steps of reconnecting

the sub-graphs, rebuilding the textons dictionary and re-compressing the graph

C. For a recoupled graph C with v vertices, the reconnection complexity depends

on the number of graph vertices taking time O(v), which can be done without

allocating any extra memory. The texton dictionary is built using k-means,

so considering sub-sampling of the feature vectors, it has a time growth of

O(Kn2/κ2). The graph re-compression also depends on the number of graph

edges, resulting in a time growth bounded by O(v2). Since the recoupled graph

is much smaller than the decoupled sub-graphs, we have that v � b2 � n2,

resulting in a time growth complexity of:

TR = O(n2/κ2) = O(v) +O(n2/κ2) +O(p2)
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for this stage. Similarly, the memory growth rate of the recoupling stage also

depends on the clustering process, which is:

MR = O(Kn2/κ2).

Combining all stages, the resulting complexities for time and memory are,

respectively:

O(T ) = O(1) +O(n2/B) +O(n2/κ2) = O(n2/B + n
2/κ2), (9)

O(M) = max
(
O(n2), O(Cn2/B2), O(Cn2/κ2)

)
= O(Cn2/κ2), (10)

As such, if the image size changes to 2n × 2n = 4n2, a full graph compression

without decoupling will consume time and memory:

T ([2n]2) = ([2n]2)2 = 16n4 and M([2n]2) = C([2n]2)2 = 16Cn4,

while the proposed method will use:

T ([2n]2) = (2n)
2/B + (2n)

2/κ2 = 4n
2/B + 4n

2/κ2,

M([2n]2) = C(2n)
2/κ2 = C4n

2/κ2.

Therefore, the proposed algorithm will be efficient if all decoupled sub-graphs

are small with respect to the image size (n2).

4. Experiments and Discussion

To evaluate the quality and performance of the proposed segmentation strat-

egy, a dataset of large images was assembled specifically for this task, allowing a

fair comparison of the experiments that were conducted. This dataset consists

of 60 high-resolution natural color images, all collected from the Internet. To

allow a fair comparison of the evaluated methods, all images were down-sampled

to 4 distinct resolutions, in a way that all have approximately the same size at

each scale: 1000 × 1500, 500 × 750, 250 × 375 and 125 × 188. Moreover, since

the segmentation quality may be highly subjective, a set of 3 or more hand-

made segmentations is provided as groundtruths for each image. To measure
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Table 2: Segmentation Cost and Quality Comparison in Large Images*.

Method PRI F-measure Time (s)

B-DSC 0.836 ± 0.083 0.591 ± 0.106 4293.0± 3842.5

C-DSC 0.828± 0.085 0.553± 0.114 12821.5± 4158.7

WP-DSC 0.832± 0.087 0.584± 0.115 15740.4± 5171.3

SP-DSC 0.832± 0.083 0.575± 0.119 4519.8± 816.1

STRM [14] 0.558± 0.158 0.298± 0.124 6916.1± 2385.2

HCD [15] 0.522± 0.222 0.497± 0.222 1560.0± 520.3

FBS [7] 0.719± 0.103 0.409± 0.119 183.8 ± 137.9

* Images of size 1000× 1500 pixels.

the segmentation quality, we use the Probabilistic Rand Index (PRI), the F-

measure [15], as well as visual comparison. On the other hand, processing time

and memory peak are used to evaluate the algorithms cost and verify the the-

oretical cost functions discussed in Section 3. All experiments were performed

on a computer with a Intel Xenon 3.0GHz processor and 24GB of RAM.

Note that F-measure and PRI try to quantify the segmentation quality by

distinct means, and are complementary metrics for the same problem. The PRI

is defined as [15]:

PRI(S,GT ) =
1

T

∑

i<j

[cijpij + (1− cij)(1− pij)] , (11)

where S is the segmentation map being evaluated, GT is the groundtruth seg-

mentation, cij is the event that pixels i and j have the same label in S, and pij is

the probability that this event occurs in GT , and T is the total number of pixel

pairs. This metric tries to quantify the segmentation quality by counting the

number of pixels pairs that are correctly grouped in the same image segment,

or correctly separated, in comparison with the groundtruth.

The F-measure approaches this segmentation quality evaluation differently,

and is defined as the following harmonic mean [15]:

F (S,GT ) =
2Pr(S,GT )Rc(S,GT )

Pr(S,GT ) +Rc(S,GT )
, (12)

where Pr(·) and Rc(·) are the boundary precision and recall, respectively, that
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are obtained as follows:

Pr(S,GT ) =
TP

TP + FP
, (13)

and
Rc(S,GT ) =

TP

TP + FN
, (14)

where TP , FP and FN are the number of true positives, false positives, false

negatives of the segmentation map boundaries matched to the groundtruth map

boundaries, respectively. The F-measure measures the segmentation quality by

the similarity of the desired boundaries and the obtained boundaries.

As such, while the PRI measures how accurate is the pixel grouping process,

the F-measure indicates how accurate are the boundary locations. As these

metrics evaluate distinct aspects of an image segmentation, it is possible to

have better performance according to one metric and not to the other for a given

segmentation. Therefore it is important to analyze both metrics to determinate

the overall image segmentation quality.

Based on the dataset described above, Table 2 presents a quantitative evalua-

tion of the proposed algorithm decoupling variants presented in Sec. 2.2 - block

partitioning (B-DSC), coarse graph compression (C-DSC), waterpixels (WP-

DSC) and Mori superpixels (SP-DSC) - compared to some state-of-the-art seg-

mentation methods on the largest image size of the dataset (1000×1500 pixels)

in terms of PRI, F-measure and computation time. This comparison demon-

strates that the proposed strategy achieves higher segmentation quality with

lower computational cost in large images. Note that the B-DSC variant, while

being the less accurate of the proposed variants, still produces segmentations of

the same quality level as the best state of the art methods, at a lower computa-

tion cost. From Table 2 we can also verify that the WP-DSC and the SP-DSC

decoupling strategies, that produce all sub-graphs with approximately the same

size, tend to be more efficient, achieving the same quality at a lower computa-

tional cost, as explained in Section 3. In particular, we recall that the proposed

decoupled sub-graph compression (DSC) is an extension of the Stochastic Tex-

ture Representation Model (STRM) [14] that emphasizes local optimizations of

the segmentation via the decoupling strategy. As a consequence, a full graph

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

compression (Full-DSC), that performs only the compression stage, but not the

decouple and recouple stages, is closely related to the STRM. Since both Full-

DSC and the STRM are based on graph analysis, both require high amounts

of computational resources and produce segmentations of inferior quality than

any of the DSC variants, as can be verified on Tables 1 and 2.

Furthermore, the metrics for the different decoupling methods reported in

Table 2 indicate that the quality of the decoupling segmentation is not as rele-

vant as the size of the initial segments obtained. Therefore, applying complex

over-segmentation techniques to this initial stage may not improve significantly

the quality of the final segmentation. While the C-DSC produces a much more

accurate initial decoupling than the SP-DSC and WP-DSC, they all lead to final

segmentations with virtually the same quality. With regards to the computation

time, not only the C-DSC is more expensive to compute, but also leads to a less

efficient graph decoupling, more precisely, the C-DSC variation is 1.4× slower

than SP-DSC and 1.9× than WP-DSC. The main reason for this cost increase,

as discussed in Section 3, is that the complexity of proposed compression algo-

rithm is polynomial on the size of the sub-graphs, and since ax + bx ≤ (a+ b)x,

for any a, b, x ≥ 1, the minimal computation time will be obtained when all

sub-graphs have the same size.

Therefore, it is more advantageous to decouple the initial graph G in sub-

graphs of approximately the same size (number of vertices and edges), than in

visually homogeneous regions (that would lead to better over-segmentations), as

it can be confirmed experimentally in Table 1. In that comparison, we verify that

all decoupling methods produce segmentations with a similar level of quality,

which is superior to Full-GC, i.e, not decoupling G. On the other hand, the

cost (in terms of time and memory) is more easily controlled if all sub-graphs

have the same size, making the superpixel techniques preferable to obtain SD

(the initial decoupling) over more sophisticated strategies (like the coarse graph

compression).

Additionally, Fig. 4 presents an extended comparison of the same methods,

for all image sizes available in the proposed dataset. Some trends in terms of
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(a) Average PRI comparisson;

(b) Average F-measure comparisson;

(c) Average Computation time comparisson.

Figure 4: Comparison of quantitative segmentation metrics of the

proposed DSC and some state-of-the-art methods, according to

image size. The time comparison chart (c) is shown in log10 scale

to allow proper visualization of all methods.

(a) Average PRI comparisson;

(b) Average F-measure comparisson;

(c) Average Computation time comparisson.

Figure 5: Comparison of quantitative segmentation metrics ob-

tained with the proposed B-DSC, according to image size for dif-

ferent values of κ.

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Average PRI comparisson;

(b) Average F-measure comparisson;

(c) Average Computation time comparisson.

Figure 6: Comparison of quantitative segmentation metrics ob-

tained with the proposed C-DSC, according to image size for dif-

ferent values of κ.

(a) Average PRI comparisson;

(b) Average F-measure comparisson;

(c) Average Computation time comparisson.

Figure 7: Comparison of quantitative segmentation metrics ob-

tained with the proposed WP-DSC, according to image size for

different values of κ.
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quality (PRI and F-measure) and efficiency (time) can be verified in Fig. 4,

suggesting at least two interesting findings. First, it is noticeable that better

segmentations tend to be obtained at higher resolutions, which is expected due

the additional information available in the image. Second, among the proposed

variants of the DSC, B-DSC presented the fastest computation, while the C-DSC

presented the slowest, corroborating to the hypothesis that using sub-graphs on

equal size and shape lead to a more efficient segmentation computation, even if

the graph G is decoupled into sub-graphs where the cut-set have edges that do

not coincide with the image region boundaries.

Moreover, using decoupled sub-graphs that mismatches image region bound-

aries do not directly affect the segmentation quality based on the evaluated

metrics, as the B-DSC produces segmentations os comparable quality to the

other decoupling methods for higher resolution images. Although some regional

boundary misplacement can be visually verified for the B-DSC (especially in the

lower resolutions), the segmentation quality is still superior to the state-of-the-

art methods (see Figure8). This also endorses one of the main hypothesis of this

work, which is that different decoupling methods employed in the first stage of

the proposed method, for recoupling the compressed sub-graphs Cp into a single

graph C, and then re-compressing this graph into the globally compressed graph

F , produce segmentations that may differ, but have similar quality.

On the other hand, Fig. 5 shows a comparison of segmentation quality and

cost for different sub-sampling rate κ values. In this figure only the B-DSC

is evaluated, but the same trends are verifiable for the other variants of the

proposed method in Figs. 6 and 7. As we can see in the top and middle charts

of Fig. 5, the average segmentation quality tends to be higher for larger images,

but it is approximately the same for all tested κ for a given image size. The

bottom chart shows that although the observed difference may not be significant

at lower resolutions, there is a considerable reduction of computation time for

larger images when κ is larger. This observations supports one of the main

hypothesis of this work, that in the later stages of the segmentation of high

resolution images, the regular elimination of texture feature samples does not
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(a) C-DSC; (b) WP-DSC; (c) SP-DSC; (d) STRM [14]; (e) HCD [15]; (f) FBS [7].

Figure 8: Visual comparison of the proposed algorithm with the state-of-the-art texture seg-

mentation methods. form left to right, the proposed methods: (a) C-DSC, (b) WP-DSC, (c)

SP-DSC, and the state-of-the-art methods: (d) STRM [14], (e) HCD [15], (f) FBS [7].
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jeopardize the result significantly, but allows a reduction in the algorithm cost,

as discussed in Sec. 3, which is critical for larger images.

Furthermore, Fig. 8 presents a visual comparison of the proposed DSC vari-

ants and some state-of-the-art segmentation techniques. Analogously to the

quantitative experimental results described above, the visual comparison also

demonstrates that the DSC strategy produces image segmentations of superior

quality. We also verify that while different decoupling methods will produce very

distinct segmentations, they yield similar levels of image segmentation quality.

Other interesting finding in this visual analysis is that although the C-DSC nu-

merically presents slightly better boundaries (F-measure) than other methods,

it is not always reflected into a visually better image segmentation. It shall be

observed that the Stochastic Texture Representation Models (STRM) [14] and

the Hierarchical Contour Detection (HCD) [15] methods are prone to overseg-

ment the image, while the Factorization-Based Segmentation (FBS) [7] tends

to produce undersegmentation. On the other hand, the proposed DSC methods

and its variant algorithms, are able to avoid these errors in most cases.

5. Conclusion

This paper proposed a novel segmentation strategy based on graph compres-

sion that not only produces better quality results than the compared state of

the art methods, but also consumed considerably less resources (in terms of time

and memory) to do so. The proposed method represents the image as a dense

graph, which is decoupled to allow efficient processing at a fine scale. Finally,

the compressed sub-graphs are recombined into a single connected graph, that

yields the segmentation of the image. In order to understand the efficiency of

the proposed method, we formulate and discuss the computational complexity

in terms of time and memory, showing the improvement of decoupling the image

prior to compression the graph.

To evaluate the proposed segmentation strategy experiments were performed

in a dataset containing large images (1000× 1500), that were collected and la-
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beled specifically for this task (i.e. for evaluating the performance of segmen-

tation methods). These experiments compared some state-of-the-art methods

with 4 variants of the proposed method, which use distinct ways to decouple

the initial graph (Blocks, low-resolution graph compression, waterpixels and

superpixels).

The numeric and visual data collected from these tests indicate that, al-

though there may be variations on the image segmentations produced by dif-

ferent decoupling methods, all DSC variants perform better than the compared

state of the art methods (PRI = 0.782 and F = 0.543), at a reasonable com-

puting cost. By these experiments, we were also able to confirm two important

assumptions of the proposed method. The first one is that, the local optimiza-

tion of the sub-graphs (with specialized dictionaries) lead to better segmentation

than a single global compression, regardless of the decoupling method utilized,

at a lower computational cost. Second, using the sub-graphs of regular shape,

with approximately the same size, will improve the segmentation efficiency, as

the compression complexity grows quadratically on the number of pixel inter-

actions. Consequently, it is viable to exploit the high resolution of large images

(i.e., their local redundancy), to improve computational efficiency without a

significant loss of the segmentation quality.

As future work, we plan to further investigate parallel implementations of

the proposed algorithm, as well as employing the proposed decoupling strategy

to improve other image processing algorithms.
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