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Abstract

Recent years have witnessed the great success of convolutional neural network

(CNN) based models in the field of computer vision. CNN is able to learn

hierarchically abstracted features from images in an end-to-end training man-

ner. However, most of the existing CNN models only learn features through

a feedforward structure and no feedback information from top to bottom lay-

ers is exploited to enable the networks to refine themselves. In this paper, we

propose a “Learning with Rethinking” algorithm. By adding a feedback layer

and producing the emphasis vector, the model is able to recurrently boost the

performance based on previous prediction. Particularly, it can be employed to

boost any pre-trained models. This algorithm is tested on four object classifi-

cation benchmark datasets: CIFAR-100, CIFAR-10, MNIST-background-image

and ILSVRC-2012 dataset. These results have demonstrated the advantage of

training CNN models with the proposed feedback mechanism.
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1. Introduction

Object recognition aims at automatically assigning labels of object categories

from a finite label collection to a given image. It is a fundamental problem

in the field of computer vision and also a core technique for many applica-

tions [1, 2, 3]. Various algorithms for object recognition have been developed in

the past decades which can be roughly summarized into the following standard

pipeline: first a variety of handcrafted features are extracted; then the features

are fed into some sophisticated feature encoding or transformation (e.g. di-

mension reduction, feature pooling) procedures; finally those high-level features

are classified with trained sophisticated classifiers. Though many works (e.g.

SIFT [4], LBP [5], HOG [6], Gabor[7]) focus on developing better handcrafted

features, the feature is still undoubtedly the major bottleneck for improving the

performance of object recognition.

In recent years, great progress has been achieved in object recognition which

is arguably attributed to the availability of larger datasets for training more

sophisticated models and greater computation resources, and more importantly

the application of deep learning algorithms.

The convolution neural network (CNN) – a popular example of deep learning

algorithms – adopts a deep architecture that consists of many stacked convolu-

tional and fully-connected layers. Such an architecture is specifically designed

for solving computer vision related problems [8, 9, 10, 11, 12] and has also seen

many other successful applications. The designed architecture of CNN is end-

to-end trainable and is able to automatically learn features performing well for

specific targets at different abstraction levels. With these high-level features,

it is possible to classify images accurately with a simple classifier. Nowadays,

CNN-based algorithms have achieved the state-of-the-art results on many chal-

lenging tasks [1, 13, 14, 15, 3].

However, the simple feedforward architecture cannot well handle some chal-

lenging cases of object recognition. For instance, it has been observed that

the powerful GoogLeNet [16] often fails in recognizing small objects in an im-
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age. Another challenging case for the feedforward deep architecture is the fine-

grained object recognition [17] where the differences among different fine-grained

categories are quite subtle. Distinguishing fine-grained categories requires the

CNN based models to extract features from the most discriminative regions.

Therefore, part annotations are usually utilized to assist fine-grained image

classification [18]. Through empirical statistics on the classification errors, we

find that the network is able to predict several candidate categories that in-

clude the correct one with high confidence. However, making the correct final

decision on the single category is difficult for the network based models, due

to the distraction from other candidate categories. Motivated by the above

observations, we propose a novel “Learning by Rethinking” (LR) algorithm in

this paper: instead of making the final decision based on one-pass of the data

through the network, we introduce feedback connections and allow the network

based models to “re-think” the decision and take the high-level feedback infor-

mation into feature extraction. Benefiting from the feedback, the model is able

to extract more discriminative low-level features with the guidance from the

high-level information.

We propose two new types of layers – the “feedback” layer and the “empha-

sis” layer – to serve as the channel for transferring the feedback information.

The feedback layer connects one top layer to one specific bottom layer in the

network. The emphasis layer produces different weights based on such top-

down information for the feature maps in the connected bottom layer. The

proposed “Learning with Rethinking” algorithm exploits the fed back posterior

probability of candidate object categories in the feedback layer, and endows the

network model with the ability to “re-think” the decision during training. A

new prediction will be made with consideration of previous prediction.

Figure 1 provides the overall pipeline of the “Learning with Rethinking”

algorithm in a time-unfolded manner for illustration purpose. Here we take the

network-in-network (NIN) network as a basic CNN structure and illustrate how

we build the proposed “Learning with Rethinking” network through augmenting

the existing neural network architecture. The small “ibex” in the image is
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Figure 1: Illustration of the time-unfolded overall pipeline. With a pre-trained model, several

emphasis layers are inserted. Initial emphasis vectors in T = 1 are fixed for all 1, and other

emphasis vectors are calculated from feedback layers in the following iterations. The emphasis

layers then alter the response of corresponding feature maps through the inserted emphasis

layers. The total loss during training is the sum of all lt with equal weights. The blue solid

and red dash arrows refer to the forward pass and the backward pass respectively.

misclassified as “parachute” by a classic feedforward CNN (as shown in the left

part where the probability of “parachute” is larger than “ibex”). In contrast,

by further exploiting the posterior probabilities in the top layer before making

final decision, the “Learning with Rethinking” algorithm recurrently adjusts the

feature maps in hidden layers through feedback connection and identifies the

correct category from other distracting categories. We will detailedly describe

this pipeline in Section 3.

The remaining content is organized as follows. In Section 2, we review some

related works. Section 3 describes the architecture and other details of our
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“Learning with Rethinking” algorithm. Section 4 presents the experimental

results. Finally, Section 5 concludes the paper.

2. Related Work

It has been twenty years since Lenet was first applied to OCR in 1990 [8].

Many algorithms have been developed to improve the performance of CNN, al-

though the basic framework of CNN has not changed much ever since it was

proposed. The large object recognition data set ILSVRC2012, also known as

ImageNet [19], has greatly propelled the progress in this area. Some most

well-known progress in CNN structure has been made along with the contin-

uous improvements of the performance on ImageNet data set. After AlexNet

was proposed on ILSVRC2012, there are some remarkable advances in CNN

architecture [20, 21, 22, 16, 23]. And also, there are some task-specific modifi-

cations on CNN structure [24, 25, 3, 26, 27]. For example, in multi-resolution

CNN [24, 25, 3], combining features in lower layers leads to a more detailed

representation of an input image. MOP-CNN [28] is another algorithm pro-

posed to extract more powerful features. With a combination of VLAD and

CNN, MOP-CNN extracts a multi-scale and robust feature. This algorithm

does not actually change CNN structure, but utilizes a pre-trained CNN model

and modifies the feature extraction procedure.

Besides of exploring the overall structure of CNN, there are also many works

that focus on each component of CNN. Locally connected layer [15, 29] loose

the weight sharing constraint in normal convolution layer, and is suitable for

face related tasks. Leaky ReLU [30] adds a negative slope to the normal ReLU,

to preserve information discarded by ReLU. PReLU [31] further enhances this

by making the negative slope learnable. Spatial Pyramid Pooling (SPP) [32]

extends max-pooling by enables CNN to avoid input warping or resizing and

still produces fixed-length features. Inspired by Dropout [33], DropConnect [34]

regularize the CNN by randomly setting a subset of weights to zero within each

layer. Spatial Dropout [35] randomly sets some feature maps to zero entirely.
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DropSample [36] randomly selects low confidence samples during training ac-

cording to the output of CNN. The commonly used fully-connected layer can be

transformed into convolution layer with kernel size 1, as shown in [21]. With this

transformation, CNN can take the input of any size and output classification

maps.

Considerable works have been devoted to improving the performance of a

CNN model through modifying its architecture. However, all these algorithms

are still founded on a single feedforward pass of samples. Rare effort has been

made to recurrently improve the performance of a CNN model. In this work,

we argue that a recurrent recognition processing is more consistent with the

mechanism embedded in the human brain for visual processing, motivated by

neural science research [37, 38, 39, 40].

Based on the analysis of response latencies to a newly-presented image,

there are two stages of visual processing: a pre-attentive phase and an at-

tentional phase, corresponding to feedforward and recurrent processing respec-

tively [41]. And the feedback connections play an important role in the atten-

tional phase [38, 39]. Different with feedforward connections which directly carry

information, the feedback connections primarily play a modulatory role [40]. Ex-

periments have shown that recurrent processing contributes to making object

recognition in degraded images more robust [42].

The idea of recursive or recurrent neural network has a long history, and

recursive neural network (RNN) is successful in modeling temporal and sequen-

tial data [43, 44]. Several works consider employing recursive neural network on

processing a single image. Eigen et al. [45] proposed a recursive convolutional

network in image classification, finding that too large recursion depth may result

in inferior performance due to over-fitting. Ming Liang [46] enhanced the recur-

sive layer by taking feed-forward inputs into all un-folded layers, the recurrent

connections are spatial within the same recursive layer. Kim et al. [47] propose

a deep recursive convolutional neural network for image super-resolution. The

recursion depth is much more larger, and all predictions from the intermediate

recursion is utilized to obtain the final output.
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Our “Learning with Rethinking” algorithm differs from above recursive neu-

ral networks in that we combines the posterior probabilities in the top layer into

next recursion. The “Learning with Rethinking” algorithm recurrently adjusts

the feature maps in hidden layers through feedback connection and identifies

the correct category from other distracting categories

The idea of refining prediction is similar to cascading, which is a multistage

ensemble learning algorithm. The subsequent stages focus on refining predic-

tions of previous stages [48, 49, 50, 14]. For instance, state-of-the-art object

detection algorithms adopt a two-stage pipeline [14]. The region proposal net-

work proposes object candidates in the first stage, and the detection network

focus on classifying proposals in the following stage. Sun et al. [48] proposed

three-stage cascaded convolutional neural networks for facial point detection,

where the subsequent stage focus on giving more accurate keypoints estimation.

Li et al. [49, 51] proposed three-stage cascaded convolutional neural networks

for face detection, where the first two stage quickly reject easy background re-

gions, and the third stage carefully evaluates a small number of challenging

candidates. Timofte et al. employed a four-stage cascaded models to gradually

refine the contents in image super-resolution. They kept the same settings for

all the stages but models are trained per stage.

Our “Learning with Rethinking” algorithm differs from above cascading al-

gorithms in that we recurrently refine the same model in all stages. In contrast,

cascading algorithms needs to train a model for each stage.

The most related work on utilizing the recurrent neural network for object

recognition would be dasNet [52]. It makes use of a reinforcement learning

strategy to iteratively adjust some weights of feature maps. And final classifica-

tion results are made after several iterations. Our “Learning with Rethinking”

algorithm differs from dasNet in three major aspects. Firstly, we use a neural

network to feedback information into lower layers, which is relatively easy to

calculate. Secondly, we only use the posterior probability of previous feedfor-

ward pass as the feedback information, which is much more timely and spatially

efficient. Thirdly, our algorithm can be regarded as a new further training al-

7



gorithm which is easy to be applied to any pre-trained models, and will further

boost the performance. Comparatively, dasNet needs to train from random

initialization.

3. Learning with Rethinking

In this section, we briefly review the conventional architecture of convolu-

tional neural networks (CNN). Then we elaborate how to incorporate the feed-

back mechanism into the existing CNN architectures and propose the “Learn-

ing with Rethinking” algorithm to improve the performance of CNN for object

recognition. The basic idea of “Learning with Rethinking” is intuitive: in addi-

tion to the feedforward connections in a neural network, several feedback con-

nections directed from a top layer to a certain bottom layer are also established

to provide top-down information for object recognition. With the higher-level

information from the top layer, the bottom layers can stay being informed of

those categories in the training data that are misclassified and those the lay-

ers need extra effort to distinguish. Such information is fed back through the

“emphasis layer” and the “feedback layer” devised in this work.

3.1. Conventional Convolutional Neural Networks

In the conventional convolutional neural network (CNN) architecture, mul-

tiple layers of different types (e.g., convolutional layers and pooling layers) are

connected in a simply feedforward manner and the information only moves in

one direction. In particular, each layer takes a collection of feature maps output

by the previous layers as input, and produces a set of new feature maps via con-

volution or pooling operations. The new feature maps are then fed into the next

layer directly. By stacking multiple convolutional layers interlaced with pooling

layers, CNN can extract features at different abstraction levels with increasingly

larger receptive fields. One advantage of employing such a feedforward mecha-

nism in the CNN architecture is that the involved operations in producing the

feature maps (such as convolution and pooling) are computationally efficient
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without a directed cycle. And the algorithms of back-propagating errors from

top layers to bottom ones can be applied straight-forwardly to efficiently opti-

mize the parameters of the CNN. However, such a feedforward mechanism also

has a limitation, since each layer only interacts with its neighboring layers and

the important top-down information cross different layers is lost.

In the following subsections, we introduce a new network architecture that

also allows feedback connection among different layers. We elaborate how such

an architecture with a feedback mechanism can learn more discriminative feature

representation to better solve the object recognition problems – especially for

those involving recognizing objects of small size or from fine-grained categories

with subtle differences.

Throughout the paper, we use the following notations for the simplicity

of explanation. The feature maps are represented by a tensor of dimension

C ×M ×M , where C is the number of feature maps, and M ×M is the spatial

dimension of each feature map. We use f ` to denote the input feature maps

for the `-th layer and f `i,p,q to denote the value of the i-th feature map at the

position (p, q), in the `-th layer.

3.2. Feedback Layer

We introduce the feedback mechanism to the conventional CNN architecture

through a new feedback layer. The feedback layer connects two layers that may

not be neighboring to each other in a top-down direction. When an input sam-

ple passes through all the layers, instead of immediately making a prediction

based on the predicted posterior probability of the sample belonging to a spe-

cific category, a feedback layer is deployed to propagate the predicted posterior

probability to the bottom layers to update the network. Intuitively, when a

sample has similar posterior probabilities for two different categories, it is not

easy to be classified. Instead of outputting the final prediction directly, a wiser

way is to guide the previous layers based on the current posterior probabilities

of these confusable categories, such that the bottom layers can be strength-

ened or weakened to produce more discriminative features specifically for those
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categories difficult to distinguish.

Figure 2: Illustration of the feedback layer. It takes posterior possibilities p in the previous

iteration as input, and produces the initial emphasis vectors with several fully connected

layers. The initial emphasis vectors are then normalized to be emphasis vectors.

Formally, suppose there are in total Nclass categories. Then for each sam-

ple, the network outputs Nclass posterior possibilities p̂j , j = 1, . . . , Nclass, each

of which denotes the possibility of the sample belonging to the corresponding

category. The feedback layer is a fully connected layer whose parameters are

denoted as W s and bs for producing the s-th emphasis vector. It takes posterior

possibility p as input and outputs Ne emphasis vectors. The dimension of the

s-th emphasis vector (here s = 1, . . . , Ne) is denoted as Cs, which equals the

number of channels in the corresponding bottom layer. The i-th element in the

s-th emphasis vector used to re-weight the i-th channel is computed as follows,

âsi =

Nclass∑
j=1

W s
ij p̂j + bsj , (1)

asi =
Cs · exp(âsi )∑Cs

j=1 exp(âsj)
. (2)

The initial emphasis vector âs computed in Equation (3) is then normalized and

weighted by the total channel number Cs in the emphasis vector in Equation (2).

The emphasis vectors are then used to re-weight the feature maps in the layer

connected to the feedback layer. Such normalization guarantees that coefficients

in the emphasis vector have a mean value of 1 such that the feature maps re-

weighted by the emphasis vector have a magnitude at the same order as the

feature maps without being augmented by the feedback and re-weighted.
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Figure 3: Illustration of the emphasis layer. The output feature maps f`+1 are produced by

re-weighting the input feature maps f` with the learned emphasis coefficients a`. Different

colors denote different values of the weights.

The computational cost in time and space in the feedback layer is negligible.

For an output emphasis vector with a length of Cs, only (Cs + 1)×Nclass extra

parameters are introduced. Each emphasis vector is able to adaptively rectify

the feature maps – through lifting contribution to certain layers and weakening

the effects of other layers – to produce more discriminative feature maps for the

following object recognition. In the next subsection, we explain the role of the

emphasis vectors in more details.

3.3. Emphasis Layer

To adaptively re-weight different feature maps in a specific layer, an emphasis

layer is introduced in our proposed Learning-with-Rethinking network. The

emphasis layers take the emphasis vectors as well as the feature maps as inputs

and outputs the re-weighted feature maps. More concretely, the i-th channel

f `i in the `-th layer is weighted by the corresponding emphasis coefficient ai by

multiplying ai with f `i : with ai > 1, the i-th channel is enhanced; and the

channel is suppressed with ai < 1. All the emphasizing coefficients in the `-th

layer form an emphasizing vector as. The intuition of this emphasis layer comes

from the human visual mechanism. It is believed that the feedback connections

primarily play a modulatory role. This structural augmentation enables the

Learning-with-Rethinking network to selectively emphasize some discriminative
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features, and suppress the feature maps causing confusion in the recognition.

The emphasis procedure can be formally written as

f `+1
i = asif

`
i . (3)

Figure 3 illustrates such operation conducted by the emphasis layer.

3.4. Architecture of the Learning with Rethinking Network

With the feedback layer and the emphasis layer, we build the proposed

Learning-with-Rethinking network through augmenting the existing neural net-

work architecture. Here we take the network-in-network (NIN) network as a ba-

sic CNN structure and illustrate how we can build and train the corresponding

Learning-with-Rethinking NIN network LR-NIN. Figure 1 provides the overall

pipeline of the LR-NIN in a time-unfolded manner for illustration purpose. The

LR-NIN network is constructed as follows.

First, we pre-train the NIN model without feedback connection to obtain

an initial model of LR-NIN. Then, we build three emphasis layers that are con-

nected to three different convolution layers. Each emphasis layer takes its cor-

responding emphasis vector from the feedback layer as input (ref. Section 3.2),

and produces the emphasis vectors to re-weight the produced feature maps of

each convolution layer (ref. Section 3.3). Such information feedback in the

LR-NIN is repeated for T times in total to train the overall network.

In our implementation, all the coefficients in the emphasis vector are ini-

tialized as 1, and the emphasis layer does not change the feature maps at the

initial stage. In the training phase, LR-NIN recursively feeds back the posterior

possibility at the (T − 1)-th step to guide the operation at the T -th step.

It is obvious that increasing the number of recursive steps for information

feedback allows the bottom layers to receive richer top-down information, but

the training time cost will also be increased accordingly. We observe from

experiments that after T > 2 the performance improvement is incremental. In

order to trade off the time cost and the final performance, we empirically set

T = 2 in the training phase of LR-NIN.
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LR-NIN only introduces very few extra parameters compared with NIN: LR-

NIN adds three emphasis layers after the three convolution layers whose kernel

size is greater than 1. In this case, only 58k extra parameters are introduced

on CIFAR-100, amounting to only 4% increase in the total number of network

parameters.

Similar to other recurrent neural networks, the LR-NIN network is trained by

unfolding it into a very deep feedforward network, and is optimized by backprop-

agation through time (BPTT) algorithm [53] with Stochastic Gradient Descent

(SGD). Due to gradient vanishing probolem [54, 55, 56], the error signals pro-

pogated back tend to either blow up or vanish. This leads to failure in learning

long time dependencies (training deep networks) sometimes. Inspired by the

Deeply Supervised Network (DSN), we provide intermediate supervision for the

intermediate predictions. As shown in Figure 1, there are T cross-entropy losses

corresponding to the T feedforward passes. And the gradients of the losses are

summed to be final gradients.

Formally, the loss L to be optimized is a combination of the per-iteration

cross-entropy loss `t,

L =

T∑
t=1

`t =

T∑
t=1

(

Nclass∑
j=1

−pj logp̂j). (4)

During feedforward propagation, the coefficients in the emphasis vectors

are produced by the feedback layer, as explained in Section 3.2. During back

propagation, the gradients of the input feature maps f ` and the emphasis vectors

asi can be calculated via the chain rule:

∂Loss

∂f `i
=

∂Loss

∂f `+1
i

a`i , (5)

∂Loss

∂a`i
=

∑
pq

∂Loss

∂f `+1
i

f `ipq . (6)

The training and testing speed is roughly T times slower than the original model.

However, during training LR models, we can initialize the LR model with a well

trained baseline model, and do not need to train the model from scratch. This

makes the total training time reduced.

13



With these structural augmentations, LR enables the bottom layers in an

existing model to be aware of the current classification prediction in the top

layers. Then features are emphasized adaptively in the following iteration. In

this way, the network is able to distinguish between confusing categories and

yield better classification performance.

4. Experiment

4.1. Overall Settings

We evaluate the performance of the LR algorithm on four benchmark datasets

for image classification: CIFAR-100 [57], CIFAR-10 [57], MNIST-background-

image [58] and ILSVRC-2012 [59]. Four pre-trained CNN models are employed

as the baseline models which include NIN [21], R-CNN [46], LeNet [9], VGG-

Net [22]. We implement the LR algorithm on the Caffe platform [60].

Throughout the experiments, we fix the step of recursive feedback as T = 2.

On CIFAR-100, we also report the performance of the LR algorithm with T > 2

in order to investigate the effect of T on the final performance. Batch size is

fixed as 128 on CIFAR-10, CIFAR-100, MNIST-background-image and 32 on

ILSVRC-2012. The initial learning rate is set to 0.01 on CIFAR100, CIFAR10,

MNIST-background-image, and 0.00001 on ILSVRC-2012. The momentum is

set as 0.9 in all the experiments. Weight decay of the L2 normalization is

used as the regularization. The weight decay coefficient is set to 0.0001 in all

experiments. No weight decay is applied to any bias term. All these hyper

parameters are not particularly tuned. And the dropout rates stay the same

with the three publicly released models.

4.2. CIFAR-100

CIFAR-100 is a widely used benchmark dataset for image classification.

There are in total 60,000 color images of 100 categories in the dataset. All

the samples are split into 50,000 for training and 10,000 for testing. The size of

images in CIFAR-100 is 32 × 32. NIN has been proven to be a successful CNN
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structure on CIFAR-100 [21, 54]. We follow the same image pre-processing

procedure used in NIN, i.e. global contrast normalization and ZCA whitening.

We conduct three sets of experiments with different settings to evaluate the

proposed LR algorithm. In the first experiment, we train a vanilla NIN model

without data augmentation as the baseline. There are 3 convolution layers with

kernel size 5, each followed by 2 convolution layers with kernel size 1. Then

we train an LR-CNN with the Learning-with-rethinking algorithm. The overall

pipeline is the same as the one shown in Figure 1. Three emphasis layers are

added after each convolution layer with the kernel size of 5. And corresponding

feedback layers are added to produce emphasis vectors.

In the second experiment, we train a new baseline model termed as LNIN.

LNIN differs from NIN in the non-linear rectification unit. LNIN uses the leaky-

ReLU to replace ReLU in NIN. In this setting, we train the LNIN model without

data augmentation. It turns out that Leaky-ReLU is a more effective non-

linearity function on CIFAR-100 dataset than ReLU. We then train an LR-LNIN

with the LR algorithm based on this LNIN baseline model, following the same

procedure as in the first experiment.

In the third experiment, we use the pre-trained LNIN with data augmen-

tation as the baseline model which is named as LNIN-aug. Comparison with

this baseline validates the effectiveness of our algorithm on further boosting

models with even better performance. As for data augmentation, instead of

using the heavy data augmentation used in sparse-cnn [30], we only use hori-

zontal reflection. During training, we randomly flip the input image. In the test

phase, the model makes predictions on both the original image and its mirror.

Final classifications are given by simply averaging the two predicted posterior

possibilities.

Table 1 shows the comparison results of three experiments. For a fair com-

parison, all baseline models are further trained for the same epochs as training

the LR models, and corresponding models are referred with a prefix “ft-”. We

pre-trained each baseline model for 256 epochs, and fine-tune with Learning-

with-rethinking for another 256 epochs. As shown in Table 1, in all the three
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Table 1: Comparison with baseline models on CIFAR-100. Our proposed “Learning with

Rethinking” algorithm clearly yields better performance for all the three settings.

Model No. of Param. Error (%)

ReLU, without data augmentation

NIN 0.98M 35.68

ft-NIN 0.98M 35.11

LR-NIN (T=2) 0.98M+0.058M 33.32

Leaky ReLU, without data augmentation

LNIN 0.98M 34.01

ft-LNIN 0.98M 33.30

LR-LNIN (T=2) 0.98M+0.058M 31.49

Leaky ReLU, with data augmentation

LNIN-aug 0.98M 31.32

ft-LNIN-aug 0.98M 30.14

LR-LNIN-aug (T=2) 0.98M+0.058M 28.76

LR-LNIN-aug (T=3) 0.98M+0.058M 28.36

experiments, models trained with the LR algorithm not only outperform the pre-

trained baseline model, but also outperform the further trained baseline models.

Through comparing the baseline model and their corresponding further trained

model, we can see that further training only brings minor improvements. But

further training with LR could effectively improve the classification accuracy

for near 2%.

We have also compared the performance of LR-LNIN-aug models with differ-

ent T values. As shown in Figure 4 (a), with a larger T the training procedure

still works as expected, and the training loss is decreasing with the same T .

However, we can observe from Figure 4 (b) that the performance converges

after T = 3 on cifar-100 dataset, and a larger T is not really necessary. Be-

sides, a large T leads to higher difficulty in training since we need T times more

computation than the baseline model.
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Figure 4: (a) The training loss with T=4. (b) Performance comparison with different T. The

decrease of training loss in (a) shows our “Learning with Rethinking” algorithm works as

expected. And the performance converges after T=3 in (b).

We then compare our model with some state-of-the-art models of similar

depth and model size. Table 2 shows the comparison results. Among the ex-

isting models in Table 1, NIN [21], DSN [54] and LR-LNIN have comparable

network depth and parameter number. RCNN [46] models are much deeper.

Maxout [61] and dasNet [52] employ more parameters. As for the DeepCNet

and DeepCNiN [30], input images are padded with zeros to 96 × 96 ones, and

the deep network models have 25 million and 34 million parameters respectively,

which are much more than those in our model.

We also have evaluated our LR algorithm with RCNN-128 [46] as a baseline

model. Four weight layers are inserted after every recurrent convolution layer.

Because Liang [46] do not release their Caffe implementation of RCNN-128

model on the CIFAR-100 dataset, we can not reproduce the reported accuracy

and have to use our re-implementation model (marked with ?). The RCNN-128

model are further trained for the same epochs as training the LR-RCNN-128 to

make a fair comparison. As shown in Table 2, our proposed model surpasses

all the other models with moderate network depth and number of parameters.

Our LR-LNIN-aug model is only slightly inferior to DeepCNiN, which employs
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Table 2: Comparison with existing models with similar number of parameters and depth on

CIFAR-100.

Model Input Size No. of Param. Testing Error(%)

without data augmentation

Maxout [61] 32 >5M 38.57

NIN [21] 32 0.98M 35.68

DSN [54] 32 0.98M 34.57

RCNN-128 [46] 32 1.19M 34.08*

LNIN 32 0.98M 34.01

dasNet [52] 32 >5M 33.78

LR-RCNN-128(T=2) 32 1.19M+0.05M 31.95

LR-LNIN(T=2) 32 0.98M+0.058M 31.49

with data augmentation

NIN [21] 32 0.98M 33.53

RCNN-128 [46] 32 1.19M 31.68*

LNIN 32 0.98M 31.32

DeepCNet [30] 96 25M 29.81

DeepCNiN [30] 96 34M 24.30

LR-RCNN-128 [46] 32 1.19M +0.05M 30.72

LR-LNIN-aug(T=3) 32 0.98M+0.058M 28.36

much more parameters. It is worth noting that our model beats DeepCNet

when data augmentation is used – our model only uses 1/25 of the parameters

of DeepCNet and only horizontal flip data augmentation.

4.3. CIFAR-10

CIFAR-10 is a dataset with the same image size and number of images as

CIFAR-100. But its images are only from 10 categories. With fewer categories,

the number of extra parameters introduced along with the feedback layer is only

1/10 of the number in CIFAR-100. We evaluate the LR algorithm both with

and without data augmentation. T is fixed to 2. All baseline models are further
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Table 3: Comparison with baseline models on CIFAR-10. The LR algorithm achieves better

performance compared with well established baseline models.

Model No. of Param. Error(%)

Leaky ReLU, without data augmentation

LNIN 0.97M 9.92

ft-LNIN 0.97M 9.74

LR-LNIN(T=2) 0.97M+0.0058M 9.13

Leaky ReLU, with data augmentation

LNIN-aug 0.97M 8.71

ft-LNIN-aug 0.97M 8.56

LR-LNIN-aug(T=2) 0.97M+0.0058M 7.67

trained for the same epochs as training the LR models, and corresponding mod-

els are named with a prefix “ft-”. As can be seen from Table 3, the experimental

results show that models trained with the LR algorithm not only outperform

the pre-trained baseline model, but also outperform the further trained baseline

models.

We compare our model with some state-of-the-art models on CIFAR-10 as

shown in Table 4. Our LR algorithm has improved the baseline RCNN-128

model with and without data augmentation. And our LR-RCNN-128 model

outperforms the state-of-the-art models with a similar number of parameters

and depth.

4.4. MNIST-background-image

MNIST-background-image is a variant of the popular MNIST digits dataset [58].

The gray digit image is surrounded with a gray image patch as background. It

is more challenging than the original MNIST dataset. There are 12,000 training

images and 50,000 testing images. The baseline LeNet model consists of two

convolutional layers and one fully connected layer. The detailed structure of the

LeNet model is shown in Table 5. Then we train an LR-LeNet with “Learning

with Rethinking” algorithm. Two emphasis layers are added after each convo-

19



Table 4: Comparison with existing models on CIFAR-10. With fewer parameters, the proposed

LR algorithm achieves comparable performance with state-of-the-art models.

Model No. of Param. Testing Error(%)

without data augmentation

Maxout [61] >5M 11.68

NIN [21] 0.97M 10.41

DSN [54] 0.97M 9.69

DropConnect [34] >5M 9.41

dasNet [52] >5M 9.22

RCNN-128 [46] 1.19M 8.98

LR-LNIN(T=2) 0.97M+0.0058M 9.13

LR-RCNN-128(T=2) 1.19M+0.005M 8.38

with data augmentation

Maxout [61] >5M 9.38

NIN [21] 0.98M 8.81

DSN [54] 0.98M 7.97

RCNN-128 [46] 1.19M 7.24

LR-LNIN-aug(T=2) 0.98M+0.0058M 7.67

LR-RCNN-128-aug(T=2) 1.19M+0.005M 6.62

lution layer and corresponding feedback layers are added to produce emphasis

vectors. We train the baseline model for 64 epochs, and then train an LR-LeNet

model for another 16 epochs. Training the baseline LeNet model for another

16 epochs do not give a better performance. The comparison results with other

algorithms are shown in Table 6. The baseline LeNet model outperforms other

algorithms with a large margin, and our LR-LeNet model reduces the error rate

by nearly 50%. To our best knowledge, LR-LeNet achieves the highest accuracy

among all the reported results on MNIST-background-image dataset.

Benefiting from the small number of feature channels and categories, we are

able to make a qualitative analysis of LR algorithm. We conduct visualization
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Table 5: Structure of the baseline LeNet model.

name output size channels kernel size/stride

convolution1 24x24 20 5x5/1

max pool1 12x12 - 2x2/2

convolution2 8x8 50 3x5/1

max pool2 4x4 - 2x2/2

fully connected1 - 500 -

fully connected2 - 10 -

Table 6: Comparison with existing models on MNIST-background-image. The LR-LeNet

model achieves the state-of-the-art performance.

Model Error(%)

DBN-3 [58] 16.31

RBM [62] 15.42

aNN-θimage [62] 15.33

sDBN [62] 14.34

PGBM [62] 12.25

LeNet 6.92

LR-LeNet(T=2) 3.57

analysis on samples in category 7 and 9, which are commonly misclassified to

each other. Several typical confusing images are shown in the left part of Fig-

ure 5. In Figure 6, we visualize their emphasis vectors in the second emphasis

layer. As shown in Figure 6 (a), when the confidence of top-1 candidate is

higher, there are clear patterns of emphasis vectors. When the top-1 confidence

is lower, i.e. the predicted confidences of category 7 and 9 are at the same level,

the emphasis vectors of both category 7 and 9 are similar, as shown in Figure 6

(b). Emphasis vectors mainly enhance those features that increase the predic-

tion confidence of the correct category. Therefore, in Figure 6 (a), the enhanced
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Figure 5: Some difficult examples of “7”(top row) and “9”(bottom row).

Figure 6: Emphasis vectors of samples from category “7” and “9”. (a): Emphasis vectors

of smaples with top1-confidence above 0.8. (b): Emphasis vectors of smaples with top1-

confidence below 0.6.

features differ for different categories. When the predicted confidences of cate-

gory 7 and 9 are at the same level as shown in Figure 6 (b), emphasis vectors

focus on enhancing the features which are the most beneficial in distinguishing

these two categories, i.e. the 37th channel, and suppressing the features with

weaker discriminability, i.e. the 47th channel. We further visualize the corre-

sponding feature maps in the middle row of Figure 7. The receptive field of the

maximum value in the 37th feature map is marked with red rectangles in input

images. It seems that the 37th feature map mostly responds to the left part of
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Figure 7: Left: The images and feature maps of category 9. Right: The images and feature

maps of category 7. Top Row: Original input image. Red rectangles correspond to the

receptive field of the maximum value in the 37th feature map. Blue rectangles correspond to

the receptive field of the maximum value in the 47th feature map. Middle Row: Response

of the 37th channel. The responses magnitude of the 37th channel in category 7 is usually

weaker than in 9. Bottom Row: Response of the 47th channel.

a “blob”. We also visualize the feature maps of the 47th channel in the bottom

row of Figure 7, which shows this channel responds to the top part of a “blob”,

or rather, a curved horizontal line.

4.5. ILSVRC 2012

The ILSVRC 2012 dataset is a much larger one than CIFAR-100, CIFAR-

10 and MNIST-background-image. There are over 1.2 million color images in

the training set, and 50k color images in the validation set. Top-5 accuracy on

validation set is used as an evaluation metric. The VGG-Net is one of the top

performed models on this dataset. These pre-trained VGG models are the de

facto basic component in many papers.

There are two VGG-Net models released – one has 16 layers and the other

has 19 layers, termed here by VGG16 and VGG19 respectively. Both of them are

pre-trained on the training data of ILSVRC 2012 with data augmentation. We

use VGG16 as our baseline model due to its less training time cost but similar

performance as VGG19 on ILSVRC 2012. An emphasis layer is added after each
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of the 13 convolution layers. Also, 13 corresponding feedback layers are added

into the VGG16 network. This leads to 4.2M extra parameters, amounting to

only 3% of the total number of parameters. We trained the LR-VGG16 model

for 10 epochs. VGG16 is a well-trained model, and further training the baseline

VGG16 model barely make any improvement.

Detailed comparisons are shown in Table 7. This result on ImageNet vali-

dates the effectiveness of the LR algorithm on further boosting state-of-the-art

models and shows its potential in large scale object classification tasks.

Table 7: Comparison with the baseline models on ILSVRC 2012.

Models
Validation error(%)

Single

Crop

Multi

Crop

VGG16 10.05 8.8[22]

LR-VGG16 9.16 8.02

We here provide some analyses on the classification results of original VGG16

and LR-VGG16. As shown in Figure 8, the average posterior possibilities of top-

1 prediction increase by 4 ∼ 5% on both training set and validation set. The

improvement of top-k posterior possibilities demonstrates that LR-CNN is more

“certain” of its prediction. This shows that our algorithm can boost the model

to make it fit the training data better, and thus learn more information from

training samples. By distinguishing confusing categories, the LR algorithm can

improve the performance. The analysis of top-k accuracy in Figure 8 also sup-

ports this observation. The top-1 accuracy of LR-VGG16 has surpassed the

VGG16 model by more than 4% on the training set, and a consistent improve-

ment of 1% is shown on the validation set. These statistical observations validate

the effectiveness of “Learning with Rethinking” on further boosting state-of-the-

art models. Some examples of image classification results are shown in Figure

9 with comparison between VGG16 and LR-VGG16. The results show that

LR is more “certain” of its prediction (i.e. the entropy of the finally predicted
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probabilities is much smaller).

Figure 8: Posterior possibility (left) and accuracy (right) of top-k predictions on both training

set and validation set in the ILSVRC dataset.

5. Conclusion

In this paper, we propose a “Learning with Rethinking” algorithm for im-

age recognition. The Learning with Rethinking algorithm feeds back posterior

probability information from top layers to guide the bottom layers in their fea-

ture learning. Experiments on four benchmark datasets show that the Learning

with Rethinking algorithm is able to further boost the well-established models

with only a few parameters introduced. Particularly, experiments on benchmark

datasets MNIST-background-image and ImageNet clearly demonstrate the ad-

vantage of the Learning with Rethinking algorithm in recognizing objects or

categories with large inter-class similarity. Besides, our work also demonstrates

that recurrently improving performance with feedback information is a promis-

ing direction.
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Figure 9: Illustration of corrected samples in the validation set. Top row images: Images are

misclassified because objects are too small. Bottom row images: Images are misclassified

to a similar category. Blue histogram: Posterior possibility produced by VGG16. Though

images are misclassified, the network is able to predict several possible correct categories with

high confidence. Red histogram: Posterior possibilities produced by LR-VGG16. “Learning

with Rethinking” algorithm is able to choose the single correct category from the distracting

candidate categories.
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[7] S. Marčelja, Mathematical description of the responses of simple cortical

cells*, JOSA 70 (11) (1980) 1297–1300.

[8] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

L. D. Jackel, Handwritten digit recognition with a back-propagation net-

work, in: Advances in Neural Information Processing Systems, Citeseer,

1990.

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-

plied to document recognition, Proceedings of the IEEE 86 (11) (1998)

2278–2324.

27



[10] D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks

for image classification, in: Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 3642–3649.

[11] F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, Icdar 2013 chinese hand-

writing recognition competition, in: Document Analysis and Recognition

(ICDAR), 2013 12th International Conference on, IEEE, 2013, pp. 1464–

1470.

[12] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural networks, in: Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[13] R. Girshick, Fast r-cnn, in: Computer Vision (ICCV), 2015 IEEE Interna-

tional Conference on, IEEE, 2015, pp. 1440–1448.

[14] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object

detection with region proposal networks, in: Advances in Neural Informa-

tion Processing Systems, 2015, pp. 91–99.

[15] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap

to human-level performance in face verification, in: Computer Vision and

Pattern Recognition (CVPR), 2014 IEEE Conference on, IEEE, 2014, pp.

1701–1708.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Com-

puter Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on,

IEEE, 2015, pp. 1–9.

[17] N. Zhang, J. Donahue, R. Girshick, T. Darrell, Part-based r-cnns for fine-

grained category detection, in: Computer Vision–ECCV 2014, Springer,

2014, pp. 834–849.

[18] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, Z. Zhang, The application of

two-level attention models in deep convolutional neural network for fine-

28



grained image classification, in: Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on, IEEE, 2015, pp. 842–850.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A

large-scale hierarchical image database, in: Computer Vision and Pattern

Recognition (CVPR), 2009 IEEE Conference on, IEEE, 2009, pp. 248–255.

[20] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional net-

works, in: Computer Vision–ECCV 2014, Springer, 2014, pp. 818–833.

[21] M. Lin, Q. Chen, S. Yan, Network in network, CoRR abs/1312.4400.

URL http://arxiv.org/abs/1312.4400

[22] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE

Conference on, IEEE, 2016, pp. 770–778.
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