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Abstract

This paper proposes an effective method for accurately recovering vessel structures and intensity 

information from the X-ray coronary angiography (XCA) images of moving organs or tissues. 

Specifically, a global logarithm transformation of XCA images is implemented to fit the X-ray 

attenuation sum model of vessel/background layers into a low-rank, sparse decomposition model 

for vessel/background separation. The contrast-filled vessel structures are extracted by 

distinguishing the vessels from the low-rank backgrounds by using a robust principal component 

analysis and by constructing a vessel mask via Radon-like feature filtering plus spatially adaptive 

thresholding. Subsequently, the low-rankness and inter-frame spatio-temporal connectivity in the 

complex and noisy backgrounds are used to recover the vessel-masked background regions using 

tensor completion of all other background regions, while the twist tensor nuclear norm is 

minimized to complete the background layers. Finally, the method is able to accurately extract 

vessels’ intensities from the noisy XCA data by subtracting the completed background layers from 

the overall XCA images. We evaluated the vessel visibility of resulting images on real X-ray 

angiography data and evaluated the accuracy of vessel intensity recovery on synthetic data. 

Experiment results show the superiority of the proposed method over the state-of-the-art methods.

Keywords

X-ray coronary angiography; Tensor completion; Robust principal component analysis; Vessel 
segmentation; Layer separation; Vessel enhancement; Vessel recovery

*Corresponding authors. bjqin@sjtu.edu.cn (B. Qin), dingsong@renji.com (S. Ding). 

HHS Public Access
Author manuscript
Pattern Recognit. Author manuscript; available in PMC 2019 August 24.

Published in final edited form as:
Pattern Recognit. 2019 March ; 87: 38–54. doi:10.1016/j.patcog.2018.09.015.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

1.1. Motivation

Cardiovascular diseases are the leading cause of death in the world [1]. Minimally invasive 

vascular interventions, such as percutaneous coronary intervention and robot-assisted 

coronary intervention [2], have been routinely applied into the clinic. During these 

interventions, contrast-filled vessels are imaged by X-ray coronary angiography (XCA) to 

help surgeons navigate the catheters. Apart from interventional guidance, XCA images are 

also important references for coronary disease diagnosis and therapeutic evaluation [3–5]. It 

is important to extract contrast-filled vessels from X-ray coronary angiography (XCA) data 

for the diagnosis and intervention of cardiovascular diseases [6,7].

Robust subspace learning via decomposition into low-rank plus additive matrices, an 

important topic in machine learning and computer vision, has been applied to medical 

imaging application [8]. Based on the fact that an image sequence is often modeled as a sum 

of low-rank and sparse components in some transform domains, robust principal component 

analysis (RPCA) has been widely exploited to recover low-rank data (or separate sparse 

outlier) from the corrupted or undersampled noisy data in biomedical imaging [9–11].

However, the visibility of vessels in XCA images is poor even though the contrast agents in 

X-ray imaging significantly enhance the angiography images. This is because that the XCA 

image is a display of the X-ray attenuation sum along the projection path, the projection 

image contains various anatomical structures, including not only vessels but also bones, 

diaphragms, and lungs. These structures represent complex background structures, motion 

disturbances, and noises in XCA images. Because the contrast-filled vessels have different 

motion patterns for the contrast-filled vessels and background structures, they include the 

vessel layer or foreground layer, whereas all other structures are called background layer. 

Due to the complex dynamic structures, the background layer seriously disturbs the 

observation and measurement of vessels. To facilitate the diagnosis and treatment of 

cardiovascular diseases, automatical extraction of the vessel layer and effective removal of 

the nonvascular background layer has become a prerequisite to improve the visibility and 

detection of vessels for various clinical applications, such as 3D reconstruction of coronary 

arteries [12], 3D/2D image coronary registration [13], coronary artery labeling [14], heart’s 

dynamic information extraction [15], and myocardial perfusion measurement [4,5,16]. In 

addition, vessel extraction is usually used as a preprocessing step to remove noises and 

complex backgrounds from XCA images while emphasizing vessel-like structures for most 

sophisticated pipeline algorithms including vessel segmentation and vessel centerline 

extraction.

Currently, most vessel extraction methods mainly focus on removing background noises and 

improving the saliency of vessels. While vessel structures can be highlighted, the vessel 

intensity information in the images is neglected and lost after the processing steps with 

previous methods. A more accurate vessel layer extraction with structure and intensity 

recovery will definitely facilitate further quantitative analysis of XCA images. Therefore, the 
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purpose of this work is to accurately extract vessel layers with reliable recovery of the 

structure and intensity information from the original XCA sequences.

1.2. Related works

Most vessel analysis techniques can be classified into three categories: vessel segmentation, 

vessel centerline extraction and vessel enhancement (or vessel extraction). Vessel 

segmentation is a fundamental step of many biomedical applications. A vessel/non-vessel 

pixel classifier or the vessel outline is defined by vessel segmentation. Various segmentation 

approaches have been developed in the past years, including filter-based methods, tracking-

based methods, active contour methods, graph-based methods [17], convolutional neural 

networks [18], and etc. The surveys in [19,20] give the detailed description and summary. 

The extraction of vascular networks based on vessel centerlines is also essential for many 

applications. The centerline extraction methods include direct tracking methods, model-

based methods, minimal-path techniques, artificial neural networks (ANN) and etc [21]. 

Vessel enhancement aims at emphasizing the vessel intensities while suppressing the 

background intensities, and usually serves as a preprocessing step of vessel segmentation 

and centerline extraction. This work mainly falls into the vessel enhancement category.

Currently, there are generally two classes of vessel enhancement methods for XCA images: 

filter-based methods and layer separation methods. The filter-based method convolves 

different kernels with images and presents vessels with the filter responses. For example, the 

matched filter detection method was first proposed by Chaudhuri et al. [22]. In this method, 

the authors construct 12 different Gaussian shaped templates to search the vessel segments 

along different directions. Generally, vesselness filters widely use image derivatives to 

encode border (first order) and shape (second order) information about vessel structures. For 

example, a large class of filters [23,24] utilize the Hessian matrix at various scales, which is 

based on second derivative. Being different from the Hessian-based filters, a filter based on 

Radon-like features (RLF) is proposed by aggregating the desired information derived from 

an image within structural units (e.g. edges) [25]. This RLF filter has been applied to the 

vessel segmentation in coronary angiograms and achieved satisfying performances [26,27]. 

Though these filter-based methods highlight vascular structures and suppress noises, they 

can distort the intensities of vessels.

Layer separation is another class of vessel enhancement methods. The approach considers 

the image as the sum of several layers, and thus tries to separate these layers. Because the 

final aim of layer separation for XCA images is to extract the vessel layer, we also call the 

layer separation processing as vessel layer extraction in this paper. Generally, layer 

separation methods process a sequence of similar images, e.g. a video. These separation 

methods can be further categorized into two groups: motion-based and motion-free [7]. 

Motion-based methods separate different layers by estimating the motions of every layer 

according to various motion assumptions. For example, Zhang et al. separated different 

transparent layers in XCA sequences by constructing a dense motion field [28]. Zhu et al. 

have proposed a dynamic layer separation method under a Bayesian framework that 

combines dense motion estimation, uncertainty propagation and statistical fusion [29]. 
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Preston et al. jointly estimated different layers and their corresponding deformations for 

image decomposition [30].

Unlike motion based methods, motion-free methods separate the different layers under 

certain hypotheses without motion estimation. For example, Tang et al. [31] separated vessel 

and background signals from XCA images by implementing independent component 

analysis. This vessel extraction method needs to subtract a pre-contrast mask image from 

later contrast images. Therefore, the registration of the mask and contrast images is required 

to reduce the motion artifact before subtraction. However, due to the complex and dynamic 

backgrounds producing outliers [32,33] in the two images, the efficiency of this registration-

based vessel extraction method is largely limited by the structure matching accuracy in the 

challenging image registration with outliers [34–36]. Recently, various low-dimensional 

representation learning techniques have been developed for the feature analysis of video data 

[37,38]. Specifically, assuming that the complex background layer is a low-rank matrix 

whereas the moving foreground layer is sparse, RPCA with low-rank and sparse 

decomposition [39] has been widely exploited to separate the moving foregrounds from the 

backgrounds. For example, Ma et al. have combined RPCA with morphological filtering to 

significantly increase the visibility of contrast-filled vessels [40] and have also developed a 

fast online layer separation approach for real-time surgical guidance [7]. Jin et al. [6] have 

proposed a motion coherency regularized RPCA (MCR-RPCA) for contrast-filled vessel 

extraction by incorporating the spatio-temporal contiguity of vessels based on the total 

variation (TV) norm [41]. In recent work [42], the MCR-RPCA method [6] was compared 

with the state-of-the-art methods and proven to perform best with the clearest vessel 

detection and almost no background information. However, these RPCA-based methods via 

image vectorization for 2D matrix-based image sequence computation cannot naturally 

preserve high-dimensional imaging sensor’s spatial and time information simultaneously.

Being similar to RPCA, another two classes of low-rank based algorithms called matrix and 

tensor completion, which aim to recover a low-rank matrix and tensor from noisy partial 

observations of its entries, have much progress in recent years [8]. Different from RPCA, 

these data completion methods can be interpreted as a data-driven learning problem since 

the unknown missing pixels are inferred from the known pixels in the spatial and/or 

temporal contexts. Though the optimization models for matrix completion are quite clear, 

data completion for tensors is complicated. Tensors refer to multi-dimensional arrays, which 

can naturally reserve more spatio-temporal information than do matrices [43]. Based on 

different definitions of tensor ranks, e.g. CP rank [44,45] and Tucker rank [46], many 

different tensor completion models have been proposed. Typically, tensor nuclear norm 

(TNN) [47], which is designed for 3D tensors based on tensor Singular Value 

Decomposition (t-SVD) [48,49], has been verified effective for 3D tensor completion 

[50,51]. Hu et al. have further optimized the TNN model for the video completion task by 

integrating a twist operation [52].

1.3. Overview and contributions

Existing layer separation works share a similar global strategy for layer modeling, i.e., these 

methods treat an XCA image as a whole, and aim to directly separate layers from all the 
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pixels. Under this strategy, the intensity of every pixel in an XCA image has a potential to be 

split up into several parts. As a result, local interaction of different layers will affect the 

global separation. Specifically, popular RPCA methods have the following three main 

limitations for foreground/background separation in XCA images. First, vectorizing the 

XCA video sequence into a matrix makes the RPCA model ignore the 3D spatio-temporal 

information between the consecutive frames of the XCA sequence. For example, X-ray 

imaging produces a lot of dense noisy artifacts, whose positions change in a gradually 

moving pattern in the XCA frames. The RPCA methods often recognize these moving 

artifacts as foreground objects.

The second limitation is that most RPCA-based image decomposition imposes the 

foreground component being pixel-wisely sparse (e.g., L1-norm for the sparsity) and the 

background component being globally low-rank without locally considering the complex 

spatially varying noise in observation data. However, an observation of low dose X-ray 

imaging is not only badly corrupted by spatially varying signal-dependent Poisson noise 

[53,54], but also of low contrast and low SNR between the noise and the signal. This serious 

signal-dependent noise locally affects every entry of the data matrix and results in 

unsatisfying foreground vessel images containing many artifact residuals. Though Bayesian 

RPCA modeling data noise as a mixture of Gaussians is developed [55] to fit a wide range of 

noises such as Laplacian, Gaussian, sparse noise and any combinations of them, or GoDec+ 

[56] introduces a robust local similarity measure called correntropy to describe the data 

corruptions including Gaussian noise, Laplacian noise, and salt & pepper noise on real 

vision data, these methods cannot tackle the challenging problem of spatially varying noise 

in low-rank and sparse decomposition. To further remove these spatially varying noisy 

artifacts from the low contrast foreground vessel, the importance of vessel details in the 

foreground image sequences should be highlighted. Recently, reducing noise while 

preserving the visually important image details have attracted increasing attention in noisy 

image enhancement [53,57] and vessel image segmentation [58]. Specifically, by exploiting 

joint enhancement and denoising strategy, the desirable vessel extraction method can 

preserve the feature detail of foreground vessels to accurately recover the vessel structures 

with the noisy artifacts being removed simultaneously.

Third, there exist some parts of vessels with low-rank properties due to the periodically 

moving pattern of hearts and the contrast agents’ adhesion along the vessel wall. Therefore, 

current RPCA methods always keep tiny amounts of vessel residue as parts of the low rank 

background layer such that the extracted foreground vessels suffer severe distortion or loss 

of vessels’ intensities. This intensity loss results in incomplete recovery of vessel intensity 

and makes it impossible for accurate analysis of the contrast agent concentration and the 

corresponding blood flow perfusion conditions [5,16], such that the extracted vessels can 

only be used for vessel shape definition and morphological analysis.

While layer separation works mainly focus on solving the ill-posed multi-layer overlapping 

problem, we have noticed two important features of XCA images: First, contrast-filled 

vessel pixels only occupy a small fraction of the whole image data. In other words, the 

overlap between vessels and the background layer only exists in the vessel regions, and the 

pixels outside the vessel regions entirely belong to the background layer. Therefore, once the 
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structures of contrast-filled vessel regions are determined by a vessel segmentation 

algorithm with high detection rate, all the other pixels in the remaining regions can be 

regarded as a background layer, whereby the layer separation problem is much more 

simplified by limiting the layer separation only in these vessel regions. By further exploiting 

the spatio-temporal consistency and low-rankness embedded in the whole data of the 

background layers, the small missing parts of the background layers overlapped with the 

foreground vessels can be fully completed using the state-of-the-art tensor completion 

methods. Then, the challenging problem of foreground vessel extraction can be tackled by 

subtracting the completed background layers from the overall XCA data.

Second, according to Beer-Lambert Law, a given X-ray image reflects the X-ray exponential 

attenuation composition (or sum) of material linear attenuation coefficients for the 

foreground contrast-filled vessels and background layers along the X-ray projection paths. 

Therefore, the additive property of X-ray exponential attenuation composition along the 

vessel and background layers in X-ray imaging can be directly exploited to exactly 

decompose the whole XCA image into the vessel and background layers. This X-ray 

attenuation sum model is then perfectly fitted into the low-rank and sparse decomposition 

model and justify the above-mentioned foreground vessel extraction strategy via completion 

and subtraction of the background layers from the whole XCA images. There are some X-

ray image segmentation [27,59] and denoising [53] applications for the X-ray attenuation 

decomposition in computer-aided diagnosis and intervention. To the best of our knowledge, 

the proposed method is the first work to precisely fit such X-ray attenuation decomposition 

into the low-rank and sparse decomposition for accurately extracting vessels’ shapes and 

intensities from the complex and noisy backgrounds in XCA images.

Based on the above-mentioned strategies, this paper proposes a foreground/background layer 

separation framework in a logarithmic domain, where the raw XCA image is first mapped. 

We then extract the vessel mask regions and subsequently recover vessel intensities in these 

regions. The vessel region extraction is done by combining the RPCA algorithm with a 

vessel feature filtering based image segmentation method. The vessel intensity recovery 

problem is solved by a tensor completion method called t-TNN (twist tensor nuclear norm) 

[52]. By focusing on the vessel intensity recovery problem only in the small parts of vessel 

regions, the proposed vessel extration (or vessel recovery) method called VRBC-t-TNN 

(vessel region background completion with t-TNN) can extract vessel layers with accurate 

recovery of vessel structures and intensities. The contributions of this paper are summarized 

as follows:

(1) By taking the sparse outlier of vessel layers and the low rankness of background layers 

into the vessel/background separation for accurate vessel extraction, we map the raw XCA 

images into a logarithmic domain in order to fit the X-ray attenuation sum model of vessel/

background layers into a decomposition framework of low-rank backgrounds plus sparse 

foreground vessels. This intensity mapping lays the foundation for not only satisfactorily 

segmenting the vessel shapes but also accurately recovering vessel intensities from 

backgrounds.
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(2) Because an XCA image often consists of some large, non-overlapped background 

regions and some small, background-overlapped vessel regions, the accurate vessel 

extraction problem is divided into three steps: (1) Masking (or segmenting) out all the 

background-overlapped vessel regions by using RPCA plus adaptive vessel feature filtering, 

(2) Completing the background information in the masked vessel regions, and (3) 

Subtraction of the completed background layers from the overall XCA images.

(3) By exploiting the spatio-temporal consistency and low-rankness of background layers in 

the background data completion, the proposed method introduces an effective tensor 

completion to complete the low-rank background layers that are then subtracted from the 

overall XCA images. Therefore, both the structures and the intensities of vessels are well 

recovered with the proposed method.

2. Methods

2.1. Overview

The proposed vessel layer extraction method called VRBC-t-TNN contains three main 

procedures. First, the vessel mask regions are extracted by combining the RPCA algorithm 

[60] with a vessel feature filtering based segmentation method [27]. As a preprocessing step 

of RPCA, a global logarithm transformation is performed on the input XCA sequence to 

create the X-ray attenuation sum model for the subsequent vessel/background 

decomposition. By exploiting the sparse outlier property of moving contrast in vessel 

regions and eliminating the disturbance of background structures, the initial contrast-filled 

vessel layer is extracted from the X-ray attenuation data by RPCA algorithm [60]. The 

vessel regions are then segmented out from the initial vessel layers via joint enhancement 

and denoising strategy that is implemented by RLF filtering and spatially adaptive 

thresholding. Secondly, the whole background layers are completed by completing the 

vessel-overlapped background regions based on neighboring background pixel information 

via a tensor completion algorithm called t-TNN [52]. Finally, the vessel layers are accurately 

extracted via subtraction of all the background layers from the whole attenuation data. Fig. 1 

provides an overview of the whole procedure. Details are described in the remaining part of 

Section 2.

2.2. Global intensity mapping

A global logarithm mapping is carried out on the whole XCA image data to perfectly fit the 

X-ray attenuation sum model of angiograms. In X-ray imaging, photons coming through 

human body are attenuated by contrast agents and various human tissues. The intensity of 

rays is reduced exponentially by the sum of attenuation coefficients, as the following 

equation:

Xout = Xine
−∫ dμdx

, (1)

where Xin and Xout represent the intensities of X-rays that come into and out of human body, 

respectively, μ denotes the attenuation coefficient, d denotes the path of rays.
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By applying the log operator on both sides, we get:

−ln Xout /Xin = ∫
d

μdx . (2)

The XCA image intensity normalized to the range [0, 1] can be regarded as the 

normalization of the ray intensity, i.e. the ratio of Xout to Xin. Then we get the following 

equation:

−ln IXCA = − ln Xout /Xin = ∫
d1

μdx + ∫
d2

μdx = AF + AB, (3)

where AF and AB represent the attenuation sums caused by foreground vessels and complex 

backgrounds, respectively. Eq. (3) demonstrates that the XCA image is a sum of vessel/

background layers in the logarithm domain, accordingly the multiplication of the two layers 

in the original image domain.

After this logarithm mapping, the linear sum model of Eq. (3) is ready for vessel/background 

separation via low-rank plus sparse matrix decomposition in RPCA (Illustrated in Section 

2.3), as well as low-rank background plus foreground vessel extraction in tensor completion 

(Illustrated in Section 2.5). Therefore, we use the logarithm operation as a preprocessing of 

image data and perform exponentiation operation afterwards for the whole experiments in 

this work.

2.3. Preliminary vessel layer extraction

Though vessels can be segmented directly from original XCA images, the complex 

background structures and spatially varying noises may bring too many noisy artifacts into 

the segmentation results. Therefore, in this step an initial vessel layer with reduced 

background structures is preliminarily extracted from the XCA attenuation data sequence for 

better vessel segmentation. The XCA attenuation sequence is formed as a matrix D with 

each frame vectorized as a column. By exploiting the sparse outlier of moving contrast in the 

vessel layers, the RPCA algorithm is performed on the XCA attenuation data to extract the 

contrast-filled vessel layer.

The RPCA model [39] minimizes the sum of matrix nuclear norm of background and L1 

norm of foreground component:

min
L, S

L
*

+ λ S
1
,  s . t .  D = L + S, (4)

where D ∈ ℝ
n1 × n2 denotes the data matrix, L ∈ ℝ

n1 × n2 and S ∈ ℝ
n1 × n2 denote the low-

rank component (background layer) and the sparse component (foreground layer), 

respectively, λ is a positive weighting parameter, ||S||1 = ∑i, j |Si,j| is the L1 norm, ||L||* 
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denotes the nuclear norm of L, which is an approximation to the matrix rank. The nuclear 

norm in Eq. (4) tightly couples all samples in the image sequence. This RPCA model has 

been proven efficient in moving object detection, including vessel layer extraction for XCA 

data [6,40]. Generally, the contrast-filled vessels move quickly with a high frequency while 

other tissues have a moving patterns at a lower frequency in XCA sequences. Therefore, the 

dynamic vessels can be captured by the sparse component S and the relatively static 

background structures are mainly recognized as the low-rank component L.

Being different from the RPCA-based method in [27], an effective optimization approach 

[60] based on inexact augmented Lagrange multipliers (IALM) is adopted to solve the 

minimization problem in Eq. (4). Eq. (4) is equivalent to its augmented Lagrangian function 

ℒ, which is given by:

ℒ(L, S, X, μ) = L
*

+ λ S
1

+ X, D − L − S + μ
2 D − L − S

F

2

= L
*

+ λ S
1

+ μ
2 D − L − S + X /μ

F

2
,

(5)

where X is the Lagrangian multiplier, μ is a positive penalty scalar, A F = ∑i, j Ai j
2
 is the 

Frobenius norm, 〈A, B〉 = Tr(A*B) is the inner product of two matrices, where A* denotes 

the conjugate transpose of A and Tr (·) denotes the matrix trace.

Variables (L, S, X) in Eq. (5) can be optimized alternately. We summarize the solution in 

Algorithm 1. The detailed deduction can be found in [60].

Algorithm 1 IALM-RPCA [60].

Input: XCA data matrix D, λ.

1:  Initialize: L, S, X.

2:  while not converged do

3:   L sub-problem:

  Lk + 1 = argminLℒ L, Sk, Xk

  = argminL L
*

+ μ
2 Dk − L − Sk + Xk /μ

F
2

  solved by:

  (U, Σ, V) = SVD(Dk – Sk + Xk/μ);

  Lk + 1 = US
(μ)−1(Σ)VT;

4:   S sub-problem:

  Sk + 1 = argminSℒ Lk + 1, S, Xk

  = argminSλ S 1 + μ
2 D − Lk + 1 + Xk /μ − S

F
2 ,

  solved by:
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Algorithm 1 IALM-RPCA [60].

  Sk+1 = Sλ/μ(D − Lk+1 + Xk/μ);

5:   Xk+1 = Xk+μ(D − Lk+1 + Sk+1);

6:   k = k + 1;

7:  end while

Output: Initial background layer L, initial vessel layer S.

2.4. Feature-preserving vessel segmentation

In this step, the initial vessel layer sequence is further processed to compute the vessel mask 

regions via vessel segmentation. Part of this vessel segmentation step uses a similar strategy 

with the works in [26,27]. Since most vessels have similar ridge shapes, we can highlight 

vessel structures using ridge detection filters. By achieving anisotropic sampling of 

neighborhoods based on edge sensing along different orientations, the Radon-like features 

(RLF) filtering [25] is implemented to completely highlight all vessels including minor 

segments. This RLF filtering can preserve vessel structure details while suppressing spatially 

varying noises. The RLF filtering is performed on each frame of the initial vessel sequence S 
obtained by Algorithm 1. An example image of RLF features is shown in Fig. 2(c).

A locally adaptive thresholding method [61] is further performed on the RLF-filtered images 

to get binary images representing the vessel trees. This locally adaptive threshold tlocal for 

each pixel is calculated using the mean m and standard deviation s of the center pixel’s 

surrounding pixels, by the following equation:

tlocal = m 1 + f e−gm + h s
R − 1 , (6)

where f, g, h are parameters, R is the dynamic range of s. A binary image is obtained by 

thresholding every pixel with the calculated tlocal of each pixel. The local thresholding result 

is displayed in Fig 2(d). Then too small regions are regarded as noises and thus removed 

from this binary image to obtain a vessel tree mask image.

Since RLF filtering thins vessels, this vessel tree cannot cover all the vessel pixels. 

Therefore, the initial vessel layer images are also segmented with the Otsu’s global 

thresholding [62], which separates the pixels of an image into two classes by minimizing the 

intra-class variance. We calculate one global thresholding value for the whole XCA images 

to avoid over-segmentation. An example of the resulted images is shown in Fig. 2(e).

Subsequently, these two binary images of local/global thresholding are combined together 

by conditional morphological dilation to construct the final vessel mask images, as shown in 

Fig. 2(f). The vessel segmentation algorithm is detailed in Algorithm 2.
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2.5. Background completion using t-TNN

Regarding the vessel mask regions as missing entries of the background layer, we can 

construct the background layers by recovering the intensities of these entries via tensor 

completion methods. After testing several algorithms, we adopt the t-TNN algorithm [52] 

that can exploit the temporal redundancy and low-rank prior between the neighboring frames 

more efficiently than other tensor completion algorithms. The original XCA sequence is 

formed as a tensor 𝒟 with each slice being a matrix representation of each frame. All areas 

except the vessel mask regions, denoted as Ω, are presumed to be the known background 

layer pixels. To make sure that Ω does not contain edge pixels of the vessels, each vessel 

region mask image is first dilated by a 5 × 5 mask, then the background regions of all the 

frames constitute Ω. By performing t-TNN tensor completion to recover the unknown pixel 

values in vessel areas, we can extract the whole background layer sequence.

Algorithm 2 Vessel segmentation.

Input: Initial vessel layer image Iiv (a frame of S from Algorithm 1).

1: Otsu threshold all Iivs to get binary mask MOs;

2: Calculate the Radon-Like features of Iiv, the resulted RLF image is denoted by Riv;

3: Phansalkar threshold Riv to get mask MP;

4: Remove regions smaller than a fixed size ts, from MP;

5: Take the foreground pixels in MP as seeds, do conditional dilation in MO, the result mask image is denoted by Mc;

6: Merge the foreground regions in MP and Mc, together to get the final mask image MV.

Output: Binary vessel mask image, MV.

The t-TNN model is based upon a tensor decomposition scheme called t-SVD [49,63] (see 

details in Section 2.5.1). Having a similar structure to the matrix SVD, t-SVD models a 

tensor in the matrix space through a defined t-product operation [49]. The TNN (represented 

by Eq. (13)) can simultaneously characterize the low-rankness of a tensor along various 

modes by transforming into the nuclear norm of block circulant representation. In the t-TNN 

model, a three-way tensor representation named twist tensor is designed to laterally store 2-

D data frames in order; the twist tensor can then be used to exploit the low-rank structures of 

video data sequence based on the t-SVD framework. By equalizing the nuclear norm of the 

block circulant matricization of the twist tensor, t-TNN can not only exploit the correlations 

between all the modes simultaneously but also take advantage of the low-rank prior along a 

certain mode, e.g., X-ray image sequence over the time dimension.

2.5.1. Notations and preliminaries—An N−way (or N−mode) tensor is a multi-linear 

structure in ℝ
n1 × n2 × ⋯ × nN. In this paper we mainly discuss 3-way tensors. Matlab 

notations are adopted for convenience. For instance, the (i, j, k)th entry of tensor 𝒳 is 

denoted by 𝒳i jk or 𝒳(i, j, k). A slice of a tensor is a 2-D section defined by fixing all but two 

indices, and a fiber is 1-D section defined by fixing all indices but one. For a 3-way tensor 

𝒳, the notation 𝒳(k, : , : ), 𝒳(: , k, : ) and 𝒳(: , : , k) denote the kth horizontal, lateral, and frontal 

slices, respectively. Particularly, 𝒳(k) denotes 𝒳(: , : , k).
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𝒳 f = fft(𝒳, [ ], 3) denotes the Fourier transform of along the third dimension. Accordingly, 

𝒳 = ifft 𝒳 f , [ ], 3 . The Frobenius norm of 𝒳 is 𝒳 F = ∑i, j, k xi jk
2

1
2 , and the L1 norm of 

𝒳 is 𝒳 1 = ∑i, j, k xi jk . The inner product of two tensors of size n1 × n2 × n3 is defined 

asThe 𝒜, ℬ = ∑i = 1
n3 𝒜(i), ℬ(i)  [64].

The block-based operators, i.e., bcirc, bvec, bvfold, bdiag and bdfold, are used to construct 

the TNN based on t-SVD. For 𝒳 ∈ ℝ
n1 × n2 × n3, the 𝒳(k) values can be used to form the 

block circulant matrix

bcirc(𝒳) =

𝒳(1) 𝒳
n3 ⋯ 𝒳(2)

𝒳(2) 𝒳(1) ⋯ 𝒳(3)

⋮ ⋮ ⋱ ⋮

𝒳
n3 𝒳

n3 − 1
⋯ 𝒳(1)

(7)

The block vectorizing and its opposite operation are defined as:

bvec(𝒳) =

𝒳(1)

𝒳 2

⋮

𝒳
n3

,  bvfold bvec  𝒳 = 𝒳 . (8)

The block diag matrix and its opposite operation are defined as:

bdiag(𝒳) =
𝒳(1)

⋱

𝒳
n3

,  bdfold(bdiag (𝒳)) = 𝒳 . (9)

Then the t-product is defined as follows [49]:

ℳ = 𝒜 * ℬ =  bvfold(bcirc(𝒜)bvec(ℬ)) . (10)

The t-product is analogous to the matrix product except that the circular convolution 

replaces the product operation between the elements. The t-product in the original domain 

corresponds to the matrix multiplication of the frontal slices in the Fourier domain as 

follows:
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ℳ f
k = 𝒜 f

k * ℬ f
k ,  k = 1, …, n3 . (11)

The transpose tensor of 𝒜 ∈ ℝ
n1 × n2 × n3 is a tensor 𝒜T ∈ ℝ

n2 × n1 × n3, obtained by 

transposing each frontal slice of 𝒜 and then reversing the frontal slice order along the third 

dimension [49]. The identity tensor ℐ is a tensor whose first frontal slice is an identity 

matrix while other slices are zero matrices. A tensor 𝒬 is orthogonal if 𝒬 * 𝒬T = 𝒬T * 𝒬 = ℐ. 

A tensor is f-diagonal if all of its frontal slices are diagonal matrices.

Based on the concepts introduced above, the tensor-SVD (t-SVD) of 𝒳 ∈ ℝ
n1 × n2 × n3 is 

given by

𝒳 = 𝒰 * 𝒮 * 𝒱T, (12)

where 𝒰 and 𝒱 are orthogonal tensors of size n1 × n1 × n3 and n2 × n2 × n3, respectively. 𝒮
is a rectangular f-diagonal tensor of size n1 × n2 × n3, and the entries in 𝒮 are called the 

singular values of 𝒳. * denotes the t-product here. Fig. 3 shows the t-SVD decomposition.

Based on the Fourier domain property of t-product as Eq. (11), t-SVD can be efficiently 

computed in the Fourier domain [49,63]. Each frontal slice of 𝒰 f , 𝒮 f  and 𝒱 f  can be 

obtained via the matrix SVD, i.e., 𝒰 f
(k), 𝒮 f

(k), 𝒱 f
(k) = SVD 𝒳 f

(k) . Then the t-SVD of 𝒳 can be 

obtained by 𝒰 = ifft 𝒰 f , [], 3 , 𝒮 = ifft 𝒮 f , [], 3 , 𝒱 = ifft 𝒱 f , [], 3 .

The tensor nuclear norm (TNN) of 𝒳 ∈ ℝ
n1 × n2 × n3 is defined as the average of the nuclear 

norms of all the frontal slices of 𝒳 f  [51,63], i.e.,

𝒳
⊛

= 1
n3

∑i = 1
n3 𝒳 f

(i)
*

= 1
n3

bcirc(𝒳)
*

.

(13)

Though the factor 1/n3 in the TNN definition would not affect the results of the relevant 

optimization problems, this is important in theory. This factor makes TNN consistent with 

the matrix nuclear norm. It also guarantees that the dual norm of TNN is the spectral norm 

of a tensor [51,63].

Using the definition of TNN in Eq. (13), the tensor completion problem [52] can be 

represented by
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min
𝒳

𝒳
⊛

,  s.t. PΩ(𝒳) = PΩ(ℳ), (14)

where ℳ is the corrupted tensor, 𝒫Ω(𝒳) refers to the projection of 𝒳 on the observed entries 

Ω. Accordingly, 𝒫
Ω⊥(𝒳) is the complementary projection, i.e., 𝒫Ω(𝒳) + 𝒫

Ω⊥(𝒳) = 𝒳. Eq. 

(14) can be solved using the t-SVD mentioned above.

2.5.2. Vessel layer extraction using t-TNN tensor completion—TNN of Eq. (14) 

is a general model for 3D data completion problems. Based on this model, Hu et al. 

extended TNN into t-TNN for video processing [52]. Their work has demonstrated that the 

t-TNN model is able to process panning videos better, by exploiting the horizontal 

translation relationship between frames [52]. As for XCA data, there also exists global 

displacements in image sequences due to patient’s breath and movement. Through 

experiments, we have found that the t-TNN model is more suitable than TNN for this 

background completion work. Therefore, t-TNN is adopted as the tensor completion model 

in this method.

In t-TNN, a twist operation 𝒳 is defined for a three dimensional tensor 𝒳, which is a 

dimension shift, as the following equation shows:

𝒳(: , k, : ) = 𝒳(: , : , k) . (15)

Though this twist operation is simply a dimension shift of tensors, it emphasizes the 

temporal connections between frames [47]. Based on TNN, the t-TNN norm 𝒳
⊛

 of tensor 

𝒳 is defined as follows:

𝒳
⊛

= 1
n3

bcirc(𝒳)
*
, (16)

where the twist operation 𝒳 is a dimension shift of 𝒳, and 𝒴 shifts it back [52].

By minimizing the t-TNN norm-based rank of the input tensor subject to certain constraints, 

the tensor completion work can be addressed by solving the following convex model [52]:

min
𝒳

𝒳
⊛

,  s.t. 𝒫Ω(𝒳) = 𝒫Ω(𝒟), (17)

where 𝒟 and 𝒳 refer to the original corrupted data tensor (original XCA sequence) and the 

reconstructed tensor (background layer), respectively.
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In general, Eq. (17) is solved by the alternating direction method of multipliers (ADMM) 

algorithm [65]. First, by introducing a new variable 𝒴 = 𝒳, Eq. (17) can be solved by the 

following minimization model [52]:

argmin
𝒳, 𝒴, 𝒲

𝒴
⊛

+ 1𝒳Ω = 𝒟Ω
+ 𝒲, 𝒳 − 𝒴 + ρ

2 𝒳 − 𝒴
F

2
, (18)

where 1𝒳Ω = 𝒟Ω
 denotes the indicator function indicating whether the elements of 𝒳 and 𝒟

on the support of Ω are equal, 𝒲 is the Lagrangian multiplier, and μ is a positive penalty 

scalar.

Variables 𝒳, 𝒴 and 𝒲 in Eq. (18) can be optimized alternately with the other variable being 

treated as a fixed parameter, similar to Algorithm 1. Since the detailed deduction of 

Algorithm 3 is too long and out of the scope of this paper, we refer the interested reader to 

the work in [52].

Algorithm 3 t-TNN based background completion [52].

Input: Original XCA data 𝒟 ∈ ℝ
n1 × n2 × n3

, non-vessel mask region Ω (acquired from M in Algorithm 2).

1: Initialize: ρ0 > 0, η > 1, k = 0, 𝒳 = 𝒫Ω(𝒟), 𝒴 = 𝒲 = 0.

2: while 𝒳 − 𝒴 F / 𝒳 F > tol and k < K do

3:  𝒳 sub-problem:

 𝒳k + 1 = argmin
𝒳:𝒳Ω = 𝒟Ω

k 𝒳 − 𝒴k + 1
ρk 𝒲k

F

2

 solved by:

 𝒳k + 1 = 𝒫Ω 𝒟k + 𝒫
Ω⊥ 𝒴k − 1

ρk 𝒲k ;

4:  𝒴 sub-problem:

 𝒴k + 1 = argmin𝒴 𝒴
⊛

+ ρk

2 𝒳k + 1 − 𝒴 + 1
ρk 𝒲k

F

2

 solved by:

 τ = 1
ρk , τ′ = τ

n2 + 1
2 , 𝒵 = 𝒳k + 1 + τ𝒲k;

 𝒵 f = fft(𝒵, [], 3);

 for j = 1, …,
n2 + 1

2  do

  𝒰 f
( j), 𝒮 f

( j), 𝒱 f
( j) = SVD 𝒵 f

( j)
;
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Algorithm 3 t-TNN based background completion [52].

  𝒥 f
( j) = diag 1 − τ′

𝒮 f
( j)(i, i) +

;

  𝒮 f , τ′
( j) = 𝒮 f

( j)𝒥 f
( j);

  ℋ f
( j) = 𝒰 f

( j)𝒮 f , τ′
( j) 𝒱 f

( j)T

 end for

 for j =
n2 + 1

2 + 1, …, n2 do

  ℋ f
( j) = conj ℋ f

n2 − j + 2
;

 end for

 ℋ = ifft ℋ f , [], 3 , 𝒴k + 1 = ℋ;

5:  𝒲k + 1 = 𝒲k + ρk 𝒳k + 1 − 𝒴k + 1 ;

6:  ρk+1 = ηρk, k = k + 1

7: end while

8: Vessel layer 𝒱 = 𝒟 − 𝒳;
Output: Background layer tensor 𝒳, vessel layer tensor 𝒱.

After constructing the background layer data 𝒳 by t-TNN, the final vessel layer 𝒱 can be 

obtained by subtracting 𝒳 from the original data 𝒟. Note that this subtraction is done in the 

logarithm domain, the corresponding operation for original image data would be division.

The whole procedure of the t-TNN background completion step is shown in Algorithm 3.

3. Experimental results

3.1. Real and synthetic XCA data

In this work, we used two types of experimental data for the evaluation of VRBC-t-TNN: 

real clinical XCA data and synthetic XCA data. All the 12 sequences of real XCA images 

are obtained from Ren Ji Hospital of Shanghai Jiao Tong University. Each sequence contains 

80 frames whose image resolution is 512 × 512 pixels with 8 bits per pixel. All the 

experiments in this paper were approved by our institutional review board.

To accurately evaluate the vessel region and intensity recovery, we constructed 10 sequences 

of synthetic XCA images with ground truth background layer images (GTBL) and vessel 

layer images (GTVL). To get GTVLs, we perform vessel extraction similar to Algorithms 1 

and 2 described in Section 2 with slightly different parameters on the real XCA data. Then 

we remove some artifacts manually from the extracted rough vessel images to obtain the 

GTVLs. The GTBLs are the consecutive frames selected from the real XCA data. Because a 

XCA image is the product of the vessel layer and the background layer according to the X-
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ray imaging mechanism (see Section 2.2), we multiply a sequence of GTVLs to the clean 

regions of GTBLs from a different sequence to obtain the synthetic XCA data. An example 

synthetic image with GTBL and GTVL is shown in Fig. 7(a).

3.2. Experiment demonstration

For Algorithm 1, the codes of IALM-RPCA [60] are from the author’s website1, and the 

parameter λ is set to be 1/imagewidth = 1/512. For Algorithm 2, the codes of RLF [25] are 

also from the author’s website2. And we set the local window size as 16 × 16, f = 3, g = 10, 
h = 1 for locally adaptive thresholding. The region threshold ts in Algorithm 2 is set to be 

300 pixel size. For Algorithm 3, codes of t-TNN are obtained from an online library called 

mctc4bmi3 [66].

Apart from VRBC-t-TNN, we also tested other layer separation methods for the comparison 

purpose. The median subtraction method (MedSubtract) used by Baka et al. constructs a 

static background layer image as the median of the first 10 frames of a sequence and 

substract it from all the frames [67]. Several open source RPCA algorithms, including 

PRMF4 [68], MoG-RPCA5 [55], IALM-RPCA and our previously proposed MCR-RPCA6 

[6] were tested. The proposed framework VRBC can use other matrix completion and tensor 

completion methods to replace t-TNN. We tested some open source data completion 

methods including PG-RMC [69], MC-NMF [70], ScGrassMC [71], LRTC [72] and tSVD 

[50] as comparison, whose codes are obtained from Sobral’s library lrslibrary7 [73] and 

mctc4bmi [66].

To evaluate the performance of our vessel segmentation strategy in the proposed vessel 

extraction framework, we compare the vessel segmentation results with six other vessel 

segmentation algorithms including two deep learning methods: the Hessian based Frangi 

vesselness filter (Frangi’s)8 [24], Coye’s method (Coye’s)9 [74], Felfelian’s method [75], 

the MSRG (multiscale region growing) algorithm [76], CNN-Xray method designed for 

real-time fully-automatic catheter segmentation10 [77], and the U-net based retinal blood 

vessels segmentation method11 [78]. These six algorithms are all performed on the original 

XCA images without performing RPCA. The CNN-Xray method treats some vessels images 

from XCA vessel sequences and their manually labelled vessel masks as training sets. The 

Retinal-unet method adopts annotated retinal blood vessels as training sets to generate 

shapes similar to those in the XCA vessels. Since the vessel segmentation in the proposed 

framework is performed on the whole image sequence, it is impractical to finely tune the 

parameters of segmentation algorithms for each frame. Therefore, the parameters of these 

1http://perception.csl.illinois.edu/matrix-rank/home.html
2https://www.mathworks.com/matlabcentral/fileexchange/27886
3https://github.com/andrewssobral/mctc4bmi
4http://winsty.net/prmf/code.zip
5http://gr.xjtu.edu.cn/c/document_library/get_file?folderId=495355&name=DLFE-25510.rar
6http://www.escience.cn/people/bjqin/research.html
7https://github.com/andrewssobral/lrslibrary
8http://www.mathworks.com/matlabcentral/fileexchange/24409
9http://www.mathworks.com/matlabcentral/fileexchange/50839
10https://github.com/pambros/CNN-2D-X-Ray-Catheter-Detection
11https://github.com/orobix/retina-unet
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seven vessel segmentation methods are tuned to get the generally best results for all the 

sequences.

3.3. Visual evaluation of experimental results

The vessel segmentation results of real XCA data are shown in Fig. 4. The layer separation 

results of the real XCA data are shown in Figs. 5 and 6. The layer separation results of the 

synthetic data are shown in Fig. 7. One thing to notice is that the GTBL images like Fig. 

7(a–1) were selected from the original XCA images and may also contain some small vessel 

structures. Though the areas where we added the GTVLs (Fig. 7(a–2)) are vacant of vessels, 

there may exist vessels in other areas. Thus, it is normal that the extracted vessel layer 

images (b–2)–(l–2) contain more vessels than the ground truth (a–2) in Fig. 7. Therefore, all 

the quantitative experiments in Sectionss 3.4–3.6 are carefully designed to avoid the 

influence of these vessel artifacts.

As can be seen in Fig. 4, because of the complex background noises, the four traditional 

filters detect either too few vessels or too many noises. Though for many frames these four 

filters are capable to detect the main structures of vessels, their performances on recognizing 

tiny vessels are unsatisfactory. Similarly, the two deep learning based segmentation methods 

can only approximately detect the vessel contours with too many noisy residuals in the 

vessel layer. This poor performance is due to the 2D convolutional neural networks being 

unable to distinguish the spatial-temporally continuous vessels from the complex and noisy 

backgrounds only by their 2D convolutional features. Due to the denoising effect of RPCA 

and the ability of RLF in detecting tiny vessels, the proposed strategy results in the most 

accurate vessel masks which can cover the vast majority of vessels. From Figs. 5–7, we 

could see that all these layer separation methods can remove noises and increase the vessel 

visibility to some extent. Among these algorithms, because MedSubtract constructs a static 

background layer image which does not change over time, the extracted vessel layer image 

with lots of noise remaining is the worst among these extracted results. The four RPCA 

methods achieve much better vessel extraction results with more noises being removed. 

Among these four RPCA methods, our previously proposed MCR-RPCA method [6] 

achieves the best vessel extraction results with the least residual background noises. 

However, though RPCA methods can nicely capture the vessel structures in the vessel layer 

images, the vessel intensities are not fully extracted since obvious vessel residuals can be 

observed in their resulting background layer images.

In contrast, the proposed VRBC framework embedded within all the completion methods 

greatly improves the vessel extraction performances. The vessel intensities are further 

extracted compared to RPCA algorithms. Among all these algorithms, the result images of 

VRBC-t-TNN achieve the best visual performances. Both the background layer images and 

the vessel layer images are visually appealing and seem to be well recovered in terms of 

structure and intensity preserving ability.
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3.4. Quantitative evaluation of vessel segmentation

To quantitatively evaluate the performances of vessel segmentation, we calculate the 

detection rate (DR), precision (P) and F-measure (F) using ground truth vessel masks. These 

three indicators are calculated as follows:

DR = TP
TP + FN ,  P = TP

TP + FP ,  F = 2 * DR * P
DR + P , (19)

where TP (true positives) is the total number of correctly classified foreground pixels, FP 

(false positives) is the total number of background pixels that are wrongly marked as 

foreground, and FN (false negatives) is the total number of foreground pixels that are 

wrongly marked as backgrounds. For a certain method, detection rate indicates its power to 

detect more foreground pixels, precision measures correct ratio of detection, and F-measure 

combines detection rate and precision to indicate the overall performance of certain 

extractor.

In the real XCA experiments, we manually outlined the vessels of 12 images from 12 

different sequences as the ground truth masks. Then we measured the detection rate, 

precision and F-measure of these 12 images, as shown in Fig. 8(a). For the synthetic data, 

the ground truths of all frames are acquired during the synthetic process of GTVLs. 

However, because the GTBLs also contain some vessels, the extracted vessel masks would 

inevitably contain more vessels than do the GTVLs. Therefore, we cannot correctly measure 

the precision and F-measure using the ground truth images. Thus, we only measured the 

detection rates of the 10 synthetic sequences, as shown in Fig. 8(b) and Table 1.

For real XCA data, the proposed method generally obtains the highest scores in the 

indicators measured. For synthetic data, the detection rates of the proposed method is both 

the highest and the most stable. The quantitative measurements verify the accuracy and 

robustness of the proposed vessel segmentation method. Compared to traditional static 

segmentation strategies and deep learning based methods, this proposed method can robustly 

detect the vast majority of the vessel areas.

3.5. Quantitative evaluation on vessel visibility using real data

We quantitatively evaluated the vessel visibility using the contrast-to-noise ratio (CNR) [40] 

of vessel layer images. CNR is defined as:

CNR =
μV − μB

σB
, (20)

where μV and μB are the pixel intensity means in the vessel and background regions, 

respectively, σB is the standard deviation of the pixel intensity values in the background 

regions.
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To get ground truth vessel mask regions and background regions, we used the manually 

outlined vessel masks in Section 3.4. Two types of background regions are then defined. The 

global background regions cover the whole area except the vessel regions, while the local 

background regions are the 7 pixel wide neighborhood area surrounding the vessel regions. 

Fig. 9(a) shows the examples of these regions. Twelve frames from different sequences are 

tested to compute the global and local CNR values. The general performances are shown in 

Fig. 9(b) and Table 2.

CNR measures the contrast between the vessels and backgrounds. A larger CNR value 

implies a better vessel visibility. We can find that all methods can greatly increase the vessel 

visibility compared to the original images. Generally, VRBC-t-TNN achieves the highest 

global CNR, and the second highest local CNR, slightly lower than MCR-RPCA. This CNR 

evaluation indicates that VRBC-t-TNN greatly improves the vessel visibility and suppresses 

much noises simultaneously.

3.6. Quantitative evaluation on vessel intensity recovery using synthetic data

To measure the accuracy of vessel intensity recovery, we directly calculated the differences 

between the extracted vessel layers and the ground truths. The reconstruction error of vessels 

is defined as follow:

Erecon =
∑(x, y) ∈ V Iresult(x, y) − Igroundtruth(x, y))

∑(x, y) ∈ V Igroundtruth(x, y) , (21)

where V denotes the vessel regions, Iresult and Igroundtruth denote the intensities of the 

resulting vessel layer images and the ground truth vessel layer images, respectively. For each 

synthetic XCA sequence, the Erecon of the whole sequence is calculated. Fig. 10 and Table 3 

show the general performances of different algorithms on the 10 synthetic sequences.

Erecon measures the vessel intensity difference between the separation result and the ground 

truth. A small Erecon indicates an accurate vessel layer extraction. We can see that VRBC 

achieves smaller Erecon values than other existing methods. Among them, VRBC-t-TNN 

achieves the best performance. This Erecon evaluation indicates that VRBC-t-TNN can 

accurately recover the contrast-filled vessel intensities from XCA images.

3.7. Computation times

Finally, we report on the computation costs incurred by our VRBC-t-TNN algorithm on a 

Lenovo PC equipped with an Intel Core i5–4460 Quad-Core 3.2 GHz CPU and 8 GB of 

RAM executing Matlab codes. The average processing time of a 512 × 512 × 80 real XCA 

sequence is approximately 970 s. The RPCA step, vessel filtering step and t-TNN step take 

approximately 28 s, 740 s and 200 s, respectively.

4. Discussion and conclusion

We have presented a new low-rankness based decomposition framework for accurate vessel 

layer extraction from XCA image sequences. By constructing the background layer via 
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tensor completion of the vessel regions from original XCA images, the proposed method can 

overcome limitations in current vessel extraction methods and has significantly improved the 

accuracy of vessel intensity recovery with enhanced vessel visibility. In this method, the raw 

XCA image sequences are first mapped into a logarithmic domain to perfectly fit the X-ray 

attenuation sum model along the vessel and background layers into the subsequent vessel/

background decomposition modeling. We subsequently use the low-rank and sparse 

decomposition via RPCA algorithm to extract the contrast-filled vessel regions. RLF 

filtering and spatially adaptive thresholding are performed on the vessel layer images to 

segment out vessel masks. An accurate background layer image sequence is then constructed 

by t-TNN tensor completion by exploiting the spatio-temporal consistency and low-rankness 

of background tensor from the consecutive background layers. Finally, the vessel layer 

images are acquired by subtracting the background layer from original XCA images. 

Experiments have been done to demonstrate the vessel visibility and accuracy of the results.

The efficacy of the proposed vessel and background layer decomposition framework is 

based on the exact X-ray attenuation sum model via logarithmic mapping of raw XCA 

images. This mapping gives sense to the gray levels that are linearly dependent on the matter 

thickness and density in the vessel and background layers. The linear attenuation sum model 

is then perfectly fitted into the additive model of low-rank background plus sparse 

foreground decomposition for the vessel/background separation.

Since RPCA is able to detect moving contrast and to weaken the background noise with the 

further denoising effect of adaptive vessel feature filtering, RPCA coupled with adaptive 

vessel feature filtering improved the vessel segmentation that is robust to the complex 

background noise. There is a general concern that RPCA as a preprocessing step might fail 

to recognize a portion of vessels and thus lead to segmentation leaks in XCA images. In 

most cases, the RPCA-based vessel enhancement hardly eliminates any vessel parts in the 

extracted vessel layer images and is actually able to detect more vessel pixels in the 

subsequent segmentation step. Especially, some vessel pixels that are faded in background 

noises are highlighted due to the RPCA’s effect in detecting moving pattern from 

backgrounds.

Furthermore, integrating the t-TNN tensor completion into layer separation reconstructs the 

background layer with more reliable intensity recovery. As can be seen from Figs. 5–7, 

obvious vessel residuals can be observed in the background layer images resulting from the 

RPCA methods, which indicates that vessels and backgrounds cannot be fully separated if 

solely based on the low-rank and sparsity decomposition. The reason may be that the low-

rank and sparsity difference between the vessel layer and the background layer is not big 

enough to separate the two layers. The background completion via t-TNN tensor completion 

is different from RPCA methods. To recover unknown background pixels in the vessel-

overlapped mask regions, the t-TNN based background completion uses the low-rankness 

and the inter-frame spatio-temporal connectivity of complex backgrounds and uses all other 

background pixels. By subtracting the completed background layers from overall XCA 

images, the completion process bypasses the interaction of the vessels and the backgrounds 

in the overlapped areas for accurate vessel intensity recovery. As can be seen in Figs. 5 and 

6, the missing background pixel intensities in the vessel mask regions of the background 
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layer images seem to be well recovered with seldom vessel residual effects after 

implementing VRBC-t-TNN. This implies that tackling vessel extraction problem via 

background completion overcomes the challenge and incompleteness of vessel intensity 

recovery. Observing the result images of synthetic data in Fig. 7, result images from VRBC-

t-TNN are the most approximate to the ground truths. The Erecon evaluation on synthetic 

data also supports this observation. These experiments demonstrate that VRBC-t-TNN can 

well recover the pixel values of the background layers and vessel layers.

Though all layer separation problems are ill-posed, the proposed data completion approach 

is much more effective than present layer separation works. From the information theory 

viewpoint, the traditional layer separation models, including RPCA and motion based 

methods, try to get two outputs (the vessel and the background layers) with one input 

(original image sequence). In this way, there is an uncertainty for every pixel of the XCA 

data. In contrast, the tensor completion infers background intensities in the vessel-

overlapped regions with the known information from all the other background pixels, such 

that only a small number of missing pixels in the masked regions have uncertainties. Since 

the amount of unknowns to be solved is much reduced, it is not strange that the proposed 

method can recover vessel intensity more accurately. Besides, thanks to exploiting the low-

rank and sparse decomposition modeling and the sparse outlier of moving contrast in RPCA-

based method, we can completely extract the vessel regions, whose remaining noisy artifacts 

are further removed with fine vessel feature detail being simultaneously preserved by RLF-

filtering and spatially adaptive thresholding.

It should be noted that a small missing vessel in the vessel segmentation step may cause 

wrong “labeling” in the VRBC-t-TNN framework. A slightly larger vessel mask including 

all possible vessels will help fix the small missing vessel problem. Furthermore, we can 

tentatively sample small vessel mask regions for tensor completion and then subtract the 

completed backgrounds from XCA image for small vessel extraction. The small vessel 

segmentation deficiency can be well compensated by an iterative scheme of trial-and-

completion. Therefore, the principal of the segmentation step is to prefer over-segmentation 

over under-segmentation. In this work, the proposed layer separation framework generally 

achieves satisfactory vessel extraction results for all the sequences. However, it should be 

pointed out that there are still some cases where the method misses some small vessel 

segments if they disconnect with the main vessels in the XCA images. Therefore, more 

elaborate and robust small vessel imaging and segmentation [79] methods would further 

improve the performances.

In the low-rank and sparse decomposition framework, the successful low-rank background 

modeling does guarantee the accuracy of foreground vessel extraction. On the one hand, the 

proposed background modeling with t-TNN-based video tensor completion after segmenting 

foreground vessel mask regions works better in background modeling than do the other 

tensor completion algorithms we have tried for this vessel extraction application. We believe 

that the performance of vessel extraction may be further improved with the development of 

new tensor completion algorithms. On the other hand, considering that the dynamic real-

world background sequences may span one or more linear or nonlinear manifolds [80], we 
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will incorporate the nonlinear structures [81] and multi-view subspace clustering [82] of 

XCA data into background modeling for accurate vessel extraction in our future research.

The computation time of the proposed algorithm also needs to be reduced for real-time 

applications so that our future work will implement deep vessel extraction via low-rank 

constrained convolutional neural networks [83,84], which can capture sophisticated 

hierarchical feature representations of contrast-filled vessels from the complex and noisy 

backgrounds. Besides, most video-based RPCA and matrix (or tensor) completion methods 

require computing the large SVD (or t-SVD) that is increasingly costly as matrix (or tensor) 

sizes and ranks increase. Therefore, by factorizing a matrix (or tensor) into a product of two 

small matrices (or tensors) to reduce the dimension of the matrix (or tensor) for which the 

SVD must be computed, parallel matrix (or tensor) factorization framework [85,86] with 

foreground/background clustering regularization [80,87] can be explored to greatly boost the 

overall performance in terms of vessel recovery accuracy and computational speed. 

Furthermore, being different from the most batch learning methods that require heavy 

memory cost to process a large number of video frames, the efficient online optimization 

algorithms [86,88,89] implemented in a sequential way rather than in a batch way would be 

more useful to quickly extract the contrast-filled vessels from the complex and noisy 

backgrounds.

One of the potential direct clinical applications of this work is to bring perfusion 

concentration analysis into quantitative coronary analysis (QCA). Traditional QCA measures 

lesions by calculating the minimum luminal area, percentage area stenosis, etc., to analyze 

the stenosis degree of coronary diseases. Since vessels are overlapped by various structures 

in the original XCA images, these measurements are mainly shape-based. However, the 

proposed VRBC-t-TNN can well construct a clean vessel layer image with accurate contrast 

intensity. Therefore, it is expected that quantitative analysis on the blood flow and perfusion 

concentration could be done with the help of VRBC-t-TNN. This concentration analysis will 

give more clinical information compared to traditional QCA.

Another potential application of this work is to improve the performances of 3D/4D (3D

+time) vessel reconstruction. In recent years, the reconstruction of 3D/4D coronary vessels 

using 2D X-ray angiography has been developed a lot [12]. This reconstruction can provide 

clinicians with 3D/4D information, which will improve the clinical judgement. The 3D/4D 

reconstruction could also contribute to the quantitative analysis and computer diagnosis of 

coronary diseases. One of the factors that severely influence this vessel reconstruction is the 

overlap of different structures [12]. Since the proposed method removes other background 

structures and extract clean vessel layer images with more reliable intensities, it will 

promote the 3D/4D vessel reconstruction work.
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Fig. 1. 
Overview of VRBC-t-TNN for an XCA image sequence.
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Fig. 2. 
Vessel segmentation illustration. (a) Original XCA image. (b) Initial vessel layer image. (c) 

RLF image of (b). (d) Locally adaptive thresholding result of (c). (e) Otsu’s global 

thresholding result of (b). (f) Vessel mask resulting from the combination of (d) and (e).

Qin et al. Page 30

Pattern Recognit. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The t-SVD of an n1 × n2 × n3 tensor.
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Fig. 4. 
Vessel mask images by different vessel segmentation methods. Segmentation results of four 

XCA images are shown in four rows. From left to right, each row displays the original XCA 

image, the manually outlined ground truth vessel mask, the images processed by Frangi’s, 

Coye’s, Felfelian’s method, MSRG, CNN-Xray, Retina-unet, and the proposed method, 

respectively.
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Fig. 5. 
Example 1 of vessel layer extraction results from real data. Each group of results contains a 

background layer image labeled 1 and a vessel layer image labeled 2. (a) Original XCA 

image. (b)–(l) Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) 

IALM-RPCA. (f) MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) VRBC-

ScGrassMC. (j) VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN.
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Fig. 6. 
Example 2 of vessel layer extraction results from real data. Each group of results contains a 

background layer image labeled 1 and a vessel layer image labeled 2. (a) Original XCA 

image. (b)–(l) Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) 

IALM-RPCA. (f) MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) VRBC-

ScGrassMC. (j) VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN.
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Fig. 7. 
Examples of vessel layer extraction results from synthetic data. Each group of results 

contains a background layer image labeled 1 and a vessel layer image labeled 2. (a–0) 

Synthetic XCA image. (a–1,2) Ground truth background layer and vessel layer image. (b)-(l) 

Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) IALM-RPCA. (f) 

MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) VRBC-ScGrassMC. (j) 

VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN.
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Fig. 8. 
Performance of vessel segmentation methods. (a) The general detection rate, precision and 

F-measure of twelve real XCA images. (b) The general detection rate of ten synthetic 

sequences.
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Fig. 9. 
CNR values on real data. (a–1)–(a–4) Original image with manually drawn vessel edges, the 

vessel regions, the global background regions, and the local background regions. (b) Global 

and local CNR values of twelve images from different image sequences of real data.
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Fig. 10. 
Erecon values in vessel regions on synthetic data.
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Table 2

The average CNR values (mean value ± standard deviation) for all methods using the real data.

Method Global CNR Local CNR

Original 1.026 ± 0.345 1.558 ± 0.500

MedSubtract 5.074 ± 2.035 6.475 ± 3.109

PRMF 6.869 ± 2.461 8.955 ± 3.690

MoG-RPCA 6.941 ± 2.518 8.959 ± 3.644

IALM-RPCA 8.323 ± 2.974 9.909 ± 3.485

MCR-RPCA 9.898 ± 4.016 12.252 ± 5.094

VRBC-PG-RMC 11.266 ± 8.214 9.078 ± 3.245

VRBC-MC-NMF 11.098 ± 6.367 9.710 ± 4.149

VRBC-ScGrassMc 12.197 ± 6.848 10.700 ± 4.879

VRBC-LRTC 11.846 ± 9.199 9.717 ± 3.649

VRBC-tSVD 14.842 ± 9.887 11.722 ± 4.643

VRBC-t-TNN 14.976 ± 9.961 12.083 ± 4.789
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Table 3

The average Erecon values (mean value ± standard deviation) for all methods using the 10 synthetic sequences.

Method Erecon

MedSubtract 0.073 ± 0.012

PRMF 0.053 ± 0.009

MoG-RPCA 0.055 ± 0.012

IALM-RPCA 0.050 ± 0.009

MCR-RPCA 0.061 ± 0.010

VRBC-PG-RMC 0.039 ± 0.006

VRBC-MC-NMF 0.045 ± 0.006

VRBC-ScGrassMc 0.041 ± 0.007

VRBC-LRTC 0.037 ± 0.006

VRBC-tSVD 0.033 ± 0.005

VRBC-t-TNN 0.030 ± 0.005
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