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Abstract

Convolutional Neural Network based action recognition methods have achieved

significant improvements in recent years. The 3D convolution extends the 2D

convolution from operating on one single frame to a video clip, so it is able to ex-

tract effective spatial-temporal features for better analysis of human activities in

videos. The 3D convolution, however, involves many more parameters than 2D

convolution. Thus, it is very expensive on computation, costly on storage, and

difficult to learn. In this work, we propose efficient asymmetric one-directional

3D convolutions to approximate the traditional 3D convolution. To improve

the feature learning capacity of asymmetric 3D convolutions, we design a set

of local 3D convolutional networks, i.e. MicroNets, to incorporate multi-scale

3D convolution branches. Then, we design an asymmetric 3D-CNN deep model

which is constructed by MicroNets for the action recognition task. Moreover, to

avoid training two networks on RGB and optical flow fields separately as most

works do, we propose a simple but effective multi-source enhanced input, which

fuses the useful information of the RGB frame and the optical flow field at the

∗Corresponding author
Email addresses: hao.yang@nlpr.ia.ac.cn (Hao Yang), cfyuan@nlpr.ia.ac.cn

(Chunfeng Yuan), bli@nlpr.ia.ac.cn (Bing Li), duyang2014@ia.ac.cn (Yang Du),
jlxing@nlpr.ia.ac.cn (Junliang Xing), wmhu@nlpr.ia.ac.cn (Weiming Hu),
sjmaybank@dcs.bbk.ac.uk (Stephen J. Maybank)

Preprint submitted to Pattern Recognition February 28, 2018



pre-processing stage.

We evaluate our asymmetric 3D-CNN models on two of the most challenging

action recognition benchmarks, UCF-101 and HMDB-51. Our model outper-

forms all the traditional 3D-CNN models in both effectiveness and efficiency,

and is comparable with the recent state-of-the-art action recognition methods

on both benchmarks.

Keywords: Asymmetric 3D Convolution; MicroNets; 3D-CNN; Action

Recognition.

1. Introduction

In recent years, Convolutional Neural Networks (CNNs) have achieved great

success and become the mainstream method in many computer vision tasks,

such as image classification [1, 2, 3, 4], object detection [5, 6, 7], semantic

segmentation [8, 9, 10], and human action recognition [11, 12, 13, 14]. From5

these great improvements, several practices have been drummed in designing

deep convolutional networks. First, information bottlenecks should be avoided

when the representation size slowly decreases from the input to the output

and the number of feature channels should be increased with the depth of the

network. Second, the receptive fields at the end of the network should be large10

enough so that the processing units can base their operations on larger regions

of the input. Large receptive fields can be achieved by stacking many small

filters or by using large filters. Notably, the first choice can be implemented

with fewer parameters and operations, and also allows inclusion of complex

nonlinearity. Third, dimension reduction before aggregating filter is supported15

by the fact that outputs of neighboring filters are highly correlated and therefore

the activation can be reduced before aggregation.

To accelerate the training and inference of 2D convolutional networks, many

methods [15, 16, 17, 18, 19, 20] have been proposed in recent years. The linear

structure in convolutional filters is exploited in the construction of approxima-20

tions to the convolutional filters [15, 16, 17]. These methods [15, 18] flatten
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Figure 1: Illustration of three types of 3D convolutional operations: (a) the traditional 3D

convolution, (b) the factorized spatial-temporal convolution proposed in FstCN [21], and

(c) our asymmetric 3D convolutions. Our asymmetric 3D convolutions have many fewer

parameters and operations than (a) and (b).

2D convolutional filters into a sequence of one-dimensional filters across spatial

domain and channels. In [19], the 2D convolution is divided into two phases,

namely in-channel convolution and across-channel linear projection. Moreover,

the sparse regularity is introduced in training by [20] to remain the sparsity in25

convolutional filters, which decreases the computational cost of 2D convolution.

The 3D convolutional networks [22, 23] naturally extend the 2D convolution-

al network to the 3D spatial-temporal domain to better analyze human activi-

ties. The traditional 3D convolution is illustrated in Figure 1(a). However, 3D

convolution is very expensive to compute, because a 3D convolution with k pa-30

rameters in each direction requires one order more weights to be learned than 2D

convolution (k3 VS k2). Additionally, a 3D convolutional deep model requires

much more training data than a 2D convolutional deep model to be effectively

trained, and obtaining the annotations of video data is much more costly than

that of images. Last but not least, the 3D convolutional networks cannot be35

fine-tuned from a model pre-trained on the large-scale ImageNet dataset [24] as

2D-CNN based action recognition methods [11, 25, 26]. To decrease the number
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of parameters and the computational cost of the 3D convolution, the FstCN [21]

approximates a 3D convolutional layer by several 2D convolutional layers. The

former 2D convolutional layers operate on the spatial domain and the last one40

operates on the temporal domain, as simply illustrated in Figure 1(b). The

FstCN model is the first attempt to accelerate the traditional 3D convolution

and it reduces the parameters and computational cost effectively of traditional

3D convolution from cubic to quadratic (2k2 VS k3). But there is a large s-

pace to reduce the parameters and the computational cost of the traditional 3D45

convolution further.

In this paper, inspired by the linear approximation of 2D convolution [15, 18],

we exploit three cascaded asymmetric one-directional 3D convolutions to ap-

proximate a traditional 3D convolution with the same size of receptive field, to

accelerate the traditional 3D convolution further, as shown in Figure 1(c). These50

asymmetric 3D convolutions decrease the number of parameters and computa-

tional cost significantly (3k VS k3). Moreover, we propose several local 3D con-

volutional networks, referred as MicroNets, which incorporate the asymmetric

3D convolutional layers with traditional 3D convolutional layers in multi-scale

branches, to improve the representational ability of the asymmetric 3D con-55

volutional layers without increasing the computational cost. Finally, following

the practices in designing deep networks, we construct an efficient and effective

3D-CNN deep model by stacking several MicroNets. Our asymmetric 3D-CNN

deep model has fewer weights, lower computational complexity, and stronger

representative ability than traditional 3D-CNN models. Thus, it is more easily60

trained on video datasets which are usually too small for training traditional

3D-CNN models.

Additionally, we further propose an effective multi-source enhanced input

for action recognition. Previous 2D-CNN based action recognition methods

[11, 26, 27, 12] usually train two deep convolutional networks individually: the65

SpatialNet is trained on RGB frame and the TemporalNet is trained on stacked

optical flow fields (Flow). The softmax scores of the two deep convolutional net-

works are fused to achieve a better classification performance. However, training
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two convolutional deep models individually not only is costly on computation,

but also does not allow end-to-end training of the whole model to better exploit70

the correlations between the appearance features and motion features. To over-

come these limitations, we propose an effective multi-source enhanced input by

incorporating useful information of the RGB and Flow frames. The enhanced

input decreases computational cost by avoiding training two networks separate-

ly. It improves classification performance significantly from individual network75

fed with RGB and Flow respectively and achieves competitive performance with

the results obtained by fusing the outputs of SpatialNet and TemporalNet.

The main contributions of this work are summarized as follows:

• We propose asymmetric 3D convolutions to approximate the traditional

3D convolution. The asymmetric 3D convolutions decrease parameters80

and computational cost significantly.

• To improve the feature learning capacity of asymmetric 3D convolutional

layers, we propose the local 3D convolutional MicroNets which incorporate

multi-scale convolutional features.

• Based on the MicroNets, we design asymmetric 3D convolutional deep85

model which outperforms the tradition 3D-CNN models on both effective-

ness and efficiency.

• We propose the multi-sources enhanced input to decrease the computa-

tional cost further by avoiding training two deep networks individually.

2. Related Works90

Action recognition, classifying actions from trimmed videos, is a very chal-

lenging domain and has long been an active research topic in computer vision,

with many applications such as intelligent surveillance, human-computer inter-

action, robot, etc. In recent decades, researchers have proposed many methods

to analyze human actions. In particular, deep learning based methods have out-95

performed traditional action recognition methods by a wide margin in recent
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years. We review briefly the traditional action recognition methods and deep

learning based action recognition methods.

2.1. Traditional Methods for Action Recognition

In the past decades, researchers have elaborately designed many handcraft-100

ed features to represent videos or actions [28, 29, 30, 31, 32, 33]. The Spatial-

Temporal Interest Points (STIPs) [28] extend the Harris corner detector [34] to

3D spatial-temporal domain, which is appropriate to search for interest points

in videos. The Histogram of Gradients (HOG) [35] and the Histogram of Op-

tical Flows (HOF) [36] features are widely used to describe the STIPs. The105

Sparse Spatio-Temporal Features [29] improve the 3D Harris detector by ap-

plying Gabor filtering in the spatial and temporal dimensions separately. The

scale-invariant STIPs [30] generalize the SURF descriptors [37] by computing a

weighted sum of space-time Haar-wavelets in grid cells. Similarly, the 3D-SIFT

descriptor [31] is the spatial-temporal extension of the SIFT [38] for human ac-110

tion recognition. The dense trajectories methods [32, 33] handle space and time

differently by tracking densely sampled interest points through video sequences.

The resulting trajectories and the aligned space-time volumes are used to rep-

resent the videos. These methods, combined with local HOG, HOF and MBH

descriptors have achieved the best performance among handcrafted features.115

However, it is difficult to transfer these handcrafted features from one training

dataset to another.

2.2. CNN based Methods for Action Recognition

Inspired by the great success of deep convolutional models in many com-

puter vision tasks [3, 4, 6, 8], many CNN based methods have also been pro-120

posed for action recognition [39, 11, 12, 13]. The Slow Fusion model [39] is

proposed to fuse spatial and temporal information at multiple semantic levels.

Although this model is fed with multiple continuous RGB frames, it cannot

learn the dynamic motion features, because the temporal information collapses

after the first 2D convolutional layer according to [23]. The Two-stream model125
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[11] learns the appearance features and dynamic motion features using two in-

dependent networks, i.e. SpatialNet which is trained on single RGB frame to

extract appearance features, and TemporalNet which is trained on ten contin-

uous Flow frames to extract dynamic motion features. The confidence scores

of SpatialNet and TemporalNet are fused in order to classify actions. The Fu-130

sion Two-stream model [27] demonstrates that the appearance features and the

motion features being fused after the last convolutional layer achieves the best

performance. The very deep two-stream model [25] exploits a very deep convolu-

tional network, i.e. VGG-16 [2], as a backbone of SpatialNet and TemporalNet,

to improve the performance of action classification. Based on the very deep135

two-stream model [25], the Temporal Segment Network (TSN) [12] splits each

input video into three segments in the temporal domain and trains a very deep

SpatialNet and a TemporalNet for each segment. The final fusion of the six

networks achieves the current state-of-the-art performance in action recogni-

tion. Trajectory-Pooled Deep-Convolutional Descriptors (TDD) [40] combine140

deep convolutional features extracted from Two-stream model [11] with dense

trajectory features using a trajectory centered pooling method. Although these

2D-CNN models are good at extracting spatial appearance features from sub-

jects and backgrounds, it is difficult to learn the motion features required for

action recognition.145

2.3. RNN based Methods for Action Recognition

Recurrent Neural Network (RNN) models [41, 42] are effective in capturing

temporal information because the current prediction is not only based on the

current observation but the past information stored in hidden states. For this

reason, RNN models are widely applied in action recognition to model the mo-150

tion features in videos. The general pipeline for RNN based action recognition

methods [43, 44, 26, 45] begin with extraction of frame-wise features using a

CNN model. Then the frame-wise features are fed to LSTM layers for classifi-

cation. Following this pipeline, Baccouche et al. [44] utilize a 3D-CNN model to

extract spatial-temporal features. The Beyond Short Snippets [45] models the155

7



full length content of the videos to produce large performance improvements

over previously results. The Two-stream LSTM [46] stacks multiple LSTM lay-

ers to capture dynamic information in a hierarchical manner. The two feature

streams, i.e., convolutional feature stream and pooled feature stream, commu-

nicate with each other in training. LSTM based attention models [47, 48] are160

capable of capturing where the model should pay attention to in each frame

of the video sequence when classifying actions. A soft attention mechanism is

utilized in [47]. The focus of attention varies throughout the video sequence.

Learning such attention weights through back-propagation is a computationally

demanding task, because all possible combinations of input and output have to165

be checked.

2.4. 3D-CNN based Methods for Action Recognition

The 3D-CNN model [22] extends a 2D convolution to include temporal do-

main, to extract spatial-temporal features for action recognition. The 3D-CNN

model abstracts spatial-temporal information naturally at multiple semantic lev-170

els from videos. The C3D model [23] is pre-trained on a large-scale video dataset

to learn general features which are used to train a linear SVM for action clas-

sification. The T-CNN [49] extends the R-CNN [5] from detecting objects in

images to detecting actions in videos. It replaces the last Max-pooling layer of

the C3D model [23] with TOI pooling layer and improves the action recogni-175

tion performance obviously. These 3D convolutional deep models are typically

learned within a short snippet of the video, so they fail to model actions over

their full temporal extent. The LTC-CNN model [50] operates on longer tem-

poral extents of videos in order to improve the accuracy of action recognition.

The I3D [51] proposes a very deep Inflated 3D-CNN model by extending the180

Inception model [3] to 3D to extract spatial-temporal features of actions. The

I3D model is pre-trained on the very large and well-trimmed Kinetics video

dataset and achieves a great improvement for action recognition. To avoid us-

ing computationally expensive 3D convolutions, the Factorized spatial-temporal

Convolutional Network (FstCN) [21] extracts spatial-temporal features by in-185
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troducing a Transformation-Permutation layer to convert the 3D convolutional

layer into several 2D convolutional layers operating on spatial domain followed

by one 2D convolutional layer operating on temporal domain. However, the

FstCN model may be difficult to learn effective spatial-temporal features, giv-

en that there is only one temporal convolutional layer followed behind several190

spatial convolutional layers.

3. Proposed 3D Convolutional Model

In this section, we propose a video-friendly asymmetric 3D convolutional

deep model. Firstly, we introduce an asymmetric one-directional 3D convolu-

tional layer, and compare it with traditional 3D convolutional layer taking into195

account the number of parameters and computational cost. Then the efficient

asymmetric 3D convolutional layers are used to construct local 3D convolutional

networks which are the building blocks of our asymmetric 3D-CNN deep mod-

el. Subsequently, the architecture of the asymmetric 3D-CNN deep model is

presented. Finally we proposed the multi-source enhanced input to train the200

3D-CNN deep model easily.

3.1. Asymmetric 3D Convolution

The 3D convolution is very effective in extracting spatial-temporal features

from videos for action recognition [22, 52, 44, 23, 50]. The weights of a 3D

convolution are denoted as 5-dimensional filters: F ∈ RN×C×T×H×W , where

C is the number of input channels, T , H and W are the temporal length,

height and width of the 3D convolutional kernel respectively, and N is the

number of convolutional filters or output channels. The input video volume or

internal convolutional feature volumes is denoted as V ∈RC×L×X×Y , where L,

X and Y are the temporal length and spatial height and width of input volume.

The operation of each 3D convolutional filter Ff ∈RC×T×H×W , f = 1, ..., N is
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formulated as:

Φf (l, x, y) = V ∗ Ff (1)

=

C∑
c=1

T∑
t=1

H∑
h=1

W∑
w=1

V (c, l − t, x− h, y − w)Ff (c, t, h, w), (2)

where l = 1, ..., L, x = 1, ..., X and y = 1, ..., Y , as shown in Figure 1(a).

Without loss of generality, we suppose the output feature volumes as V ′ ∈

RN×L×X×Y . So the number of parameters of the traditional 3D convolutional205

filters is C(THW )N and the number of multiplications is C(THW )N(LXY ),

which are dramatically larger than the corresponding numbers for 2D convolu-

tional filters. As a result, 3D convolutional networks have a much higher com-

putational cost and require many more training videos than 2D convolutional

networks.210

In order to alleviate the drawbacks of traditional 3D convolution, we pro-

pose an efficient asymmetric 3D convolution by approximating each traditional

3D convolutional filter using three cascaded asymmetric 3D convolutional filters

operating on three different directions, as shown in Figure 1(c). Correspond-

ing to Equation 2, the operations of asymmetric 3D convolutional filters are

formulated as:

Φαf (l, x, y) = V ∗ Fαf =

C∑
c=1

H∑
h=1

V (c, l, x− h, y)Fαf (c, 1, h, 1), (3)

Φβf (l, x, y) = Φαf ∗ Fβf =

D∑
αf=1

W∑
w=1

Φαf (l, x, y − w)Fβf (αf , 1, 1, w), (4)

Φγf (l, x, y) = Φβf ∗ Fγf =

M∑
βf=1

T∑
t=1

Φβf (l − t, x, y)Fγf (βf , t, 1, 1), (5)

Φ̂f (l, x, y) = V ∗ F̂f = ((V ∗ Fαf ) ∗ Fβf ) ∗ Fγf , (6)

where αf = 1, ..., D, βf = 1, ...,M and γf = 1, ..., N . In Equation 6, Φ̂f (l, x, y)

denotes the approximated 3D convolutional feature volume. Equations 3, 4 and

5 define the asymmetric 3D convolution operating on height, width and temporal

directions respectively. The numbers of parameters and multiplications of our
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Figure 2: Illustration of (a) approximating the 3×3×3 3D convolutional layer to three asym-

metric 3D convolutional layers with same size of receptive field and (b)factorizing the group

of two 3×3×3 3D convolutional layers to three asymmetric 3D convolutional layers without

reducing the receptive field of 3D-CNN deep model.

approximated 3D convolution are sums of the three asymmetric 3D convolutions215

defined in Equation 3, 4 and 5, respectively. The sums are CHD + DWM +

MTN convolutional parameters and (CHD+DWM +MTN)(LXY ) multipli-

cations. If D = M = N , then the total number of convolutional parameters is

C(H+W +T )N and the number of multiplications is C(T +H+W )N(LXY ),

which are decreased by two orders, compared with the totals C(THW )N and220

C(THW )N(LXY ) for traditional 3D convolution.

More specifically, we approximate the traditional 3×3×3 3D convolutional

layer which is widely used in the previous 3D-CNN models [22, 23, 50] using

the proposed asymmetric 3D convolutions, i.e. three cascaded asymmetric 3D

convolutional layers with kernel sizes of 1×3×1, 1×1×3 and 3× 1× 1. As225

illustrated in Figure 2(a), three cascaded asymmetric 3D convolutional layers

have same size of receptive field with the traditional 3D convolutional layer, but

they are more efficient due to much fewer convolutional parameters.
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Then, if we approximate each 3×3×3 3D convolutional layer in a traditional

3D-CNN deep models with three asymmetric 3D convolutional layers in the230

same way, for example, the C3D model will be equivalent to a very deep 3D

convolutional network with 24 asymmetric 3D convolutional layers and it will

be very efficient in computation. However, it is difficult to train the very deep

asymmetric 3D convolutional network. In this paper, we group together adjacent

two traditional 3×3×3 3D convolutional layers and then approximate the group235

of convolutional layers by three asymmetric 3D convolutional layers with kernel

sizes of 1×5×1, 1×1×5 and 3×1×1 respectively. From the Figure 2 (b), it can

be seen that the group of two traditional 3D convolutional layers and the three

asymmetric 3D convolutional layers have the same size of receptive field.

Why not using 5×1×1 asymmetric 3D convolutional layer in the temporal240

domain? Generally, we expect the receptive field in the last layer of a 3D

convolutional network as large as possible. To compare with 3D-CNN models

[21, 23, 49] fairly, we feed a clip of 16 frames into the deep model. Using the

kernel sizes of 5×1×1 and 3×1×1, the receptive fields at the end of the 3D

deep network are both larger than 16 in the temporal domain, but the former245

will introduce more parameters and computational cost. So the kernel size of

5×1×1 is unnecessary for our asymmetric 3D convolutional network. In our

experiments, the asymmetric 3D convolutional layers with kernel sizes of 1×5×1,

1×1×5 and 3×1×1 are appropriate to an input video volume in which the spatial

dimensions are much larger than temporal duration. In theory, we could go even250

further that the sizes of k1, k2 and k3 in asymmetric 3D convolutional layers

could differ from each other, i.e. k1 6=k2 6=k3, and they depend on the dimension

of input data. Besides, this approximation method could be extended to higher

dimensional convolutions easily.

3.2. 3D Convolutional MicroNets255

Inspired by the Inception architecture [3], we design several local asymmetric

3D convolutional networks, i.e. MicroNets, to enhance the effectiveness of the

asymmetric 3D convolutional layers. These local networks concatenate multi-
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Figure 3: The four variants of local 3D convolutional MicroNets.

scale 3D convolution paths to handle the difference scales of spatial-temporal

features in videos. Four variants of MicroNets are shown in Figure 3. The260

MicroNet-M1 is the base model of local 3D convolutional networks. It only

involves traditional 3D convolutional layers following 3D linear layers with a

kernel size of 1×1×1. The 3D linear layers decrease the dimension of the last

concatenated layer and avoid introducing representational bottlenecks. The

MicroNet-M1 is more powerfully representative without increasing computa-265

tional cost compared with the traditional 3D convolutional layer.

We further design other variants of local 3D convolutional MicroNets by

incorporating the proposed asymmetric 3D convolutional layers to improve the

effectiveness and efficiency, as shown in Figure 3. MicroNet-M2 replaces the

two traditional 3×3×3 3D convolutional layers in the left column of MicroNet-270

M1 by three cascaded asymmetric 3D convolutional layers with kernel sizes
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Figure 4: The layout of the asymmetric 3D-CNN deep architecture. The details of MicroNets

structure and parameters are shown on the right column.

of 1×5× 1, 1×1×5 and 3×1×1. MicroNet-M3 replaces the traditional 3×

3×3 3D convolutional layer in the middle column of MicroNet-M1 by three

asymmetric 3D convolutional layers with kernel sizes of 1×3×1, 1×1×3 and

3× 1× 1. To compare with MicroNet-M2 and MicroNet-M3, we design the275

MicroNet-M4, which replaces both the left and middle column of MicroNet-M1

with asymmetric 3D convolutional layers respectively. These MicroNets are

representative and efficient for action recognition and they will be used as the

building blocks of our 3D convolutional deep model.
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Table 1: The numbers of parameters and multiplications in each convolutional layer of the

C3D [23] and its proportion in all the 3D convolutional layers.

Layers Parameters/proportion multiplications/proportion

Conv1 0.005M (0.02%) 1.04B (1.96%)

Conv2 0.22M (0.80%) 11.09B (20.93%)

Conv3 2065M (9.48%) 31.12B (58.75%)

Conv4 10.62M (38.41%) 8.33B (15.73%)

Conv5 14.16M (51.21%) 1.39B (2.62%)

Total 27.65M 52.97B

3.3. Asymmetric 3D Convolutional Deep Model280

Based on the asymmetric 3D convolutional MicroNets, we design an asym-

metric 3D-CNN model. It stacks several local 3D convolutional MicroNets on

traditional 3D convolutional layers, followed by two fully connected layers. The

layout of our asymmetric 3D-CNN deep architecture is shown in Figure 4.

As shown in Table 1, the number of parameters the Conv1 and Conv2 layers285

is only 0.82% in that of all convolutional layers and the multiplications of the

two layers are about 23% in that of all convolutional layers. So the numbers

of parameters and multiplications of the first two layers only occupy a little

part in the 3D-CNN deep model. To achieve a good trade-off between accuracy

and complexity, we use two traditional 3×3×3 3D convolutional layers with290

the input size of 16×112×112 in front of the asymmetric 3D convolutional

deep network. The first two layers are followed by two local 3D convolutional

MicroNet-M2 with input sizes of 8×28×28 and 4×14×14 respectively. The

final local convolutional network is MicroNet-M3 with the input size of 2×7×7.

Following each group of 3D convolutional layers, a 3D Max-pooling layer is used295

to decrease the spatial-temporal resolution of feature volumes as well as double

the number of feature maps to avoid introducing representational bottleneck

into the deep network. Following the last Max-pooling layer, two fully connected

layers and one Softmax layer are employed for prediction.
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Additionally, the output channels and kernel size of convolutional layers are300

shown in Figure 4. The non-linear activation function is set as the rectified

linear unit in our deep architecture. The stride of each convolutional layer

in our model is set as one, and an appropriate padding is used for each 3D

convolutional layer to keep the output size of each convolutional layer same

with the input size. The kernel sizes and strides of all 3D Max-pooling layers305

are set as 2 × 2 × 2 except the first Max-pooling layer with the kernel size of

1× 2× 2.

3.4. Multi-source Enhanced Input

In order to effectively model the dynamic information of actions and avoid

training two deep networks on RGB and Flow frames separately, we propose a310

multi-source enhanced representation of each video frame, called RGBF, which

fuses the useful information in the RGB and Flow frames. Firstly, we pre-

compute the Flow from successive RGB frames by the method in [53]. The Flow

is recorded in the form of traditional images, using the horizontal and vertical

components of Flow as the first two channels of the frame and the magnitude315

of Flow as the third channel of the Flow frame. Then, we linearly re-scale the

Flow magnitude to a range of [0, 1] to give a movement confidence map which

indicates the possibility of where the movement occurs. i.e., if the value of Flow

magnitude is large, there is a great possibility of movement occurring, vice versa.

The RGBF frame is generated by multiplying each channel of the RGB frame320

with the corresponding movement confidence map. Formally, the RGBF input

at the pixel (x, y) in a frame is computed as:

RGBFx,y,c = RGBx,y,c ×
|F |x,y − |F |min

|F |max − |F |min
, (7)

where c = 1, 2, 3. |F |x,y denotes the Flow magnitude at pixel (x, y). |F |max and

|F |min denote the maximum and minimum of Flow magnitude in the frame.

We show several examples of RGB, Flow, and the enhanced RGBF frames on325

the UCF-101 and HMDB-51 benchmarks in Figure 5. For each dataset, there are

three rows which present the RGB, Flow and RGBF frames from top to bottom

16



Figure 5: The comparison of the RGB, Flow and enhanced RGBF frames from the UCF-101

and HMDB-51 datasets.

respectively. It can be seen that the RGBF frame highlights the motion related

parts and restrains the redundant information compared with the RGB frame.

The RGBF frame also contains useful appearance information about motion330

regions in the image compared with the Flow frame. The enhanced RGBF

frames enable the 3D-CNN deep model easily learn effective spatial-temporal

features for action recognition.

4. Experiments

4.1. Datasets335

The asymmetric 3D-CNN deep models were tested on two of the most chal-

lenging datasets, UCF-101 and HMDB-51. UCF-101 [54] is a dataset of realistic

action videos, collected from YouTube, having 101 action categories with 13320

videos (27 hours in total). UCF-101 dataset has the largest diversity in terms

of actions and large variations in camera motion, object appearance and pose,340

object scale, viewpoint, cluttered background, illumination conditions, etc. We

reported the average accuracy of the three standard splits provided in [54].

HMDB-51 dataset [55] is a large realistic collection of videos from movies and

the web. It contains 6849 clips divided into 51 action categories. We used
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Figure 6: The two 3D-CNN baseline models to compare with the proposed asymmetric 3D-

CNN model, where the baseline model (a) is denoted as c3d-b8 and the baseline model (b) is

denoted as c3d-b5.

the raw videos without stabilization and reported the average accuracy of the345

three splits provided by [55]. Additionally, to initialize our 3D-CNN deep model

carefully, we pre-trained our model on a large-scale FCVID [56] dataset, which

contains 91223 web videos annotated manually into 239 categories. We discard-

ed categories, such as places, animals and scenes, which do not involve obvious

movements. Finally, we used about 75K videos distributing over 170 categories.350

4.2. Baselines

we used two 3D-CNN deep models constructed with only traditional 3D

convolutional layers as the baselines to compare with our asymmetric 3D-CNN

models. The first baseline is the C3D model [23], which involves 8 3D convolu-

tional layers, 5 Max-pooling layers, and 2 fully connected layers, referred as c3d-355

b8. The architecture and super-parameters of the c3d-b8 are shown in Figure

6(a). The second baseline is a reduced 3D-CNN model obtained by deleting the

conv3b, conv4b and conv5b convolutional layers from the C3D model and halv-

ing the number of channels of last two convolutional layers and fully connected

layers. The reduced baseline model is denoted as c3d-b5 and its architecture360

and super-parameters are shown in Figure 6(b).
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4.3. Experimental Settings

The asymmetric 3D-CNN deep models are trained using randomly selected

clips with 16 frames in each clip. Each frame in the clip is resized to 128× 171

and is cropped into 112× 112 spatially. Horizontal flipping and corner cropping365

are used to prevent over-fitting. We train the models by Stochastic Gradient

Descent (SGD) with batch size of 16. The momentum and weight-decay are set

as 0.9 and 0.0005 respectively. In pre-training on the FCVID video dataset, all

frames are cropped and resized to 256× 320 spatial size. The base learning rate

is set as 0.001 and it is divided by 5 for every 15 epochs. The training is stopped370

at 50 epochs. In finetuning on the UCF-101 and HMDB-51 datasets, the base

learning rate is set as 0.0001 and is divided by 10 for every 8 epochs. The deep

models are trained for 20 epochs in total.

In tests, firstly, 25 test clips are sampled from each test video with equal

intervals and each clip consists of continuous 16 frames. Then, each frame in375

the clip is resized to 128× 171 and then is cropped to obtain the ten standard

112×112 crops, i.e. one center and four corners with horizontal flippings, in the

spatial domain. Finally, the average score of all the 250 crops from one video is

used to predict the action label.

4.4. Evaluation of Asymmetric 3D Convolution380

We designed two groups of experiments to evaluate the effectiveness and

efficiency of the asymmetric 3D convolution. In the first group experiments,

we converted the third, fourth and fifth 3D convolutional layers of the baseline

c3d-b5 to three cascaded asymmetric 3D convolutional layers, i.e. 1×3×1, 1×1×3

and 3×1×1, to obtain seven asymmetric 3D-CNN variants. The names of these385

asymmetric 3D-CNN variants are prefixed with “b5”, and the last numbers

in the model names denote the traditional 3D convolutional layers which are

replaced by asymmetric 3D convolutional layers, as reported in Table 2. For

example, the “b5-asyConv34” denotes the network in which the third and fourth

3D convolutional layers in the baseline c3d-b5 are replaced by asymmetric 3D390

convolutional layers. Similarly, to compare with the deeper 3D-CNN baseline
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Table 2: Two groups of comparison results between the traditional 3D-CNN with their four

asymmetric 3D-CNN variants on the UCF-101 dataset.

Models Parameter Numbers Accuracy Speed (s/iter)

c3d-b5 17.44M 45.4% 1.10

b5-asyConv3 17.05M 46.7% 0.85

b5-asyConv4 16.26M 46.5% 0.94

b5-asyConv5 16.26M 47.2% 0.94

b5-asyConv34 15.87M 45.7% 0.82

b5-asyConv35 15.87M 46.2% 0.82

b5-asyConv45 15.08M 46.9% 0.83

b5-asyConv345 14.69M 45.2% 0.81

c3d-b8 78.40M 42.3% 1.28

b8-asyConv3 76.43M 44.3% 0.99

b8-asyConv4 70.53M 44.7% 1.00

b8-asyConv5 67.65M 45.3% 1.03

b8-asyConv34 68.56M 42.9% 0.95

b8-asyConv35 65.68M 43.2% 0.97

b8-asyConv45 59.78M 44.1% 0.97

b8-asyConv345 57.82M 42.3% 0.93

model c3d-b8, the third, fourth and fifth groups of 3D convolutional layers of the

c3d-b8 are replaced with three cascaded asymmetric 3D convolutional layers,

i.e. 1×5×1, 1×1×5 and 3×1×1. As reported in Table 2, there are seven

asymmetric 3D-CNN models extended from the baseline c3d-b8. The names395

of these seven asymmetric 3D-CNN variants are prefixed with “b8”, and the

last numbers in the model names denote the traditional 3D convolutional layers

which are replaced by asymmetric 3D convolutional layers.

All the models above were trained from scratch on the UCF-101 dataset.

The classification accuracy, the number of parameters and the training speed of400

the models are reported in Table 2. 1) The proposed asymmetric 3D-CNN mod-
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els outperform their baseline c3d-b5 and c3d-b8 models. Particularly, the b5-

asyConv5 asymmetric 3D-CNN model outperforms the c3d-b5 model by 1.8%

and the b8-asyConv5 achieves the improvement of 2% over the c3d-b8 model.

It indicates that replacing the traditional 3D convolutional layers with the pro-405

posed asymmetric 3D convolutional layers is effective for action recognition. 2)

The models using asymmetric 3D convolutional layers in higher layers are usu-

ally better than these models which use the asymmetric 3D convolutional layers

in lower layers. For example, the b5-asyConv5 outperforms the b5-asyConv3

and b5-asyConv4 models, and the b8-asyConv5 outperforms the b8-asyConv3410

and b8-asyConv4 models. These results prove that using the asymmetric 3D

convolutional layers in higher layers is more effective than using them in lower

layers. 3) Increasing the asymmetric 3D convolutional layers in the 3D-CNN

models cannot improve the performance of the asymmetric 3D-CNN further.

For example, the b5-asyConv345 model cannot outperform its baseline model.415

It is probably because that increasing the asymmetric 3D convolutional layers

will increase the depth of the models and the deeper models are more difficult

to train from scratch.

Additionally, the average training times for each iteration of the models are

reported in Table 2. All models were trained with the same GPU and batch420

size. The only difference is the model architecture. The training speed of the

asymmetric 3D-CNN models is much higher than that of the baseline models.

For example, the b5-asyConv3 is faster than the c3d-b5 model by 29% and the

best performance b8-asyConv5 model improves the speed of the baseline model

by 25%. So our asymmetric 3D convolutional layers are more efficient than the425

traditional 3D convolutional layer.

4.5. Evaluation of Asymmetric 3D Convolutional MicroNets

To evaluate the effectiveness of the proposed four local 3D convolutional Mi-

croNets, we designed four 3D-CNN deep models by converting the conv5 layer

of the c3d-b5 model to one of the MicroNets. The resulting asymmetric 3D430

convolutional networks are denoted by b5-M1, b5-M2, b5-M3 and b5-M4. All
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Table 3: Evaluating the effectiveness of the proposed four 3D convolutional MicroNets on the

UCF-101 dataset.

Models Paramter Numbers Accuracy

c3d-b5 17.43M 45.7%

b5-asyConv5 16.26M 47.2%

b5-M1 16.07M 46.6%

b5-M2 16.04M 48.1%

b5-M3 15.87M 47.5%

b5-M4 15.84M 45.8%

the models are trained from scratch on the UCF-101 dataset. As shown in Table

3, the four asymmetric 3D-CNN models outperform the baseline c3d-b5 model.

The b5-M2 model achieves the best performance among the four 3D-CNN vari-

ants and it outperforms the c3d-b5 model by over 2%. Therefore, adding the 3D435

convolutional MicroNets to the baseline model yields an obvious improvement.

Additionally, compared with the best performance b5-asyConv5 model in Table

2, the b5-M2 and b5-M3 models both outperform the b5-asyConv5 model. The

MicroNets are thus more effective than a simply cascaded of asymmetric 3D

convolutional layers. The MicroNet-M2 and MicroNet-M3 local networks will440

be used in the asymmetric 3D-CNN deep models later.

Table 4: Evaluating the performance of three asymmetric 3D-CNN variants, finetuned on the

UCF-101 dataset.

Models Accuracy

c3d-b8 84.6%

Asymmetric 3D-CNN (M2) 86.2%

Asymmetric 3D-CNN (M3) 85.1%

Asymmetric 3D-CNN 86.4%
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Figure 7: Evaluating the performance of the asymmetric 3D-CNN deep model fine-tuned on

UCF-101 and HMDB-51 datasets with three kinds of inputs.

4.6. Evaluation of Our 3D-CNN Model and the RGBF Input

To avoid over-fitting of our 3D-CNN deep models caused by training on the

limited quantity of videos, we pre-trained our 3D-CNN models on the large-scale

FCVID video dataset. Subsequently, all the layers were fine-tuned on the target445

dataset with a ten times higher learning rate for the last fully connected layer.

Firstly, based on the conclusion in previous experiments, we designed our

asymmetric 3D-CNN deep model, denoted as Asymmetric 3D-CNN, which has

been described in detail in Section 3 and Figure 4. We compared the Asymmet-

ric 3D-CNN with two variants of asymmetric 3D-CNN deep models, i.e. Asym-450

metric 3D-CNN (M2) and Asymmetric 3D-CNN (M3), which are similar to the

Asymmetric 3D-CNN architecture. The Asymmetric 3D-CNN (M2) model on-

ly used the local 3D convolutional MicorNet-M2 and the Asymmetric 3D-CNN

(M3) model only used the MicorNet-M3. As shown in Table 4, the Asymmetric

3D-CNN (M2) deep model achieves better performance than the Asymmetric455

3D-CNN (M3). The Asymmetric 3D-CNN outperforms both the Asymmetric

3D-CNN(M2) and Asymmetric 3D-CNN(M3) models. It demonstrates that di-

verse local networks allow the 3D-CNN deep model to learn complementary

spatial-temporal features from videos for action recognition.
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Additionally, we evaluated the performance of the Asymmetric 3D-CNN460

deep model on two most challenging benchmarks fed with three kinds of inputs,

i.e. the RGB, Flow and enhanced RGBF frames. The results of the experiments

are shown in Figure 7. The performance of the enhanced RGBF frames is better

than that of the RGB and Flow inputs, and it even outperforms the fusion result

of two networks fed with RGB and Flow frames on the HMDB-51 dataset. It465

indicates that the simply enhanced input is very effective. The results obtained

from the Flow input are much worse than those obtained from the RGB input,

which is different from 2D-CNN based action recognition methods [11, 25, 26]. It

indicates that the 3D-CNN is more appropriate for extracting spatial-temporal

features from raw videos compared with 2D-CNN. Moreover, fed with the RGB470

frames, the c3d-b8 baseline model, also pre-trained on the FCVID dataset,

achieves 84.6% and 56.7% accuracy on the UCF-101 and HMDB-51 datasets

respectively, and the Asymmetric 3D-CNN deep model outperforms it by 1.8%

and 2.2% respectively, which demonstrates the effectiveness of the Asymmetric

3D-CNN model.475

4.7. Comparison with the State-of-the-arts

Our asymmetric 3D-CNN models are compared with current state-of-the-

art methods on the UCF-101 dataset in Table 5. The Asymmetric 3D-CNN

model fed with RGBF frames achieves a better performance than the most cur-

rent state-of-the-art models, even thought many of them fuse two networks of480

SpatialNet and TemporalNet [11, 26]. Fusing the Softmax scores of the two

networks fed with RGB and RGBF frames respectively can further improve

the performance of our 3D-CNN deep model. The Asymmetric 3D-CNN (RG-

B+RGBF) outperforms all of the traditional methods, such as the Improved

Dense Trajectories (IDT) [33] and the Multi-skIp Feature Stacking (MIFS) [58].485

Compared with 2D-CNN based methods, our model outperforms Slow Fusion

[39] by over 24% and outperforms Two-stream (fusion by averaging) [11] by

2.6%. Compared with the most comparable 3D-CNN based action recognition

models, our asymmetric 3D-CNN model outperforms the C3D model [23] by
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Table 5: Comparison with current state-of-the-art methods on UCF-101 dataset.

IDT [33] 85.9%

IDT (higher-dimension) [57] 87.9%

MIFS (L=3) [58] 89.1%

Slow Fusion [39] 65.4%

VGG16+Images on Web [59] 83.5%

Two-stream (fusion by averaging) [11] 86.9%

Two-stream (fusion by SVM) [11] 88.0%

Fusion Two-stream [27] 91.8%

Two-stream (VGG-16) [25] 91.4%

LRCN (weighted average) [26] 82.9%

C3D (1 net+SVM) [23] 82.3%

C3D (3 net+SVM) [23] 85.2%

C3D+IDT [23] 90.4%

T-CNN [49] 87.5%

FstCN (averaging fusion) [21] 87.9%

Asymmetric 3D-CNN (RGBF) 87.7%

Asymmetric 3D-CNN (RGB+RGBF) 89.5%

Asymmetric 3D-CNN (RGB+RGBF+IDT) 92.6%

over 4% and outperforms the FstCN model [21] by 1.6%. Meanwhile, it out-490

performs the T-CNN model [49] by 2.0%. Additionally, we combined the deep

features which were extracted by our 3D-CNN deep models fed with RGB and

RGBF individually with the widely used traditional IDT [33] features, and clas-

sified actions with a multi-class linear SVM. The resulting Asymmetric 3D-CNN

(RGB+RGBF+IDT) outperforms the newest state-of-the-art methods [27, 25]495

on the UCF-101 dataset.

In Table 6, the Asymmetric 3D-CNN model is compared with current state-

of-the-art methods on the HMDB-51 dataset. The Asymmetric 3D-CNN model
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Table 6: Comparison with current state-of-the-art methods on HMDB-51 dataset.

IDT [33] 57.2%

IDT (higher-dimension) [57] 61.1%

MIFS (L=3) [58] 65.1%

TDD [40] 63.2%

KVMF [60] 63.3%

Two-stream (fusion by SVM) [11] 59.4%

Fusion Two-stream [27] 64.6%

Action-Transformations [61] 63.4%

FstCN (averaging fusion) [21] 58.6%

FstCN (SCI fusion) [21] 59.1%

Asymmetric 3D-CNN (RGBF) 61.2%

Asymmetric 3D-CNN (RGB+RGBF) 63.5%

Asymmetric 3D-CNN (RGB+RGBF+IDT) 65.4%

fed with the enhanced RGBF frames outperforms most current state-of-the-art

methods. The fusion model, Asymmetric 3D-CNN (RGB+RGBF), fed with500

RGB and RGBF frames outperforms the Two-stream [11] by 4.1% and outper-

forms the FstCN [21] by 4.4%. Finally, the deep features which were extracted

from RGB and RGBF frames were combined with the traditional IDT [33] fea-

tures, which are used to train a linear SVM to classify actions. The resulting

Asymmetric 3D-CNN (RGB+RGBF+IDT) outperforms the newest state-of-505

the-art methods [27, 61, 60] on the HMDB-51 dataset.

4.8. Visualization of Model Learning Results

To get an intuitive understanding on what is learnt by the Asymmetric 3D-

CNN model, we visualized the learned convolutional features and the clustering

ability of the last convolutional layer in Figure 8. Firstly, the Asymmetric510

3D-CNN deep model was pre-trained on the large-scale FCVID dataset to get
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(a) Visualizing the learned features of multiple convolutional layers on the HMDB-51 dataset.

(b) Visualizing the clustering ability of the last convolutional layer on the UCF-101 dataset.

Figure 8: Visualizing what the asymmetric 3D-CNN model learns from the UCF-101 and

HMDB-51 datasets.
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a better initialization. Then, it was finetuned on the UCF-101 or HMDB-51

datasets respectively.

In Figure 8(a), we visualized the learned features of several convolutional

layers of the Asymmetric 3D-CNN deep model finetuned on the HMDB-51515

dataset. Specifically, we randomly chose three examples from the test set of the

HMDB-51 dataset and fed them into our 3D-CNN deep model to extract the

learned features at multiple convolutional layers. One channel of feature maps

is presented for the Conv1, Conv2 and Conv3a 4 convolutional layers for each

example. From bottom to top (by depth order) of each example, the Asymmetric520

3D-CNN model focuses on the appearance at first, then the appearance becomes

obscure, and later the motion regions are highlighted.

To visualize the clustering ability of the Asymmetric 3D-CNN deep model,

we randomly chose one clip for each video in the UCF-101 test set. All the clips

were fed to theAsymmetric 3D-CNN model to compute the activation of the last525

convolutional layer. We singled out a specific neuron of the last convolutional

layer and sorted the clips from highest to the lowest activation. We presented

the top 10 clips of five neurons in Figure 8(b). Each row corresponds to one

neuron. It can be seen that each particular neuron is only fired by some similar

actions. In the top row, most clips are “Diving” actions from different subjects530

and scenes, but two clips of “Hammering” action are included. Actually, the

configuration of the person is like a hammer and the “Diving” action shows a

person jumping from a diving board, which is like a hammer “jumping” from a

bred. In the second row, a soccer running up and down in the “SoccerJuggling”

action has a similar configure and motion with a bench running up and down in535

the “BenchPress” action. In the third row, persons jumping on the ground in

the “JumpRope” and “SoccerJuggling” actions are very similar. In the last two

rows, most entries show the same or similar actions carried out by a number of

different actors in different scenes.
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5. Conclusion540

In this paper, we have proposed an efficient 3D convolution method by

approximating traditional 3D convolution with three cascaded one-directional

asymmetric 3D convolutions. Then, we have designed multiple local asymmetric

3D convolutional MicroNets to further improve the effectiveness of asymmet-

ric 3D convolutional layers. Finally, the asymmetric 3D-CNN deep model has545

been built by stacking the local 3D convolutional MicroNets with traditional

3D convolutional layers. Additionally, the proposed multi-source enhanced RG-

BF input has produced a large improvement in action recognition, compared

with the performance obtained from the RGB and Flow inputs. Our 3D-CNN

deep model outperforms most comparable 3D-CNN baselines and many state-550

of-the-art methods on two challenging datasets. In the future work, we expect

to increase the depth of our 3D-CNN model by stacking more 3D convolutional

MicroNets to improve the performance of action recognition further.
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