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Abstract—Person search in real-world scenarios is a new
challenging computer version task with many meaningful ap-
plications. The challenge of this task mainly comes from: (1)
unavailable bounding boxes for pedestrians and the model needs
to search for the person over the whole gallery images; (2) huge
variance of visual appearance of a particular person owing to
varying poses, lighting conditions, and occlusions. To address
these two critical issues in modern person search applications,
we propose a novel Individual Aggregation Network (IAN) that
can accurately localize persons by learning to minimize intra-
person feature variations. IAN is built upon the state-of-the-
art object detection framework, i.e., faster R-CNN [1], so that
high-quality region proposals for pedestrians can be produced
in an online manner. In addition, to relieve the negative effect
caused by varying visual appearances of the same individual,
IAN introduces a novel center loss that can increase the intra-
class compactness of feature representations. The engaged center
loss encourages persons with the same identity to have similar
feature characteristics. Extensive experimental results on two
benchmarks, i.e., CUHK-SYSU and PRW, well demonstrate the
superiority of the proposed model. In particular, IAN achieves
77.23% mAP and 80.45% top-1 accuracy on CUHK-SYSU, which
outperform the state-of-the-art by 1.7% and 1.85%, respectively.

Index Terms—person search, re-identification, pedestrian de-
tection, softmax loss, center loss, dropout

I. INTRODUCTION

Person re-identification is to re-identify the same person
across different cameras, and it has attracted increasingly
more interest in recent years [2f, [3]]. The emergence of this
task is mainly stimulated by (1) increasing demand of public
security and (2) widespreading surveillance camera networks
among public places, such as airports, universities, shopping
malls, etc. The obtained images from surveillance cameras are
usually with some characteristics, e.g., low-quality, variable,
and contain motion blur. Traditional biometrics, such as face
[4]], [5]], iris [6] and fingerprint [7]], are generally not available.
Thus, many person re-identification applications exploit the
reliable body appearance.

Technically, a person re-identification system for video
surveillance consists of three components, including person
detection, person tracking, and person retrieval. While the first
two components are independent computer vision tasks, most
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person re-identification studies focus on the third component.
Numerous re-identification algorithms as well as datasets [8]—
[13] have been proposed during the past decades and the
performance on these benchmarks have been improved sub-
stantially. All these algorithms focus on the third component
of the pipeline, assuming the person/pedestrian detection are
already available. In other words, a query person is matched
with cropped pedestrians in the gallery instead of searching for
the target person from whole images. In reality, perfect pedes-
trian bounding boxes are unavailable in surveillance scenarios.
In addition, existing pedestrian detectors unavoidably produce
false alarms, misdetections, and misalignments. All these fac-
tors compromise the re-identification performance. Therefore,
current re-identification algorithms cannot be directly applied
to real surveillance systems, where we need to search a person
from whole images, as shown in Fig. [1]

While majority of person re-identification works engage
boxes manually annotated or produced by a fixed detector in
their applications, it is necessary to study the impact of pedes-
trian detectors on re-identification accuracy. Specifically, [14],
[15] showed that considering detection and re-identification
jointly leads to higher person search accuracy than optimizing
them separately. To the best of our knowledge, end-to-end deep
learning for person search (E2E-PS) [16] is the first work to
introduce an end-to-end deep learning framework to jointly
handle the challenges from both detection and re-identification.
Thereby, the detector and re-identification parts can interact
with each other so as to reduce the influence of detection
misalignments.

In E2E-PS [16], the re-identification feature learning ex-
ploits a modified softmax loss. Early works show that such
kind of identification task could greatly benefit the feature
learning [[17]. Meanwhile, it is found that the identification
task increases the inter-personal variations by drawing features
extracted from different identities apart, while the verification
task reduces the intra-personal variations by pulling features
extracted from the same identity together [18]]. Inspired by this,
softmax loss and contrastive loss are jointly used for feature
learning, leading to better performance than the sole softmax
loss [18]. But we cannot directly introduce such verification
tasks into the person search faster R-CNN framework [/1]] used
in E2E-PS [16]], since the pedestrians appearing in each image
are random, sparse, and unbalanced. It is difficult to organize
equivalent amount of positive and negative pedestrian pairs
within the faster R-CNN framework.

To address this critical issue, we propose a novel Individual
Aggregation Network (IAN) that can not only accurately
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Fig. 1. Person search from whole images without cropping out persons. The left column is probe/query image, other columns are gallery images without
cropped pedestrians. The green bounding boxes are searching results. To find the right person in the gallery images, we need to detect all the persons within

the image, and compare the detected persons with the probe image.
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Fig. 2. The objective of center loss is to reduce the intra-class distance
by pulling the sample features towards each class center. Left side: feature
distance without center loss; right side: feature distance using center loss.

localize pedestrians but also minimize feature representations
of intra-person variations. In particular, IAN is built upon
the state-of-the-art object detection framework, i.e., Faster R-
CNN [1]}, so that high-quality region proposals for pedestrians
can be produced in an online manner for person search. In
addition, to relieve the negative effect caused by various visual
appearances of the same individual, a novel center loss
that can increase the intra-class compactness of feature rep-
resentations is introduced. The center loss encourages learned
pedestrian representations from the same class to share similar
feature characteristics. The IAN model can be embedded in
any CNN-based person search framework for improving the
performance.

In particular, center loss is able to increase intra-class
feature compactness without requiring to aggregate positive
and negative verification samples. Center loss tracks the

feature centers of all classes, and these feature centers are
constantly updated based on the recent observed class samples.
Meanwhile, it manages to pull the sample features towards
each class center that this sample belongs to. This process
is demonstrated in Fig. 2] During the model development,
we found that neural networks with dropout are not
compatible with center loss [19]. We study this phenomenon in
both analytic and experimental ways. We believe this finding
could be useful guidance for neural network framework design
in the community, which is one of our contribution.

Finally, it is encouraging to see that our proposed IAN
achieves 77.23% mAP and 80.45% top-1 accuracy on the
CUHK-SYSU person search dataset , which is the new
state-of-the-art for this dataset. Meanwhile, we also obtain
state-of-the-art performance on the PRW dataset [[15].

The remainder of this paper is organized as follows. Related
work is presented in Section [[I} The proposed person search
method is described in Section[[TI] with implementation details
described in Section [V] We present and discuss the experi-
mental results in Section M Finally, conclusions are draw in
Section V1l

II. RELATED WORKS

Person re-identification CNN-based deep learning models
have attracted a lot of attentions and been successfully applied
in person re-identification since two pioneer works [8], [9].
Generally, two categories of CNN models are commonly
employed in this community. One cateorgy is the Siamese
model using image pairs [8]], or triplets as input. The
other category is the classification model as used in image clas-
sification and object detection. Most re-identification datasets



provide only two images for each pedestrian such as VIPeR
[23], CUKHO1 [24] CUHKO3 [9], therefore, currently most
CNN-based re-identifications schemes use the Siamese model.
In [8]], an input image is partitioned into three overlapping
horizontal parts, and the parts go through two convolutional
layers plus one fully connected layer which fuses them and
outputs a vector to represent this image, and lastly, two
vectors are connected by a cosine layer. Ahmed et al. [21]]
improved the Siamese model by computing the cross-input
neighborhood difference features, which compares the features
from one input image to features in neighboring locations of
the other image. In [25]], Varior et al. incorporate long short-
term memory (LSTM) modules into a Siamese network so
that the spatial connections can be memorized to enhance the
discriminative ability of the deep features. Similarly, Liu et
al. [26] propose to integrate a soft attention based model in
a siamese network to adaptively focus on the important local
parts of the input image pair.

One disadvantage of the Siamese model is that it cannot
take full advantage of the re-identification annotations. The
Siamese model only considers pairwise labels (similar or not
similar), which is a weak label. Another potentially effective
strategy is to use a classification/identification mode, which
makes full use of the re-identification labels. On large datasets,
such as PRW and MARS, the classification model achieves
good performance without careful pairwise or triplet selection
[15], [27]. In this paper, our identification method is also built
based on a classification/identification mode.

Pedestrian Detection In the past year, a lot of efforts have
been made to improve the performance of pedestrian detection
[28], [29]. The Integrate Channel Features (ICF) detector
[28] is among the most popular pedestrian detectors without
using deep learning features. Following its success, many
variants [30], [31] were proposed with significant improve-
ment. Recent years, CNN-based pedestrian detectors have
also been developed. Various factors, including CNN model
structures, training data, and different training strategies are
studied empirically in [32]. In [33], faster R-CNN is studied
for pedestrian detection.

III. INDIVIDUAL AGGREGATION NETWORK

In practical person search applications, pedestrian bounding
boxes are unavailable and the target person needs to be found
from the whole images. Targeting this problem, IAN is built
upon the state-of-the-art object detection framework, i.e., faster
R-CNN [1], so that reasonable region proposals for pedestrians
can be produced in an online manner for person search.
The proposed IAN framework is shown in Fig. |3 and it is
elaborated as follows.

1) In the training phase, arbitrary size images with ground
truth pedestrian bounding boxes and identifications are
input into the first part residual network [34]. The
residual network is divided into 2 parts, i.e, for ResNet-
101 network, layers Convl-Res4b forms the first part
network, while layers Res5a-ResSc are the second part.

2) The region proposal network (RPN) [1], is built on top of
the feature maps generated with the first part network to

predict pedestrian bounding boxes. The RPN is trained
with ground truth pedestrian bounding boxes, using
two loss layers, i.e., anchor classification and anchor
regression. Besides the candidate boxes generated by the
region proposal network (RPN boxes), the ground truth
(GT) pedestrian bounding boxes are also used together
at the network training stage. At the test stage, only RPN
boxes are available.

3) All the candidate boxes (RPN+GT boxes at training
stage, RPN boxes at test stage) are used for ROI pooling
to generate feature vector for each candidate box. These
features are again convolved with the second part resid-
ual networks, i.e., layers Res5a-Res5c of ResNet-101.

4) Two sibling fully connected layers are utilized sep-
arately, one to produce the final feature vector feat
to compute feature distance, and the other to produce
bounding box locations. At training stage, feature vec-
tors of all candidates boxes (RPN+GT boxes) are fed
into the softmax loss layer, while only feature vectors
of ground truth pedestrian boxes (GT boxes) are fed
into the center loss layer. The softmax variant random
sampling softmax (RSS) [16] is used for training.

Overall, compared with previous person search method
E2E-PS [16], the proposed IAN generates more discriminative
feature representations. In IAN, using softmax loss together
with center loss [[19]] within the faster R-CNN framwork leads
to better feature representations than solely using softmax
loss in [[16]. Meanwhile, the VGGNet [35] used in E2E-
PS [16] contains dropout layers which are intrinsically not
compatible with the center loss. In our IAN, we use the state-
of-the-art residual network [34]. In addition to solving the
compatibility issue with center loss, replacing VGGNet with
residual network also offers better discrimination power with
lower computational cost.

A. Softmax + Center Loss

Both compact intra-class variations and separable inter-
class differences are essential for discriminative features.
However, the softmax loss only encourages the separability
of features. Contrastive loss [18]], [36] and triplet loss [37],
that respectively construct loss functions for image pairs
and triplets, are possible solutions to encourage intra-class
variation compactness. For contrastive loss, equivalent amount
of positive and negative image pairs are required, whereas
for triplet loss, two images among each triplet should be-
long to the same class/identification with one belonging to
different class/identification. However, for the faster R-CNN
based person search framework, it is a non-trivial task to
form such image pairs and triplets within the input mini-
batch. The pedestrians within each image belongs to different
identifications. Meanwhile, the pedestrians appearing in each
image are random, sparse and unbalanced. Within the mini-
batch of faster R-CNN, it is difficult to form a balanced
number of positive pedestrian pairs as negative pairs.

On the other hand, employing center loss [[19] is able to
avoid the need of aggregating positive and negative pairs. In
the proposed IAN network, center loss is applied together with
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Fig. 3. Overview of our IAN network training framework. Images containing pedestrians are input into the network. First part of residual network, i.e., layers
Conv1-Res4b of ResNet-101 [34], is used to get image features. Pedestrian bounding boxes generated by region proposal network (RPN boxes), together with
the ground truth pedestrian bounding boxes (GT boxes), are used for ROI pooling to generate feature vector for each box. Second part of residual network,
i.e., layers Res5a-Res5c of ResNet-101 [34], uses the ROI pooling features as input. Two fully connected layers are utilized separately, one to produce the
final feature vector feat to compute feature distance, and another to produce bounding box locations. Feature vectors of all candidates boxes (RPN + GT
boxes) go into the random sampling softmax loss layer; while only feature vectors of ground truth pedestrian boxes (GT boxes) go into the center loss layer.

softmax loss to generate feature representations. The center
loss function is defined as follows.

1 & 5
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where z; € RY is the feature vector of pedestrian box ¢,
which belongs to class y;, and ¢y, € R? denotes the 7;-th
class center of features. The softmax loss forces the features
of different classes staying apart. The center loss pulls the
features of the same class closer to their centers. Hence the
feature discriminative power is highly enhanced. With the
center loss, the overall network loss function is defined as:

L=Ly+ N, 2)

where £, is the summation of 4 loss functions in faster R-
CNN, which includes the softmax loss for perosn identification
classification, and A is the weight of the center loss.

Ideally, ¢, should be constantly updated as the network
parameters are being updated. In other words, we need to
take the entire training set into account and average the
features of every class in each iteration, which is inefficient
and impractical. In fact, we learn the feature center of each
class. In the training process, we simultaneously update the
center and minimize the distances between the features and
their corresponding class centers.

The center ¢y, is updated based on each mini-batch. In
each iteration, the centers are computed by averaging the
features of the corresponding classes. Meanwhile, to avoid
large perturbations caused by few mislabelled samples, we use
a scalar o € [0, 1] to control the learning rate of the centers.

The gradients of L. with respect to x; and the updating
equation of c,, are computed as:
oL.
81‘,‘ -
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where 6(condition) = 1 if the condition is satisfied, and
otherwise &(condition) = 0.

T; — Cy, 3)
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B. Why to Avoid Dropout?

In our study, we notice that neural networks with dropout
are not compatible with the center loss. For example, when
the proposed IAN is deployed on VGGNet with 3 dropout
layers, its person search mAP performance on the CUHK-
SYSU person search dataset is about 10% lower than the
results obtained by removing all the dropout layers.

Dropout is a technique for addressing overfitting problems
[20]. The key idea of dropout is to randomly drop units,
along with their connections, from the neural network during
training. Since the dropout randomly drops units, it creates
uncertainty for the features. In other words, when image
features are extracted using the same network with dropout,
the obtained features for the same image might be quite
different in different network forward computation instances.
This is contradicting with center loss, which punishes intra-
class variations.

The dropout is usually deployed after the fully connect
layer, as in VGGNet. Let z(") denote the vector of inputs into
layer 7, and ¥ denote the vector of outputs from layer I. W ()
and b(") are the weights and biases at layer I, respectively. The



feed-forward operation of a standard neural network can be
described as

sz'l) _ w§l+1)y(1) n b§l+1) )

g = f(z) ©6)

where f is any activation function, for example sigmoid
or ReLu function. With dropout, the feed-forward operation
becomes

ry) ~ Bernoulli(p) 7
g(l) — 4 y(l) (8)
Zi(l+1) _ w§l+1)g(z) I bElJrl) ©)

l l
4 = L)
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Here  denotes an element-wise product. For any layer [, (")
is a vector of independent Bernoulli random variables each of
which has probability p of being 1.

To illustrate that dropout is not compatible with the center
loss, let us take one example. Assume input image samples I;
and I; are the same and belong to the same pedestrian/class.
We assume layer [ + 1 is a fully connection layer with
dropout, the output of layer [ + 1 is input into the center
loss layer. Since image samples I; and I; are the same,
we could have y()(I;) = y(I;). The target of the center
loss is to have similar features for the same class, i.e.,
yUD(L) = yH(1;). Considering , it is equivalent
as rO(L) « yO(1;) = rO(I;) * yO(I;). Here r(I;) and
rO(1 ;) are vectors of independent Bernoulli random variables,
leading to () (I;) # r(V)(I;). Therefore, to have y(*+1)(I;) =
yU*1(I;), the only solution is y(I;) = y®(I;) = 0.
However, zero feature cannot properly represent the image
samples. From the above simple example, we could conclude
that dropout is not compatible with center loss, which is
consistent with our experimental verification.

IV. IMPLEMENTATION DETAILS
A. Training Phase

During the network training phase, the network is trained
to detect pedestrians and produce discriminative features for
re-identification. In our network, 5 loss functions are used.
The smoothed-L1 loss [38] is used for the two bounding box
regression layers. A softmax loss is used for the pedestrian pro-
posal module, which classifies pedestrian and non-pedestrian.
For the re-identification feature extraction part, we deploy both
random sampling softmax [[16] and center loss [19]. Here it is
important to note that only features of ground truth pedestrian
boxes are input into the center loss layer. This helps to avoid
sample noise. The overall loss is the sum of all five loss
functions, and its gradient w.r.t. the network parameters is
computed through back propagation.

To speed up the network convergence, the training process
includes three steps:

1) We crop ground truth bounding boxes for each training
person and randomly sample the same number of back-
ground boxes. Then we shuffle the boxes, resize them
to 224 x 224, and fine-tune the residual network model

(ResNet-101 and ResNet-50) to classify the candidate
boxes. The output feature size of ROI-pooling layer in
Fig.|3|is 7 x 7. To insure the same feature size, we add
one 2 x 2 pooling layer to the residual network.

2) We fine-tune the model resulting from the above step.
Unlike the previous step, the whole images with GT
pedestrian bounding boxes and identification annotations
are used for the fine-turning process. 4 loss layers
excluding the center loss is used in this fine-tuning
process.

3) We fine-tune the model obtained in Step 2 with all 5
loss layers including the center loss. The input images
and label annotations are the same as those in Step 2.

B. Test Phase

The test phase is similar to that in [[16]. For each gallery
image, we get the features (feat) of all the candidate pedes-
trians by performing the network forward computation once.
Whereas for the query image, we replace the pedestrian
proposals with the given bounding box, and then do the
forward computation to get its feature vector (feat). Finally,
we compute the pairwise Euclidean distances between the
query features and those of the gallery candidates. The person
similarity level is evaluated based on the Euclidean distances.

V. EXPERIMENTS

Dataset and Evaluation Metrics We use the benchmark
datasets, i.e., both the CUHK-SYSU person search dataset [[16]]
and PRW dataset [[15] in our experiment. Both mean Averaged
Precision (mAP) and top-1 matching rate metrics are used. A
candidate window is considered as positive if it overlaps with
the ground truth larger than 0.5, which is the same as the setup
in previous works [15], [16].

CUHK-SYSU dataset is a large scale and scene-diversified
person search dataset, which contains 18,184 images, 8,432
persons, and 99,809 annotated bounding boxes. Each query
person appears in at least two images. Each image may contain
more than one query person and many background people. The
dataset is partitioned into a training set and a test set. The
training set contains 11,206 images and 5,532 query persons.
The test set contains 6,978 images and 2,900 query persons.
The training and test sets have no overlap on images or query
persons. The identifications in CUHK-SYSU dataset is in the
range of [—1,5532], with —1 being unknown persons, and
5,532 being background. —1 boxes do not go into the random
sampling softmax (RSS). Neither —1 nor 5,532 goes into the
center loss layer, because unknown persons and background
are not unique as other identifications.

In the PRW dataset, a total of 11,816 frames are manually
annotated to obtain 43,110 pedestrian bounding boxes, among
which 34,304 pedestrians are annotated with an identifications
ranging from 1 to 932 and the rest are assigned an identifi-
cations of —2. The PRW dataset is divided into a training set
with 5,704 frames and 482 identifications and a test set with
6,112 frames and 450 identifications. Similar to that in CUHK-
SYSU dataset, unknown persons, and background does not go
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Fig. 4. The mAP accuracy of person search on CUHK-SYSU [16] validation
set using different center loss weight .

into the center loss layer. —1 boxes do not go into the random
sampling softmax (RSS).

Our ablation study is based on the CUHK-SYSU dataset, so
as to provide more comprehensive performance comparisons
with state-of-the-art methods, such as E2E-PS [16]] and JDI-PS
[39].

Training/Testing Settings We build our framework on two
residual networks, i.e., ResNet-101 and ResNet-50 [34]. For
ResNet-101, the pedestrian proposal network is connected
after layer res4b22, while for ResNet-50, it is connected after
layer res4f. In the following experiments, the default network
is ResNet-101 if not specified. For training Step 1 described
in Section the learning rate is 0.001 with 20k iterations
and batch size being 8. For training Step 2, 120k iterations
are used. The initial learning rate is 0.001 and decreased by
a factor of 10 after 100k iterations. For training Step 3, the
learning rate is 0.0001 with 20k iterations. For both steps 2 and
3, the batch size is 2 due to high memory cost. The networks
are trained on NVIDIA GeForce TITAN X GPU with 12GB
memory. Our implementation is based on the publicly available
Caffe framework [40].

For testing the CUHK-SYSU dataset, in order to evaluate
the influence of gallery size, different gallery size is used,
including {50, 100, 500, 1000, 2000, 4000}. In the following
experiments, we will report the performance based on the
test protocol where the gallery size is 100 if not specified.
Each image contains 5.3 background persons on average. If the
gallery size is set to 100, a query person has to be distinguished
from around 530 background persons and thousands of non-
pedestrian bounding boxes, which is challenging. While for
testing the PRW dataset, all 6,112 frames in the test set are
used as gallery, which is challenging.

A. Results on CUHK-SYSU dataset

Experiment on Parameter \. The hyper parameter A\ controls
the weight of the center loss over the whole network loss
function. It is essential to our model. So we conduct one
experiment to investigate the sensitiveness of of the proposed
approach with respect to A. We vary A from 0 to 0.128 to learn
different models. The training dataset is equally divided into
5 equal folds, use 4 of them for training, and 1 for validation.
Cross-validation is deployed. The person search accuracies of
these models on CUHK-SYSU [16] validation set are shown
in Fig. 4] It is very clear that it is not a good choice simply
without using the center loss (in this case A = 0), leading
to poor person search mAP performance. Proper choice of
the values, e.g., A = 0.032, can improve the person search
accuracy of the deeply learned features. We also observe that
the person search performance of our model remains largely
stable across a wide range [0.016, 0.128]. Meanwhile, it is also
observed that similar trend is obtained for the top-1 accuracy.
Thus, in the following experiments, we set the A\ value as
0.032.

Overall Person Search Performance. The results of I[AN and
benchmarks under two evaluation metrics are summarized in
Table [l We compare our performance with end-to-end deep
learning for person search (E2E-PS) method [16], and joint
detection and identification feature learning for person search
(JDI-PS) method [39]], because of their superior performance.
As reported in [39], JDI-PS method [39] attains much bet-
ter performance than separating pedestrian detection ( [30],
[41]) and re-identification (for examples, BoW [42]]+ Cosine
similarity, LOMO+XQDA [43])).

With ResNet-101, more than 7% gain is obtained compared
with [[16] for both mAP and top-1 accuracy. To demonstrate
the importance of center loss in IAN, we also report the
performance of E2E-PS [16] when the VGGNet is replaced
with ResNet-101 and ResNet-50. It is observed that 2% — 3%
gain for the two metrics is obtained only because of the center
loss. It is important to note that our performance is also better
than JDI-PS [39] if both deploy the ResNet-50.

Input of Center Loss. In our proposed method, only features
of ground truth pedestrian boxes are input into the center loss
layer. This scheme is verified by experimental results. To do
this, we input all positive pedestrian boxes (excluding back-
ground and unknown persons with id —1) into the center loss
layer. Note that positive pedestrian boxes refer to candidate
boxes overlapping with ground truth pedestrian boxes higher
than threshold, i.e., 0.5. The obtained results with such scheme
is lower than that uses features of ground truth pedestrian
boxes, as reported Table [lIl This is because the objective of
center loss is to increase intra-class feature compactness, but
features of different positive boxes of the same pedestrian
are dissimilar as they cover different regions with various
background information.

Center Loss with VGGNet. In Section [[II-B| analysis to
avoid dropout is given. We also study this phenomenon with



TABLE I

COMPARISONS BETWEEN IAN WITH E2E-PS [[16]] AND JDI-PS [39]].

Method E2E-PS [16] | E2E-PS [16] | E2E-PS [[16] | JDI-PS [39] TIAN TIAN
(VGGNet) (ResNet-50) | (ResNet-101) | (ResNet-50) | (ResNet-50) | (ResNet-101)
mAP (%) 69.69 73.13 74.28 75.5 76.28 77.23
top-1 (%) 72.97 77.34 78.17 78.7 80.07 80.45
TABLE I TABLE V

THE PERSON SEARCH PERFORMANCE IF ALL POSITIVE PEDESTRIAN

BOXES ARE INPUT INTO THE CENTER LOSS LAYER (IAN WITH ALL

EXPERIMENTAL RESULTS OF THREE SOLUTIONS ON THE OCCLUSION
SUBSET, LOW-RESOLUTION SUBSET.

BOXES).

[ Method [ TAN with all boxes [ TAN ]
mAP (%) 74.70 77.23
top-1 (%) T7.72 80.45

TABLE III

PERSON SEARCH PERFORMANCE USING VGGNET (DROPOUT) AND
CENTER LOSS TOGETHER.

[ Tteration | 0 [ 10,000 | 20,000 | 30,000 | 40,000 |
mAP (%) | 69.60 | 67.38 | 64.12 | 62.55 | 60.73
top-1 (%) | 72.97 | 71.31 | 69.03 | 66.79 | 66.21

experiments. The VGGNet model provided in [16]], where
dropout layers are used, is fine-turned with center loss with
loss weight 0.0032. The testing results with the fine-turned
models are reported in Table It is observed that by
increasing the iteration number, the performance is decreased
constantly. With 40, 000 iterations, almost 9% mAP is dropped
compared with models without center loss. The importance
of replacing VGGNet with ResNet is demonstrated with this
experiment.

We remove all the dropout layers in VGGNet, and test
E2E-PS [16] and our IAN. The obtained results are reported
in Table It is interesting to see that removing the 3
dropout layers in VGGNet leads to sightly better person search
performance. Our TAN with center loss leads to about 2%
performance gain compared with E2E-PS [[16] for both mAP
and top-1 accuracy, if both remove the dropout layers. By
comparing the results in Table [[I] and it is evident that
dropout and center loss are not compatible. The experimental
results support our analysis in Section

Effects of Gallery Size. The task of person search is more
challenging when the gallery size increases. We vary the
gallery size from 50 to 4,000, and test our approach, E2E-PS
[16] with both VGGNet and ResNet-101, and JDI-PS [39].

TABLE IV
COMPARISON BETWEEN AN AND E2E-PS [16]]| FOR VGGNET WITH ALL
DROPOUT LAYERS REMOVED.

Method E2E-PS [16] E2E-PS [16] TAN
(VGGNet) (VGGNet no dropout) | (VGGNet)

mAP (%) 69.69 71.21 73.65

top-1 (%) 72.97 74.48 76.14

E2E-PS [16] E2E-PS [16] IAN
Method VGGNet (Res-101) (Res-101)
mAP T top-I mAP [ top-I | mAP [ top-1
Low-Res 46.11 | 51.03 | 47.91 | 52.07 | 52.60 | 54.48
Occlusion | 44.33 | 45.45 | 47.79 | 48.13 | 53.02 | 54.55
Whole 69.69 | 72.97 | 74.28 | 78.17 | 77.23 | 80.45

The obtained mAPs for various gallery size are reported in
Fig. 5] As expected, the mAP decreases with the increase
of gallery size. Meanwhile, for various gallery sizes, our
approach outperforms E2E-PS [16] with both VGGNet and
ResNet-101 significantly. For large gallery size 4,000, the
mAP gain over E2E-PS [16] is more than 10%. Meanwhile, it
is also observed from Fig. E}(b) that IAN outperforms JDI-PS
[39] with good gain for various gallery size. For large gallery
size, i.e., 4,000, the mAP gain is 3%. It is worth noticing
that the comparison is fair because both use the ResNet-50
network.

Occlusion and Resolution. We also test IAN using low-
resolution query persons and partially occluded persons. The
gallery size is fixed as 100 and several methods are evaluated
on these subsets. The results are shown in Table It is
observed that all the methods perform significantly worse on
both the occlusion and low-resolution subsets than on the
whole test set. Nevertheless, IAN consistently outperforms
E2E-PS [16] significantly.

B. Results on PRW dataset

The obtained results on the PRW dataset are reported
in Table Our proposed method outperforms the DPM-
Alex+IDE .; method reported in [15] with a margin of more
than 14% top-1 accuracy. More importantly, according to [[15]],
various ways of combining of pedestrian detection methods
and re-identification methods are tested for the PRW dataset,
and it is shown that DPM-Alex+IDE,.; achieves the best
performance among all the combinations. On the other hand,
the performance of IAN is also better than that of E2E-PS
[16] and DPM-Alex+IDE,.;, which demonstrates the benefits
of the center loss.

VI. CONCLUSIONS

To address challenging issues in modern person search
framework, we proposed a novel Individual Aggregation Net-
work (IAN) model that can accurately localize pedestrians
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Fig. 5. Person search performance comparison for various gallery size. (a)
Comparing IAN with E2E-PS [16]; (b) Comparing IAN with JDI-PS [39].

TABLE VI
PERFORMANCE COMPARISON ON THE PRW DATASET WITH THE
STATE-OF-THE-ART.

Method DPM-Alex | EZ2E-PS [16] IAN
+IDEge; [15] | (ResNet-101) | (ResNet-101)

mAP (%) 20.20 22.39 23.00

top-1 (%) 48.20 61.00 61.85

and meanwhile minimize intra-person variations over feature
representations. In particular, we built the TAN upon the
state-of-the-art object detection framework, i.e., faster R-CNN
model, so that high-quality region proposals for pedestrians are
produced in an online manner for person search. In addition,
IAN incorporates a novel center loss which is demonstrated
to be effective at relieving the negative effect caused by large
variance of visual appearance of the same person. Meanwhile,
we also performed neural network compatibility study for cen-
ter loss, and we explained why dropout is not compatible with
center loss. Finally, extensive experiments on two benchmarks,
i.e., CUHK-SYSU and PRW, show that IAN achieves the state-
of-the-art performance on both dataset, and well demonstrate
the superiority of the proposed IAN network.

One limitation of the proposed IAN is its large GPU
memory requirement, because center loss needs to track the
feature centers of all classes. Saving the GPU memory cost
and reducing the network computational complexity will be
our future research work for the proposed IAN network.
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