
Discriminatively Boosted Image Clustering

with Fully Convolutional Auto-Encoders

Fengfu Lia, Hong Qiaob,c, Bo Zhanga, Xuanyang Xib

aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences
Beijing 100190, China

and
School of Mathematical Sciences, University of Academy of Sciences

Beijing 100049, China
bInstitute of Automation, Chinese Academy of Sciences, Beijing 100190, China

and
University of Academy of Sciences, Beijing 100049, China

cCAS Centre for Excellence in Brain Science and Intelligence Technology
Shanghai 200031, China

Abstract

Traditional image clustering methods take a two-step approach, feature learn-
ing and clustering, sequentially. However, recent research results demon-
strated that combining the separated phases in a unified framework and
training them jointly can achieve a better performance. In this paper, we
first introduce fully convolutional auto-encoders for image feature learning
and then propose a unified clustering framework to learn image representa-
tions and cluster centers jointly based on a fully convolutional auto-encoder
and soft k-means scores. At initial stages of the learning procedure, the rep-
resentations extracted from the auto-encoder may not be very discriminative
for latter clustering. We address this issue by adopting a boosted discrimina-
tive distribution, where high score assignments are highlighted and low score
ones are de-emphasized. With the gradually boosted discrimination, clus-
tering assignment scores are discriminated and cluster purities are enlarged.
Experiments on several vision benchmark datasets show that our methods
can achieve a state-of-the-art performance.

Keywords: image clustering, fully convolutional auto-encoder,
representation learning, discriminatively boosted clustering

Preprint submitted to Elsevier March 24, 2017

ar
X

iv
:1

70
3.

07
98

0v
1

 [
cs

.C
V

]
 2

3
M

ar
 2

01
7

1. Introduction

Clustering methods are very important techniques for exploratory data
analysis with wide applications ranging from data mining [1, 2], dimension
reduction [3], segmentation [4] and so on. Their aim is to partition data
points into clusters so that data in the same cluster are similar to each other
while data in different clusters are dissimilar. Approaches to achieve this
aim include partitional methods such as k-means and k-medoids, hierarchical
methods like agglomerative clustering and divisive clustering, methods based
on density estimation such as DBSCAN [5], and recent methods based on
finding density peaks such as CFSFDP [6] and LDPS [7].

Image clustering [8] is a special case of clustering analysis that seeks to
find compact, object-level models from many unlabeled images. Its appli-
cations include automatic visual concept discovery [9], content-based image
retrieval and image annotation. However, image clustering is a hard task
mainly owning to the following two reasons: 1) images often are of high
dimensionality, which will significantly affect the performance of clustering
methods such as k-means [10], and 2) objects in images usually have two-
dimensional or three-dimensional local structures which should not be ig-
nored when exploring the local structure information of the images.

To address these issues, many representation learning methods have been
proposed for image feature extractions as a preprocessing step. Traditionally,
various hand-crafted features such as SIFT [11], HOG [12], NMF [13], and
(geometric) CW-SSIM similarity [14, 15] have been used to encode the vi-
sual information. Recently, many approaches have been proposed to combine
clustering methods with deep neural networks (DNN), which have shown a re-
markable performance improvement over hand-crafted features [16]. Roughly
speaking, these methods can be categorized into two groups: 1) sequential
methods that apply clustering on the learned DNN representations, and 2)
unified approaches that jointly optimize the deep representation learning and
clustering objectives.

In the first group, a kind of deep (convolutional) neural networks, such
as deep belief network (DBN) [17] and stacked auto-encoders [18], is first
trained in an unsupervised manner to approximate the non-linear feature
embedding from the raw image space to the embedded feature space (usually
being low-dimensional). And then, either k-means or spectral clustering
or agglomerative clustering can be applied to partition the feature space.
However, since the feature learning and clustering are separated from each

2

other, the learned DNN features may not be reliable for clustering.
There are a few recent methods in the second group which take the separa-

tion issues into consideration. In [19], the authors proposed deep embedded
clustering that simultaneously learns feature representations with stacked
auto-encoders and cluster assignments with soft k-means by minimizing a
joint loss function. In [20], joint unsupervised learning was proposed to learn
deep convolutional representations and agglomerative clustering jointly us-
ing a recurrent framework. In [21], the authors proposed an infinite ensemble
clustering framework that integrates deep representation learning and ensem-
ble clustering. The key insight behind these approaches is that good repre-
sentations are beneficial for clustering and conversely clustering results can
provide supervisory signals for representation learning. Thus, two factors,
designing a proper representation learning model and designing a suitable
unified learning objective will greatly affect the performance of these meth-
ods.

In this paper, we follow recent advances to propose a unified clustering
method named Discriminatively Boosted Clustering (DBC) for image anal-
ysis based on fully convolutional auto-encoders (FCAE). See Fig. 1 for a
glance of the overall framework. We first introduce a fully convolutional
encoder-decoder network for fast and coarse image feature extraction. We
then discard the decoder part and add a soft k-means model on top of the
encoder to make a unified clustering model. The model is jointly trained
with gradually boosted discrimination where high score assignments are high-
lighted and low score ones are de-emphasized. The our main contributions
are summarized as follows:

• We propose a fully convolutional auto-encoder (FCAE) for image fea-
ture learning. The FCAE is composed of convolution-type layers (con-
volution and de-convolution layers) and pool-type layers (pooling and
un-pooling layers). By adding batch normalization (BN) layers to each
of the convolution-type layers, we can train the FCAE in an end-to-
end way. This avoids the tedious and time-consuming layer-wise pre-
training stage adopted in the traditional stacked (convolutional) auto-
encoders. To the best of our knowledge, this is the first attempt to
learn a deep auto-encoder in an end-to-end manner.

• We propose a discriminatively boosted clustering (DBC) framework
based on the learned FCAE and an additional soft k-means model.

3

We train the DBC model in a self-paced learning procedure, where
deep representations of raw images and cluster assignments are jointly
learned. This overcomes the separation issue of the traditional cluster-
ing methods that use features directly learned from auto-encoders.

• We show that the FCAE can learn better features for clustering than
raw images on several image datasets include MNIST, USPS, COIL-20
and COIL-100. Besides, with discriminatively boosted learning, the
FCAE based DBC can outperform several state-of-the-art analogous
methods in terms of k-means and deep auto-encoder based clustering.

The remaining part of this paper is organized as follows. Some related
work including stacked (convolutional) auto-encoders, deconvolutional neu-
ral networks, and joint feature learning and clustering are briefly reviewed
in Section 2. Detailed descriptions of the proposed FCAE and DBC are pre-
sented in Section 3. Experimental results on several real datasets are given
in Section 4 to validate the proposed methods. Conclusions and future works
are discussed in Section 5.

2. Related work

Stacked auto-encoders [22, 23, 24, 17, 25, 26] have been studied in the
past years for unsupervised deep feature extraction and nonlinear dimension
reduction. Their extensions for dealing with images are convolutional stacked
auto-encoders [27, 28]. Most of these methods contain a two-stage training
procedure [26]: one is layer-wise pre-training and the other is overall fine-
tuning. One of the significant drawbacks of this learning procedure is that
the layer-wise pre-training is time-consuming and tedious, especially when
the base layer is a Restricted Boltzmann Machine (RBM) rather than a
traditional auto-encoder or when the overall network is very deep.

Recently, there is an attempt to discard the layer-wise pre-training pro-
cedure and train a deep auto-encoder type network in an end-to-end way. In
[29], a deep deconvolution network is learned for image segmentation. The
input of the architecture is an image and the output is a segmentation mask.
The network achieves the state-of-the-art performance compared with anal-
ogous methods thanks to three factors: 1) introducing a deconvolution layer
and a unpooling layer [30, 31, 32] to recover the original image size of the
segmentation mask, 2) applying the batch normalization [33] to each con-
volution layer and each deconvolution layer to reduce the internal covariate

4

shifts, which not only makes an end-to-end training procedure possible but
also speeds up the process, and 3) adopting a pre-trained encoder on large-
scale datasets such as VGG-16 model [34]. The success of the architecture
motivates us that it is possible to design an end-to-end training procedure
for fully convolutional auto-encoders.

Clustering has also been studied in the past years based on independent
features extracted from auto-encoders (see, e.g. [10, 18, 35, 36]). Recently,
there are attempts to combine the auto-encoders and clustering in a unified
framework [19, 40]. In [19], the authors proposed Deep Embedded Cluster-
ing (DEC) that learns deep representations and cluster assignments jointly.
DEC uses a deep stacked auto-encoder to initialize the feature extraction
model and a Kullback-Leibler divergence loss to fine-tune the unified model.
In [40], the authors proposed Deep Clustering Network (DCN), a joint di-
mensional reduction and k-means clustering framework. The dimensional
reduction model is based on deep neural networks. Although these methods
have achieved some success, they are not suitable for dealing with high-
dimensional images due to the use of stacked auto-encoders rather than con-
volutional ones. This motivates us to design a unified clustering framework
based on convolutional auto-encoders.

3. Proposed methods

In this section, we propose a unified image clustering framework with
fully convolutional auto-encoders and a soft k-means clustering model (see
Fig. 1). The framework contains two parts: part I is a fully convolutional
auto-encoder (FCAE) for fast and coarse image feature extraction, and part
II is a discriminatively boosted clustering (DBC) method which is composed
of a fully convolutional encoder and a soft k-means categorizer. The DBC
takes an image as input and exports soft assignments as output. It can
be jointly trained with a discriminatively boosted distribution assumption,
which makes the learned deep representations more suitable for the top cat-
egorizer. Our idea is very similar to self-paces learning [9], where easiest
instances are first focused and more complex objects are expanded progres-
sively. In the following subsections, we will explain the detailed implemen-
tation of the idea.

5

Encoder Decoder

(0.2, 0.5, 0.3)T

boosting

conv1

pool1

conv2
pool2

feature d_pool2

d_pool2

d_conv2

d_conv1
input output

28

24
6

16
16 120

16
16

6

6 28

soft 𝑘-means scores

(0.1, 0.7, 0.2)T

28

24

6

12

12

8

8

4

4

1

1

4

4

8

8

12

12

24

24 28

conv1

pool1

conv2
pool2 feature

input

28

24
6

16
16 120

28

24

6

12

12

8

8

4

4

1

1

discriminative scores

𝑠𝑖𝑗

𝑟𝑖𝑗

loss = 𝐾𝐿(𝑟𝑖𝑗||𝑠𝑖𝑗)

I. FCAE

II. DBC

pool2_mask

pool1_mask

Figure 1: A unified image clustering framework. Part I is a fully convolutional auto-
encoder (FCAE), and Part II is a discriminatively boosted clustering (DBC) framework
based on the FCAE.

3.1. Fully convolutional auto-encoder for image feature extraction

Traditional deep convolutional auto-encoders adopt a greedy layer-wise
training procedure for feature transformations. This could be tedious and
time-consuming when dealing with very deep neural networks. To address
this issue, we propose a fully convolutional auto-encoder architecture which
can be trained in an end-to-end manner. Part I of Fig. 1 shows an example
of FCAE on the MNIST dataset. It has the following features:

Fully Convolutional As pointed out in [27], the max-pooling layers are
very crucial for learning biologically plausible features in the convo-
lutional architectures. Thus, we adopt convolution layers along with
max-pooling layers to make a fully convolutional encoder (FCE). Since
the down-sampling operations in the FCE reduce the size of the output
feature maps, we use an unpooling layer introduced in [29] to recover
the feature maps. As a result, the unpooling layers along with de-
convolution layers (see [29]) are adopted to make a fully convolutional
decoder (FCD).

Symmetric The overall architecture is symmetric around the feature layer.
In practice, it is suggested to design layers of an odd number. Other-
wise, it will be ambiguous to define the feature layer. Besides, fully

6

connected layers (dense layers) should be avoided in the architecture
since they destroy the local structure of the feature layer.

Normalized The depth of the whole network grows in log-magnitude as
the input image size increases. This could make the network very deep
if the original image has a very large width or height. To overcome
this problem, we adopt the batch normalization (BN) [33] strategy
for reducing the internal covariate shift and speeding up the training.
The BN operation is performed after each convolutional layer and each
deconvolutional layer except for the last output layer. As pointed out in
[29], BN is critical to optimize the fully convolutional neural networks.

FCAE utilizes the two-dimensional local structure of the input images and
reduces the redundancy in parameters compared with stacked auto-encoders
(SAEs). Besides, FCAE differs from conventional SAEs as its weights are
shared among all locations within each feature map and thus preserves the
spatial locality.

3.2. Discriminatively boosted clustering

Once FCAE has been trained, we can extract features with the encoder
part to serve as the input of a categorizer. This strategy is used in many
clustering methods based on auto-encoders, such as GraphEncoder [18], deep
embedding networks [35], and auto-encoder based clustering [36]. These
approaches treat the auto-encoder as a preprocessing step which is separately
designed from the latter clustering step. However, the representations learned
in this way could be amphibolous for clustering, and the clusters may be
unclear (see the initial stage in Fig. 2)).

To address this issue, we propose a self-paced approach to make feature
learning and clustering in a unified framework (see Part II in Fig. 1). We
throw away the decoder of the FACE and add a soft k-means model on top of
the feature layer. To train the unified model, we trust easier samples first and
then gradually utilize new samples with the increasing complexity. Here, an
easier sample (see the regions labelled 2, 3 and 4 in Fig. 2) is much certain
to belong to a specific cluster, and a harder sample (see the region 1 in Fig.
2) is very likely to be categorized to multiple clusters. Fig. 2 describes the
difference between these samples at a different learning stage of DBC.

There are three challenging questions in the learning problem of DBC
which will be answered in the following subsections:

7

Figure 2: Learning procedure of DBC.

1. How to choose a proper criterion to determine the easiness or hardness
of a sample?

2. How to transform harder samples into easier ones?

3. How to learn from easier samples?

3.2.1. Easiness measurement with the soft k-means scores

We follow DEC [19] to adopt the t-distribution-based soft assignment to
measure the easiness of a sample. The t-distribution is investigated in [37] to
deal with the crowding problem of low-dimensional data distributions. Under
the t-distribution kernel, the soft score (or similarity) between the feature zi
(i ∈ 1, 2, . . . ,m) and the cluster center µj (j ∈ 1, 2, . . . , k) is

sij ∝
(
1 +
||zi − µj||2

v

)− v+1
2 (1)

s.t.
k∑
j=1

sij = 1

Here, v is the degree of freedom of the t-distribution and set to be 1 in
practice. The most important reason for choosing the t-distribution kernel
is that it has a longer tail than the famous heat kernel (or the Gaussian-
distribution kernel). Thus, we do not need to pay much attention to the
parameter estimation (see [37]), which is a hard task in unsupervised learning.

3.2.2. Boosting easiness with discriminative target distribution

We transform the harder examples to the easier ones by boosting the
higher score assignments and, meanwhile, bring down those with lower scores.
This can be achieved by constructing an underlying target distribution rij

8

from sij as follows:

rij ∝ sαij, α > 1 (2)

s.t.
k∑
j=1

rij = 1

Suppose we can ideally learn from the soft scores (denoted as S) to the
assumptive distribution (denoted as R) each time. Then we can generate a
learning chain as follows:

S(0) → R(0) = S(1) → R(1) = S(2) → · · · .

The following two properties can be observed from the chain:
Property 1 If s

(0)
ij = s

(0)
ij′ for any j and j′, then s

(t)
ij ≡ 1/k for all j and

all time step t.
Proof Under the condition, and by (2) we can deduce that r

(0)
ij ≡ r

(0)
ij′ . By

the chain this is equivalent to the fact that s
(1)
ij ≡ s

(1)
ij′ . Thus, the conclusion

s
(t)
ij ≡ s

(t)
ij′ follows recursively for all t.

Property 2 If there exists an l such that s
(0)
il > max

j 6=l
s
(0)
ij , then

limit
t→∞

s
(t)
ij =

{
1 if j = l

0 if j 6= l

Proof By (2) we have

s
(t)
ij

s
(t)
il

=
[s(t−1)ij

s
(t−1)
il

]α
=
[s(t−2)ij

s
(t−2)
il

]α2

= · · · =
[s(0)ij
s
(0)
il

]αt

.

By the assumption s
(0)
il > max

j 6=l
s
(0)
ij , it is seen that s

(0)
ij /s

(0)
il < 1 for any j 6= l.

On the other hand, since α > 1, we have limit
t→∞

αt =∞. Thus,

limit
t→∞

s
(t)
ij

s
(t)
il

= limit
αt→∞

[s(0)ij
s
(0)
il

]αt

= 0, ∀j 6= l.

Since s
(t)
il is finite, we have limit

t→∞
s
(t)
ij = 0, ∀j 6= l. Finally, with the constrains∑k

j=1 s
(t)
ij = 1, we obtain

limit
t→∞

s
(t)
il = 1−

∑
j 6=l

limit
t→∞

s
(t)
ij = 1.

9

Property 1 tells us that the hardest sample (which has the equal prob-
ability to be assigned to different clusters) would always be the hardest
one. However, in practical applications, there can hardly exist such exam-
ples. Property 2 shows that the initial non-discriminative samples could
be boosted gradually to be definitely discriminative. As a result, we get the
desired features for k-means clustering.

Note that the boosting factor α controls the speed of the learning process.
A larger α can make the learning process more quickly than smaller ones.
However, it may boost some falsely categorized samples too quickly at initial
stages and thus makes their features irrecoverable at later stages.

Besides, it can be helpful to balance the data distribution at different
learning stages. In [19], the authors proposed to normalize the boosted
assignments to prevent large clusters from distorting the hidden feature
space. This problem can be overcome by dividing a normalization factor
nj =

∑m
i=1 rij for each of the rij.

3.2.3. Learning with the Kullback-Leibler divergence loss

In the last subsection, it was assumed that we could learn from sij to
the boosted target distribution rij. This aim can be achieved with a joint
Kullback-Leibler (KL) divergence loss, that is,

(θ∗, µ∗) = arg min
θ, µ

L = KL(R||S) =
m∑
i=1

k∑
j=1

rij log
rij
sij
. (3)

Fig. 3 gives an example of the joint loss when k = 2, where Lij = rij log(rij/sij)
is the loss generated by the sample xi with respect to the jth cluster (j = 1
or 2). Regions marked in Fig. 3 roughly correspond to the regions marked
in Fig. 2.

Intuitively, the loss has the following main features:

• For an ambiguous (or hard) sample (i.e., sij ≈ sil,∀j, l), its loss Li =∑k
j=1 rij log(rij/sij) ≈ 0 according to Property 1. Therefore, it will

not be seriously treated in the learning process. (Region 1)

• For a good categorized sample (i.e., there exists an l such that 1 �
sil > maxj 6=l sij), its loss will be much greater than zero, and thus it
will be treated more seriously. (Regions 2 and 3)

10

Figure 3: KL divergence loss with respect to the soft scores assigned to the first cluster.
Here we assume that there are 2 clusters, so 0.5 is a random guess probability.

• For a definitely well categorized sample (i.e., there exists an l such that
1 ≈ sil � maxj 6=l sij), its loss will be near zero. This means that its
features do not need to be changed much more. (Region 4)

By (1)-(3), the gradients of the KL divergence loss w.r.t. zi and µj can
be deduced as follows:

∂L

∂zi
=

1 + v

v

k∑
j=1

(rij − sij)
zi − µj

1 + ||zi − µj||2/v
(4)

and

∂L

∂µj
=

1 + v

v

m∑
i=1

(rij − sij)
µj − zi

1 + ||µj − zi||2/v
(5)

The derivation of (4) and (5) can be found in the appendix.

3.2.4. Training algorithm

In this section, we summarize the overall training procedure of the pro-
posed method in Algorithm 1 and Algorithm 2. They implement the frame-
work showed in Fig. 1. Here T is the maximum learning epochs, B is the
maximum updating iterations in each epoch and mb is the mini-batch size.
The encoder part of FCAE is f : x → z, which is parameterized by θe and
the decoder part of FCAE is g: z → x̂, which is parameterized by θd.

11

Algorithm 1 Discriminatively Boosted Clustering (DBC)

Require: X, T , B, mb, α, k
Ensure: θ and µ

//Stage I: Train a FCAE and clustering with its features
1: Train a deep fully convolutional auto-encoder

xi
θe−→ zi(features)

θd−→ x̂i (M1)

with the Euclidian loss

(θ∗e , θ
∗
d) = arg min

θe, θd

m∑
i=1

||xi − x̂i||22 =
m∑
i=1

||xi − gθd(fθe(xi))||22

by using the traditional error back-propagation algorithm.
2: Extract features: Z ← fθ∗e (X)
3: Clustering with the features: µz ← k-means centers

4. Experiments

In this section, we present experimental results on several real datasets
to evaluate the proposed methods by comparing with several state-of-the-art
methods. To this end, we first introduce several evaluation benchmarks and
then present visualization results of the inner features, the learned FCAE
weights, the frequency hist of soft assignments during the learning process
and the features embedded in a low-dimensional space. We will also give
some ablation studies with respect to the boosting factor α, the normalization
factor nj and the FCAE initializations.

4.1. Evaluation benchmarks

Datasets We evaluate the proposed FCAE and DBC methods on two
hand-written digit image datasets (MNIST 1 and USPS 2) and two multi-view
object image datasets (COIL-20 3 and COIL-100 4). The size of the datasets,

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.nyu.edu/ roweis/data.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

12

Algorithm 2 DBC (Continued)

//Stage II: Jointly learn the FCE and cluster centers
4: Construct a unified clustering model with encoder parameters θ and clus-

ter centers µ

xi
θ−→ zi

µj−→ sij (M2)

5: Initialization: θ ← θ∗e , µ← µz
6: for t = 1 to T do
7: Forward propagate (M2) and update the soft assignments

sij ←
(1 + ||zi − µj||2)−1∑k
j=1(1 + ||zi − µj||2)−1

, where zi = fθ(xi).

8: Update the target distribution

rij ←
sαij/nj∑k
j=1 s

α
ij/nj

, where nj =
m∑
i=1

sαij.

9: for b = 1 to B do
10: Forward propagate (M2) with a mini-batch of mb samples.
11: Backward propagate (M2) from (4) and (5) to get ∂L/∂θ and

∂L/∂µ.
12: Update θ and µ with the gradients.
13: end for
14: Stop if hard assignments remain unchanged.
15: end for

the number of categories, the image sizes and the number of channels are
summarized in Table 1.

Table 1: Datasets used in our experiments.

Dataset #Samples #Categories Image Size #Channels

MNIST 70000 10 28×28 1
USPS 11000 10 16×16 1

COIL-20 1440 20 128×128 1
COIL-100 7200 100 128×128 3

13

Evaluation metrics Two standard metrics are used to evaluate the ex-
periment results explained as follows.

• Accuracy (ACC) [19]. Given the ground truth labels {ci|1 ≤ i ≤ m}
and the predicted assignments {ĉi|1 ≤ i ≤ m}, ACC measures the
average accuracy:

ACC(ĉ, c) = max
g

1

m

m∑
i=1

1{ci = g(ĉi)}

where g ranges over all possible one-to-one mappings between the labels
of the predicted clusters and the ground truth labels. The optimal
mapping can be efficiently computed using the Hungarian algorithm
[38].

• Normalized mutual information (NMI) [39]. From the information the-
ory point of view NMI can be interpreted as

NMI(ĉ, c) =
MI(ĉ, c)

max(H(ĉ),H(c))

where H(c) is the entropy of c and NMI(ĉ, c) is the mutual information
of ĉ and c.

Network architectures Table 2 shows the network architecture of the
encoder parts with respect to different datasets. The decoder parts are to-
tally reversed by the encoder parts. We use max-pooling in all the experi-
ments. The size of all the feature layers is 1× 1. No padding is used in the
convolutional layers except for the USPS dataset whose padding size is 1.

The comparing methods To validate the effectiveness of FCAE and
DBC, we compare them with the following state-of-the-art methods in terms
of the k-means and deep auto-encoders based clustering.

• KMS is the baseline method that applies the k-means algorithm on
raw images.

• DAE-KMS [19] uses deep auto-encoders for feature extraction and
then applies k-means for later clustering.

• AEC [36] is a variant of DAE-KMS that simultaneously optimizes the
data reconstruction error and representation compactness.

14

Table 2: Detailed configuration of the network architecture of the convolutional encoder.
The first rows are the filter sizes of the corresponding layer (filter size or pooling size,
#filters). The second rows are the output sizes (feature map size, #channels).

datasets conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 features

MNIST
5, 6 2, - 5, 16 2, - - - - - 4, 120
24, 6 12, 6 8, 16 4, 16 - - - - 1, 120

USPS
3, 20 2, - 3, 20 2, - - - - - 4, 160
16,20 8, 20 8, 20 4, 20 - - - - 1, 160

COIL
9, 20 2, - 5, 20 2, - 5, 20 2, - 5,40 2, - 4, 320

120, 20 60, 20 56, 20 28, 20 24, 20 12, 20 8, 40 4, 40 1, 320

• IEC [21] incorporates the deep representation learning and ensemble
clustering.

• DEC [19] simultaneously learns the feature representations and cluster
centers using deep auto-encoders and soft k-means, respectively.

• DEN [35] learns the clustering-oriented representations by utilizing
deep auto-encoders and manifold constraints.

• DCN [40] jointly applies dimensionality reduction and k-means clus-
tering.

• FCAE-KMS (our algorithm) adopts FCAE for feature extraction and
applies k-means for the latter clustering.

• DBC (our algorithm) uses Algorithm ?? for training a unified cluster-
ing method.

Table 3: Clustering performance on MNIST.

Metric KMS DAE-KMS AEC IEC DCN DEC FCAE-KMS DBC

ACC 0.535 0.818 0.760 0.609 0.58 / 0.935 0.843 0.794 0.964
NMI 0.531 - 0.669 0.542 0.63 / 0.85 - 0.698 0.917

5DCN with processed MNIST.

15

Results and analysis Table 3 summarizes the benchmark results on the
MNIST dataset. The k-means method performs badly on raw images. How-
ever, based on the end-to-end trained FACE features, k-means can achieve
comparative results compared with DAE-KMS which uses greedily layer-
wise trained deep auto-encoder features. Moreover, with an additional joint
training, DBC outperforms FCAE-KMS and beats all the other comparing
methods in terms of ACC and NMI.

Tables 4-6 show the benchmarks on USPS, COIL-20 and COIL-100, re-
spectively. Similarly to the observations on the MNIST hand-writeen digits
dataset, DBC outperforms FCAE-KMS by a large margin on the USPS hand-
written digits dataset. On the COIL sets, DBC obtained a little better results
than FCAE-KMS did.

On the hand-written digits datasets, the number of samples is much larger
than the number of categories. This results in the distribution of the FCAE
features to be closely related, and lots of ambiguous samples may occur. As a
result, discriminatively boosting makes sense on these datasets. Thus, there
is no doubt that DBC performs much better than FCAE-KMS. On the COIL
sets, DBC takes little advantage of the discriminatively boosting procedure
since the FCAE features are very helpful for clustering. Thus, there are very
few ambiguous samples whose easiness needs to be boosted.

Table 4: Clustering performance on USPS.

Metric KMS AEC IEC FCAE-KMS DBC

ACC 0.535 0.715 0.767 0.667 0.743
NMI 0.531 0.651 0.641 0.645 0.724

Table 5: Clustering performance on COIL-20.

Metric KMS DEN FCAE-KMS DBC

ACC 0.592 0.725 0.787 0.793
NMI 0.767 0.870 0.882 0.895

16

Table 6: Clustering performance on COIL-100.

Metric KMS IEC FCAE-KMS DBC

ACC 0.506 0.546 0.766 0.775
NMI 0.772 0.787 0.897 0.905

4.2. Visualization

One of the advantages of fully convolutional neural networks is that we
can naturally visualize the inner activations (or features) and the trained
weights (or filters) in a two-dimensional space [27]. Besides, we can monitor
the learning process of DBC by drawing frequency hists of assignment scores.
In addition, t-SNE can be applied to the embedded features to visualize the
manifold structures in a low-dimensional space. Finally, we show some typical
falsely categorized samples generated by our algorithm.

4.2.1. Visualization of the inner activations and learned filters

In Fig. 4, we visualize the inner activations of FCAE on the MNIST
dataset with three digits: 1, 5, and 9. As shown in the figure, the acti-
vations in the feature layer are very sparse. Besides, the deconvolutional
layer gradually recovers details of the pooled feature maps and finally gives
a rough description of the original image. This indicates that FCAE can
learn clustering-friendly features and keep the key information for image re-
construction.

Fig. 5 visualizes the learned filters of FCAE on the MNIST dataset. It
is observed in [27] that the stacked convolutional auto-encoders trained on
noisy inputs (30% binomial noise) and a max-pooling layer can learn localized
biologically plausible filters. However, even without adding noise, the learned
deconvolutional filters in our architectures are non-trivial Gabor-like filters
which are visually the nicest shapes. This is due to the use of max-pooling
and unpooling operations. As discussed in [27], the max-pooling layers are
elegant way of enforcing sparse codes which are required to deal with the
over-complete representations of convolutional architectures.

4.2.2. Monitoring the learning process

We use frequency hist of the soft assignment scores to monitor the learning
process of DBC. Fig. 6 shows the hists of scores on the MNIST test dataset

17

in. c1 p1 c2 p2 feat. d p2 d c2 d p1 d c1 out.

Figure 4: Visualization of the inner activations with respect to digits 1, 5 and 9.

conv1 conv2 d conv2 d conv1

Figure 5: Visualization of the learned FCAE filters.

(a subset of the MNIST dataset with 10000 samples). The scores are assigned
to the first cluster at different learning epochs. At early epochs (t ≤ 4), most
of the scores are near 0.1. This is a random guess probability because there
are 10 clusters. As the learning procedure goes on, some higher score samples
are discriminatively boosted and their scores become larger than others. As
a result, the cluster tends to “believe” in these higher score samples and
consequently make scores of the others to be smaller (approximating zero).
Finally, the scores assigned to the cluster become two-side polarized. Samples
with very high scores (sij ≈ 0.8) are thought to definitely belong to the first
cluster and the others with very small scores (sij ≈ 0.02) should belong to
other clusters.

4.2.3. Embedding learned features in a low dimensional space

We visualize the distribution of the learned features in a two-dimensional
space with t-SNE [37]. Fig. 7 shows the embedded features of the MNIST
test dataset at different epochs. At the initial epoch, the features learned

18

0.1 0.2

t=0

0.1 0.2

t=1

0.1 0.3

t=2

0.1 0.3

t=3

0.1 0.4

t=4

0.05 0.4

t=5

0.05 0.4

t=6

0.05 0.5

t=8

0.02 0.7

t=20

0.02 0.8

t=50

Figure 6: Visualization of the soft score frequency hists with respect to the first cluster at
different learning stages.

with FCAE are not very discriminative for clustering. As shown in Fig.
7(a), the features of digits 3, 5, and 8 are closely related. The same thing
happened with digits 4, 7, and 9. At the second epoch, the distribution of the
learned features becomes much compact locally. Besides, the features of digit
7 become far away from those of digits 4 and 9. Similarly, the features of digit
8 get far away from those of digits 3 and 5. As the learning procedure goes
on, the hardest digits (4 v.s. 9, 3 v.s. 5) for categorization are mostly well
categorized after enough discriminative boosting epochs. The observation is
consistent with the results showed in Subsection 4.2.2.

(a) epoch 0 (b) epoch 2 (c) epoch 5 (d) epoch 50

Figure 7: Visualization of the embedded features in a two-dimensional space with t-SNE.

4.2.4. Visualization of falsely categorized examples

In Fig. 8, we show the top 100 falsely categorized examples whose max-
imum soft assignment scores are over 0.6. It can be observed that it is very
hard to distinguish between some ground truth digits 4, 7 and 9 even with

19

human experience. Lots of digits 7 are written with transverse lines in their
middle space and would be thought to be ambiguous for the clustering algo-
rithm. Besides, some ground truth images are themselves confusing, such as
those showed with the gray background.

Figure 8: Visualization of falsely categorized high score samples (top-100). The number in
the top-left corner is the clustering label which is generated by the Hungarian algorithm.

4.3. Discussions

In this section, we make some ablation studies on the learning process
with respect to different boosting factors (α), different normalization meth-
ods (nj) and different initialization models generated by FCAE.

4.3.1. Impact of the boosting factor α

Fig. 9(a) shows the ACC and NMI curves, where α equals to 1.5, 2, 4.
With a small α (α = 1.5), the learning process is very slow and takes very
long time to terminate. On the contrary, when the factor is set to be very
large (α = 4), the learning process is very fast at the initial stages. However,

20

this could result in falsely boosting some scores of the ambiguous samples.
As a consequence, the model learned too much from some false information
so the performance is not so satisfactory. With a moderate boosting factor
(α = 2), the ACC and NMI curves grow reasonably and progressively.

4.3.2. Impact of the balance normalization

In DEC [19], the authors pointed out that the balance normalization plays
an important role in preventing large clusters from distorting the hidden fea-
ture space. To address this issue, we compare three normalization strategies:
1) the constant normalization for comparison, that is, nj = 1, 2) the normal-
ization by dividing the sum of the original soft assignment score per cluster,
that is, nj =

∑
i sij, which is adopted in DEC, and 3) the normalization by

dividing the sum of the boosted soft assignment score per cluster, that is,
nj =

∑
i s
α
ij. Fig. 9(b) presents the value curves of ACC and NMI against

the epoch with these settings. Initially, the normalization does not affect
ACC and NMI very much. However, the constant normalization can easily
get stuck at early stages. The normalization by dividing nj =

∑
i sij has

certain power of preventing the distortion. Our normalization strategy gives
the best performance compared with the previous methods. This is because
our normalization directly reflects the changes of the boosted scores.

4.3.3. Impact of the FCAE initialization

To investigate the impact of the FCAE initialization on DBC, we compare
the performance of DBC with three different initialization models: 1) the ran-
dom initialization, 2) the initialization with a half-trained FCAE model, and
3) the initialization with a sufficiently trained FCAE model. The comparison
results are shown in Fig. 9(c). As illustrated in the figure, DBC performs
greatly based on all the models even when the initialization model is ran-
domly distributed. However, if the FCAE model is not sufficiently trained,
the resultant DBC model will be suboptimal.

5. Conclusions and future works

In this paper, we proposed FCAE and DBC to deal with image repre-
sentation learning and image clustering, respectively. Benchmarks on several
visual datasets show that our methods can achieve superior performance than
the analogous methods. Besides, the visualization shows that the proposed
learning algorithm can implement the idea proposed in Section 3.2. Some

21

0 5 10 15 20 25 30 35 40 45 50
epoch

0.67

0.70

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1.00

va
lu

e

ACC α= 1. 5

ACC α= 2

ACC α= 4

NMI α= 1. 5

NMI α= 2

NMI α= 4

(a) boosting factor

0 5 10 15 20 25 30 35 40 45 50
epoch

0.67

0.70

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1.00

va
lu

e

ACC const

ACC DEC

ACC DBC

NMI const

NMI DEC

NMI DBC

(b) balance normalization

0 5 10 15 20 25 30 35 40 45 50
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

va
lu

e

ACC random

ACC half-trained

ACC well-trained

NMI random

NMI half-trained

NMI well-trained

(c) FCAE initialization

Figure 9: Ablation studies with respect to the boosting factor α, the balance normalization
factor nj and the FCAE initialization models.

issues to be considered in the future include: 1) adding suitable constraints
on FCAE to deal with natural images, and 2) scaling the algorithm to deal
with large-scale datasets such as the ImageNet dataset.

Acknowledgement

This work was supported in part by NNSF of China under grants 61379093,
61602483 and 61603389. We thank Shuguang Ding, Xuanyang Xi, Lu Qi and
Yanfeng Lu for valuable discussions.

Appendix

A. Derivation of (4).
We use the chain rule for the deduction. First, we set

uij = 1 +
||zi − µj||2

v
. (.1)

Then it follows that
∂uij
∂zi

=
2

v
(zi − µj). (.2)

Now set

qij = u
− 1+v

2
ij , (.3)

22

so

∂qij
∂zi

=
∂qij
∂uij

· ∂uij
∂zi

= (−1 + v

2
)u
− 3+v

2
ij · 2

v
(zi − µj)

= (−1 + v

v
)u−1ij qij · (zi − µj). (.4)

Further, let

sij =
qij∑
j′ qij′

. (.5)

Then we have

∂sij
∂zi

=

∂qij
∂zi
·
∑

j′ qij′ − qij ·
∑

j′
∂qij′

∂zi

(
∑

j′ qij′)
2

=
(−1+v

v
)u−1ij qij · (zi − µj) ·

∑
j′ qij′ − qij ·

∑
j′(−

1+v
v

)u−1ij′ qij′ · (zi − µj′)
(
∑

j′ qij′)
2

= (−1 + v

v
)

qij∑
j′ qij′

u−1ij · (zi − µj) ·
∑

j′ qij′ −
∑

j′ u
−1
ij′ qij′ · (zi − µj′)∑

j′ qij′

= (−1 + v

v
)sij(u

−1
ij · (zi − µj)−

∑
j′

u−1ij′ sij′ · (zi − µj′)). (.6)

Combine the above expressions to get the required result

∂L

∂zi
= −

∑
j

rij
sij
· ∂sij
∂zi

(.7)

=
1 + v

v

∑
j

rij − sij
uij

(zi − µj)

=
1 + v

v

∑
j

(rij − sij)
zi − µj

1 + ||zi − µj||2/v
(.8)

B. Derivation of (5).
(5) can be derived similarly by exchanging µ and z in the above deriva-

tions of (4).

23

References

References

[1] J. Han, J. Pei, M. Kamber. Data Mining: Concepts and Techniques.
Elsevier, 2011.

[2] P. Berkhin. A survey of clustering data mining techniques. In: Grouping
Multidimensional Data, pp. 25-71, 2006.

[3] C. Boutsidis, A. Zouzias, M. Mahaoney, and P. Drineas. Randomized
dimensionality reduction for k-means clustering. IEEE Transactions on
Information Theory, vol. 61, no. 2, pp. 1045-1062, 2015.

[4] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.
8, pp. 888-905, 2000.

[5] M. Ester, H.P. Kriegel, J. Sander and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. KDD, vol.
96, no. 34, pp. 226-231, 1996.

[6] A. Rodriguez and A. Laio. Clustering by fast search and find of density
peaks. Science, vol. 344, no. 6191, pp. 1492-1496, 2014.

[7] F. Li, H. Qiao and B. Zhang. Effective deterministic initialization for k-
means-like methods via local density peaks searching. arXiv:1611.06777,
2016.

[8] N. Ahmed. Recent review on image clustering. IET Image Processing,
vol. 9, no. 11, pp. 1020-1032, 2015.

[9] Y.J. Lee and K. Grauman. Learning the easy things first: Self-paced
visual category discovery. IEEE Conference on CVPR, pp. 1721-1728,
2011.

[10] C. Ding, T. Li. Adaptive dimension reduction using discriminant analy-
sis and k-means clustering. Proc. 24th International Conference on Ma-
chine learning, pp. 521-528, 2007.

[11] D. Lowe. Object recognition from local scale-invariant features. Proc.
7th International Conference on Computer Vision, vol. 2, pp. 1150-1157,
1999.

24

[12] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. Proc. Computer Vision and Pattern Recognition, vol. 1, pp.
886-893, 2005.

[13] S. Hong, J. Choi, J. Feyereisl, B. Han and L. S. Davis. Joint image
clustering and labeling by matrix factorization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, no. 7, pp. 1411-1424,
2016.

[14] M. Sampat, Z. Wang, S. Gupta, A. Bovik and M. Markey. Com-
plex wavelet structural similarity: A new image similarity index. IEEE
Transactions on Image Processing, vol. 18, no. 1, pp. 2385-2401, 2009.

[15] F. Li, X. Huang, H. Qiao and B. Zhang. A new manifold distance for
visual object categorization. The 12th World Congress on Intelligent
Control and Automation, pp. 2232-2236, 2016.

[16] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with
deep convolutional neural networks. Advanced Neural Information Pro-
cessing Systems, vol. 24, pp. 1097-1105, 2012.

[17] G. Hinton, S. Osindero, Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[18] F. Tian, B. Gao, Q. Cui, E. Chen and T. Liu. Learning deep represen-
tations for graph clustering. AAAI, pp. 1293-1299, 2014.

[19] J. Xie, R. Girshick and A. Farhadi. Unsupervised deep embedding for
clustering analysis. Proc. 33rd International Conference on Machine
Learning, pp. 478-487, 2016.

[20] J. Yang, D. Parikh, D. Batra. Joint unsupervised learning of deep rep-
resentations and image clusters. Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[21] H. Liu, M. Shao, S. Li and Y. Fu. Infinite ensemble for image cluster-
ing. Proc. 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 1745-1754, 2016.

25

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol. Stacked
denoising auto-encoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of Machine Learning Re-
search, vol. 11, pp. 3371-3408, Dec. 2010.

[23] P. Baldi. Autoencoders, unsupervised learning, and deep architectures.
ICML Workshop on Unsupervised and Transfer Learning, vol. 27, pp.
37-50, 2012.

[24] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1789-1828, 2013.

[25] G. Hinton, R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, vol. 313, no. 5786, pp. 504-507, 2006.

[26] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle. Greedy layer-wise
training of deep networks. Advances in Neural Information Processing
Systems, vol. 19, pp. 153, 2007.

[27] J. Masci, U. Meier, D. ciresan and J. Schmidhuber. Stacked convolu-
tional auto-encoders for hierarchical feature extraction. International
Conference on Artificial Neural Networks, pp. 52-59, 2011.

[28] H. Lee, R. Grosse, R. Ranganath and A. Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions. Proc. 26th Annual International Conference on Machine Learning,
pp. 609-616, 2009.

[29] H. Noh, S. Hong and B. Han. Learning deconvolution network for seman-
tic segmentation. Proc. IEEE International Conference on Computer
Vision, pp. 1520-1528, 2015.

[30] M. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. European Conference on Computer Vision, pp. 818-833, 2014.

[31] R. Mohan. Deep deconvolutional networks for scene parsing.
arXiv:1411.4101, 2014.

[32] M. Zeiler, G. Taylor, R. Fergus. Adaptive deconvolutional networks for
mid and high level feature learning. 2011 International Conference on
Computer Vision, pp. 2018-2025, 2011.

26

[33] S. Ioffe, and C. Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv:1502.03167,
2015.

[34] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv:1409.1556, 2014.

[35] P. Huang, Y. Huang, W. Wang and L. Wang. Deep embedding network
for clustering. ICPR, pp. 1532-1537, 2014.

[36] C. Song, F. Liu, Y. Huang, et al. Auto-encoder based data clustering.
Iberoamerican Congress on Pattern Recognition, pp. 117-124, 2013.

[37] L. Maaten, G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, vol. 9, pp. 2579-2605, 2008.

[38] H. Kuhn. The Hungarian method for the assignment problem. 50 Years
of Integer Programming 1958-2008, pp. 29-47, 2010.

[39] D. Cai, X. He, J. Han. Locally consistent concept factorization for docu-
ment clustering. IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 23, no. 6, pp. 902-913, 2011.

[40] B. Yang, X. Fu, ND Sidiropoulos, and M Hong. Towards k-
means-friendly spaces: simultaneous deep learning and clustering.
arXiv:1610.04794, 2016.

27

	1 Introduction
	2 Related work
	3 Proposed methods
	3.1 Fully convolutional auto-encoder for image feature extraction
	3.2 Discriminatively boosted clustering
	3.2.1 Easiness measurement with the soft k-means scores
	3.2.2 Boosting easiness with discriminative target distribution
	3.2.3 Learning with the Kullback-Leibler divergence loss
	3.2.4 Training algorithm

	4 Experiments
	4.1 Evaluation benchmarks
	4.2 Visualization
	4.2.1 Visualization of the inner activations and learned filters
	4.2.2 Monitoring the learning process
	4.2.3 Embedding learned features in a low dimensional space
	4.2.4 Visualization of falsely categorized examples

	4.3 Discussions
	4.3.1 Impact of the boosting factor
	4.3.2 Impact of the balance normalization
	4.3.3 Impact of the FCAE initialization

	5 Conclusions and future works

