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Abstract

While texture analysis is largely addressed for images, the comparison
of the geometric reliefs on surfaces embedded in the 3D space is still an
open challenge. Starting from the Local Binary Pattern (LBP) descrip-
tion originally defined for images, we introduce the edge-Local Binary
Pattern (edgeLBP) as a local description able to capture the evolution
of repeated, geometric patterns on surface meshes. Our extension is in-
dependent of the surface representation, indeed the edgeLBP is able to
deal with surface tessellations characterized by non-uniform vertex distri-
butions and different types of faces, such as triangles, quadrangles and, in
general, convex polygons. Besides the desirable robustness properties the
edgeLBP exhibits over a number of examples, we show how this descrip-
tion performs well for 3D pattern retrieval and compare our performances
with the participants to a recent 3D pattern retrieval and classification
contest [1].

1 Introduction

3D content-based object retrieval and classification are receiving significant at-
tention as the number and the size of 3D data is increasing. They potentially
support the creation of search engines, 3D model catalogs, automatic 3D object
segmentation, protein-docking, and so on. Nowadays, a vast selection of meth-
ods exists, which is able to tackle 3D global and local similarity evaluations and
coarse and dense shape correspondences [2]. Nevertheless, only few methods
explicitly address the problem of retrieving and recognizing 3D patterns over
surfaces [3, 4, 5]. By 3D patterns, here we mean any geometric, repeated vari-
ation pattern over a surface embedded in the space. Far for being a purely
academic question, classifying 3D patterns would have many practical applica-
tions: it would permit the automatic recognition of artwork patterns, including
the attribution of the period of creation or an artist style [6]; the classification of
natural structures, such as like tree barks [3]; the identification of a surface or an
object material, and so on. Recently, a benchmark for the automatic retrieval
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and classification of relief patterns over 3D scans of knitted fabrics has been
launched at the SHape REtrieval Contest (SHREC) 2017 [1]. The performance
of the methods till now run on that benchmark highlights that the retrieval and
the classification of 3D relief patterns is still an open challenge.

A peculiar characteristic of 3D patterns is that they do not depend on the
overall structure of the shape; rather, they identify parts or local properties that
are independent of the global shape. Therefore, the recognition of 3D patterns
must involve a good characterization of the local shape properties, which has to
be: robust to different model representations; sensitive to the local geometric
variations that characterize the surface; as much as possible independent of the
surface bending, while keeping a reasonable computational complexity.

As the main contribution of this paper, we propose a novel extension to
surfaces of the well-known Local Binary Pattern description [7, 8] which is:

• able to deal with surface tessellations whose faces are made of convex
polygons;

• robust to non-uniform surface samplings;

• invariant to object Euclidean transformations (roto-translations).

With respect to a previous extension of the LBP to triangle meshes, the so-
called meshLBP [4, 5], we base the LBP evaluation on the vertices of the tes-
sellation, then we adopt a sphere-mesh intersection approach to determine the
rings around a vertex and define a re-sampling criterion to obtain the same
number of samples on each ring.

Experimental results exhibit very good performances on various datasets
and definitely overcome the algorithms proposed in the public contest on the
retrieval of relief patterns at SHREC 2017 [1] showing the good potential of the
proposed approach for real world applications.

The paper is organized as follows: Section 2 briefly overviews the recent lit-
erature on texture matching and 3D pattern retrieval; Section 3 introduces the
basic concepts of our method, namely the LBP descriptor and the surface prop-
erties adopted to measure the geometric variations; Section 4 presents the edge
Local Binary Pattern (edgeLBP) method discussing the parameters involved in
the description and its computational cost; Section 5 presents the datasets and
the evaluation measures we used for our tests; Section 6 discusses the robustness
and the main properties of the edgeLBP description analyzing its performance
over a set of surface meshes derived from laser scans of real objects and com-
paring, when possible, the edgeLBP with the meshLBP description; Section 7
reports the performances of the edgeLBP on the SHREC’17 pattern retrieval
contest [1]; Section 8 briefly describes the computational performances of the
method. Discussions on the edgeLBP performance with respect to different
types of patterns, open issues and future developments are provided in Section
9.
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2 Related work

Our problem can be seen as the natural extension in the 3D space of image
texture description and retrieval. The literature on these topics is vast, therefore
in this section we limit our references only to methods that are relevant to our
approach, focusing on the main aspects of texture analysis and 3D pattern
retrieval.

Image texture retrieval Texture analysis has been largely addressed in com-
puter vision and image processing and a variety of methods has been proposed,
ranging from frequency-based to statistical-based methods [9]. In general, the
detection of patterns on real images is quite complex; the key aspect is the
recognition of the texture properties robustly to the possible patterns variations
[10].

A typical strategy to detect patterns on images is to consider local patches
that describe the behavior of the texture around a group of pixels. Examples of
statistical descriptions are the Local Binary Patterns (LBP) [7, 8], the Scale In-
variant Feature Transform (SIFT) [11] and the Histogram of Oriented Gradients
(HOG) [12].

LBP-based methods are very popular and a large number of LBP variants
has been proposed [13]; for instance, addressing multi-resolution and rotation
invariance [8], extending the definition to facial depth images [14], human de-
tection [15] and also to volumetric images [16, 17]. An extended taxonomy of
32 LBP variations and their performance evaluation for texture classification
has been recently proposed in [18] where the LBP is compared with 8 convolu-
tional network based features over 13 datasets of 2D images. As an alternative
to the volumetric LBP, the local frequency descriptor (LFD) [19] is based on
the gradient estimation on samples of a sphere around each pixel. Similarly to
SIFT, only points that are detected as features are kept; then, the descriptors
obtained in correspondence of these feature points are adopted to detect image
anomalies such as brain anomalies and tumors in MRI images.

An aggregation of significant feature points obtained by pooling the point
descriptors, e.g. SIFT+Fisher Vectors, can obtain significant texture classifi-
cation performances [10]. Moreover, the combination of a SIFT-based feature
description with Convolutional Neural Networks outperforms the feature-based
descriptions on classic benchmarks approximately of the 10% [20]. Nevertheless,
the problem of 2D texture recognition is still open because the learning strongly
depends on the grouping of patterns which, in turn, is influenced by features
that might strongly differ in type and size.

Local feature descriptors on point clouds Methods like the Fast Point
Feature Histograms (FPFH) [21], the SHOT descriptor [22], the Spin Images
[23] and their recent extension named TOLDI [24] mainly focus on point clouds.
A quantitative analysis of the feature matching performance of local feature
descriptors over standard datasets has been recently proposed in [25]. Unfortu-
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nately, most of these methods analyze the surface on the basis of its global ap-
pearance, discarding surface details and local shape variations. For instance, the
SHOT descriptor [22] is meant to solve point-to-point correspondences among
sets of feature points. For this reason, these methods were adopted for facial
matching and, in general, to address the partial similarity problem, focusing on
the detection of feature correspondences rather than the comparison of surface
patterns.

3D pattern retrieval Methods in the literature for shape matching and re-
trieval can be classified according to their type of input, their local or global
nature, their robustness to noise and model representations, their invariance
to shape transformations and their suitability to partial matching [26, 27, 2].
For a detailed overview of algorithms and methods, we refer to recent surveys
[28, 27, 2] and to the proceedings of the annual SHape REtrieval Contest1 event.
Here, we focus on methods that are potentially able to address the retrieval of
3D patterns, i.e., methods that are defined for surfaces, adopt a local shape
description, are able to detected repeated features, and are independent of rigid
transformations of the 3D models.

Partial similarity and, in particular, self-similarity are the key concepts cur-
rently referred to detect repeated, local features over a surface [29, 25]. For
instance, the method [30] uses surface curvatures for recognizing salient shape
features. Once these features are computed, they are mapped using a geomet-
ric hashing mechanism that determines the best transformation among these
regions by mean of a voting scheme. The use of curvatures promotes the identi-
fication of well-detailed and isolated features encouraging the detection of shape
details and (almost) flat regions while discards the whole shape structure. Such
a technique is able to recognize repeated surface features (circles or stars) over a
surface but, being based on geometry hashing, it is scale dependent and suffers
of the local definition of curvature that could become insufficient when dealing
with highly eroded or perturbed surfaces. Similarly, [31] observed that though
isolated feature points often do not suffice, their aggregation provides adequate
information regarding similarity. Then, the combination of segmentation tech-
niques with the neighbor description of the feature points yields the detection of
similar parts in bas-reliefs and archaeological artifacts. However, every surface
part was considered as stand alone and no particular attention was allocated to
the detection of repeated patterns. Moving further in this direction, the method
proposed in [32] adopts the Hough transform to fit aggregated sets of feature
points into template curves: while this approach naturally overcomes the prob-
lem of finding multiple instances of the same curve, it requires the surface can
be locally projected on a plane and the vocabulary of possible curves is limited
to those that have an algebraic expression.

When dealing with pattern characterization over surfaces (embedded in the
Euclidean space), two strategies are possible: (i) to reduce the data dimension,
i.e., to project the 3D data into an opportune plane (image) and apply an image

1http://www.shrec.net/
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pattern recognition algorithm to the projected data; (ii) to define the pattern
description directly on the surface, fact which is not straightforward because it
involves the treatment of three-dimensional data.

As a reference to the first typology of methods, we mention the method in [3]
for tree species classification. There, the geometric variations of the tree trunk
models are represented with a 3D deviation map over a cylinder that is flattened
on a plane using the Principal Component Analysis (PCA) technique. Then,
the geometric textures are compared using variations of the complex wavelet
transform [33]; see [3] for a detailed implementation analysis. Similarly, [6]
adopts a height map to project the reliefs and engraves of rock artifacts into an
image and classify them. As further examples, we refer two approaches analyzed
in the SHREC’17 contest [1] and labeled LBPI and CMC, respectively: namely,
the LBPI [1] uses an image pattern method over a depth-buffer projection of the
surface and the CMC [1] compares the principal curvatures in the mesh vertices
using morphological image analysis techniques.

There are several generalizations to triangle meshes of image local feature
description methods, such as the meshSIFT descriptor [34], the meshHOG de-
scriptor [35] and the textured Spin-Images [36]. The Mesh Local Binary Pattern
(meshLBP) approach [37, 4, 5] extends the LBP [7] to triangle meshes and it is,
at the best of our knowledge, the unique approach that addresses 3D pattern
classification and retrieval directly on the surface mesh. The main idea behind
the meshLBP is that triangles play the role of pixels; there, the 8-neighbor con-
nectivity of images is ideally substituted by a 6-neighbor connectivity around
triangles. Rings on the mesh are computed by a uniform, triangle-based ex-
pansion. Working on (non-textured) meshes, the role of the gray-scale color is
replaced by a function that is meant to capture the main pattern characteristics
(in the examples, mainly Gaussian and mean curvatures, and the shape index
[38]). From the practical point of view, the meshLBP provides an efficient coding
of a 3D pattern, providing a compact representation of the pattern. However,
most properties on meshes are generally better represented on vertices instead
of triangles (for instance the curvature value on a triangle is zero and usually it
is approximated on vertices); moreover, triangles meshes can be really irregular:
either in terms of connectivity or non-uniform vertex distribution. These facts
jeopardize the efficacy of an expansion strategy based exclusively on elements
of the mesh for detecting and coding representation-independent features.

3 Basic concepts

We firstly summarize the Local Binary Pattern (LBP) definition for images that
we want to extend to surface tessellations. The salient point of the LBP is that
it effectively codes the variations of the gray-level values, which are interpreted
as a function (labeled h) over the image, around a pixel. Since we are interested
to detect geometric variations we consider a set of curvature-based functions,
detailed in Section 3.2.
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(a) P = 8, R = 1.2 (b) P = 24, R = 3.2 (c) P = 8, R = 3.2

Figure 1: (a-b): Rings with different radii R relative to the pixel i. (c): Uniform
down-sampling (from 24 to 8) for the pixels of the ring in (b). The down-sampled
ring is represented by the red pixels.

3.1 The Local Binary Pattern

The LBP is a reference description for texture recognition in still images [7].
Among the LBP variations, here we introduce the terminology and the concepts
we adopt in our paper.

Let I be a gray-scale image characterized by a pattern, i ∈ I a pixel and h the
function such that h(i) is the gray-level value of i. We denote ringi1 = {i1, ..., i8}
the set of 8 pixels adjacent to i, see Figure 1(a). Usually, the ring ring1 is
clockwise ordered moving from the top left pixel.

A binary string str of 8 bits is associated to i to code the variations of the
gray-scale values of i and the pixels in ringi1. For each ij ∈ ringi1, the value
str(j) is defined as follows:

str(j) =
{

1 if h(i) < h(ij)
0 otherwise

(1)

The operator LBP labels the pixel i with a scalar value derived from str as
follows:

LBP (i) =

8∑
j=1

str(j)αk(j), (2)

where αk is a weight function that determines the size of the descriptor. The
most popular choices for αk are: α1(j) = 1 ∀j and α2(j) = 2j ∀j.

To achieve a multi-resolution description, it is possible to extend the LBP
operator through a multi-ring coding [8]. For each pixel i, a sets of concentric
rings centered in i (ringi2, ringi3, ..., ringiNr

) with increasing radii values is
considered, see Figure 1(a-b). Note that the rings are non necessarily square
rings of pixels. Each ring is sampled with a pre-defined number P of pixels,
so that the string str has the length P on every ring, as shown in Figure 1(c)
for P = 8. Finally, the multi-ring LBP descriptor is a matrix whose k-row
corresponds to the LBP descriptor relative to ringk.
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Figure 2: Representation of the normal curvature to the surface Σ in a point
x. The oriented vector N represents the normal vector in x. On the right, the
surface is sectioned along the plane π that generates the curve ξ. The radius of
the osculating circle in x relative to π determines the normal curvature.

3.2 Curvature-based shape properties

Geometrically, the curvature of a curve in a regular point is defined as the
inverse of the radius of the osculating circle passing through this point, where,
informally, by the osculating circle we mean the circle that fits the curve on a
region infinitesimally small around that point. The extension of the concept of
curvature to a surface Σ is introduced through the notion of normal plane in a
point. The intersection between the normal plane and Σ defines an intersection
curve ξ where the curvature κ in the point x is well defined (and it is called
normal curvature), see details in Figure 2. There are infinite intersection curves
in a point x; however, the normal curvature assumes a minimum and a maximum
value, denoted k1 and k2, respectively. k1 and k2 are called principal curvatures
of the surface in a point (k2 ≥ k1). On the basis of the principal curvatures, other
quantities are widely used to describe the local geometric differential properties
of surfaces; in our experiments we considered also the mean curvature H, the
Gaussian curvature K , the Shape Index SI and the Curvedness [38], that are
defined as follows:

H =
k1 + k2

2
, K = k1 · k2,

SI =
2

π
arctan

(
k1 + k2
k1 − k2

)
, Curvedness =

√
k21 + k22

2
.

Shape index is scale invariant and represents the local structure of a surface
while the curvedness discriminates on the basis of the magnitude of the princi-
pal curvatures and, therefore, contains the scale-sensitive information. Studies
in shape perception using smooth mathematical surfaces showed that the shape
index and curvedness are measures that well reflect the human perception [39].
A comparison of the algorithms for curvature estimation over surfaces having
an analytical representation of the principal curvatures was proposed in [40].
As confirmed by the experiments in [40], the method based on normal cycles
proposed in [41] provides a reasonable compromise between computational ef-
ficiency and quality of the curvature approximation and we opted for this ap-
proach. All the curvature quantities computed in this paper are approximated
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Figure 3: Color representation of (from left to right) mean curvature, Gaussian
curvature and SI. The lowest values are in blue, while greater ones fade from
blue to green, then yellow and finally red.

with the implementation of the curvature tensor proposed in the MATLAB tool-
box [42]; following the default settings, we set to 3, the size of the ring used
to average the curvature tensor. Figure 3 depicts the values of H, K and SI
approximated on a surface tessellation, using a color map that ranges from blue
(low) to red (high) values.

For sake of completeness, we mention that, besides curvature measures, inte-
gral invariants are an alternate approach for the identification of convex, concave
and flat regions. The volume integral originally proposed in [43] is related to the
Gaussian curvature while the surface patch area behaves similarly to the mean
curvature [44]. The advantage of these invariants is the adoption of numeric
integration instead of simulating numeric differentiation; however, as discussed
in [44], they are very sensitive to surface details when dealing with the analysis
of a tablet with cuneiform characters whose characteristics somehow resemble
those of a 3D pattern.

4 The edgeLBP description

The multi-ring LBP operator is extended to deal with surface tessellations using
a sphere-mesh intersection technique, see Section 4.1. With the term surface
tessellation, we mean a polygon mesh T = (V,E, F ) which is a collection of
vertices V , edges E and faces F that defines the surface of a polyhedral object.
In our settings, we also assume that the faces are convex polygons. Popular
examples of surface tessellations are triangle meshes, quadrangulations, and the
Centroidal Voronoi Tessellations (CVT) [45], some examples of possible surface
representation are shown in Figure 4. We also assume that each pattern property
can be coded as a scalar function h defined on the vertices of the tessellations,
formally, h : V → R.

Our algorithm is detailed for generic tessellations in the Sections 4.1 and
4.2, while Section 4.3 details how to set the edgeLBP parameters. Section 4.4
describes how to pass from a local description to a global pattern description and
how to use the edgeLBP description to define the dissimilarity measure between
two tessellations. Finally, Section 4.5 exhibits the computational complexity of
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(a) (b) (c)

Figure 4: Zoom on three surface tessellations: (a) a triangle mesh, (b) a quad-
rangle mesh, (c) a convex polygon mesh.

(a) (b) (c) (d)

Figure 5: (a): The ring of the vertex v (in blue) formed by vertices over a
triangle mesh; (b): multiple rings of a single vertex are shown; the black dots
in (c) (pi in our notation) represent the intersections between black rings in (b)
and the edges of the mesh; (d), from top to bottom: first, Svk corresponds to
the connected component that contains v, the other component is discarded;
second, Svk is non-simply connected and v is non-admissible.

the edgeLBP technique.

4.1 Multi-Ring Sampling

While a pixel grid has the same connectivity anywhere, surface tessellations can
be widely irregular. By irregular we mean that the vertices can be non uniformly
distributed over the surface. Furthermore, the faces of the tessellation may have
different area, shape and number of edges.

As discussed in Section 3.1 the notion of ring is crucial for the LBP descrip-
tion. In case of triangle meshes, an intuitive transposition of the notion of ring
would be a ring defined as a set of vertices. In Figure 5(a) we show the ring of
the vertex v formed by the sequence of red edges and vertices. Indeed, the irreg-
ularity of the mesh elements strongly influences rings defined on mesh elements
only, because it would not be invariant to different tessellations of the surface,
even simple edge swaps. Rings that are associated to different elements of the
tessellation could carry information about surface portions with significantly
different shape.

To overcome these limitations, given a surface tessellation T , we define the
ring of a vertex v ∈ V as the intersection of the surface tessellation with a
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sphere centered in v of a given radius R. Then, we look at the intersections pi
between the sphere and the edges of the tessellation, creating a set of points
R = {p1, p2, . . . , pk}, that approximates the curve which is the intersection
between the sphere and the surface. We linearly interpolate the set R to obtain
a continue and closed curve C that represents the ring; C is oriented counter-
clockwise with respect to the vector in v normal to T . The value h(pi) on the
points of R is determined by the weighted average of the value the function h
assumes on the vertices that limit the edge e ∈ E such that pi ∈ e. Generally
the number of elements of R varies from one ring to another, because of the
increasing radius and the irregularity of the tessellation. To keep the number
of elements constant on every ring, we sample C with a fixed number of points
P ; we call P the spatial resolution.

To achieve a multi-ring representation, for any vertex v ∈ V we consider Nr
rings, {ringv1 , . . . , ringvNr

}. Let Svk be the surface portion of T that contains v
and has the ringvk as its boundary, k = 1 . . . Nr−1, then the relation Svk ⊂ Svk+1

holds for each k. We take advantage of this relation to optimize the sphere-
tessellation intersection adopting a region growing expansion around the vertex
v. Examples of the intersection of the sphere at increasing radius around a
vertex are shown in Figure 5(b-c), while details on the algorithm are provided
in Section 4.2.

Similarly to the standard LBP approach and to avoid a possible ambiguity
close to the surface boundaries, we consider as admissible only the vertices for
which all the Nr rings are closed curves C.

In general, the sphere-surface intersection can produce multiple, closed curves
that bound either a multiple connected or a dis-connected portion of surface;
some examples are shown in Figure 5(d), for a detailed vertex classification
based on a sphere-mesh intersection approach we refer to [46]. Using a region
growing approach, Svk is the portion of the sphere-surface intersection that con-
tains v. If the boundary of Svk is a closed curve, v is considered an admissible
vertex, otherwise it is non-admissible for the edge-LBP. Note that with the
edge-LBP we are interested to code local geometric variations on the surface
(like corrugations, incisions, and so on), therefore the radius R should be kept
small with respect to the overall dimension of the surface. This implies that
the choice of the radius R is crucial for the type (and the size) of the patterns
we are going to identify; indeed it must be not too large to avoid to mix global
and local surface information and not too small to be significant. In practice,
multiply-connected regions appear only in case of topological noise, like small
handles and self-intersections of the mesh and in our experiments over thousands
of tessellations we never met admissibility problems.

4.2 Implementation

What follows details the routines adopted to evaluate the edgeLBP over a single
ring of a vertex, then we outline how to extend it to a multi-ring representation.
Overall, we identify three main steps:
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1. RingExtraction - The ring R given by the intersection between the sphere
of radius R centered in v and the tessellation edges is computed according
to the procedure detailed in Algorithm 1. The function VE(v) calls the
basic function to the data structure that returns the list of all the edges
that are incident to the vertex v. Once the edges that intersect the sphere
with center v of radius R are identified (lines 2-15 of Algorithm 1), the
coordinates of the intersection points pi are computed (the function Edge-
SphereIntersection numerically evaluates the intersection of an edge with
a sphere).

We propose a method to sort R with respect to a starting point p̃. p̃ is
selected according to a shape-based criterion and therefore is rotation and
translation invariant. Starting from p̃ the function SortingP counter clock-
wisely sorts the points of R with respect to the normal to the surface in v.
Even if this sorting would not influence the α1 representation we adopt in
the paper, it would become crucial if considering the α2 one. The point p̃
verifies the relation:

p̃ = arg max
pi∈R

h(pi).

In Figure 6 we detail the choice of p̃ for three meshes that correspond to
three different resolutions of the same model. There, for each vertex we

depict the unit vector defined as −→n =
−−−→
p̃− v
||p̃−v|| . As expected, the starting

20k 10k 5k

Figure 6: Arrows represent the orientation of vector that connect a vertex v
with the starting point of the rings centered in v; from left to right, details on a
surface mesh of 20K vertices and two re-samplings with 10K and 5K vertices:
the choices of p̃ is robust to mesh decimation and depends on the local geometry
of the surface.

point of the rings is stable in most of the vertexes of the mesh. This
fact was confirmed in numerous experiments we performed on meshes
of different resolution. In case of symmetries around a vertex, multiple
choices of the starting point are possible: we select the candidate point
that is the farthest from the other elements of R.

2. RingResampling - Given a ring R representing a simple, closed curve we
identify P equidistant samples sk, k = 1, . . . , P on R as detailed in Al-
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Algorithm 1: RingExtraction.
Notes: d is the euclidean distance, U is the list of the edges that may have
a pi on them (initially empty), L is the list of edges the algorithm has
already checked.

Input : A tessellation T = (V,E, F ), a vertex v ∈ V , a radius R > 0.
Output: A set R of samples pi of the ring with center in v of radius R.

1 begin
2 L← ∅
3 U ← V E(v)
4 while U 6= ∅ do
5 for e = (v1, v2) ∈ U do
6 if (d(v1, v)−R) ∗ (d(v2, v)−R) < 0 then
7 L← L ∪ {e}
8 end
9 if (d(v1, v)−R) < 0 or (d(v2, v)−R) < 0 then

10 U ← U ∪ V E(v1) ∪ V E(v2)
11 end
12 mark e

13 end
14 RemoveMarked(U)

15 end
16 for e ∈ L do
17 R← EdgeSphereIntersection(e,R, v)
18 end
19 return R ← SortingP (R, T )

20 end

gorithm 2. The values h(sk) are linearly approximated (function Sample
in Algorithm 2) as follows: denoting pi and pi+1 the two consecutive
points of R on which the sample sk falls, the value h(sk) is equal to the
weighted mean of h(pi) and h(pi+1). At the end of this procedure, the
values h(sk), k = 1, . . . , P are returned in the array S.

3. edgeLBP Evaluation - Once the value of the function h is known on the
sample set S, the evaluation of the edgeLBP on the vertex v is straight-
forward. Here the function α represents one of the weight functions α1 or
α2 defined in Section 3.1, see lines 2-8 of Algorithm 3.

When extending the edgeLBP evaluation to multiple rings, the RingExtrac-
tion procedure is modified to take advantage of the nested nature of the rings;
i.e., rings are computed increasingly with respect to the radius R. The initializa-
tion in Algorithm 1 of the set U of edges that are suitable for the sphere-surface
intersection, starts from the edges that originated the previous ring and does
not take into account edges already visited. Moreover, only the biggest ring
ringNr

is sorted as described in Section 4.2: we sort all the other rings centered
in the vertex v consistently this sorting. In particular, we consider the plane
π passing through v with w = n(v) × (v − p̃) as its directional vector, where

12



Algorithm 2: RingResampling

Input : A set R of intersection points, the function h, the spatial resolution
P .

Output: An array S of P scalar values sk.
1 begin
2 length←

∑
d(pi, pi + 1)

3 dl = length
m

4 idxend ← 2
5 index← 1
6 s(1)← h(p1)
7 while size(S) 6= m do
8 while dR(p1, pidxend)− dl · index ≤ 0 do
9 idxend++

10 end
11 index++
12 S ← Sample(h(pidxend−1), h(pidxend))
13 idxend++

14 end
return : S

15 end

n(v) is the normal, unit vector to the surface in v and p̃ is the starting point of
ringNr

. Then, we choose as the starting point on each ring the closest point to
p̃ and order all the rings counterclockwise with respect to the normal in v.

In our settings, we opted for a uniform distribution of the ring radii. For
instance, denoting Rmax the maximum radius is will be Rmax

Nr
, 2Rmax

Nr
, . . . , Rmax.

4.3 Parameter settings

While the choice of the number of rings Nr follows the classic LBP approaches,
the values of Rmax and P are set on the basis of the following reasonings:

• P corresponds to the number of samples over each ring. In case of a circle
on a flat surface, it would correspond to the number of sectors that would
divide the angle 2π. Based on our tests, this parameter should be included
between 12 and 18 (for flat surfaces, this would correspond to a uniform
sampling with an angle that ranges from π

10 to π
6 );

• Rmax represents the radius of the biggest sphere used to define the rings.
It can be chosen by the user on the basis of the size of the variations (pat-
terns) to be coded. Nevertheless, we also suggest two possible automatic
ways to define Rmax, both based on the assumption that a pattern on a
surface should be quite small with respect to the global size of the model.
Namely:

– Rmax = 1
10

√
A
π . This is a scale-invariant radius based on a fraction

13



Algorithm 3: edgeLBP Evaluation

Input : The array S, the pivot value h(v).
Output: The value edgeLBP(v).

1 begin
2 for idx = 1 : numel(S) do
3 if h(S(idx)) < h(v) then
4 str(idx)← 0
5 else
6 str(idx)← 1
7 end

8 end
return : edgeLBP (v)←

∑
str(j)α(j)

9 end

of the area of the whole surface, where A represents the area of the
surface model.

– Rmax = C ·el. This is a calibration of the radius based on the average
length of the tessellation edges el and C is a constant, C ∈ [10, 20].

4.4 edgeLBP description and similarity measure

Given the surface tessellation T , its edgeLBP descriptor DT is defined as a
feature vector; in particular, the value DT (n,m) corresponds to the number
of vertices that assume edgeLBP value m on the ringn. The size of DT is
equivalent to Nr(P + 1). Since in the experiments we are mostly interested in a
probability histogram of the distribution of the edgeLBP values, we adopt DT

nv

as the edgeLBP descriptor, where by nv we mean the cardinality of the set V
of the vertices of T . Through this normalization of T we achieve robustness to
the number of vertices of the surface representation.

We define the (dis)similarity between two tessellations A and B as the dis-
tance between their corresponding edgeLBP descriptors DA and DB . Since the
edgeLBP can be thought as a matrix, any feature vector distance is suitable
to evaluate the similarity between two edgeLBP descriptions. In the experi-
ments shown in this paper, we adopt the Bhattacharyya and the χ2 distances
[47], which are widely used in image processing. For the discrete case, the
Bhattacharyya distance between two distributions φ and ψ of a scalar random
variable X has the following formulation:

dBha(φ, ψ) =
√

1−BC(φ, ψ), BC(φ, ψ) =
∑
x∈X

√
φ(x)ψ(x),

where BC is called the Bhattacharyya coefficient. We also tested other dis-
tances (like the Euclidean distance and the Earth Mover’s Distance [47]) but
the results obtained with the Bhattacharyya and the χ2 distances provided the
best performances. In most of the experiments, the Bhattacharyya and the χ2
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distances behave equivalently, when different we specify in the text the distance
adopted.

For a set of surface tessellations, the (dis)similarity values are stored in a
distance matrix Dist, where Dist(i, j) = dBha(Di, Dj) is the distance between
the descriptor of the tessellation i and j. The diagonal values of Dist(i, i) are
zero.

4.5 Computational cost

Given a surface tessellation T with nv vertices, we briefly discuss the computa-
tional complexity of the routines involved in the edgeLBP evaluation.

We assume that the tessellation in input is stored in an appropriate data
structure, therefore the cost of computing the relations among the elements
of the tessellation (e.g., vertex-edge, face-vertex, vertex-face) is constant or
O(nv), depending on the relations. Also, the shape properties are precom-
puted: the curvature estimation proposed in [41] has computational complexity
O(nv log nv).

If the tessellation T is with boundary, the creation of the list of the ver-
tices that are admissible for the edgeLBP operator is based on the distances
of the vertices from the boundary. This preprocessing phase costs O(nv log nv)
operations.

For each vertex which is admissible, the computation of the intersection
between a sphere and the edges of the tessellation has complexity O(nv) (in
the worst case), and, therefore, the cost is O(n2v) for the whole surface. It’s
worth noticing that this cost holds if the sphere intersection processes all the
vertices of the tessellation for every vertex. In average, the radius of the sphere
is considerably small and diminishes the average computational complexity to
O(nv log nv). Ring re-sampling has linear complexity with respect to the number
of elements of the rings; in the worst case the number of elements in the rings
of a vertex v can become O(Nr ·nv), where Nr is the number of rings (and it is
constant). Thus, the re-sampling of all the rings costs at most O(n2v) operations
and, in average, the computational complexity is again O(nv log nv).

Finally, the computation of edgeLBP histogram is linear in the number of
samplings of the tessellations that are O(Nr · P · nv); since Nr and P are two
parameters that are constant, the cost is O(nv). The time performance of the
algorithm for real data is provided in Section 8.

5 Experimental environment

This Section lists the datasets and the measures used to evaluate the retrieval
and classification performance of the edgeLBP description.

5.1 Datasets

We adopt two datasets.
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(a) (b)

Figure 7: (a): the 13 models used to originate the first dataset. (b): the knitted
patterns of the SHREC17 contest [1].

• Plastic Dataset : it is composed by 52 triangle meshes derived from the
laser scans of 13 physical models, each one representing a specific geometric
pattern (e.g., lines, circles, squares incised on a surface, see Figure 7a). For
each model, we get two separate surfaces for a total of 26 meshes, which
together form the Original Dataset. Then, for each surface we simulate
erosion and degradation with a Laplacian smoothing filter, for a total of 52
meshes (4 variations for each pattern), which together form the Complete
Dataset. The whole dataset is freely available2.

• SHREC’17 dataset : it corresponds to the recent SHREC’17 benchmark [1]
on the retrieval of relief patterns. It is composed by 720 triangle meshes
derived from knitted objects, grouped into 15 classes (see Figure 7(b)),
each one made of 48 textile patterns. Each class has been created from
15 base surfaces (embedding a single textile pattern into 12 different po-
sitions); then, each surface was modified with four mesh re-samplings.
Again, two datasets can be derived: the first one is related to the com-
plete dataset of 720 models and aims at evaluating the overall robustness
and stability of methods with respect to different mesh representations.
The second one groups the 180 original meshes according to their tex-
tile pattern and it is better suited to analyze the capability of a method
of effectively recognizing a pattern independently of the overall surface
embeddings.

2The dataset is available at: https://github.com/EliaMTH/das-data

16



5.2 Evaluation measures

The evaluation tests have been performed using a number of classical infor-
mation retrieval measures, namely the Nearest Neighbor, First Tier, Second
Tier, Discounted Cumulative Gain, e-measure, Precision-Recall plot, confusion
matrices and tier images.

Nearest Neighbor, First Tier, Second Tier These measures aim at check-
ing the fraction of models in the query’s class also appearing within the top k
retrievals. In detail, for a class with |C| members, k = 1 for the Nearest Neigh-
bor (NN), k = |C| − 1 for the first tier (FT), and k = 2(|C| − 1) for the second
tier (ST). Note that all these values range from 0 to 1.

Discounted cumulative gains The Discounted Cumulative Gain (DCG) is
an enhanced variation of the Cumulative Gain, which is the sum of the graded
relevance values of all results in the list of retrieved objects of a given query.

Precision-Recall and mAP The Precision and Recall are two common mea-
sures for evaluating search strategies. Recall is the ratio of the number of rele-
vant records retrieved to the total number of relevant records in the database,
while precision is the ratio of the number of relevant records retrieved to the size
of the return vector [48]. Precision and recall always range from 0 to 1. Often a
visual interpretation of these quantities is plot as a curve in the reference frame
recall vs. precision [49]: the larger the area below such a curve, the better the
performance under examination. As a compact index of precision vs. recall, we
consider also the mean Average Precision (mAP), which is the portion of area
under a precision-recall curve.

e-measure Since the mostly interesting query results are the first ones re-
trieved, the e-measure e [50] was introduced as a quality measure of the first
models retrieved for every query. The e measure depends on the Precision and
Recall values by the relation:

e =
2

Precision−1 +Recall−1
.

Confusion matrices and Tier images Each classification performance can
be associated with a confusion matrix CM , that is, a square matrix whose
dimension is equal to the number of classes in the dataset. For the row i in
CM , the element CM(i, i) gives the number of items which have been correctly
classified as elements of the class i; similarly, elements CM(i, j), with j 6= i,
count the items which have been misclassified, resulting as elements of the class
j rather than elements of the class i. Thus, the classification matrix CM of an
ideal classification system should be a diagonal matrix, such that the element
CM(i, i) equals the number of items belonging to the class i. Similarly, the tier
image visualizes the matches of the NN, FT and ST. The value of its element
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(i, j) is: black if j is the NN of i, red if j is among the (|C|−1) top matches (FT)
and blue if j is among the 2 · (|C| − 1) top matches (ST). When the models of a
class are grouped along each axis, the optimal tier image clusters the black/red
square pixels on the diagonal.

6 edgeLBP properties and performances

Being defined on the basis of shape-based criteria and a region-growing approach
that visits the surface edges that are closer than R to a vertex, the edgeLBP
is naturally rotation-invariant. Since we are interested in local geometric varia-
tions, the radius of the spheres must be kept quite small. Keeping in mind that
a Riemannian surface can be locally approximated as a Euclidean space [51] (in
our case a disk) the edgeLBP descriptor is robust to different surface bendings.
Moreover, the edgeLBP is able to characterize the surface of generic 3D models
and it is insensitive to object obstructions.

Overall, we evaluated the edgeLBP description over thousands of models.
From that analysis, we selected the examples the most representatives of the
edgeLBP properties. In the reminder of this Section, we discuss the robustness
of the edgeLBP with respect to different mesh re-samplings and decimations,
vertex perturbations with Gaussian noise and the type of faces used in the tessel-
lation (Sections 6.1, 6.2 and 6.3, respectively). We validate our approach on the
plastic dataset and compare its performance against the meshLBP description
in Section 6.4.

6.1 Robustness with respect to different surface samplings

To test the robustness of the edgeLBP description against different mesh sam-
plings we consider four models that represent four types of possible geometric
patterns, see Figure 8. Then, we simplified these models removing vertices
from the mesh according to a minimum geometric approximation error criterion.
From the original mesh we derived a sequence of meshes that best approximates
it with a fixed number of vertices. Meshes are automatically created using the
ReMesh tool [52], with 15K, 10K, 8K, 7K, 6K, 5K vertices. For each model,
one more mesh was manually edited in order to have an un-even sampling with
vertices concentrated in some parts of the surface (see Figure 8, mesh 10K∗).

Figure 9(Top) represents the χ2 distance between the edgeLBP descriptor
of the original mesh (the one with 20k vertices) and its variations. For each
test, the distance values are normalized with respect the maximum value of
the χ2 distance. The x-axis represents the number of vertices of the mesh,
while the y-axis represents the distance from the original model. We repeat the
same analysis for the meshLBP description. We run both methods with two
different parameter settings: twelve samples and seven rings (run1 ) (P = 12
and Nr = 7 in our notation, which corresponds to the standard configuration
of the meshLBP, as released in the Matlab toolbox3) and P = 15 and Nr = 5

3https://it.mathworks.com/matlabcentral/fileexchange/48875-mesh-lbp
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Model 1 Model 2 Model 3 Model 4

20K 15K 10K∗ 5K

Figure 8: First row: Four surface models from the plastic dataset. Second row:
Details on the re-samplings of the model 1; 10K∗ highlights the local effect of
the manual non-uniform sampling.

(run2 ). As the geometric property for these experiments we select the maximum
curvature, k2; the weight function α1 is used for both edgeLBP and meshLBP.
Since the results are qualitatively the same for both runs, Figure 9 reports the
outcome of the run2, only.

Not surprisingly, the edgeLBP descriptor shows a stronger stability towards
the mesh decimation and corruption when compared with the outcome of the
meshLBP description. We think that this effect is mainly due the sensitivity
to the mesh tessellation of the face-based expansion method: Figure 9(Bottom)
shows the ring1 for both the edgeLBP and the meshLBP descriptions on two
vertices of the same mesh. Indeed the sphere-surface intersection is robust to
mesh irregularities and permits the LBP to cope a wide variety of tessellations.

6.2 Robustness with respect to noise

To evaluate how the edgeLBP depends on the data quality, the vertices of the
meshes of the Plastic dataset have been perturbed with geometric noise, by
modifying the vertex coordinates. Since we are interested in geometric patterns
that represent surface reliefs and/or chiseled decorations we must keep a rea-
sonable balance between the intensity of the vertex perturbation and the size
of the pattern. Indeed, the presence of noise can significantly alter the nature
of the pattern and it is recognized as one of the open challenges for 3D pattern
recognition [53]. To this end, we simulate a geometric perturbation of the mesh
modifying the coordinates of the vertices through a random Gaussian perturba-
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meshLBP edgeLBP

meshLBP ring1 examples edgeLBP ring1 examples

Figure 9: Top: graphical plot of the distances from the original model when the
number of samplings diminishes, computed with respect to the meshLBP and
the edgeLBP descriptions. The x-value 10K∗ represents the mesh with 10000
vertices manually edited. Bottom: representation of ring1 in both algorithms.

tion applied at four levels of intensity. The variance of the perturbation ranges
from 0.4% to 1.6% of the maximum diameter of the model. Note that, the
intensity of the vertex perturbation, depending on the model diameter, varies
from model to model.

The top row of Figure 10 shows the increasing intensity of the vertex per-
turbation over a model of the dataset. Overall, Figure 10 highlights that the
edgeLBP is robust with respect to perturbations of the vertex coordinates.

6.3 Robustness with respect to different surface represen-
tations

As a further contribution to the panorama of local feature descriptors, our def-
inition of the edgeLBP is able to deal with polygonal tessellations, not only
triangulations (on the contrary of the meshLBP that is strongly based on the
triangle-mesh structure). Among the experiments we conducted to assess the
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Original 0.4% 0.8% 1.2% 1.6%

NN 1-Tier 2-Tier mAP e DCG

Original models 0.87 0.87 0.99 0.82 0.17 0.81

noise = 0.4% 0.85 0.89 0.99 0.82 0.16 0.81

noise = 0.8% 0.84 0.90 0.99 0.83 0.16 0.81

noise = 0.12% 0.63 0.75 0.97 0.78 0.16 0.76

noise = 0.16% 0.69 0.77 0.93 0.78 0.16 0.76

Figure 10: Top: examples of the noise added to the model of the Complete
Plastic Dataset. Bottom: The evaluation measures of the runs, compared to
the performances on the clean models.

coherence of the edgeLBP description across different types of tessellation, Fig-
ure 11 represents the edgeLBP values on two different tessellations of the same
surface, namely a triangle and quadrangle mesh. Colors are used to represent
the values of the edgeLBP on the mesh vertices; same color corresponds to the
same value of the edgeLBP. As expected, the color distribution on the surfaces
is the same. This means that the edgeLBP on both tessellations assumes the
same values over the vertices.

Besides tessellations, the edgeLBP description can be used to analyze also
voxel grids and point clouds. However, an ad-hoc extension of the LBP to voxel
grids already exists [54] and the use of a sphere-grid intersection is computation-
ally redundant. On the contrary, we think that the edgeLBP description can
successfully deal with point clouds, for instance, adopting a representation based
on the kdtree structure and following the implementation strategy adopted in
the Point Cloud Library (PCL4) for several feature descriptors.

6.4 Performances on the plastic dataset

In this Section, we compare the retrieval and classification performances of the
edgeLBP with the meshLBP, the FPFH [21], the SHOT [22], the Spin Images
(SI) [23] on the complete Plastic dataset. The implementations of the SI and
FPFH descriptors come from the Point Cloud Library, while for the SHOT
description we adopt the authors’ implementation available on GitHub5. Both
these libraries come with default parameters settings and we use those for our
runs.

4http://pointclouds.org/
5https://github.com/fedassa/SHOT
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Triangle mesh Quad mesh

Figure 11: EdgeLBP values using two tessellations of the same sur face. The
values of the edgeLBP on the two tessellations are represented with the same jet
color-map. Blue vertices close to surface boundary represent the non-admissible
ones.

Table 1: Retrieval and classification performances over the plastic dataset. B.
abbreviates the term Bhattacharyya.

Method NN 1-Tier 2-Tier mAP e DCG

meshLBP (B. distance) 0.77 0.74 0.86 0.73 0.17 0.71

edgeLBP - Run1 (B. distance) 0.87 0.82 0.99 0.82 0.17 0.80

edgeLBP - Run2 (B. distance) 0.87 0.87 0.99 0.82 0.17 0.81

Spin Images (B. distance) 0.58 0.55 0.70 0.67 0.16 0.65

SHOT (χ2 distance) 0.23 0.21 0.23 0.34 0.09 0.31

FPFH (EMD distance) 0.23 0.23 0.32 0.43 0.1 0.39

For the edgeLBP and meshLBP, we used k2 as h function and the weight
function α1. We adopt the two configurations Run1 and Run2 of the the pa-
rameters described in Section 6.1; finally, for the edgeLBP Rmax = 2.5mm.

Table 1 reports the retrieval and classification performances of the runs con-
sidered. For each run, the left column lists the best feature vector distance.
Figure 12 presents the confusion matrices of each run listed in Table 1.

As expected, the edgeLBP and the meshLBP outperform the other local
feature descriptions that, as discussed in Section 2, are better tailored for shape
matching and registration rather than for the comparison of the pattern reliefs.
In particular, the SHOT and the FPFH descriptions often confuse incised or
relief features like circles, straight lines and squares, probably because the overall
distribution of the feature points is compatible but there is not a spatial encoding
of their relative position. Indeed, SHOT and FPFH detect sets of feature points
on each model and map the models on the basis of their points correspondence.
On the other hand, Spin Images are designed for partial matching. While these
two strategies are well suited for partial matching and registration, they results
limited for the comparison of repeated surface reliefs that are repeated on the
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meshLBP edgeLBP − Run1 edgeLBP − Run2

SpinImages SHOT FPFH

Figure 12: Confusion matrices of the runs over the plastic dataset.

CMC-2 KLBO-FV-IWKS LBPI edgeLBP - run2

Figure 13: Best confusion matrices in the SHREC17 retrieval pattern contest
(Original Dataset) in comparison to that of the edgeLBP.

surfaces a different number of times.

7 SHREC’17 pattern retrieval contest dataset

To compare the edgeLBP with the other participants to the SHREC’17 pattern
retrieval benchmark we use the two configuration parameters (run1 and run2 )
proposed in Section 6.1 and 6.4. Rmax is set 10mm for both runs and is obtained
by measuring the size of the patterns of three, randomly selected, surfaces.

Table 2 reports the edgeLBP performances on the Original and Complete
datasets and the best runs obtained by the SHREC’17 participants, who are
indicated with the same label used in the SHREC’17 report [1]. In the case
of the Original Dataset, our method provides the best results in all the scores,
showing a good capability of discriminating the geometric patterns. In the case
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Table 2: Retrieval Performances obtained by the edgeLBP compared with the
scores of the best performing methods in [1] on the SHREC17 datasets. The
best runs are in bold.

Original Dataset
Method NN 1-Tier 2-Tier mAP e DCG
LBPI 0.339 0.207 0.353 0.250 0.237 0.250

GI HOG 0.089 0.069 0.130 0.118 0.097 0.373
IDAH-2 0.339 0.182 0.271 0.215 0.181 0.503
CMC-1 0.600 0.342 0.461 0.371 0.274 0.641
CMC-2 0.633 0.363 0.494 0.390 0.293 0.662
CMC-3 0.533 0.281 0.394 0.308 0.242 0.596

SQFD-HKS 0.106 0.066 0.137 0.123 0.102 0.376
KLBO-FV-IWKS 0.522 0.295 0.412 0.307 0.247 0.603
KLBO-SV-IWKS 0.489 0.249 0.375 0.273 0.235 0.570
edgeLBP - run1 0.922 0.683 0.825 0.716 0.580 0.863
edgeLBP - run2 0.911 0.689 0.844 0.725 0.590 0.865

Complete Dataset
Method NN 1-Tier 2-Tier mAP e DCG
LBPI 0.828 0.248 0.400 0.283 0.232 0.697

GI HOG 0.686 0.107 0.176 0.131 0.102 0.561
IDAH-2 0.306 0.141 0.244 0.163 0.127 0.559
CMC-1 0.718 0.258 0.372 0.260 0.247 0.673
CMC-2 0.763 0.272 0.389 0.271 0.261 0.686
CMC-3 0.647 0.219 0.323 0.218 0.208 0.639

SQFD-HKS 0.536 0.117 0.192 0.139 0.110 0.558
KLBO-FV-IWKS 0.986 0.333 0.449 0.339 0.332 0.759
KLBO-SV-IWKS 0.978 0.287 0.409 0.296 0.283 0.732
edgeLBP - run1 0.979 0.619 0.763 0.651 0.413 0.894
edgeLBP - run2 0.986 0.634 0.780 0.669 0.421 0.902

of the complete dataset, our results significantly overcome the other participants
in each measure, only the NN measure is equivalent to the (KLBO-*) runs. As
stated in the SHREC report [1], the NN value of methods that analyze the global
geometry (such as the KLBO-* run) is biased by the presence of three variations
of each mesh in the original dataset. In this case, each mesh sampling keeps the
same overall embedding but degrades the mesh connectivity and approximates
the original reliefs. For this reason, global methods are made easy to find as
the Nearest Neighbor one of the mesh variations; however, they rapidly degrade
when the query range increases, like reflected by the FT and ST scores.

Figure 13 compares the confusion matrix derived from the best edgeLBP run
(run2 ) against the three best runs in [1]. Similarly, Figure 14(top) depicts the
tier images both on the Original and the Complete datasets of the edgeLBP,
run2. In the case of the complete dataset, it is worth noticing that adding
three variations of the original patches does not alter the overall mask of the
tier image, highlighting the coherence of the retrieval performance among the
original dataset and its variations.

Finally, Figure 14 (bottom) plots the Precision-Recall curves in both the
dataset configurations and compares the best edgeLBP performance (run2 )
with the best runs in [1]. The overall performance of the edgeLBP success-
fully deals with the SHREC’17 dataset and generally improves with respect to
the other participants of more than 20%; in our opinion this reveals that the
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Original Dataset Complete Dataset

Figure 14: Tier image and Precision-Recall plots of the original dataset (left)
and complete dataset (right), using the edgeLBP - run2. In the tier images,
rows represent the queries, the NN is marked in black, the FT in red and the
ST in blue.

method combines the efficacy of a local pattern characterization with a mesh
independent and embedding invariant description.

7.1 Analysis of the edgeLBP parameters

We now discuss the performance of the edgeLBP description when different
parameter settings are chosen. For the simplicity of its storage, all these exper-
iments are performed using the weight function α1.

Besides the k2 function adopted in the experiments exhibited in the previous
Sections, we tested all the geometric functions described in Section 3.2. In these
experiments we fixed P = 12, Nr = 7 and R = 10mm. Table 3(left) compares
the retrieval performance of the edgeLBP (in terms NN, FT and ST) on the
Original dataset of the SHREC’17 benchmark when the geometric functions
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Table 3: Top: Retrieval performance of the edgeLBP for different geometric
functions. Bottom: Retrieval performance when the edgeLBP parameter set-
tings vary. In the runs (*) and (**) the models are simplified at 10K and 11K
vertices, respectively. All tests are performed on the Original Dataset of the
SHREC’17 benchmark. The number between <> brackets is the size of the
feature vector.

Curvature (h) NN FT ST
k1 0.88 0.65 0.80
k2 0.92 0.68 0.84
K 0.87 0.61 0.78
H 0.87 0.61 0.78
SI 0.66 0.44 0.59

Curvedness 0.71 0.48 0.63

edgeLBP Parameters NN FT ST
Nr = 7, P = 12, Rmax = 10mm, < 84 > (*) 0.85 0.62 0.78
N=7, P = 12, Rmax = 14mm, < 84 > (**) 0.88 0.66 0.82
Nr = 5, P = 12, Rmax = 5mm, < 60 > 0.83 0.59 0.72
Nr = 5, P = 8, Rmax = 10mm, < 40 > 0.86 0.65 0.80
Nr = 5, P = 18, Rmax = 10mm, < 90 > 0.89 0.68 0.84
Nr = 5, P = 15, Rmax = 10mm, < 75 > 0.91 0.69 0.84

vary. From our experiments we noticed that k2 performs slightly better than the
other curvature-based properties. The fact that many curvature-based functions
gave such high results is another confirmation of the descriptive power of the
edgeLBP approach.

Regarding the other edgeLBP parameters we tested Nr ranging from 3 to 11,
P was sampled between 8 and 20 and Rmax was varied from 5mm to 14mm. As
a summary of these comparison we report in Table 3(right) some NN, FT and
ST performances. Notice that in this test we are considering also the number
of the vertices nv of the tessellation as a parameter. In this case, we adopt an
adaptive re-sampling to remove with higher priority the vertices that introduce
a smaller approximation error of the shape. The smallest nv, the roughest the
approximation of the surface; when nv becomes very low (generally less than
10K vertices), the patterns on the surfaces considerably degrade and the number
of the vertices does not kept small, geometric variations. In the other tests, we
re-sampled all the meshes to 15k vertexes. At the end of our analysis, the best
edgeLBP parameter settings for the SHREC’17 benchmark are h = k2, P = 15,
Nr = 5, Rmax = 10mm (the run2 in the previous Sections).

8 Computational performances

A prototype of the edgeLBP algorithm is implemented in MATLAB. Tests were
computed on an Intel Core i7 processor (at 4.2 GHz). The main contribution to
computational time comes from the number of vertices of the tessellation. The
radial and spatial resolution marginally impact the final computational time,
as far as the maximum radius is kept constant. For a surface of roughly 4200
mm2 represented by a triangle mesh with nv = 20K vertices, the computation

26



time of the edgeLBP operator with settings Rmax = 2.5mm, P = 12, Nr = 5)
is approximately 2 minutes. The computational time drops significantly if the
vertices are reduced: the edgeLBP computation on the same surface with nv =
10K samples ends approximately in 40 seconds and 25 seconds when nv ≤ 8K.
Overall, the edgeLBP computation on the whole SHREC’17 benchmark using
the parameter settings presented in Section 7.1 takes almost 18 hours.

The computational time of comparing two edgeLBP descriptors is in the
order of 0.1 · 10−5 seconds; for the SHREC’17 dataset (720 models) the compu-
tation of the dissimilarity matrix takes 2.5 seconds.

9 Discussions and conclusive remarks

We have extended the LBP concept to surfaces and defined a novel description,
whose core strength is its independence from the mesh tessellation. The method
provides an effective coding of the local shape properties and the experimental
results show its efficacy in the detection of patterns on surfaces. The edgeLBP
description is invariant to roto-translations. With respect to the previous LBP
extensions to depth surfaces, our description does not require any model nor-
malization, registration or projection with depth maps. Experiments show that
the edgeLBP is independent of self-occlusions and it is able to handle mesh
data with or without boundary. If compared with the meshLBP, the edgeLBP
is robust to mesh simplification, does not require any uniform mesh re-sampling
nor a specific type of mesh faces (triangles).

Having the edgeLBP independent of the physical size of the patterns de-
pends on the application. On one hand, scale invariance is fundamental if the
task is to retrieve all the diamond-like patterns in a dataset. In our method,
scale and affinity invariance are obtained selecting the Rmax value as a fraction
of the square-root of the surface area. On the other hand, the size of the geo-
metric pattern can be an important aspect like in the datasets considered in our
experiments because the objective is to retrieve patterns with the same physical
appearance: for this reason, on these experiments, we selected a unique Rmax
value for each dataset. At the light of this reasoning, we briefly discuss the
performance of the edgeLBP with respect to the type of patterns considered in
this patters (representative pictures of the class elements are shown in Figure
7).

Plastic dataset The elements of the Class 6 are characterized by elongated,
incised ovals; not surprisingly they are somehow confused with incised squares
and diamond-like incisions (Classes 3 and 5) that present a similar distribution
on the surface and physical, comparable size. Again, small patterns are well
characterized (Classes 1, 8, 11, 13). An interesting relation is the one between
the Classes 1 and 8: the Class 8 is the closest to the Class 1 (because of the small
size of circles and diamonds) but the classes the closest to the Class 8 are the
Classes 1 and 5 (the Class 5 is another pattern with diamonds). Moreover, we
notice that an important factor of the method is its sensitiveness to the global
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distribution of a pattern on the surface as highlighted by the similarity between
the Classes 3 and 7. However, the use of a single value for the Rmax parameter
explains the confusion between elements of the Classes 10 and 11, because the
strips in the Class 11 are the same of those in the Class 10 with the addition of
small incisions on the top.

SHREC’17 benchmark Fragments with a pattern composed by class-specific
features (with respect to those present in this dataset) are the easiest to recog-
nize for the edgeLBP. Also, classes that are visually close (like the Classes 8 and
10) are correctly classified and judged as similar. The Class 4 was misclassified
by all the methods that participated at the SHREC’17 contest. On the con-
trary, the edgeLBP is able to correctly classify (using NN) 47 patches over the
48. The tier image reveals that the closest classes to the Class 4 are the Classes
8 and 13 that are defined by features having comparable geometric size. The
Class 6 is another challenging class: its elements were significantly corrupted
by the mesh re-sampling operations and the bumps of this pattern are present
with approximately the same geometric size in other classes. Nevertheless, the
edgeLBP correctly classifies 47 patches over 48. Among all the elements of the
dataset, the patterns of the Classes 1, 3 and 11 form a subset made of knitted
fabrics like twists, diamonds, and so on. Despite the relevance of the relief in
these decorative elements, their pattern elements are less repeated on the sur-
face patch, for instance, the pattern element in the representative of the Class 1
in Figure 7(c) is repeated 2.5 times. Over a dataset made of surfaces having ap-
proximately the same dimension (10 x 10 cm), this fact influences the edgeLBP
performance because it has the alternate count of the feature occurrences at his
core.

Future plans Further extensions are planned and possible. For instance, it
is possible to extend this approach to colorimetric patterns, using one color
channel as the h function. Moreover, we are currently working on how to store
multidimensional properties in the edgeLBP operator. This is the case of the
color spaces that are treated by the edgeLBP representation one channel at a
time.

In addition, while the sphere-based intersection determines rings that cap-
ture isotropic shape properties, we plan to follow the LBP approaches proposed
in the literature of depth images to extend our rings to anisotropic ones, such
as ellipses and other curve variations.

Finally, we think that this contribution paves the road towards the automatic
recognition of multiple patterns on surfaces. Indeed, current experiments are
performed on surfaces fully characterized by a single pattern at a time; next
plans include the combination of the shape description step with segmentation
techniques and the aggregation of parts made of vertices with similar local
descriptions, for instance following an approach similar to [31].
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