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Highlights

• we collect a large mobile gesture database using an Andriod Huawei de-

vice, which is the largest database in published studies for mobile gesture

recongnition systems.

• we incorporate Fisher criterion into BiLSTM network and propose F-

BiLSTM and F-BiGRU to improve the traditional softmax loss training

function.

• Extensive experiments on our MGD, BUAA Mobile Gesture database, and

a public database are conducted to verify the superior performance of the

proposed networks.
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Abstract

Gesture recognition becomes a popular analytics tool for extracting the charac-

teristics of user movement and enables numerous practical applications in the

biometrics field. Despite recent advances in this technique, complex user in-

teraction and the limited amount of data pose serious challenges to existing

methods. In this paper, we present a novel approach for hand gesture recogni-

tion based on user interaction on mobile devices. We have developed two deep

models by integrating Bidirectional Long-Short Term Memory (BiLSTM) net-

work and Bidirectional Gated Recurrent Unit (BiGRU) with Fisher criterion,

termed as F-BiLSTM and F-BiGRU respectively. These two Fisher discrimina-

tive models can classify user’s gesture effectively by analyzing the corresponding

acceleration and angular velocity data of hand motion. In addition, we build

a large Mobile Gesture Database (MGD) containing 5547 sequences of 12 ges-

tures. With extensive experiments, we demonstrate the superior performance of

the proposed method compared to the state-of-the-art BiLSTM and BiGRU on

MGD database and two other benchmark databases (i.e., BUAA mobile gesture

and SmartWatch gesture). The source code and MGD database will be made

publicly available at https://github.com/bczhangbczhang/Fisher-Discriminant-

LSTM.
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1. Introduction

Human-computer interaction (HCI) is of great interest to researchers in bio-

metrics. As an emerging HCI technology, gesture recognition demonstrates

promising performance for extracting and analyzing the characteristics of user

movement and is widely used in many applications, including behavioral biomet-5

ric authentication, user verification, etc. [1, 2, 3]. With the emergence of modern

smartphones, gesture recognition receives increasing attention, because it can

easily obtain user’s interaction with mobile devices by monitoring the combined

activities captured by touch screen, camera, and microphone [4, 5, 6, 7]. How-

ever, due to complex surrounding environment, such methods may not perform10

well in practical scenarios. For example, video-based methods do not work well

in the night time due to the camera limitation.

Alternatively, inertial sensors, such as accelerometer and gyrometer, are built

in smartphones and can be used to record the hand motion signal [8, 9, 10].

The personalized gesture can be automatically acquired by accelerometer-based15

recognition solution [11]. Compared to vision-based solutions for gesture recog-

nition [12], inertial sensors (e.g. accelerometer and gyrometer) are more robust

under various lighting conditions [13]. However, the accuracy of these iner-

tial sensors can be affected by different factors, including signal intensity dif-

ferences (intense versus weak gestures), temporal variations (slow versus fast20

movements) and physical differences (users’ physical conditions, etc.). In addi-

tion, noises from the sensing hardware pose extra challenges to the recognition

task. To resolve these problems, different methods have been proposed, such as

Support Vector Machine (SVM), Hidden Markov Model (HMM) and Dynamic

Time Warping (DTW) [14, 15].25

Recently, deep learning techniques have been successfully applied to the

task of language modeling [16, 17], image captioning [18, 19], image classifi-

cation [20], video analysis [21, 22], pose recovery [1, 23], and human activity
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Figure 1: Flowchart of the proposed gesture recognition approach. We introduce Fisher

criterion into BiLSTM and BiGRU network to improve the traditional softmax loss training

function, which is able to minimize the intra-class variations and maximize the inter-class

variations in the deep framework. For ease of display, we show the BiLSTM learned features

and F-BiLSTM learned features of two classes gestures in two right subfigures.

recognition [7, 24, 25, 26, 27, 28, 29], etc. In particular, the effectiveness of Re-

current Neural Network (RNN) and Long Short-Term Memory (LSTM) [30] on30

modeling human gesture structure and temporal dynamics has been validated

for automatic representing and classifying the complex sequential data simulta-

neously. Furthermore, to enhance the discrimination capability, different gating

mechanisms are incorporated in LSTM, leading to GRU [31], BiLSTM [32, 33],

and BiGRU [34], etc. In this paper, we use BiLSTM and BiGRU models con-35

sidering the high performance and low memory requirement, to implement the

gesture recognition on mobile devices by analyzing the sequential data streams

captured from inertial sensors.

For gesture recognition task, deep features can be learned automatically

via current RNN and LSTM based methods which yield more abstract and40
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useful representations. However, typically no distribution prior is embedded into

the learning of deep features, making such schemes uncontrollable for certain

circumstances. For example, due to large intra-class variations (speed, pattern of

gesture) caused by different performers and small inter-class variations caused by

similar gestures, it is impractical to pre-collect all the possible testing identities45

for training samples with heterogeneous accelerometer and gyrometer signals,

the conventional loss functions used by RNN and LSTM based methods are not

always suitable. It is also noticed that the features of more compact structure

suit better in representing the data. Particularly when the data variation is

large, less compactness on the feature representation might cause an inaccurate50

classification in the real-world applications [35, 36]. The above observations

inspire us to adopt Fisher criterion for minimizing intra-class variations and

maximizing inter-class variations when integrated with softmax loss of LSTM

network, obtaining more capacity to cope with external variations. Based on

bidirectional LSTM and GRU (a variant of LSTM) models, two deep Fisher55

discriminant learning models termed F-BiLSTM and a variant F-BiGRU are

proposed for hand gesture recognition on mobile devices. The framework of the

proposed gesture recognition approach is shown in Fig. 1.

Furthermore, it is important to build a comprehensive hand gesture database

for mobile devices that allows researchers to develop algorithms and conduct the60

relevant evaluation. Though there exist some gesture databases captured from

mobile devices for various applications. The available data are often limited to

particular scenarios and fail to serve general purposes. In this paper, we in-

troduce a mobile-based gesture recognition benchmark, which helps researchers

to conveniently evaluate and compare their estimation results. We also build65

a large mobile based hand gesture database consisting of 12 classes of gestures

including 5547 samples in total performed by 32 participants (23 males and 9

females). Each class of gestures has about 460 samples at different performing

speed, so they are with heterogeneous accelerometer and gyrometer signals. The

sampling time of accelerometer and gyrometer sensors is 5ms corresponding to70

a frequency of 200Hz. To the best of our knowledge, it is the largest database
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so far for mobile-based gesture recognition, which is of benefit to the research

community. In summary, the contributions of this paper are as follows:

1. We incorporate Fisher criterion into the BiLSTM and BiGRU networks

termed as F-BiLSTM and F-BiGRU to improve the traditional softmax loss75

function for training. Extensive experiments show superior performance of

the proposed method compared to the state-of-the-art BiLSTM and BiGRU

on three gesture recognition databases.

2. We build a large hand gesture database for mobile hand gesture recognition.

The rest of the paper is organized as follows. Section 2 introduces the related80

works, and Section 3 describes the details of the proposed method. Experiments

and results are presented in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

Gesture Recognition on Mobile Devices. Gesture recognition has been ex-

tensively investigated for the last two decades with remarkable advances for the85

problem on mobile devices using inertial sensors [37, 38, 39, 40, 6, 5]. Rekimoto

et al. proposed a gesture recognition method to detect arm movement using

a specific wearable device [37]. The human moving dynamics are estimated by

analyzing the dominating force to predict a user’s moving direction, however,

users have to wear a large-size device which is not practical for real-world appli-90

cations. Afterwards, more researchers captured the part of human gestures of

three dimensional acceleration signal by a small wireless sensor-box [39], a com-

bination of EMG and ACC sensors [41], five miniature inertial and magnetic

sensors worn on the chest, the arms, and the legs [4], a wrist accelerometer [42],

and a Kinect sensor [43]. Recently, Agrawal et al. presented a system called95

PhonePoint Pen to use the built-in accelerometer in mobile phones to recognize

human writing [44]. The results of 15 subjects running on mobile devices indi-

cated that the English characters can be identified with an average accuracy of

6
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91%, which has presented a promising prospect for mobile-based gesture recog-

nition. Lefebvre et al. also carried out gesture recognition experiments on a100

database captured by an Android Nexus S Samsung device with 22 participants

performing 14 symbolic hand gestures, to validate the combination of both ac-

celerometer and gyrometer sensors can achieve better performance than using

each individual sensor [45].

Gesture Recognition Using Classical Machine Learning Methods. Mo-105

bile gesture recognition provides new directions and delivers compelling perfor-

mance for machine learning applications. Hofmann et al. proposed a recog-

nition scheme based on discrete HMM (dHMM) to identify dynamic gestures

[46], which essentially divides the input data into different regions and assigns

each of them to a corresponding codebook for dHMM classification. The exper-110

iments are carried out using 500 training gestures with 10 samples per gesture,

yielding an accuracy of 95.6% for 100 testing gestures. Kallio et al. also trained

the dHMM model for the gestures of the 3-dimensional acceleration signal and

measured the recognition accuracy of a system using four degrees of complex-

ity [39]. Kela et al. tested an HMM model with five states and achieved the115

accuracy 96.1% for classifying 8 gestures [47]. Pylvanainen et al. proposed a

method based on continuous HMM (cHMM) to achieve reliable performance

with 96.67% of correct classification on a database of 20 samples for 10 ges-

tures [48]. In the recent works, Zhang et al. utilized multi-stream HMM as a

decision fusion function to recognize 18 classes of hand gestures, and got the120

average recognition accuracy 91.7% in real application. [41].

Besides the aforementioned HMM-based methods, a few other techniques

are used in gesture recognition. Akl et al. employed Dynamic Time Warping

(DTW) to define a dictionary of 18 gestures, and achieved classification accu-

racy 90% in the experiment [15]. David et al. compared Naive Bayes and DTW125

methods to recognize four gesture types from five different subjects, and demon-

strated the advantage of Bayesian classification compared to DTW in the exper-

iment [49]. Wu et al. used multi-class Support Vector Machine (SVM) for user-

7
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independent gesture recognition and validated that SVM significantly outper-

forms other methods including DTW, Naive Bayes and HMM [50]. Wang et al.130

combined LCS and SVM to perform the classification task and achieve the clas-

sification accuracy of 93% [51]. Based on these works, Kerem et al. compared

different classical machine learning methods for classifying human activities [4],

in which the implemented and compared methods consisted of Bayesian Decision

Making (BDM), Rule-Based Algorithm (RBA), Least-Squares Method (LSM),135

k-Nearest Neighbor algorithm (k-NN), DTW, SVM, and Artificial Neural Net-

works (ANN). Besides, some researchers focused on the application of feature

selection and feature fusion, such as Principle Component Analysis (PCA) [52],

fusion of the feature extracted from inertial and depth sensor [5], and hybrid

features combining short-time energy with Fast Fourier Transform (FFT) [53].140

Gesture Recognition Using Deep Learning Methods. Driven by the tremen-

dous success of deep learning, the research paradigm has been shifted from tra-

ditional machine learning methods to deep learning methods for mobile ges-

ture recognition, such as ANN [4, 45], RNN [54, 43], LSTM [55], and Con-

volutional Neural Network (CNN) [42]. Shin et al. developed a dynamic145

hand gesture recognition technique using recurrent neural network (RNN) algo-

rithm, which was evaluated based on the gesture database captured by Smart-

Watch [54, 56]. Especially, for each gesture sequence containing 3-dimensional

data of accelerometer, LSTM achieved the best performance with 128 neuro

units in the experiment of SmartWatch gestures database. Gjoreski et al. com-150

pared deep CNN and Random Forest (RF) on two wrist gesture databases, and

the results turn out that CNN slightly outperformed RF with sufficient data

and achieved significantly better accuracy than other classical machine learning

methods, including Naive Bayes, k-NN, Decision tree, and SVM [42]. Recently,

Lefebvre et al. carried out gesture recognition experiments on a database con-155

sisting of both accelerometer and gyrometer sensors [45], and showed that the

BiLSTM based method achieves an accuracy of 95.57% on the database of 1540

gestures. To the best of our knowledge, the BiLSTM based method is currently

8
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the state-of-the-art baseline and performs better than previous approaches such

as cHMM, DTW, SVM, and LSTM.160

3. Deep Fisher Discriminant Learning

In this section, we first describe the network structures of Bidirectional Long-

Short Term Memory (BiLSTM) and its variant with Bidirectional Gate Recur-

rent Unit (BiGRU). Then, we explain how our approaches, termed F-BiLSTM

and F-BiGRU, incorporate the Fisher criterion to improve the discriminative165

power of these deep models, termed F-BiLSTM and F-BiGRU. For ease of

explanation, we summarize the main variables and briefly describe them in Ta-

ble 1.

Table 1: A brief description of variables used in the paper.

it: a sigmoidal input gate ft: a forget gate ot: an output gate

zt: a update gate rt: a reset gate h̃t: a candidate output

ct: a cell state xt: an input vector ht: a final output

W∗: all diagonal or weight matrices b∗: all bias terms µi: the ith class mean of output vectors

Lf : the Fisher criterion loss Ls: the softmax loss δ, θ, α: the scalar parameters

3.1. BiLSTM

We briefly describe the LSTM unit which is the basic building block of the

proposed F-BiLSTM model. The neurons of LSTM contain a constant memory

cell name, which has a state ct at time t. A LSTM neuron unit is presented in

detail at the bottom of Fig. 2. Each LSTM unit is controlled by a sequence of

gates: a sigmoidal input gate it, a forget gate ft and an output gate ot. At each

time step t, LSTM unit receives inputs from two external sources at each of the

three gates. The external two sources are the current sample xt and the previous

hidden state ht−1. The cell state ct−1 in the cell block is an internal source of

each gate. The gates are passed through the tanh non-linearity and activated by

the logistic function. After multiplying the cell state by the forget gate ft, the

9
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final output of the LSTM unit ht is computed by multiplying the activation ot

of the output gates with updated cell state. We use W∗ to represent all diagonal

matrices and b∗ to represent all bias terms. The updating procedure in a layer

of LSTM units is summarized as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ftct−1 + ittanh (Wxcxt +Whcht−1 + bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ottanh (ct) .

(1)

170

The BiLSTM model using LSTM units is able to effectively model temporal

data in many applications [16]. We consider the gesture data using 3 dimen-

sional accelerometer and 3 dimensional gyrometer signals synchronized into an

input vector through sampling time-steps. As shown in Fig. 2, the forward and

backward LSTM hidden layers are fully connected to the input layer and con-

sist of multiple LSTM neurons with full recurrent connections. Experiments are

conducted with different hidden neuron sizes and 128 neurons yield satisfactory

results. The output layer has a size equivalent to the number of neurons to

classify (i.e. M = 128). G = {G1, ..., GT } is a gesture sequence of T size;

Gt = (x1 (t) , ..., xN (t)) is a vector at time step t; N denotes the sensor number;

(y1, ..., yn) is the BiLSTM output set with n being the number of gestures to

be classified. The softmax activation function is used for this layer to give net-

work a response between 0 and 1. Classically, these outputs can be considered

as posterior probabilities of the input sequence belonging to a specific gesture

class. The softmax loss function is defined as

Ls = − 1

m

m∑

i=1

log
eW

T
yi

Oi+byi

∑n
j=1 e

WT
j Oi+bj

, (2)

where Oi = (o1, ..., oM ) denotes the ith output belonging to the yith class. Wj

denotes the jth column of the weights W in the last layer; b is the bias term; m

is the size of mini-batch and n is the number of classes.

10
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Figure 2: The architecture of F-BiLSTM/F-BiGRU: The input gesture vectors are learned

and represented as the sequences via BiLSTM or BiGRU, then the Fisher criterion is proposed

to be a new loss function in the fully connected layer, leading to a better performance without

affecting the training convergence and model size.
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3.2. F-BiLSTM

To further enhance the performance of BiLSTM, we incorporate the Fisher

criterion into the softmax loss function, which is shown in Fig. 2. First, the

input layer consists of the concatenation of 3-dimensional accelerometer and

3-dimensional gyrometer signals synchronized in time (i.e. N = 6). The sensor

data is normalized between 0 and 1 according to the maximum value that sensors

can capture. In order to minimize the intra-class variations and maximize the

inter-class variations of gesture data, we propose a new Fisher criterion based

on Fisher Linear Discrimination as follows:

Lf =
1

m

m∑

i=1

‖Oi − µyi‖22 −
δ

n (n− 1)

n∑

j=1,k=1

‖µj − µk‖22 (3)

where µyi
is the yith class mean of output vectors, and δ is the discriminative

factor. To learn BiLSTM, the Fisher criterion utilizes the whole training set

and mean vectors µyi
of each class in each iteration as the mean vector updates.

We propose to augment the loss in Eq. (2) with the additional Fisher criterion

term in Eq. (3) as follows:

L = Ls + θLf (4)

where θ is bounded within [0,1] to control the Fisher criterion in Eq. (4), and

δ is restricted in a more subtle interval [1e-5,0.1] to balance the intra-class

distance and inter-class distance in the Fisher criterion. These two parameters

are used to balance the three parts of the loss function. In forward and backward

processes, we set output vector Oi, mean vector µj , loss parameter W , scalar

parameters θ, δ and learning rate λ, BiLSTM parameters Hf and iteration

number e, respectively. In each iteration, we compute the loss of F-BiLSTM by

Eq. (3) and Eq. (4), and the backpropagation error by

∂Le

∂Oe
i

=
∂Le

s

∂Oe
i

+ θ
∂Le

f

∂Oe
i

. (5)

12
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Then, we update the parameter W , mean vector µj and BiLSTM parameter Hf

in the e+ 1 iteration by the following formulas until a convergence is reached.

W e+1 = W e − λe · ∂Le
f

∂W e ,

µe+1
j = µe

j − α ·∆µe
j ,

He+1
f = He

f − λe
∑m

i
∂Le

∂Oe
i
· ∂O

e
i

∂He
f
.

(6)

With optimized parameters θ, δ and α, the discriminative power of F-175

BiLSTM can significantly enhance hand gesture recognition. This network is

learned by the online backpropagation through time with momentum. To clas-

sify a testing gesture sequence, we use a rule of keeping only the most probable

class argmaxi∈[1,n]Oi to determine the final gesture class. The details of pa-

rameter analysis on θ, δ and α are presented in Section 4.3.180

3.3. F-BiGRU

We also investigated Fisher criterion into Bidirectional Gated Recurrent Unit

(BiGRU) as shown in Fig. 2. BiGRU organizes the recurrent units in the way

that each unit adaptively captures dependence of different time scales [57, 58].

Similar to the BiLSTM unit, the BiGRU has the output of the GRU ht, candi-

date gate h̃t, update gate zt and reset gate rt units to modulate the information

flow without separate memory cells, as shown at the bottom right of Fig. 2. The

updating flows of GRU in BiGRU differ with the one described in Eq.(1), and

can be summarized as follows:

zt = σ (Wzxt +Wzfht + bz) ,

rt = σ (Wrxt +Wrfht + br) ,

h̃t = tanh (Wxt + U (rt � ht−1) + bh) ,

ht = (1− zt)ht−1 + zth̃t

. (7)

where the output ht at time t is a linear interpolation between the previous forget

gate ht−1 and the candidate gate h̃t computed in the same way as traditional

recurrent unit. The update gate zt determines the number of units for updating

its forget gate, and the reset gate rt.185

13
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Similar to F-BiLSTM, we also apply the Fisher criterian for BiGRU and

learn a new variant named F-BiGRU to recognize hand gestures. The learning

process for F-BiGRU is similar to F-BiLSTM with the same loss function as

Eq.(4). The parameter updating procedures for W and mean vector µ are same

as F-BiGRU (i.e., same as the first and second formulas in Eq.(6)), while the

BiGRU parameter HB (the set of all output ht) in the (e + 1)th iteration is

updated as:

He+1
B = He

B − λe
∑m

i

∂Le

∂Oe
i

· ∂O
e
i

∂He
B

. (8)

4. Experiments

4.1. Hardware Device

Our mobile hand gesture database is collected using the Android system

on a Huawei mobile phone, which has a 3D accelerometer and a gyrometer.

According to [45], we collect the data from both accelerometer and gyrometer,190

and record each gesture by pressing, holding and releasing the “Sensor” button

on the touch screen.

4.1.1. Data Collection

As shown in Fig. 3(a), the gesture database is composed of two categories:

Arabic numerals (1, 2, 3, 4, 5, 6) and English capital letters (A, B, C, D, E,195

F). Furthermore, the stroke order of gestures is set in advance to ensure the

consistency of gestures captured on the left or right hand of each participant.

The collected MGD consists of 12 gestures performed by 32 participants

(23 males and 9 females) with about fifteen times per gesture. Each class of

gestures has about 460 samples at different performing speeds, and there are a200

total of 5547 gesture sequences with heterogeneous accelerometer and gyrom-

eter signals.The sampling time of accelerometer and gyrometer sensors is 5ms

corresponding to a frequency of 200Hz. To the best of our knowledge, it is the

largest database so far for mobile-based gesture recognition, which is of benefit

to the research community.205
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(a) MGD database (b) SmartWatch Database

Figure 3: Examples of hand gestures in MGD database and SmartWatch Database.

4.2. Implementation Details

We use Tensorflow toolbox as the deep learning platform, a Intel (R) Core

(TM) i5-6500@3.20GHz, and an NVIDIA GTX 1070 GPU to perform the exper-

iments. In order to validate the effectiveness of our proposed Fisher criterion in

LSTM for modeling temporal sequences, we compare our methods, F-BiLSTM210

and F-BiGRU, with the state-of-the-art baselines (BiLSTM and BiGRU [58])

on three benchmarks including our collected database (MGD), and two previ-

ous databases: the BUAA Mobile Gesture database [59] and the SmartWatch

Gestures database [58]. Some examples of hand gestures are shown in Fig. 3(a)

and Fig. 3(b). We comprehensively evaluate the performance of the proposed215

models under different parameter settings of δ, α and θ in Sec. 4.3, and provide

extensive experimental comparison results in Sec. 4.6.

Data preprocessing. The main objective for data preprocessing is to facilitate

gesture recognition. In real-world applications, the sensor data often contain a

lot of noise due to complex environmental conditions and hardware limitations.220

Therefore, we first apply a filtering process to suppress noise (i.e., data smooth-

ing) by using Average Filter, Median Filter, and Butterworth Filter. Through

experiment comparison, we select the Average Filter in terms of its good per-

formance and computational efficiency. Fig. 4 shows the original accelerometer

and gyrometer signals and the processed signals using the Average Filter.225
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(a) Original accelerometer data (b) Original gyrometer data

(c) Filtered accelerometer data (d) Filtered gyrometer data

Figure 4: The original accelerometer and gyrometer data vs. the processed data by the Moving

Average Filter.

(a) Preprocessed accelerometer data (b) Preprocessed gyrometer data

Figure 5: The preprocessed accelerometer and gyrometer data.

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The gesture execution speed of different participants may vary considerably,

which leads to different signal lengths when using a fixed sampling frequency

(200HZ) of accelerometer and gyrometer in the mobile phone. For example,

gestures captured with fast motion may have fewer sampling points. Also, the

signal strength of gesture sequences may vary. To cope with signal strength and

speed variations, we apply amplitude and sequence normalization to the original

signal sequences. Specifically, we first normalize a signal xni (t) by

xni (t) =
xi (t)−minT

t=1 xi (t)

maxT
t=1 xi (t)−minT

t=1 xi (t)
, ∀i ∈ {1, ..., 6} . (9)

Then, we use cubic spline interpolation to normalize the length of a sequence

to a fixed size (we set this size as 1000 in our experiments). Fig. 5 shows the

preprocessed accelerometer and gyrometer data, where the sequence is filtered

and normalized.

4.3. Parameters Evaluation230

There are several parameters affecting the performance of gesture recogni-

tion, i.e., the parameter α is restricted in [0,1] to control the update rate of

mean µ, the parameter θ is bounded in [0,1] to balance the Fisher criterion and

softmax in Eq. (4), and the parameter δ is restricted in a more subtle inter-

val [1e-5,0.1] to balance the intra-class distance and inter-class distance in the235

Fisher criterion. The model BiLSTM with only the softmax loss can be con-

sidered as a special case of F-BiLSTM when θ is set to 0 in the loss function

Eq. (4). In the following experiments, we pick up values in each interval to ob-

tain an optimized parameter configuration for the best performance according

to [35, 36]. We conduct experiments on the MGD dataset based on F-BiLSTM.240

Three parameters are used together in our F-BiLSTM model. For simplicity,

we iteratively keep any two parameters with fixed values and test the third one

for the optimal parameter setting.

Experiment 1. We fix α to 0.5, δ to 0.01 and vary θ from 0 to 1 to investigate

the effect of θ. Fig. 6(a) shows the classification accuracy on245
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the testing set. The result shows that the model trained with

only softmax loss has sub-optimal performance.

Experiment 2. We fix α to 0.5, θ to 0.1 and vary δ from 1e-5 to 0.1 to verify

that the term of inter-class distances can promote the classi-

fication performance. As shown in Fig. 6(b), δ balances the250

intra-class distance and inter-class distance in the Fisher cri-

terion.

Experiment 3. We fix θ to 0.1, δ to 0.01 and vary α from 0 to 1 to test

the performance of our method. The results are illustrated in

Fig. 6(c). We find that the performance of our model remains255

relatively stable across a wide range of α, but a moderate value

of α = 0.5 has the best performance.

4.4. Analysis of Model Effect

In the parameter tuning experiment, we show that F-BiLSTM and F-BiGRU

have better discriminative ability than the baseline BiLSTM and BiGRU. In this260

section, we further discuss how a better feature distribution is achieved. We set

θ to 0.1, δ to 0.01 and α to 0.5 for the F-BiLSTM model, and set the parameters

to 0.3, 0.01, 0.5 for the F-BiGRU model, respectively.

Fig. 7 shows the feature visualizations of the MGD database. In Fig. 7(a)

and Fig. 7(b), the BiLSTM and BiGRU features of 12 classes are visualized by265

the supervised t-SNE [60], while the F-BiLSTM and F-BiGRU features are il-

lustrated in Fig. 7(c) and Fig. 7(d), respectively. The supervised t-SNE method

plots the 2-dimensional features calculated based on the 128-dimensional fea-

tures of BiLSTM, BiGRU, F-BiLSTM, and F-BiGRU, given the ground truth

labels as shown in Fig. 7, From this figure, more compactness represents better270

deeply learned features, i.e., minimizing the intra-class variations and maxi-

mizing the inter-class variations. Clearly, the distribution of F-BiLSTM and

F-BiGRU features are more discriminative than the baseline BiLSTM and Bi-

GRU features. Especially the F-BiGRU features in Fig. 7(d) are better than
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Figure 6: Influence of parameters θ, δ, and α on recognition accuracy.
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(b) BiGRU
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(c) F-BiLSTM
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(d) F-BiGRU

Figure 7: Feature visualization of 12 classes of the MGD database. Different colors mean

different classes.
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Table 2: Comparison of computational time (unit: second) of different methods on MGD

database.

Method

Database
MGD database

HMM 575.77

RNN 1390.48

LSTM 458.95

GRU 443.39

BiLSTM 1009.84

BiGRU 929.68

F-BiLSTM (proposed) 1009.96

F-BiGRU (proposed) 928.66

the BiLSTM features in Fig. 7(a). As another verification, the quantitative275

evaluation is performed based on three databases in the next section.

4.5. Analysis of Computational Time

We implement HMM [50], RNN [43], LSTM [55], GRU [31], BiLSTM [33],

and BiGRU [34] for comparison. We first compare the total computational time

of these methods on the MGD database in Table 2. HMM tests on CPU with280

575.77 seconds, while deep methods run on GPUs with a similar computation

cost. LSTM and GRU are much faster than RNN, due to the improved unit with

a high performance and low memory requirement as described in Section 1. We

can also observe that both BiLSTM and BiGRU are nearly twice as expensive as

LSTM and GRU in terms of the computational burden, because more neurons285

are used to denote the bidirectional memory. It is worth noting that the time

cost of F-BiLSTM and F-BiGRU are similar to BiLSTM and BiGRU, which

validate the efficiency of the proposed method.
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4.6. Comparison with the State-of-the-arts

Experiment on MGD Database. For the proposed database, we select 3500290

sequences to train our model and 2047 sequences for testing. After preprocess-

ing, the length of each data sequence is set to 1000. Thus each input sample

(3-axis accelerometer and gyrometer signals) is a matrix of 1000× 6. Here, we

train the network by using adaptive moment estimation, with the learning rate

of 0.002 and the batch size of 200. For the F-BiLSTM model, we set θ to 0.1,295

δ to 0.01 and α to 0.5. We complete the training of BiLSTM and F-BiLSTM

models with 1.5K iterations. The parameters of F-BiGRU model are set to 0.3,

0.01, 0.5 respectively. The training of BiGRU and F-BiGRU is completed with

1.2K iterations.

Table 3: Average accuracy(%) of BiLSTM, BiGRU and our proposed F-BiLSTM, F-BiGRU

on MGD database.

Gesture

Method
BiLSTM F-BiLSTM BiGRU F-BiGRU

A 97.41 97.85 97.09 98.09

B 94.17 96.50 97.24 98.78

C 98.95 99.40 99.85 100.00

D 96.88 99.04 98.02 98.87

E 96.88 97.40 98.48 98.61

F 96.86 98.59 97.62 99.54

1 93.80 95.33 96.62 98.53

2 98.60 98.82 99.03 99.35

3 96.69 97.56 98.29 99.42

4 98.77 98.97 99.28 99.29

5 96.55 98.16 99.77 100.00

6 99.10 99.32 99.77 99.61

Overall 97.05 98.04 98.38 99.15
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Table 4: Comparison of overall accuracy(%) of different methods on MGD database.

Method

Database
MGD database

HMM 91.11

RNN 94.22

LSTM 96.46

GRU 97.78

BiLSTM 97.05

BiGRU 98.38

F-BiLSTM (proposed) 98.04

F-BiGRU (proposed) 99.15
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Figure 8: Training on MGD database. Dotted lines denote training errors, and solid lines

denote testing errors.
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Table 5: Average accuracy(%) of BiLSTM, BiGRU and our proposed F-BiLSTM, F-BiGRU

on BUAA mobile gesture database.

Gesture

Method
BiLSTM F-BiLSTM BiGRU F-BiGRU

A 100.00 99.17 98.34 99.58

B 97.29 98.92 97.84 98.37

C 100.00 100.00 100.00 100.00

D 99.26 97.42 96.77 99.35

1 97.87 99.57 100.00 100.00

2 100.00 100.00 100.00 100.00

3 97.06 100.00 100.00 100.00

4 95.83 97.50 97.08 97.08

Overall 98.44 99.06 98.75 99.25

In Table. 3, we report the classification accuracy of different methods on the300

testing set based on the average over 5 runs. It is clear that by incorporating the

Fisher criterion to the baseline models (BiLSTM and BiGRU), the recognition

performance can be improved. In Fig. 8, we analyze the training convergence for

F-BiLSTM and F-BiGRU. Dotted lines denote training errors, while solid lines

denote testing errors for different methods. As shown in this figure, F-BiLSTM305

and F-BiGRU converge faster, and gain better performance than BiLSTM and

BiGRU. More specifically, F-BiLSTM converges more quickly (iteration #800

V.S. #1200) than BiLSTM and the error rates drop from 2.95% to 1.96%. F-

BiGRU converges faster (iteration #1000 V.S. #1100) than BiGRU and the

error rates drop from 1.62% to 0.85%. The results show that the introducing310

of Fisher criterion into the loss function can speed up the convergence and gain

the lower error rates.

We also implement HMM [50], RNN [43], LSTM [55], GRU [31], BiLSTM [33],

and BiGRU [34], which are compared with our work under the same experimen-

tal setting on the MGD database. As shown in Table 4, it demonstrates that315
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Table 6: Comparison of overall accuracy(%) of different methods on BUAA mobile gesture

database.

Method

Database
BUAA mobile gesture database

HMM 95.00

RNN 95.80

LSTM 96.23

GRU 97.29

BiLSTM 98.44

BiGRU 98.75

F-BiLSTM (proposed) 99.06

F-BiGRU (proposed) 99.25

our proposed Fisher criterion with either BiLSTM or BiGRU achieves better

performance than RNN based methods (e.g. RNN, LSTM, GRU, BiLSTM, and

BiGRU), and also enhance significantly compared to state-of-the-art classical

machine learning methods (e.g. HMM).

Experiment on BUAA Mobile Gesture Database [59]. This database320

has 1120 samples for gestures A, B, C, D, 1, 2, 3, 4. Each sample includes 3-

dimensional acceleration and angular velocity of the mobile phone. The training

and testing sets are divided randomly into 70% and 30%, respectively. We

conduct the experiments by using the same setting for F-BiLSTM and F-BiGRU

as before. We set θ to 0.1, δ to 0.03 and α to 0.5. Model training is completed325

with 400 iterations. Table. 5 shows that LSTMs with Fisher criterion still have

better results than baselines on a smaller dataset.

The models converge faster and yield lower classification error rates with the

Fisher criterion as shown in Fig. 9. From this figure, F-BiLSTM converges more

quickly (iteration #300 V.S. #340) than BiLSTM and the error rates drop from330

1.56% to 0.94%. F-BiGRU converges faster (iteration #210 V.S. #220) than

BiGRU, and the error rates drop from 1.25% to 0.75%. The results show that
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Figure 9: Training on BUAA Mobile Gesture Database. Dotted lines denote training

errors, and solid lines denote testing errors.

the Fisher criterion can speed up the convergence and gain the lower error rate

(i.e., higher accuracy rate). We also compare the performance of our proposed

framwork with the implemented HMM [50], RNN [43], LSTM [55], GRU [31],335

BiLSTM [33], and BiGRU [34] on BUAA mobile gesture database. In Table 6,

the consistent improvements show that Fisher criterion can effectively improve

the modeling ability of BiLSTM and BiGRU.

Experiment on SmartWatch Gesture Database [56]. In this database,

eight different users perform twenty repetitions of twenty different gestures for a340

total of 3200 sequences as shown in Fig. 3(b). Different from the 6-dimensional

sequences of the previous two databases, each sequence in this dataset only

contains acceleration data from the 3-axis accelerometer of the first generation

Sony SmartWatch. Furthermore, due to the lower sampling frequency, we set

the length of each gesture sequence preprocessed to 50. We randomly select345

2400 sequences as the training set and the rest 800 sequences as the testing
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on SmartWatch gesture database.

Gesture

Method
BiLSTM F-BiLSTM BiGRU F-BiGRU

1 94.58 97.91 97.08 97.50

2 95.00 97.22 95.56 95.56

3 86.90 87.59 93.10 93.10

4 95.91 97.27 97.27 97.73

5 96.88 98.13 96.88 98.13

6 93.33 94.07 96.30 100.00

7 96.44 96.89 98.22 99.56

8 97.62 98.57 100.00 100.00

9 93.49 96.74 96.74 97.67

10 94.84 98.06 100.00 100.00

11 89.76 94.15 94.15 95.12

12 92.89 92.44 96.00 97.33

13 90.42 95.00 94.17 95.42

14 94.88 96.30 96.30 97.21

15 95.14 95.14 100.00 97.84

16 92.20 89.27 93.17 93.17

17 96.52 95.65 99.13 100.00

18 96.22 97.30 96.76 95.68

19 94.29 94.76 94.76 96.67

20 97.21 98.60 100.00 100.00

Overall 94.30 95.65 96.80 97.40

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 8: Comparison of overall accuracy(%) of different methods on SmartWatch gesture

database.

Method

Database
SmartWatch gesture database

HMM 82.50

RNN 89.98

LSTM 93.80

GRU 96.62

BiLSTM 94.30

BiGRU 96.80

F-BiLSTM (proposed) 95.65

F-BiGRU (proposed) 97.40

set. The parameters of Fisher criterion adopt the same setting in the previous

experiment. Adaptive moment estimation is used to train the network, and the

initial learning rate λ is set to 0.0001. The batch size is 1000. Training for

BiLSTM and F-BiLSTM is terminated after 1.4K iterations and BiGRU and350

F-BiGRU with 2K iterations.

Fig. 10 shows the training and validation errors. Similar to Fig. 8 and Fig. 9,

dotted lines denote training errors, and solid lines denote testing errors. In

Fig. 10, F-BiLSTM converges more quickly (iteration #510 V.S. #750) than

BiLSTM and the error rates drop from 5.70% to 4.35%. F-BiGRU converges355

faster (iteration #1300 V.S. #1500) than BiGRU, and the error rates decline

from 3.20% to 2.60%. The results validate the convergence effect of Fisher

criterion again. Table. 7 lists the classification results for different gestures.

Notice that our proposed models perform considerably better than the baselines

across the 20 gestures.360

Based on the experimental evaluations in Table 8, we can observe that

F-BiLSTM and F-BiGRU consistently gain improvements on SmartWatch ges-

ture database, because we incorporate the Fisher criterion with softmax in the
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Figure 10: Training on SmartWatch Gesture Database. Dotted lines denote training

errors, and solid lines denote testing errors.

loss function. Furthermore, with even small size training data, the proposed

Fisher criterion improves the performance of BiLSTM and BiGRU models. The365

improvement comes from that the Fisher discriminant criterion can jointly min-

imize the intra-class variations and maximize the inter-class variations.

5. Conclusion

In this paper, we build a large gesture database, namely MGD, for hand

gesture recognition based on mobile devices. We incoporate Fisher criterion370

into the BiLSTM and BiGRU networks termed as Fisher discriminant learned

BiLSTM (F-BiLSTM) and Fisher discriminant learned BiGRU (F-BiGRU) to

improve the mobile gesture recognition performance. With appropriate val-

ues assigned for the Fisher criterion parameters, the proposed methods achieve

the state-of-the-art performance compared to existing RNN based methods and375

classical machine learning methods. In the future work, we will also apply our
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framework to other tasks [61, 62] with sequential data.
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