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Abstract

Sparse representation-based brain functional network modeling often results in large inter-subject 

variability in the network structure. This could reduce the statistical power in group comparison, 

or even deteriorate the generalization capability of the individualized diagnosis of brain diseases. 

Although group sparse representation (GSR) can alleviate such a limitation by increasing network 

similarity across subjects, it could, in turn, fail in providing satisfactory separability between the 

subjects from different groups (e.g., patients vs. controls). In this study, we propose to integrate 

individual functional connectivity (FC) information into the GSR-based network construction 

framework to achieve higher between-group separability while maintaining the merit of within-

group consistency. Our method was based on an observation that the subjects from the same group 

have generally more similar FC patterns than those from different groups. To this end, we propose 

our new method, namely “strength and similarity guided GSR (SSGSR)”, which exploits both 

BOLD signal temporal correlation-based “low-order” FC (LOFC) and inter-subject LOFC-profile 

similarity-based “high-order” FC (HOFC) as two priors to jointly guide the GSR-based network 

modeling. Extensive experimental comparisons are carried out, with the rs-fMRI data from mild 

cognitive impairment (MCI) subjects and healthy controls, between the proposed algorithm and 

other state-of-the-art brain network modeling approaches. Individualized MCI identification 

results show that our method could achieve a balance between the individually consistent brain 

functional network construction and the adequately maintained inter-group brain functional 

network distinctions, thus leading to a more accurate classification result. Our method also 

provides a promising and generalized solution for the future connectome-based individualized 

diagnosis of brain disease.
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1. Introduction

Alzheimer’s disease (AD) is an irreversible serious neurological disease in the elderly 

population, mainly characterized by progressive perceptive and cognitive deficits [1]. As a 

prodromal stage of AD, mild cognitive impairment (MCI) has attracted increasing attention 

since more than half of MCI subjects will progress to dementia in about five years [2]. 

Timely detection of MCI before converting to AD is fundamentally important and clinically 

valuable for effective intervention and possible treatment. Computer-aided individual 

diagnosis of brain diseases has been increasingly studied due to the progress in modern 

neuroimaging and computing techniques [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. However, accurate 

MCI diagnosis is still considerably challenging because of subtle functional and anatomical 

changes in MCI subjects compared with normal aging people. A promising technique for 

sensitively capturing such subtle changes is constructing the whole-brain functional 

connectivity (FC) networks (or brain connectome) based on the resting-state functional 

magnetic resonance imaging (rs-fMRI) and extracting the connectome-based features for 

classification. To this end, the FC is typically calculated for each pair of brain regions by 

measuring the temporal synchronization of their blood oxygenation level-dependent 

(BOLD) signals [13, 14], resulting in a whole-brain FC network characterizing the intrinsic 

functional organization of the brain [15, 16, 17, 18]. With many successful applications for 

other brain diseases [19, 20, 21], the whole-brain FC network has been extensively 

demonstrated to be more sensitive than the anatomical metrics for early AD diagnosis [22, 

23, 24, 25, 26, 27, 28].

While promising, most of the previous functional network studies have utilized simple FC 

metrics, e.g., Pearson’s correlation (PC)-based temporal synchronization between two brain 

regions [29, 30]. Despite of its simplicity and biological intuitiveness, PC bares a major 

drawback of modeling only the pairwise linear interactions, without accounting for more 

complex influences among multiple brain regions. To overcome this limitation, sparse 

representation (SR) [31, 32, 33] or similar methods such as graphical Lasso [34, 35], were 

adopted for constructing a sparse brain functional network by considering multiple regions’ 

effects. With SR, the BOLD signals of a brain region can be represented by a linear 

combination of the signals from a small number of other brain regions, and the estimated 

combination weights can be regarded as the FCs. However, due to data-driven nature in SR 

and other similar methods, a potential issue is that the constructed brain functional network 

in the individual level inevitably leads to the relatively large inter-subject variability in the 

topographical structure of the networks due to the unpredictable (but individually different) 

interferences of imaging noises and artifacts. This could lead to a consequence of poor 

generalization ability for the subsequently trained classifier due to the inhomogeneity or 

inconsistency across subjects, and more problematically, produce the unsatisfactory MCI 
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diagnosis accuracy since the subtle FC changes in MCIs compared to the controls are likely 

to be overwhelmed by such large inter-subject variability [36].

By the enforcement of imposing a common sparsity structure across all subjects, the 

population-based prior-constrained graphical Lasso has been developed to reduce such inter-

subject variability for constructing the group consistent individual brain functional networks 

[37]. Aiming to increase the inter-subject comparability, group sparse representation (GSR) 

has also been proposed by jointly estimating the FC (i.e., representation weights) for all 

subjects using a group Lasso constraint with l2,1-norm [36], which encourages the joint 

selection or deletion of certain connectivity links for all the subjects. GSR provides an 

effective way to alleviate the concern of the inter-subject variability; however, it also raises 

another concern in the opposite direction, i.e., it may sacrifice the between-group 

separability (e.g., separability between the patient and control groups) due to excessive 
enforcing of a similar network topographical structure for all the subjects, ignoring that fact 

subjects are from group. For MCI diagnosis, this will become a disadvantage since the 

unconditionally inter-subject similarity enforcement is likely to yield a suboptimal 

classification performance [38]. In other word, the MCI subjects are less separable from the 

healthy controls, based on the brain functional networks constructed using GSR. Thus, a 

new method that can account for both inter-subject consistency and inter-group separability 

is highly desired for connectome-based individual diagnosis.

So far, many previous studies about unsupervised clustering, classification or statistical 

difference analysis on the brain disease cohort [25, 37, 39, 40] have suggested that subjects 

from the same group often have larger FC similarity than those from different groups. 

Recently, a connectivity strength-weighted SR method was proposed for the individual brain 

network construction by integrating FC connectivity strength prior to better optimize brain 

functional network [41]. This pioneering study indicates that the network modeling with the 

guidance from individual FC strength could achieve more biological meaningful results and 

also yield improved disease classification accuracy. Inspired by these observations, we 

propose to explore individual FC information and introduce such a prior into the GSR-based 

network modeling with the goal of preserving systematical group difference without losing 

the merit of inter-subject consistency contributed by the group sparse learning. In particular, 

we first compute inter-regional pairwise FC by measuring temporal synchronization of the 

BOLD signals with PC for each individual, and then incorporate these PC-based FC 

strengths as a priori to guide the group-level brain network modeling in the GSR learning 

framework for both patient and healthy control groups. We hypothesize that the constructed 

brain functional networks can thus share similar topological structure (i.e., comparable) but 

still keep adequate subject-specific connectivity patterns (i.e., separable), which will thus 

increase disease classification accuracy. We can refer the PC-based connectivity to as low-
order FC (LOFC) since it characterizes the simple pairwise temporal correlation of BOLD 

signals. In addition, we further propose to estimate a high-order FC (HOFC) by measuring 

the inter-subject LOFC-profile similarity (by comparing the LOFC pattern of each brain 

region between each pair of subjects) as another guidance for GSR-based network modeling. 

Such a guidance is introduced by constructing a graph Laplacian that penalizes those 

excessive “inter-subject connectivity differences” for the subjects from the same group, 

while retaining sufficient connectivity differences between subjects from different groups. 
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Therefore, our method can seamlessly integrate both individual LOFC strength and inter-

subject LOFC similarity (i.e., HOFC across subjects) into the same GSR-based network 

estimation framework, namely “Strength- and Similarity-Guided GSR (SS-GSR)”. Because 

the SSGSR can exploit and utilize both LOFC and HOFC priors, we expect this will provide 

more reliable and biologically meaningful brain functional networks that can facilitate 

individualized MCI diagnosis.

To validate the effectiveness of our proposed methods, we conduct an experimental study 

based on the rs-fMRI data from the ADNI-2 dataset. Extensive comparisons are carried out 

between our method and other state-of-the-art algorithms for MCI diagnosis, a challenging 

problem due to subtle pathological changes, compared with large inter-subject variability. 

Experimental results show that our methods can not only effectively detect group difference, 

but also significantly improve the brain functional connectomics-based MCI diagnosis.

2. Methods

2.1. General GSR-based Functional Network Construction

Suppose that Xi = [xi
1, …, xi

r, …, xi
R] ∈ ℝP × R contains the mean time series of a total of R 

regions-of-interest (ROIs) for the i-th subject, where P is the number of temporal points in 

each mean time series. Without loss of generality, let us assume that xi
r has been de-meaned 

and variance-standardized. With PC, the LOFC network of each subject i can be roughly 

estimated by calculating the full correlation Ci = Xi
TXi, such that the r-th column ci

r in Ci 

characterizes the functional interactions between the r-th ROI and all other ROIs (i.e., one-

to-all LOFC-pattern of the r-th ROI for the i-th subject). Different from PC, SR estimates 

such a one-to-all LOFC-pattern wi
r through linearly regressing BOLD signals from the r-th 

ROI xi
r by BOLD signals of all other regions Xi

r using a l1-norm sparse regularization:

wi
r = argmin

wi
r

1
2 | |xi

r − Xi
rwi

r | |2
2 + λ | |wi

r | |1 , (1)

where λ is a regularization parameter controlling the sparsity of wi
r. Note that SR models a 

brain functional network for each subject separately, which may easily lead to relatively 

large inter-subject variability in wi
r. GSR-based brain functional network modeling can 

alleviate such a problem by jointly estimating non-zero connections across subjects via l2,1-

norm regularization-based group lasso:

Wr = argmin
Wr i = 1

N 1
2 xi

r − Xi
rwi

r
2

2
+ λ | |Wr | |2, 1 , (2)
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where Wr = [w1
r , …, wi

r, …, wN
r ] consists of the one-to-all LOFC patterns of the r-th ROI for 

all N subjects, and λ controls the extent of group sparsity. The brain functional networks 

modeled by GSR will share similar topological structures (by enforcing similar nonzero or 

zero connectivities for all subjects) to reduce inter-subject variability. However, an inherent 

problem of GSR roots in the group Lasso constraint term, which could sacrifice the 

potentially important between-group differences that often benefit the disease diagnosis. 

Next, we describe our SSGSR model to resolve this problem.

2.2. Strength-Guided GSR (SGSR)

To improve brain disease diagnosis, we need to find out appropriate priors to guide the GSR 

model but will not sacrifice the important group difference in the constructed networks. We 

propose to incorporate the individual LOFC strength and inter-subject LOFC pattern 

similarity to the GSR-based network construction for providing better separability between 

different groups. The details of our proposed SSGSR algorithm are described below.

We first propose to incorporate the PC-based individual FC strengths into the GSR method 

to guide group-level brain functional network modeling. To this end, a weighting term is 

defined based on each subjects PC-based LOFC strength as bi
r, k = exp( − (ci

r, k)2) to penalize 

the estimated link between the r-th and the k-th ROIs (where i denotes the i-th subject). 

Accordingly, a LOFC-strength-guided GSR (SGSR) model can be formulated as:

Wr = argmin
Wr i = 1

N 1
2 xi

r − Xi
rwi

r
2

2
+ λ | |Br ⊙ Wr | |2, 1 , (3)

where Br = [b1
r , …, bi

r, …, bN
r ] is a weighting matrix with elements being 

bi
r = [bi

r, 1, …, bi
r, r − 1, bi

r, r + 1, …, bi
r, R], and ⊙ denotes the element-wise product. That is, the 

link with larger LOFC strength ci
r, k (more likely to be the true connectivity) between these 

two ROIs will got less penalized while the link(s) with smaller LOFC strength (more noise-

pruned) will get more penalized. In this way, these modeled brain functional networks hold 

the group-shared network topological structure and also reflect the subject-specific raw 

functional connectivity strength. In other words, this modeling method can not only ensure 

more biologically meaningful brain functional network construction, but also achieve 

improved network separability between subjects from different groups, under the hypothesis 

that the biologically meaningful functional networks indeed contain information for the 

group separation. We call this method as (PC-based FC) Strength-Guided GSR, shortly as 

SGSR.

2.3. Strength- and Similarity-Guided GSR (SSGSR)

It should be noted that the aforementioned SGSR model only considers the individual-level 

LOFCs as weights in the network construction. The major drawbacks of this method are 1) 

the LOFC used can only measure simple functional dependence between two brain regions, 
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and 2) the LOFC-weighting is carried out for each individual separately, while the inter-
subject similarity of LOFC is important for classification but has been ignored. To this end, 

we further propose to estimate a HOFC by measuring inter-subject LOFC profile similarity 
as an additional source of guidance for the SGSR model. In the following, we introduce the 

details on how the HOFC constraint can be integrated into the SGSR-based method towards 

better brain functional network construction.

Let ci
r and c j

r denote the regional LOFC-patterns (estimated by PC) of the r-th ROI (one-to-

all LOFC) for the i-th and the j-th subjects, respectively. A graph Laplacian can be 

constructed with a similarity matrix Sr = [si, j
r ] ∈ ℝN × N with si, j

r = exp(− | |ci
r − c j

r | |2
2) defining 

the pairwise similarity of subjects in terms of their LOFC patterns for the r-th ROI. Then, a 

similarity-preserving regularization term can be defined to incorporate inter-subject 

similarity/difference as follows:

Ωr =
i, j = 1

N
si, j
r wi

r − w j
r

2
2 = tr(WrLr(Wr)T), (4)

where Lr = Dr − Sr, and Dr ∈ ℝN × N is a diagonal matrix with its diagonal elements defined 

as di, i
r =

j
si j
r . By integrating the regularization term Ωr into (3), our newly proposed 

SSGSR model can be formulated as:

Wr = argmin
Wr i = 1

N 1
2 xi

r − Xi
rwi

r
2

2
+ λ1 | |Br ⊙ Wr | |2, 1

+ λ2tr(WrLr Wr T),

(5)

where λ1 and λ2 are the regularization parameters used to control group sparsity and inter-

subject LOFC-pattern similarity, respectively. In the model formulated above, by further 

adding the second regularization term Ωr, we encourage inter-subject brain network 

resemblance if their PC-based regional LOFC patterns are similar. This will act with a power 

of suppressing the within-group FC differences while retaining the sufficient between-group 
differences, under a generally acceptable hypothesis that the overall LOFC similarity for 

subjects within a group is larger than subjects from different groups. In other words, the 

proposed new model will allow us to achieve good between-group separability without 

losing the merit of group sparsity. Under such situation, we can achieve the improved 

individual separability to further promote connectomics-based brain disease diagnosis. This 

enhanced separability also has its biological meaning, as suggested by numerous previous 

studies [25, 39] using unsupervised clustering or classification to group subjects from the 

same group. Therefore, we call our method as (PC-based FC) Strength- and (PC-based FC) 

Similarity-Guided GSR, shortly as SSGSR, which is an improved version of both GSR and 

SGSR. Of note, the SSGSR can be simply applied to multiple-group studies, or single-group 
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studies that focus on inter-subject variability, because no group label is used during the 

functional network construction.

Fig. 1 illustrates the framework of the SSGSR algorithm for brain network modeling. 

Specifically, for the i-th subject, the constructed brain functional

network is formed as Gi = gi
1, gi

2, …, gi
R , where gi

r = [wi
r, 1, …, wi

r, r − 1, 0, wi
r, r + 1, …, wi

r, R]

consists of the estimated FCs between the r-th ROI and all other ROIs. Since the network 

matrix Gi is typically asymmetric, a symmetry operation Gi = (Gi + Gi
T)/2 can be further 

carried out to achieve a symmetric network (although in classification study this assumption 

is not necessary). The optimization problems of the aforementioned network modeling 

methods can be solved based on the group sparse learning [42, 43]. Some other algorithms 

[44, 45, 46] about matrix factorization could also be adopted to solve these optimization 

problems.

3. Experiments

3.1. Data Acquisition and Pre-processing

In this study, we used the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset 

(http://adni.loni.usc.edu/) for validation of our proposed functional network modeling 

algorithms. ADNI was launched in 2003 by the National Institute on Aging, the National 

Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, 

private pharmaceutical companies and non-profit organizations. The original goal was to 

define biomarkers for use in clinical trials to determine the most appropriate way to measure 

treatment effects of AD. The current goal has been extended to discover more effective 

methods to early detect AD at its pre-dementia stage.

A total of 52 normal control (NC) subjects and 52 MCI patients with rs-fMRI data are 

selected from the ADNI-2 dataset in our experiments. Informed consent was obtained from 

all individual participants included in the study. Subjects from both classes are age- and 

gender-matched, and they were all scanned using 3.0T Philips scanners. The rs-fMRI data 

are preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) 

according to a well-accepted pipeline. Specifically, the first three volumes of each subject 

are discarded before preprocessing for magnetization equilibrium. Preceded by rigid-body 

registration for head motion correction, the rs-fMRI data are normalized to Montreal 

Neurological Institute (MNI) space and spatially smoothed using a Gaussian kernel with 

full-width-at-half-maximum (FWHM) of 6 × 6 × 6 mm3. Of note, scrubbing is not 

performed on the data with the frame-wise displacement (FD) larger than 0.5 mm to avoid 

introducing additional artifacts. However, during data screening, the subjects with more than 

2.5-min rs-fMRI data and FD > 0.5 are excluded from further processing. With the 

Automated Anatomical Labeling (AAL) template, the rs-fMRI data are then parcellated into 

116 ROIs. In each ROI, the mean BOLD time series is extracted and band-pass filtered 

between 0.015 and 0.15 Hz. Head motion parameters and the mean BOLD time series of 

both white matter and cerebrospinal fluid are regressed out for reducing the potential 

interference to the subsequent brain functional network construction.
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3.2. Intuitive Comparison of Different Brain Functional Network Construction Methods

Fig. 2 visualizes the representative brain functional networks of four randomly selected 

subjects (i.e., two MCIs and two NCs) constructed using PC, SR, GSR, SGSR, and SSGSR, 

respectively. Compared with the other four sparse representation-based networks, PC-based 

networks contain much denser connections and have prominently larger individual 

variability. To further investigate the inter-subject variability, the standard deviation of each 

connection is calculated across subjects within each of MCI and NC groups, and further 

averaged for each of the constructed brain functional networks (see Fig. 3). We also evaluate 

the separability of the brain functional networks between the MCIs and the NCs by 

calculating the discriminability index, defined by squared pointwise biserial correlation 

coefficient (r2 value) [47] in Fig. 4, where the larger r2 value indicates higher separability. 

The number of connections with r2 > 0.05 is 122, 134, 152, 188, and 246 for PC, SR, GSR, 

SGSR, and SSGSR, respectively. As shown in Fig. 3, the networks derived from GSR, 

SGSR and SSGSR present relatively lower inter-subject variability, compared with the PC- 

and SR-based networks, indicating the effectiveness of the group sparsity constraint in 

reducing individual variability. Although the GSR achieves the best comparability, as 

indicated by Fig. 4, it fails to provide satisfactory separability between subjects from two 

different groups. Instead, by incorporating individual FC strength in the GSR, the SGSR-

based brain functional networks provide an improved between-group separability. 

Furthermore, the SSGSR not only utilizes individual FC strength but also, more importantly, 

explicitly integrates the inter-subject FC pattern similarity into the GSR model, thus further 

improving between-group separability.

3.3. MCI Classification and Performance Evaluation

For each network modeling method, a feature vector is formed by concatenating the upper 

triangular elements of the constructed network of each subject. That is, the dimensionality of 

the feature vector is 116 × (116 1)/2 = 6670. Two-sample t-tests with a significance level of 

p < 0.05 (uncorrected) are carried out to reduce the redundant features. Furthermore, least 

absolute shrinkage and selection operator (Lasso) [48, 49, 50] is adopted to select the feature 

subset with higher discriminability. Finally, a support vector machine (SVM) with a linear 

kernel is trained on the selected feature subset for MCI classification. The whole procedure 

is illustrated by Fig. 5.

Classification performance is evaluated based on classification accuracy (ACC), area under 

ROC curve (AUC), sensitivity (SEN), and specificity (SPE). These statistical measures are 

defined as:

ACC = TP+TN
TP+FP + TN + FN , (6)

SEN = TP
TP+FN, SPE = TN

TN+FP, (7)
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where TP, TN, FP and FN denote the true positive, true negative, false positive and false 

negative, respectively. Thus, ACC measures the proportion of subjects correctly classified 

among all subject, SEN and SPE correspond to the proportions of MCI patients and NC 

correctly classified, respectively. ROC curve is a graphical plot illustrating the diagnostic 

ability of a binary classifier system as its discrimination threshold is varied. AUC represents 

the probability that the classifier will assign a higher score to a randomly chosen positive 

example than to a randomly chosen negative example.

To evaluate the effectiveness of our proposed framework, we have made extensive 

comparisons with the brain functional networks constructed by Pearson’s correlation (PC), 

sparse representation (SR), connectivity-weighted SR (WSR) [41], group sparse 

representation (GSR) [36], strength-guided GSR (SGSR), and both strength and similarity-

guided (SSGSR), respectively, using the same dataset. The leave-one-out cross-validation 

(LOOCV) scheme is adopted for evaluation of diagnosis performance. In each fold of 

LOOCV procedure, an additional inner LOOCV is also carried out on the training data to 

determine the optimal hyper-parameters (i.e., λ for SR, WSR, GSR, and SGSR, and λ1, λ2 

for SSGSR, as well as the soft-margin parameter C for SVM). The selection ranges of λ, λ1 

and λ2 are [0.01, 0.02, …, 0.1], while C is selected from [0.05, 0.1, …, 1].

Fig. 6 shows the classification results derived by different brain functional network modeling 

methods. Compared with PC, all of other sparse representation-based methods improved the 

classification accuracy in the varying degrees. Among them, the proposed SSGSR method 

produced the highest accuracy of 88.5%, with improvements of 24.1%, 18.3%, 9.7%, 10.6% 

and 4.8% compared with PC, SR, WSR, GSR, and SGSR, respectively. Fig. 7 further depicts 

the ROC curves derived by the comparison methods. To investigate the significance of 

classification performance difference between different methods, we have carried out a non-

parametric statistical analysis, namely DeLong’s test [51], for the comparison of each two 

ROC curves calculated on the dataset, with a confidence interval of 95%. The results 

indicate that SSGSR performs significantly better than PC, SR, WSR, GSR and SGSR with 

p values = 1.26 × 10−6, 3.34 × 10−6, 0.003, 0.001 and 0.028, respectively.

4. Discussion

4.1. Performance Comparison with State-of-the-Art Results

In addition to the above-mentioned experimental analyses, we also compare the performance 

of our proposed SSGSR method with the performances of several recent state-of-the-art 

studies that also use rs-fMRI data for MCI vs. NC diagnosis (see Table 1). These state-of-

the-arts are briefed as follows. Wee et al. [36] combined group Lasso model with multi-

spectrum strategy to construct group-level brain networks for MCI diagnosis. Wang et al. 
[29] proposed to estimate the frequency-dependent brain networks using wavelet-based 

correlations of both high- and low-resolution parcellation units. Graph theoretical analyses 

were then implemented on these constructed brain networks for distinguishing MCI 

individuals from NC subjects. Challis et al. [52] introduced a Bayesian Gaussian process 

logistic regression model with covariance-based connectivity metric to MCI classification. 

Zhang et al. [53] constructed PC-based brain networks with two sample t-test for feature 

extraction, and designed an l2-regularized logistic regression classifier for MCI diagnosis. 
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Among all these comparison methods, our approach achieved the best classification 

performance with higher ACC, AUC and SPE. Moreover, the experimental results derived 

from our study are based on the largest number of subjects among all other state-of-the-arts 

studies under comparison, thus providing further evidence for the reliability, generalization 

ability and efficacy of our proposed method.

It should be noted that feature selection and classification were separately implemented in 

our diagnosis framework. These two procedures could be integrated into one step using 

more advanced machine learning technologies, such as random forest [54] or deep learning 

[55], which may provide further improved diagnosis performance. This is worth our further 

investigation.

4.2. Parameter Sensitivity

The effectiveness of our proposed method is affected by the selection of hyperparameters, 

i.e., λ1 for strength-weighted group sparsity and λ2 for inter-subject LOFC pattern 

similarity. In our experiment, we implement a grid search to select the optimal parameter 

values on the training data using inner LOOCV. To investigate the parameter sensitivity of 

our network modeling method, we evaluate effects of varying values of these two 

hyperparameters on classification accuracy using LOOCV with all subjects. Fig. 8 depicts 

classification accuracies obtained using the brain networks constructed by our proposed 

SSGSR method with different settings for the aforementioned hyperparameters. The best 

accuracy of 91.4% is achieved by using λ1 = 0.04 for strength-weighted sparsity and λ2 = 

0.05 for similarity constraint. It can be seen that the classification accuracy 88.5% yielded 

by our method with the hyperparameters estimated from the inner LOOCV is close to the 

best (up-limit) accuracy 91.4% that is achieved by using the specific parameters selected 

based on all subjects. Our future study will further validate performance of the proposed 

algorithm on a completely independent dataset.

4.3. Most Discriminative Connections and Brain Regions

To further validate our method, we investigate the connections with potential biological 

meaning (i.e., importance for MCI identification) based on the brain functional networks 

modeled by our proposed SSGSR method. These connections are regarded as potential 

imaging biomarkers for early AD diagnosis. Here, the values of the weighting coefficients of 

the trained SVM model reflect the importance of selected features for accurate MCI 

classification. We calculate the mean SVM-derived weighting coefficient of each feature 

across all the LOOCV folds during the training process, since the selected features vary in 

each LOOCV fold. Fig. 9 shows the top ten discriminative connections. Fig. 10 further 

presents the 19 brain regions involved in the top ten discriminative connections. A approach 

for 3D visualization of these connections and brain regions can be found in literature [56].

Most of these brain regions have been indicated to be closely related to AD pathology in 

previous studies. Specifically, many selected regions, including the hippocampus, posterior 

cingulate gyrus, middle temporal gyrus, angular gyrus, and supramarginal gyrus, are 

included or partially included in the default mode network (DMN). It is believed that the 

DMN plays an important role in high-level cognitive functions, including episodic memory 
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[57], while the abnormality of the DMN functional connectivities can be observed across a 

range of neurological disorders, including AD and MCI [58]. Extensive researches have 

indicated that the hippocampus is sensitive to the pathology attack in the early stage of AD 

[59, 60]. Abnormal structural, functional, and metabolic changes were reported in the 

posterior cingulate gyrus of the MCI individuals [61, 62], which may be closely associated 

with the deficits in memory functions, object recognition, or evaluation of information [63]. 

Compared with stable MCI individuals, those who converted to AD had more atrophy on the 

left lateral temporal lobe, especially on the middle temporal gyrus [64], which has been 

reported as a significant imaging biomarker for distinguishing AD from NC subjects [65]. 

MCI individuals have been also found to show decreased centrality, compared with NC 

subjects, in the left angular gyrus [24]. In addition to being an important part of the DMN, 

the angular gyrus is also responsible for complex language functions, especially the 

language comprehension [66].

Beside the DMN, most of other selected brain regions have also shown their importance for 

early AD diagnosis. Both connectivity density reduction and network wiring efficiency 

decrease were also observed in the olfactory cortex of AD patients [67], which is associated 

with olfactory dysfunction, a sensitive and early behavioral marker for neurodegenerative 

diseases [68]. The inferior temporal gyrus have been confirmed to be affected in the 

prodromal stage of AD via pathological studies [69]; note that this region is a typical 

multimodal association area, closely related to advanced brain functions such as the verbal 

fluency [70]. The selected brain region at the left orbitofrontal cortex has been found to 

show the potential clinical correlations with the clinically well-described AD impairment 

such as the deteriorated motivation and value assignment [71]. In addition, both the right 

lobule VI of cerebellar hemisphere and the right lobule III of the vermis have also been 

shown to be affected in the early stage of AD [72]. The names and indices of these brain 

regions (corresponding to the most discriminative connections) are summarized in Table 2.

5. Conclusions

In this study, we propose a more accurate and biologically meaningful brain functional 

network modeling method, namely SSGSR, for better MCI individual identification. Our 

model seamlessly integrates both low- and high-level functional connectivity priors to guide 

the brain functional network construction, which effectively captures individual’s robust and 

strong connectivity strength and incorporates the advantage of inter-subject connectivity 

pattern (dis)similarity for better detection of group differences. Accordingly, more accurate 

brain functional network modeling is achieved by using our proposed SSGSR method, as 

shown by not only significant improvement of individualized MCI detection but also 

discovery of more biologically meaningful functional connectivity biomarkers. The 

effectiveness of our method has also been proven by comparing with multiple competing 

approaches on the same dataset and also with the results reported in other state-of-the-art 

literature. All these evidence suggest the promise of our proposed method for possible 

clinical studies, especially for biomarker detection and personalized brain connectomics-

based disease diagnosis. Our future studies will optimize the selection strategy of model 

parameters in a more efficient way, and validate the performance of our method on 

additional independent datasets.
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Figure 1: 
Framework of the proposed method for brain functional network construction.
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Figure 2: 
Comparison of brain functional networks of four subjects (two MCIs and two NCs), 

constructed by five different methods: Pearsons correlation (PC), sparse representation (SR), 

group sparse representation (GSR), strength guided group sparse representation (SGSR), and 

strength and similarity guided group sparse representation (SSGSR).
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Figure 3: 
Within-group inter-subject variability of the brain functional networks constructed by PC, 

SR, GSR, SGSR and SSGSR, respectively. The standard deviation of each connection is 

calculated across subjects within each of MCI and NC groups, and then averaged to evaluate 

the inter-subject variability.
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Figure 4: 
Separability of each connection in the brain functional networks constructed by PC, SR, 

GSR, SGSR and SSGSR, respectively. The separability is evaluated by computing the 

discriminability index r2 value.
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Figure 5: 
Brain functional network-based MCI classification procedure.
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Figure 6: 
Classification performance comparison among different methods.
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Figure 7: 
ROC curves derived by different methods for MCI classification.
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Figure 8: 
Classification accuracy derived based on the brain functional networks constructed by 

SSGSR with different values of the hyperparameters. The parameter range is [0.01, 0.02, 

… , 0.1]. The results are obtained using LOOCV on all subjects. The highest accuracy is 

91.4% when λ1 = 0.04 and λ2 = 0.05.
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Figure 9: 
The top ten discriminative connections determined by the weighting coefficients of SVM 

based on the brain functional networks constructed using our proposed SSGSR method.
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Figure 10: 
The discriminative brain regions corresponding to the top ten selected connections.
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Table 1:

Comparison with other existing studies using rs-fMRI data for MCI vs. NC classification.

Method Subjects ACC (%) AUC SEN (%) SPE (%)

Wee et al. [36] 25 MCI+25 NC 84.0 0.870 84.0 84.0

Wang et al. [29] 37 MCI+47 NC 85.7 0.904 86.5 85.1

Challis et al. [52] 39 MCI+50 NC 81.0 – 79.0 83.0

Zhang et al. [53] 22 MCI+18 NC 87.5 0.929 90.9 83.3

Proposed 52 MCI+52 NC 88.5 0.965 86.2 90.4
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Table 2:

Brain regions corresponding to the most discriminative connections.

ROI 1 ROI 2

Index Name Index Name

9 Left orbitofrontal cortex (middle) 80 Right transverse temporal gyrus

21 Left olfactory cortex 22 Right olfactory cortex

15 Left inferior frontal gyrus 70 Right paracentral lobule

35 Left posterior cingulate gyrus 87 Left middle temporal pole

36 Right posterior cingulate gyrus 110 Lobule III of vermis

37 Left hippocampus 80 Right transverse temporal gyrus

56 Right fusiform gyrus 86 Right middle temporal gyrus

63 Left supramarginal gyrus 79 Left transverse temporal gyrus

65 Left angular gyrus 89 Left inferior temporal gyrus

71 Left caudate nucleus 100 Right lobule VI of cerebellar hemisphere
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