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Abstract2

High inter-personal similarity has been universally acknowledged as the principal challenge of auto-3

matic face recognition since the earliest days of research in this area. The challenge is particularly4

prominent when images or videos are acquired in largely unconstrained conditions ‘in the wild’, and5

intra-personal variability due to illumination, pose, occlusions, and a variety of other confounds is6

extreme. Counter to the general consensus and intuition, in this paper I demonstrate that in some7

contexts, high inter-personal similarity can be used to advantage, i.e. it can help improve recogni-8

tion performance. I start by a theoretical introduction of this key conceptual novelty which I term9

‘quasi-transitive similarity’, describe an approach that implements it in practice, and demonstrate its10

effectiveness empirically. The results on a most challenging real-world data set show impressive per-11

formance, and open avenues to future research on different technical approaches which make use of12

this novel idea.13

Key words: Meta-algorithm, paradigm change, retrieval, intra-class, inter-class, similarity,14

dissimilarity.15
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1 Introduction16

Face recognition is often described as one of the most active areas of research in computer17

vision [1, 2, 3, 4]. While I am unaware of attempts to formalize this claim and support it18

with rigorous empirical evidence, it is beyond doubt that the field has undergone substantial19

changes over time. By this I am not referring merely to changes in the technical approach20

which can be naturally expected to take place as advances are made, but rather to the practical21

paradigms and the context in which face recognition is employed.22

Early face recognition work can be described as a proverbial exploratory mission which23

served to deepen the understanding of the key challenges and features (in an abstract sense)24

which have the greatest discriminative power [5, 6]. Geometric features and the first statisti-25

cal appearance based methods were described in this period. Thereafter the focus has shifted26

to the practical challenge of making face recognition useful in real world security oriented27

applications. It is in this period that the difficulty of the problem has crystallized, with con-28

current changes in pose, illumination, resolution, and other extrinsic factors, exposing the29

limitations of the proposed algorithms [7, 8, 9, 10]. Most face recognition work falls under30

the umbrella of this conceptual period. Despite the immense amount of research effort, both31

by academia and industry, the highly optimistic predictions expressed in the early years of32

face recognition research failed to materialize: in unconstrained conditions the performance33

of face recognition in security applications remains disappointing [11, 12, 13]. The key rea-34

son lies in the nature of the demands of most security applications on the one hand, and the35

inherent discriminative weakness of facial biometrics. As regards the former, security appli-36

cations demand a low false positive rate (allowing an intruder the access to a resource carries37

a high cost) and often a low false negative rate (denying access to a legitimate user is frus-38

trating, time consuming, and potentially costly). At the same time, on the latter point, there39

is no compelling evidence that face based biometrics even in principle can be used to attain40
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these demands. Face recognition by humans, often intuitively seen as highly sophisticated,41

is in fact not very accurate when evaluated in conditions comparable to those in which au-42

tomatic methods are expected to operate [14, 15]. Humans use a variety of constraints, such43

as knowledge based priors (‘whom do I expect to encounter in this place?’), complementary44

biometrics (height, gait, voice, etc.), and a plethora of others to simplify the task in every-45

day situations. However, such assumptions are either difficult to incorporate in automatic46

methods (e.g. due to the semantic gap) or inappropriate in the context of practical applica-47

tions of interest. While work on the underlying fundamentals continues with unabated effort48

[16, 17, 18, 19, 20], with particularly promising innovations arising from the use of sparse49

coding [2, 19, 21], dictionary representations [22, 23], and deep learning [24, 25, 26, 27],50

turning point for face recognition research has come in the last decade with the emergence of51

massive amounts of visual data – the focus has shifted to the use of face recognition for the52

retrieval and organization of photographs and video recordings [28, 4, 27]. The requirements53

of these applications contrast the aforementioned requirements of security applications: fol-54

lowing the successes of web search engines, by adopting the ranked retrieval presentation55

of output, both so-called type I and type II errors are much more readily tolerated. The user56

is often not overly troubled by not every instance of interest being retrieved, or it not being57

retrieved at rank-1, as long as correct matches are within a reasonable rank (the quantified58

meaning of ‘reasonable’ being somewhat dependent on the application).59

Thus, to summarise briefly the history of face recognition, the field has largely been charac-60

terized by incremental (but important and cumulatively significant) technical advances with61

major practical leaps which came though by innovative ways of seeing the same problem62

though a different lens. In the present paper my aim is to achieve the latter. Specifically, I will63

argue from theory that a characteristic at the heart of all face recognition problems, which64

is universally considered as the key challenge, can in fact be turned into an advantage in the65

right context. My case is first put forward on rigorous theoretical grounds, and subsequently66

4



demonstrated and discussed using empirical evidence.67

The broad topic of the present paper is that of face set retrieval and the central contribu-68

tion relates both to the previous work on set based recognition and the work concerned with69

recognition in the context of large data collections [28, 4, 27]. In contrast to most work in the70

literature herein my principal interest is neither in the representation of face sets nor in the71

associated similarity measures per se. Rather, given a baseline algorithm for measuring the72

similarity of two face sets, I seek to leverage the structure of the data at a large scale, that of73

the entire database, to make the best use of the available baseline. In the sense that the pro-74

posed method has as its input both data (face image sets) and an algorithm (the ‘baseline’), it75

can be accurately thought of as a meta-algorithm.76

1.1 Problem statement77

Given a query face set the aim is to retrieve image sets of the same person from a large78

database (the ‘gallery’). More specifically, the desire is to order the gallery sets in decreasing79

order of confidence that they match the query by identity. Thus the ideal retrieval has all sets80

of the query person first (‘matches’) followed by all others (’non-matches’). I assume that the81

gallery is entirely unlabelled and may contain multiple sets of the same person.82

2 Learnt transitive similarity83

In this section I introduce the main contribution of the paper. In particular, I describe a gen-84

eral framework for face retrieval especially well suited for large collections of face images85

acquired ‘in the wild’ i.e. in largely unconstrained imaging conditions, and characterized by86

highly unbalanced amounts of training data per class (person). I start by motivating the in-87

tuition behind the proposed method in the section which follows, and subsequently explain88
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how this intuition can be formalized into a general retrieval framework.89

2.1 Motivation and the key idea90

It is insightful to begin by considering the motivation behind the key idea in the context of91

related previous work and in particular the Matched Background Similarity (MBS) method92

of Wolf et al. [29]. In brief, Wolf et al. argue that in building a classifier which discriminates93

the appearance of a specific person from that of all other people, the focus should be on94

discriminating between this person and those individuals most similar to them; improvements95

in discrimination against very dissimilar people matter less as these individuals are unlikely96

to be conflated with the person of interest anyway. The idea I introduce here can be seen as97

complementary and builds upon a similarly simple basic principle. Specifically, I make use98

of the observation that if person A is alike in appearance to person B, and similarly person99

B to person C, on average persons A and C are more likely to look alike than two randomly100

chosen individuals. I term this Quasi-Transitive Similarity, the prefix ‘quasi-’ capturing the101

notion that the stated regularity is a statistical rather than a universal one, as I shall explain102

shortly.103

This is illustrated conceptually in Figure 1 using images of the former prime minister of104

Australia, Tony Abbot, and the actor Daniel Craig. For clarity, the variability of a person’s105

appearance is shown as a 1D manifold. Specifically, the manifolds shown in black represent106

the appearance variability within the corresponding sets. The dotted manifold shown in red107

represents the range of appearance of Tony Abbott which is present neither in the gallery nor108

in the query set (in this conceptual example these are left semi-profile to left profile images).109

As stated in the introduction above, the transitivity of similarity in appearance does not hold110

universally. It is possible that persons A and B are similar by virtue of one set of physical111
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Query
Proxy

Target

Fig. 1. The similarity between a query and the correct target set (initially poorly matched) may be

better estimated indirectly via proxy data. 1D manifolds shown in black represent the appearance

variability within sets. The dotted manifold shown in red represents the range of appearance of T

Abbott present neither in the gallery nor in the query set. The query is poorly matched to the correct

set because the person’s pose in the query is vastly different than any of the poses in the target set.

However, the query matches well the proxy set which contains more extensive pose variability of a

person similar in appearance to the target person, the said similarity being directly inferable from data

from the similarity of the matched images in the two sets.

features, and B and C by virtue of another. A useful mental picture can be formed by drawing112

an analogy from statistics (or geometry): random variables (or vectors) A and B, and B and113

C may be positively correlated (have a positive dot product), yet A and C may be negatively114

correlated (have a negative dot product) with one another. This is illustrated in Figure 2.115

Lastly, it is worth contrasting the present approach with that of Yin et al. [30]. Unlike the116

method herein, their method necessitates the localization of face parts, which is problematic117

and highly likely to fail in severe illuminations, extreme poses, or in poor quality images.118
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Their method also needs to extract estimates of pose and illumination, again very much unlike119

the one proposed herein which does not have any of the aforementioned bottlenecks – all120

learning is performed directly from data and without the need for an explicit model at a121

higher semantic level.122

2.2 Transitivity meta-features123

I have already noted that the observed transitivity of similarity is a statistical rather than124

a universal phenomenon. In other words, while the similarity of persons A and B, and B125

and C, on average leads to a greater similarity between A and C, in some instances this126

will not be the case. This observation suggests that in addition to inter-personal similarities127

between persons A and B, and B and C, a richer set of features should be used to infer the128

similarity between persons A and C. By implication, these features should complement the129

inter-personal similarities in the sense that jointly they should allow for a better estimate of130

the similarity between persons A and C than just similarities between persons A and B, and131

B and C, or indeed the direct baseline comparison of persons A and C (i.e. without the use of132

additional indirect information provided by the relationship of B with A and C).133

To motivate the meta-features that I propose in the present work, consider the conceptual134

illustrations shown in Figure 3. Solid coloured lines depict the range of appearance variation135

within face sets. The aim is to estimate the similarity of the query (green) and the set denoted136

as ‘target’ (red). To clarify, by a ‘target’ set we mean any gallery set which as such may be a137

potential correct match. The face set marked ‘proxy’ is a database face set of a person similar138

in appearance to the ‘target’, as assessed by the baseline similarity measure; for example, the139

proxies of a particular target set can be selected as its nearest kp sets in the database. The140

dotted red line represents the range of possible appearance of the ‘target’ person which is not141

actually present in the ‘target’ face set. For the time being the reader may assume that face142

8



vp

vq

vt

Fig. 2. A conceptual illustration of the non-universality of transitivity of pair-wise similarity. Shown

are three vectors in two dimensions: vq, vt, and vp. The red and blue shaded semicircles indicate the

angle ranges within which vectors have a positive dot product with respectively vq and vp. Observe

that although the dot product between vq and vp is positive (i.e. the two vectors can be regarded as

exhibiting a degree of similarity), as is the dot product between vp and vt, the dot product between vq

and vt is negative.

sets are represented as sets of actual exemplars and the similarity between two sets is given by143

the similarity between their most similar members – I will explain how the ideas introduced144

herein can be generalized in the next section.145

Both in the case shown in Figure 3(a) and that in Figure 3(b), the baseline similarity measure

tells us that ‘query’ is close to ‘proxy’, and of course ‘proxy’ is close to ‘target’ by design

i.e. by the former being a proxy in the first place. The difference between the two cases, il-

lustrated conceptually, lies in the similarity of exemplars ftq and ftp i.e. the exemplars best

matching the query and proxy sets. In particular, the observation that the baseline similarity

measure deems the proxy set significantly more similar than the query to the target on the
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Target

Proxy

Query

(a) Query and target: same identity

Target

Proxy

Query

(b) Query and target: different identities

Fig. 3. Transitivity meta-features extracted using a baseline set comparison: conceptual motivation,

using (a) a matching (same identity) query-target set pair, and (b) a non-matching (differing identities)

query-target set pair.

one hand, while both similarities are explained by similar target exemplars, informs us that

the divergence in query and proxy appearances from the target are of different natures. Thus,

even if similarities s1, s2, and s3 are the same in Figure 3(a) and Figure 3(b), the information

contained in relationships between ftq and ftp, and fpq and fpt tells us that we should infer

different query-target similarities in the two cases. Therefore I introduce what I term transi-
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tivity meta-features which I use for the aforementioned inference. Given a baseline similarity

measure and a triplet consisting of query, target, and proxy sets, the corresponding transi-

tivity meta-feature v(query,target|proxy) comprises five similarities – s1 (‘query’ to ‘proxy’

similarity), s2 (‘query’ to ‘target’ similarity), s3 (‘proxy’ to ‘target’ similarity), s4 (similarity

between the ‘proxy’ exemplar most similar to ‘query’ and the ‘proxy’ exemplar most similar

to ‘target’), and s5 (similarity between the ‘target’ exemplar most similar to ‘query’ and the

‘target’ exemplar most similar to ‘proxy’):

v(query,target|proxy) =



s1

s2

s3

s4

s5


(1)

2.3 Non-exemplar based representations146

In the preceding discussion I asked the reader to think of appearance variation within each147

set as being represented using what is probably conceptually the simplest choice of represen-148

tation: as a collection of exemplars. In other words, each set was a set of representations of149

individual faces. This was done for pedagogical reasons and I now show that the proposed150

framework is in no way reliant on this representation.151

In particular, to make the transition of applying the proposed method on the special case in152

which a face set is represented using a set of directly observed exemplars to the general case153

in which an arbitrary set representation is employed, I need to explain how the concept of a154

pair of the most similar exemplars such as those labelled fqp and fpq in Figure 3(a), as well155

as the similarity between them (such as that between fpq and fpt), can be generalized. This156

is not difficult – all that is required is a slight reframing of the concept. Instead of seeking157
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the nearest pair of specific exemplars, in the general case we are interested in the pair of the158

most similar modes of variation captured by the representations of two sets (as measured by159

the baseline similarity measure of course). I illustrate this idea with a few examples.160

If the variation within a set is modelled using a linear subspace and the subspace-to-subspace161

generalization of the distance from feature space (DFFS) [31] adopted as the (dis)similarity162

measure between them, the most similar modes of variation between two sets represented163

using such subspaces are sub-subspaces themselves [? ]. These correspond to different ex-164

emplars fxy in Figure 3 and can be compared using the DFFS baseline. If, on the other165

hand, similarity is measured using the maximum correlation between subspace spans [32],166

the most similar modes of variation between two sets are readily extracted as the first pair167

of the canonical vectors between subspaces [33] and compared using the cosine similarity168

measure [34, 35]. For manifold-to-manifold distances such as that of Lee et al. [36] the most169

similar modes of variation are simply the nearest pairs of points on two manifolds, with the170

similarity of two points on the same manifold readily quantified by the geodesic distance171

between them.172

The same ideas are readily applied to any of a variety of set representations and similarity173

measures described in the literature.174

2.4 Learning quasi-transitive similarity175

Given a triplet comprising a query, a target, and a proxy data set, our aim now is to infer

the similarity between the query and the target using the corresponding transitivity feature

defined in (1). Without loss of generality, let us quantify inter-set similarity with a real number

in the range [0, 1], where 0 signifies the least and 1 the greatest possible similarity. Then the
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problem can be stated formally by saying that we are seeking a mapping mqts:

mqts : R5 → [0, 1], (2)

with the ideal output of mqts(v(query,target|proxy)) being 0 iff the identities in the query and176

target sets are different, and 1 iff they are the same. Observe that since we are interested in177

confidence based ranking of all sets in a database, the codomain of mqts is not the set {0, 1},178

which would make this a binary classification problem, but rather [0, 1] (a range) which makes179

it a regression task.180

In the types of problem setting in which face recognition is addressed by most of the existing181

research, obtaining features for training, at least in principle, is simple. Whether it is veri-182

fication (1-to-1 matching) or identification (1-to-N matching), the database ‘known’ to the183

algorithm comprises data which is, it is assumed, correctly partitioned by the identity. The184

retrieval setting adopted in this work is more challenging in this sense and consequently the185

learning process needs to be approached with more care. In particular, as described in Sec-186

tion 1, I assume that the database is entirely unlabelled and that it may contain multiple sets187

of the same person. We neither know how many individuals there are in the database nor the188

number of sets of each individual (which can of course vary person to person). Since for any189

two database sets we cannot know for certain if they belong to the same or different individ-190

uals, an obvious corollary is that in the extraction of transitivity meta-features described by191

(1) both intra-personal and inter-personal training sets may contain incorrect examples.192

2.4.1 Extraction of transitivity meta-features for training193

Given that our data is unlabelled i.e. that we do not know if two face sets in the database194

correspond to the same person or not, we cannot extract training transitivity meta-features195

in the obvious manner by considering different query, target, and proxy triplets, with the196

query and the target either matching (producing same identity training data) or not (producing197
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differing identities training data). Instead, I describe how training data, albeit corrupted (this198

issue is dealt with in the next section), can be collected automatically by considering only199

pairs of sets, that is, all possible database sets and their proxies. I do this for the two baseline200

set comparison methods adopted from the work by Wolf et al. [29] (described in more detail201

in Section 3.3):202

• The maximum maximorum cosine similarity between sets of exemplars [37], and203

• The maximum correlation between vectors confined to linear subspaces describing within204

set variability [38].205

For the benefit of the reader and as an additional illustration of the generalizability of the206

approach, automatic training data extraction for use with the Extended Canonical Correlation207

Analysis (E-CCA) based baseline is included in Appendix A.208

Exemplar based baseline Consider a particular database face set (‘reference’) used for209

training and one of its proxies. To extract training transitivity meta-features which corre-210

spond to same identity query-target comparisons, I select both query and target data from the211

reference set (i.e. a single video). In particular, I treat all possible pairs of exemplars in the212

reference set as possible pairs fqt and ftq. Indeed, for specific choices of possible query and213

reference sets, any two appearances may present themselves as the nearest exemplars in them.214

The second element s2 in the transitivity meta-feature is then simply given by the similarity215

between the two exemplars. On the other hand the similarity s1 between the query and the216

proxy is given by the similarity between the unitary set consisting of the reference set exem-217

plar treated as fqt and the proxy set. The nearest proxy exemplar to fqt is of course fpq. The218

similarity s3 is simply computed as the similarity between the reference set and the proxy,219

which also gives us exemplars fpt and ftp, and allows for a straightforward computation of220

s4 (as the similarity between fpq and fpt) and s5 (as the similarity between ftq and ftp). A221
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single pair of reference and proxy sets thus gives us nr(nr − 1) ‘positive’ training transitivity222

meta-features, where nr is the number of faces in the reference set. The process is illustrated223

conceptually in Figure 4(a).224

The extraction of training transitivity meta-features which correspond to differing identities225

query-target comparisons is similar. Now I iterate through all exemplar pairs of the proxy226

set, taking each pair as fqt and fpq in turn. The closest target exemplar to fqt becomes ftq,227

while fpt and ftp are determined as before, allowing for all transitivity meta-feature entries228

(exemplar similarities) to be computed as in the case of same identity query-target training229

data extraction. A single pair of reference and proxy sets thus gives us np(np − 1) ‘negative’230

training transitivity meta-features, where np is the number of faces in the proxy set. The231

process is illustrated conceptually in Figure 4(b).232

It is important to observe that the set of ‘negative’ training transitivity meta-features extracted233

in the described manner may be corrupt. This is an inherent consequence of the problem set-234

ting – since the database is entirely unlabelled we cannot know if the identities of the people235

in the reference and proxy set are actually different. The proposed process of training the236

regressor, described in Section 2.4.2, takes this into account. Nevertheless, the amount of237

improvement achieved with the proposed method over its baseline is tied to the proportion238

of ‘negative’ training data which is incorrect – the improvement inevitably decreases as this239

proportion is increased. However, if this is so, i.e. if a great proportion of proxies of sets240

in the database actually represent the same identity as the sets they are proxies to, this by241

design means that the baseline comparison is very good to start with so no significant im-242

provement can be reasonably expected. Thus, the proposed method is particularly attractive243

in challenging conditions in which the baseline classifier does not perform well.244
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(a) Exemplar based matching: obtaining positive training samples

(b) Exemplar based matching: obtaining negative training samples

Fig. 4. Conceptual illustration of the proposed methodology for automatic collection of training data

for training the quasi-transitivity regressor using the exemplar based baseline, from an unlabelled

corpus. White and light blue data points respectively represent exemplars from a single face data set

and one of its proxy sets. The red and dark blue points are randomly chosen images in an iteration of

the algorithm (see main text for detailed explanation).

16



Subspace based maximum correlation baseline The extraction of training data for this245

representation is somewhat simpler than in the previous case. I again extract transitivity meta-246

feature training data using only face set pairs (rather than triplets) which are now represented247

by linear subspaces. To extract training transitivity meta-features which correspond to same248

identity query-target comparisons, I iterate through all reference set exemplars as fqt and249

obtain ftq and fpq by projecting them to respectively the reference and proxy subspaces.250

Vectors fpt and ftp are readily obtained using the baseline set comparison as the principal251

vectors of the subspaces corresponding to reference and proxy subspaces. A single pair of252

reference and proxy sets thus gives us nr ‘positive’ training transitivity meta-features. The253

process is illustrated conceptually in Figure 5(a).254

The extraction of training transitivity meta-features which correspond to differing identities255

query-target comparisons proceeds in exactly the same manner, with the difference that it is256

proxy set exemplars that are iterated through as fqt (as before also taken to be fqp). A single257

pair of reference and proxy sets gives us nr ‘positive’ training transitivity meta-features,258

where nr is the number of faces in the reference set, and np ‘negative’ training transitivity259

meta-features, where np is the number of faces in the proxy set. A single pair of reference and260

proxy sets thus gives us np ‘negative’ training transitivity meta-features. The same remarks261

as before regarding the corruption of the ‘negative’ training set hold here too. The process is262

illustrated conceptually in Figure 5(b).263

Closing notes and observations In Section 2.1 I remarked that the basic idea behind the264

proposed method can be seen as complementary to those of Wolf et al. [29]. However, when265

the proposed training scheme is considered it can be seen to contain both conceptually similar266

elements and complementary elements to MBS. In particular, since the negative training set267

of quasi-transitivity meta-features is extracted by considering elements of the proxy set as268

the query, the proposed method learns to discriminate precisely between a person and those269
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(a) Subspace alignment based matching: obtaining positive training samples

(b) Subspace alignment based matching: obtaining negative training samples

Fig. 5. Conceptual illustration of the proposed methodology for automatic collection of training data

for training the quasi-transitivity regressor using the baseline based on the maximum correlation be-

tween subsets, from an unlabelled corpus. The white and light blue subspaces respectively correspond

to a single face data set and one of its proxy sets. The red point is a randomly chosen image in an

iteration of the algorithm (see main text for detailed explanation).
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individuals most similar to him/her (as in MBS), while exploiting the quasi-transitivity of270

similarity (complementary to MBS).271

2.4.2 Quasi-similarity predictor design272

In this paper I propose the use of the ε support vector (ε-SV) regression [39]. For comprehen-273

sive detail of this regression technique the reader is referred to the original work by Vapnik274

(also see Schölkopf and Smola [40]); for the sake of completeness and continuity, herein I275

present a brief summary of the ideas relevant to the proposed method.276

Given training data {(x1, y1), . . . , (xl, yl)} ⊂ F ×R, where F is the input space (in our case

this is R5), ε-SVR aims to find a function h(x) which deviates at most ε from its targets y.

As in other SV based methods, an implicit mapping of input data x → Φ(x) is performed

by employing a Mercer-admissible kernel [41] k(xi, xj) which allows for the dot products

between mapped data to be computed in the input space: Φ(xi) · Φ(xj) = k(xi, xj). The

function h(x) of the form

h(x) =
l∑

i=1

(αi − α∗i )k(xi, x) + b (3)

is then learnt by minimizing

l∑
i=1

l∑
j=1

(αi − α∗i )(αj − α∗j )k(xi, xj)ε
l∑

i=1

(αi + α∗i )−
l∑

i=1

yi(αi − α∗i ) (4)

subject to the constraints
∑l

i=1(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, c]. The parameter c can be277

seen as penalizing prediction errors greater than ε i.e. as balancing the trade-off between the278

smoothness of h(x) and the amount of data predicted with an error greater than ε.279

The nature of ε-SV regression is particularly well suited to the problem at hand. The key280

insight stems from the observation that since we are not looking to make a crisp decision281

on whether people’s identities are the same, but rather derive a confidence measure thereof.282
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Hence, I train the regressor using the value of 1 as the target for same identity transitivity283

meta-features, and 0 for different identities, allowing for a large prediction error margin of284

ε = 0.4 but severely penalizing greater errors by setting c = 1000. The large penalty c ensures285

that it is the outliers in the form of the wrongly labelled training data that define the boundary286

between the penalized and non-penalized regions of the high-dimensional space, while the287

wide margin ε = 0.4 ensures that the correctly labelled bulk of the training corpus is pushed288

away from the boundary towards the desired extreme values of 0 and 1. I used the radial basis289

function kernel k(xi, xj) = exp{−0.2‖xi − xj‖2}.290

A schematic illustration of the overall learning of quasi-transitivity, underlay by a specific291

adopted baseline set based comparison, is shown in Figure 6.292

2.4.3 Retrieval293

Given a query data set I compute its similarity with a target database set by computing the294

regression based estimate mqts(v(query,target|proxy)) using each of target’s kp proxies, and295

taking the maximum of these and the baseline similarity between the query and the target.296

Database sets are then ordered by decreasing similarity with respect to the query. This is297

schematically illustrated by the diagram in Figure 7298

20



Gallery set

Proxies

Modelquasi-transitivity
Learnt

Positive samples

Gallery

Nearest neighbours

Negative samples

training
-SVM regression

Fig. 6. Schematic overview of the proposed meta-algorithm training stage. For each set in the gallery

(the ‘target’ set), a set of proxies is automatically extracted first; see Section 2.2 for comprehensive

detail. Then, negative (different identity) meta-features (see Section 2.2) samples are extracted from

the target set and its proxies, as positive samples from the target set alone, which is a process dependent

on the adopted baseline set based comparison algorithm; detailed examples are given in Section 2.4.1.

These used to learn the introduced quasi-transitivity i.e. the meta-algorithmic model.
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Target & associated sets

Query set

ProxiesGallery set

Improved
similarity estimate

Learnt
quasi-transitivity

Gallery

Fig. 7. Schematic overview of the proposed meta-algorithm querying (application) stage. For each set

in the gallery (the ‘target’ set), the learnt meta-algorithmic model (also see Figure 6) is applied to

compute an improved similarity estimate, using the adopted baseline set based comparison.
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Fig. 8. The cumulative distribution function (CDF) of the data energy contained in the 2nd and 3rd

nonlinear kernel PCA components relative to the energy of the 1st component, across sets in the

YouTube Faces Database. The variation within sets is strongly dominated by the 1st nonlinear principal

component.

Robust samples

Original feature space

1D KPCA space

Fig. 9. Conceptual illustration of the proposed robust sample selection: (i) original exemplars are

projected onto their 1st kernel principal component, (ii) uniform sampling between the extreme pro-

jections is performed in the 1D kernel space, and (iii) the obtained samples are re-projected into the

original space (step not shown).
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Fig. 10. CDF of the error introduced by the proposed robust sample selection (10 samples were used)

in the exemplar based set method. Also see Figure 9.
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3 Evaluation299

In this section I report my evaluation of the proposed methods and discuss my findings. I start300

by describing the data set on which the evaluation was performed, consider the measures used301

to assess performance, summarize the evaluated baseline set representations and distances,302

and finally present and discuss the results.303

3.1 Evaluation data304

For evaluation I adopted the YouTube Faces Database [29] which contains sets of faces ex-305

tracted from YouTube videos. There are two key reasons which motivated this choice. Firstly,306

the manner in which this data set was collected and the nature of its contents are representa-307

tive of the conditions which the present work targets. In particular, the total amount of data308

is large (3425 face image sets of 1595 individuals, with the average set size of approximately309

181.3 faces or equivalently 620,953 faces in total), it was extracted from videos acquired in310

unconstrained conditions in which large changes in illumination, pose, and facial expressions311

are present, and the distribution of data is heterogeneous both with respect to the set sizes312

(48–6,070) as well as the number of sets (1–6) for each person in the database. The second313

reason lies in the reproducibility of results and the ease of comparison with alternatives in314

the literature – the database has been widely adopted as a standard benchmark and a number315

of standard face representations are provided ready for use. Full detail can be found in the316

original publication [29].317
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3.2 Performance evaluation318

As the cornerstone measure of retrieval performance I adopt the widely used average normal-

ized rank (ANR) [42, 43, 44]. In brief, ANR treats each retrieved datum as either matching

or not matching the query and computes the average rank of the former group, normalized

to the range [0, 1], with the ANR value of 0 corresponding to the best possible performance

(all matching data retrieved before any non-matching) and 1 the worst (all non-matching data

retrieved before any matching). Formally:

ANR(n, {r1, . . . , rc}) =

∑c
i=1 ri −m
M −m

(5)

where n is the database size, {r1, . . . , rc} the set of retrieval ranks corresponding to the data of

interest (i.e. data matching the query), andm andM respectively the minimum and maximum

possible values of the sum of r1, . . . , rc:

m =
c∑

i=1

i =
c× (c+ 1)

2
(6)

M =
n∑

i=n+1−c
i = c× 2n− c+ 1

2
(7)

In comparison with other common performance measures, such as the receiver operating319

characteristic (ROC) curve [45, 46], commonly used in verification and identification prob-320

lems (including Wolf et al. [29]), the average normalized rank more directly captures the321

ultimate aim of a retrieval algorithm. While a detailed discussion of this topic is outside of322

the scope of the present paper, note additionally that ANR reflects retrieval performance bet-323

ter too – it is possible, for example, for all possible retrievals on a data set to be best possible324

(correct matches always retrieved first) with the ROC curve exhibiting non-ideal behaviour.325
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3.3 Methods326

Motivated by the results reported by Wolf et al. which demonstrate its superiority over a327

number of alternatives and its well-understood behaviour, I adopt the standard local binary328

pattern (LBP) representation of individual faces [47]. Using LBP I consider two baseline set329

representations: (i) a set of LBP exemplars, and (ii) a linear LBP subspace, both of which330

were also evaluated by Wolf et al. The former simply stores all face exemplars (that is, the331

corresponding LBP vectors), while the latter uses principal component analysis to represent332

the main modes of the observed exemplar variation; previous work (e.g. [48]) suggests that333

for individual face sets 6-dimensional subspaces produce good results so this is the dimen-334

sionality I adopt too.335

I examine two baseline set similarity measures, again motivated by the reports of their good336

performance in the existing literature. The first of these is the maximum maximorum (‘max-337

max’) cosine similarity between sets of exemplars maxf1∈S1,f2∈S2 f
T
1 f2/‖f1‖/‖f2‖ which in338

the experiments of Wolf et al. [29] outperformed a number of alternatives including by a339

large margin the pyramid match kernel of Graumanand and Darrell [49] and the locality-340

constrained linear coding (LLC) of Wang et al. [50]. The second baseline comparison which341

I adopt for the comparison of sets represented as linear subspaces is the algebraic method342

based on the maximum correlation between pairs of vectors lying in two subspaces. This343

method too performed well in the experiments of Wolf et al. [29] as well as a number of other344

authors [? 52]. Thus in summary, the two adopted baseline methods are:345

• LBP + maximum maximorum set similarity, and346

• LBP + maximum correlation between subspaces.347

These are used to establish reference performance. They are then employed in the context of348

several different ways of applying the general principle of quasi-transitivity:349
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• Simple arithmetic mean based quasi-transitivity,350

• Simple geometric mean based quasi-transitivity,351

• Simple quadratic mean based quasi-transitivity, and352

• Proposed learnt quasi-transitivity (L-QTS)353

The first three methods in the list are simple combination rules. In the first of these, the arith-354

metic mean based quasi-transitivity, two set similarity of dissimilarity measures ρQP (query-355

proxy) and ρPT (proxy-target) are combined by computing their arithmetic mean i.e. 0.5 ×356

(ρQP +ρPT ). Similarly, in the geometric and quadratic mean based methods quasi-transitivity357

is attempted by computing respectively
√
ρQP × ρPT and

√
0.5ρQP

2 + 0.5ρPT
2 [53? ]. The358

proposed learnt quasi-transitivity (applied atop of both baseline methods) was evaluated us-359

ing different numbers of proxy sets (1–10) and as detailed in Section 2.4.2, ε-SV regression360

was learnt using the parameter values ε = 0.4 and c = 1000.361

3.4 Evaluation protocol362

I train the ε-SV regressor using 200 randomly selected sets and their proxies (which are363

not necessarily in the random 200). In principle there is no reason why the entire database364

would not be used (recall that no labelling or manual intervention is used whatsoever) but I365

found that 200 sets were sufficient to gather sufficient training data. Examples are shown in366

Figure 13; clear patterns are observable both within positive and negative training sets which367

differ one from another significantly.368

The evaluation of the methods described in the previous section was performed by examining369

all possible retrievals. In other words, I used every set in the database as the query in turn and370

evaluated the resulting retrieval. To make this feasible I also propose a robust sample selection371

method so as to reduce the computational demands of the otherwise computationally intensive372
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Fig. 11. CDF of the average normalized rank obtained using the exemplar based (a,b) and subspace

based (c,d) methods. (a,c) Comparison of the respective baseline approach, the three simple quasi–

transitivity estimation methods, and the proposed learnt quasi-transitivity.
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Fig. 12. CDF of the average normalized rank obtained using the exemplar based (a,b) and subspace

based (c,d) methods. (b,d) Comparison of the respective baseline approach and the corresponding

proposed method for different numbers of proxies.
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exemplar based baseline.373

3.4.1 Exemplar baseline: robust sample selection374

It is well established by the existing work on face recognition that the appearance of a face is375

constrained and thus confined to a region of the image space [? ]. Within this region, which376

is nonlinear, the appearance variation is mostly approximately smooth – this is sometimes377

somewhat loosely stated as the face appearance being constrained to a nonlinear appearance378

manifold [54, 31]. That being said, the range of appearance variation of a person’s face within379

a single video typically covers only a portion of the entirety of possible variation. It is a simple380

yet important observation that even within this range of appearance the underlying manifold381

is not uniformly sampled, e.g. a person may spend more time in a specific pose than in oth-382

ers. One consequence is that while largely redundant face exemplars of the densely sampled383

portions of the manifold add little new information about the appearance of the person’s face,384

they can dramatically increase the computational cost of set based comparisons. This is the385

case for example for face set based comparisons which utilize all sample pairs comparisons386

such as those based on the maximum maximorum similarity (i.e. all pairs maximum similar-387

ity) [55] or the maximum minimorum distance (a variation of the Hausdorff distance [56]).388

More worryingly, if a sample voting scheme is used [29], redundant exemplars can unduly389

affect the result even though they carry little additional information.390

I overcome both of the problems described above by employing a robust sample selection391

scheme. My starting point is the observation that although the intrinsic dimensionality of392

the entire face manifold is estimated to be in the range 15–22 [57], the appearance variation393

exhibited in a typical video clip is typically dominated by a single factor such as face yaw394

changes; the plot in Figure 8 corroborates this. Led by this insight I employ kernel principal395

component analysis (KPCA) [58] to project the original face exemplars onto their dominant396
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(b) Intra-class transitivity meta-features
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(c) Inter-class transitivity meta-features
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(d) Intra-class transitivity meta-features

Fig. 13. Training data for the exemplar based (a,b) and subspace based (c, d) experiments, in the form

of intra-class and inter-class transitivity meta-features. Feature are vectors comprising 5 similarities in

(1), and are shown using parallel coordinates [59].

nonlinear principal component, uniformly sample the resulting 1D space between the two397

projections of the two most extreme exemplars, and finally project them back into the orig-398

inal space. The process is illustrated in Figure 9. The plot in Figure 10 demonstrates that399

the proposed sample selection does not greatly affect inter-set similarities; a computational400

improvement of over 2.5 orders of magnitude (approximately 330 times) was achieved.401
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3.5 Results and discussion402

The main set of results from my experiments is summarized in the plots in Figure 11(a)403

and 11(b) which show the cumulative distribution functions of the ANR achieved for the two404

baseline methods and different quasi-transitivity approaches. Firstly note that the two base-405

line methods performed approximately equally well, which is consistent with the previous406

reports in the literature [29]. The three simple attempts at exploiting quasi-transitivity wors-407

ened performance significantly, save for the arithmetic mean based similarity combination for408

the subspace based baseline which effected neither an improvement nor deterioration. This409

confirmed the expectation expressed in Section 2.2 that the use of inter-personal similarities410

only is unlikely to be successful and that a richer set of similarity meta-features is needed in-411

stead. This leads us to the proposed method which in both cases effected a major performance412

improvement over both of the baselines. For example, while the exemplar based baseline pro-413

duced retrievals with the ANR less than 0.3 in 54.0% of the cases, the corresponding learnt414

quasi-transitivity did so in 72.5% of the cases (an improvement of 34%). Similarly, while the415

subspace based baseline produced retrievals with the ANR less than 0.3 in 54.9% of the cases,416

the corresponding learnt quasi-transitivity did so in 72.8% of the cases. It is particularly inter-417

esting to observe in how few cases the proposed method produced bad results (i.e. high ANR)418

– for both baselines my method achieved ANR lower than 0.5 for over 98% of retrievals. In419

contrast, the 98% quantile of the baseline methods corresponds to the ANR values of 0.92420

and 0.88 for the exemplar and subspace based methods.421

The effect of the number of proxies is summarized in Figure 12(a) and Figure 12(b). For both422

baselines performance improvement is immediately apparent even for the minimum number423

of a single (i.e. kp = 1) proxy per set. Interestingly, while in the case of the exemplar baseline424

the performance gradually improves up until kp = 5, staying approximately steady thereafter,425

the improvement using the subspace based baseline is much more dramatic and reaches its426
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peak (on par with the peak of the exemplar baseline) for kp = 1 already (ANR plots for427

different kp are virtually indistinguishable and require significant magnification). Although I428

are not sure of the exact mechanism that explains this behaviour, it does appear to be linked429

to the inherent properties of the subspace based baseline which is additionally supported by430

the observation that the within-class variability of the corresponding training meta-features is431

significantly smaller than for the exemplar based baseline; see Figure 13.432

Let us next turn our attention to the plot in Figure 14(a). It shows the proportion of retrievals433

(i.e. the empirical estimate of the corresponding probability) which result in at least one cor-434

rect match being retrieved in the top 100 ranked sets as a function of the total number of435

target sets in the database which correctly match the query. Plotted as solid blue and red436

lines are the results obtained using the proposed method (with 10 neighbours used as quasi-437

transitivity proxies) atop of the exemplar based baseline, and the baseline itself (as expected438

from Figures 11 and 12, the results for the subspace based method are similar and are thus439

not included to avoid unnecessary repetition). The plots also show predictions based on the440

methods’ performances for queries in which only a single correct match is present in the entire441

database. Specifically, starting from the estimate of the probability p1,100 of a correct match442

being retrieved in the top 100 ranked sets using queries where only a single correct match is443

possible, if different correct matches are ranked independently when k correct matches exist,444

the probability of at least a single correct match being retrieved in the top 100 is approxi-445

mately 1 − (1 − p1,100)
k. Since the greatest number of admissible queries (591 individuals446

in the database have only a single set; clearly these were not meaningful queries for perfor-447

mance evaluation), approximately 48%, has k = 1 this is a reasonable estimate to base the448

prediction on. The estimates are plotted as dashed blue and red lines.449

Figure 14(a) reveals interesting insight into the performance of the proposed method. Specif-450

ically, note that unlike the empirical plot of the baseline, the empirical plot of the proposed451

method grows faster with the number of retrievable sets than the corresponding prediction.452
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This means that the independence assumption underlying the prediction does not hold well,453

supporting the premise that quasi-transitivity of similarity can be used to improve the retrieval454

of sets poorly retrieved by the baseline by propagating information from similarly looking in-455

dividuals or sets of the same person which are acquired in less challenging conditions.456

Lastly, Figure 14(b) shows the average number of correct matches retrieved in the top 100457

ranked sets as a function of the total number of target sets in the database which correctly458

match the query. As before the plots also show the corresponding predictions based on the459

methods’ performances for queries in which only a single correct match is present in the460

entire database. Starting from n1,100 the average number of correct matches retrieved in the461

top 100 ranked sets using queries where only a single correct match is possible, if different462

correct matches are ranked independently when k correct matches exist, the expected number463

of correct matches in the top 100 is approximately k × n1,100. The improvement effected by464

the proposed method is again consistent and significant.465

4 Summary and conclusions466

In this paper I revisited the challenge widely seen as the central problem of face recognition:467

certain individuals, especially under particular imaging conditions, exhibit a high degree of468

similarity in appearance. Countering the general consensus across the face recognition com-469

munity, as well as intuition, I demonstrated that in some contexts – in particular, when the470

task is that of identity based retrieval from large and highly heterogeneous collections of face471

image sets – inter-personal similarity can be used to advantage, i.e. it can be utilized to effect472

an improvement in recognition performance. The idea is based on a statistical property of data473

at a large scale in the form of what I termed quasi-transitivity. I formalized this principle and,474

to demonstrate its effectiveness, described a specific framework that makes use of it. In par-475

ticular, I described a meta-algorithm which can be employed with any baseline set matching476
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Fig. 14. Rank-100: (a) probability of a correct match being retrieved, and (b) number of correct

matches retrieved, vs. number of matches in the database.

algorithm to improve its performance. The baseline method is used to extract meta-features477

which describe relationships between face sets in the database, which are in turn utilized to478

learn the form of the corresponding quasi-transitivity function. To facilitate this I also de-479

scribed a general method for automatic extraction of training data from a large, unlabelled480
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corpus. Finally, using a realistic, real-world data set I demonstrated the effectiveness of the481

introduced ideas empirically. My analysis shows impressive performance, thereby opening a482

breadth of possible avenues for future research. In particular I would encourage alternative483

approaches which make use of the concept of quasi-transitivity.484

A Extended canonical correlation analysis based baseline485

Recall that the key idea behind Extended Canonical Component Analysis (E-CCA) is to486

bridge the gap between subspace and probability density based representations of within set487

variability. The aim is to get the best of both worlds, so to speak, by combining seamlessly the488

advantages of both. More specifically, the main disadvantages of subspace representations lie489

in the need to make a hard decision on the possible loci of the corresponding patterns, and490

in turn, the discarding of all second order statistics. On the other hand, probability density491

based representations suffer from their over-reliance on the statistical representativeness of492

training data which is an assumption all but universally violated in practical applications of493

face recognition.494

The extraction of meta-features when E-CCA is adopted as a baseline bears a lot of simi-

larity to that of subspace based maximum correlation baseline described previously in Sec-

tion 2.4.1. As before, meta-feature training data is obtained using only face set pairs which

are now represented by the corresponding covariance matrices. To extract training transitivity

meta-features which correspond to same identity query-target comparisons, all reference set

exemplars fqt iterate through and used to obtain ftq and fpq by anisotropically scaling them
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them using respectively the reference and proxy covariances (as in the original work [33]):

ftq =
1

|Σq|
Σqfqt =

1

|Σq|
VqΛqV

T
q fqt, and (A.1)

fpq =
1

|Σq|
Σpfqt =

1

|Σp|
VpΛpV

T
p fqt. (A.2)

The most similar modes of variation, giving ftp and fpt are obtained as per the original work,

using eigen-decomposition:

ftp = eigv(Φpt, 1), and (A.3)

fpt = eigv(Φtp, 1), (A.4)

where Φpt =
√

Σq

√
Σt, Φtp =

√
Σt

√
Σp, and eigv(M, k) the k-th eigenvector of M.495

The extraction of training transitivity meta-features which correspond to differing identities496

query-target comparisons proceeds in exactly the same manner, with the difference that it is497

proxy set exemplars that are iterated through as fqt (as before also taken to be fqp). A single498

pair of reference and proxy sets gives us nr ‘positive’ training transitivity meta-features,499

where nr is the number of faces in the reference set, and np ‘negative’ training transitivity500

meta-features, where np is the number of faces in the proxy set. A single pair of reference501

and proxy sets thus gives us np ‘negative’ training transitivity meta-features.502
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