
Group Preserving Label Embedding for Multi-Label Classification

Vikas Kumara,b,∗, Arun K Pujaria,b, Vineet Padmanabhana, Venkateswara Rao Kagitaa

aArtificial Intelligence Lab, School of Computer and Information Sciences,
University of Hyderabad, Hyderbad-500046, AndhraPradesh, India

bCentral University of Rajasthan, Rajasthan, India

Abstract

Multi-label learning is concerned with the classification of data with multiple class labels.
This is in contrast to the traditional classification problem where every data instance has
a single label. Due to the exponential size of output space, exploiting intrinsic information
in feature and label spaces has been the major thrust of research in recent years and use
of parametrization and embedding have been the prime focus. Researchers have studied
several aspects of embedding which include label embedding, input embedding, dimension-
ality reduction and feature selection. These approaches differ from one another in their
capability to capture other intrinsic properties such as label correlation, local invariance etc.
We assume here that the input data form groups and as a result, the label matrix exhibits
a sparsity pattern and hence the labels corresponding to objects in the same group have
similar sparsity. In this paper, we study the embedding of labels together with the group
information with an objective to build an efficient multi-label classification. We assume the
existence of a low-dimensional space onto which the feature vectors and label vectors can
be embedded. In order to achieve this, we address three sub-problems namely; (1) Iden-
tification of groups of labels; (2) Embedding of label vectors to a low rank-space so that
the sparsity characteristic of individual groups remains invariant; and (3) Determining a
linear mapping that embeds the feature vectors onto the same set of points, as in stage 2,
in the low-dimensional space. We compare our method with seven well-known algorithms
on twelve benchmark data sets. Our experimental analysis manifests the superiority of our
proposed method over state-of-art algorithms for multi-label learning.
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1. Introduction

Multi-label learning is concerned with the classification of data with multiple class labels.
The objective of multi-label classification is to build a classifier that can automatically tag an
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example with the most relevant subset of labels. This problem can be seen as a generalization
of single label classification where an instance is associated with a unique class label from
a set of disjoint labels L. The majority of the methods for supervised machine learning
proceeds from a formal setting in which data objects (instances) are represented in the form
of feature vectors. Thus, an instance x is represented as a D dimensional real-valued feature
vector (x1, . . . , xD) ∈ RD. In multi-label classification, each training example xi, 1 ≤ j ≤ N
is associated with a label vector yi ∈ {−1, 1}L. The +1 entry at the jth coordinate of
vector yi indicates the presence of label j in data point xi. Given the pair, a feature matrix
X ∈ RN×D and a label matrix Y ∈ {−1, 1}N×L, the task of multi-label classification is to
learn a parameterization h : RD → {−1, 1}L that maps each instance (or, a feature vector)
to a set of labels (a label vector). Multi-label classification has applications in many areas,
such as machine learning [29, 39], computer vision [6, 5, 38], and data mining [36, 30].

Existing methods of multi-label classification can be broadly divided into two cate-
gories [31, 44] - methods based on problem transformation and methods based on algo-
rithm adaptation. The first approach transforms the multi-label classification problem into
one or more single-label classification or regression problems so that existing single label
classification algorithms can be applied. During the past decade, number of techniques
are proposed in the literature such as Binary Relevance (BR) [5], Calibrated Label Rank-
ing [12], Classifier Chains [29] and Random k-labelsets [36]. The second approach which is
based on algorithm adaptation technique, extends or adapts specific learning algorithms to
deal with multi-label data directly. Representative algorithms include AdaBoost.MH and
AdaBoost.MR [30] which are two simple extensions of AdaBoost, ML-DT [9] adapting de-
cision tree techniques, lazy learning techniques such as ML-kNN [43] and BR-kNN [32] to
name a few.

Machine learning is nowadays applied to massive data sets of considerable size, including
potentially unbounded streams of data. Under such conditions, the scalability of learning
algorithms is of major concern, calling for an effective data management and the use of
appropriate data structures for time- and space-efficient implementations. In the case of
multi-label classification one of the major issues that arises when we have extremely large
feature space and label space is that of scalability. Most of the conventional algorithms of
multi-label classification fail in such situations. To cope with the challenge of exponential-
sized output space, use of parametrization and embedding have been the prime focus. There
are two major strategies of embedding for problems with large size output space. The first
approach is to transform feature vectors from original feature space to an embedded space,
which captures the intrinsic structure of the features. In [15], a parametrized approach is
suggested to transform data from original feature space to label-specific feature space with
the assumption that each class label is associated with sparse label-specific features. A
joint learning framework in which feature space embedding and multi-label classification
are performed simultaneously with low-rank constraints on embedding is proposed in [41].
The second approach is to transform the label vectors to an embedded space, followed by
the association between feature vectors and embedded label space for classification purpose.
With proper decoding process that maps the projected data back to the original label space,
the task of multi-label prediction is achieved [4, 12, 13]. We review the methods that fall into
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this category in Section 2. There are attempts to learn embedding of both feature and label
space simultaneously onto the same space. Embedding of both features and labels to a single
low-dimensional space is no way obvious and cannot be a routine extension of feature-only
embedding or label-only embedding. It is necessary to retain the intrinsic relationship while
mapping feature- and label-vectors to a single space. In [27], semi-supervised dimensionality
reduction is attempted for such embedding. But dimensionality reduction techniques, a kind
of nonlinear embedding, maintain some specific invariance and are not guaranteed to retain
intrinsic relationship with feature vectors. As a result, though dimensionality reduction
approaches are algorithmically feasible, their role is not justified in the present context. To
retain the relationships of feature and label spaces, a simultaneous nonlinear embedding is
proposed in [23]. Moreover, all these approaches do not yield results beyond a particular
level of accuracy for problems with large data and large number of labels. Recent years
have witnessed extensive applications of data mining, where features or data items are
inherently organized into groups. In the context of multi-label classification, there are few
proposals which model group information but no detailed study in this direction has so far
been undertaken. To exploit label-correlations in the data locally, it is assumed in [16] that
the training data are in groups with instances in the same group sharing the same label
correlations. In [33], highly correlated labels are grouped together using the information
from label and instance spaces and for every group, sparse meta-label-specific features are
learnt.

The present research starts with the assumption that there exists a low-dimensional space
onto which the given set of feature vectors and label vectors can be embedded. Feature
vectors can be embedded as points and label vectors correspond to linear predictors, as
decision hyperplanes, in this embedded space. There are similarities among labels belonging
to the same group such that their low-dimensional representations share the same sparsity
pattern. For example, the set of labels in corel5k data set can be grouped into landscape-
nature, humans, food etc. [11]. The features such as eye and leg are specific to the humans
whereas the feature like ridge is specific to the group landscape-nature. Given the label
matrix Y , it is necessary to find points in a space of reduced dimension and to determine
decision hyperplanes such that the classification thereof is compatible with Y . While doing
so, it is desirable that the process must retain group information of labels. We achieve this
by a matrix factorization based framework in which the label matrix Y is approximated
using the product of two matrices U ∈ RN×d and V ∈ Rd×L. In a sense the row of matrix
U can be viewed as point in a reduced dimension and the column of V defines a set of
decision hyperplanes. If there is any dependency properties in labels of Y (column of Y ),
this is retained in dependencies in decision hyperplanes (column of V ) and not in embedded
points. We use the `2,1 norm regularization on V to exploit the shared sparsity pattern
among the label groups. The second sub-objective is to learn a linear mapping that maps
the feature vectors onto the same set of points which are obtained as a result of factorization
of label matrix. We achieve this by a separate optimization problem. We make use of
correlation coefficients to capture the similarity relation and `1 norm for regularization. We
use FISTA [2] type of method to learn the label embedding and subsequently mapping
from feature space to the embedded label space. Thus, we develop a novel multi-label
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classification method in the present work. To the best of our knowledge, there has not been
any earlier attempt in this direction. We feel that this approach will eventually provide a
robust classification technique as demonstrated by our experimental results which looks very
promising.

The rest of the paper is organized as follows. Section 2 briefly reviews the earlier research
on multi-label learning. We introduce our proposed method, termed as GroPLE in Section 3.
Experimental analysis of proposed method is reported in Section 4. Finally, Section 5
concludes and indicates several issues for future work.

2. Related Work

Label embedding (LE) is a popular strategy for multi-label classification where the aim
is to embed the labels in a low-dimensional latent space via linear or local non-linear embed-
dings. LE algorithms transforms the original label vectors to an embedded space, followed
by the association between input and embedded label space for classification purposes. With
a proper decoding process which maps the projected data back to the original label space,
the task of multi-label prediction is achieved. Formally, given feature matrix X and label
matrix Y , the d -dimensional embedding of the label space is typically found through a linear
transformation matrix W ∈ RL×d. A mapping h : X → YW is then learnt from feature
space to reduced label space. We briefly review the major approaches of LE.

The approach of Hsu et al. [13] projects the label vectors to a random low-dimensional
space, fits a regression model in this space, then projects these predictions back to the original
label space. In [34], principal component analysis (PCA) is employed on the label covariance
matrix to extract a low-dimensional latent space. In [1], a sparsity-regularized least square
reconstruction objective is used to select a small set of labels that can predict the remaining
labels. Recently, Yu et al. [41] and Jing et al. [20] proposed to use trace norm regularization
to identify a low-dimensional representation of the original large label space. Mineiro et
al. [22] use randomized dimensionality reduction to learn a low-dimensional embedding that
explicitly captures correlations between the instance features and their labels. Some methods
work with label or feature similarity matrices, and seek to preserve the local structure of
the data in the low-dimensional latent space. Prabhu et al. [26] propose a method to train a
classification tree by minimizing the Normalized Discounted Cumulative Gain. Rai et al. [28]
assume that the label vectors are generated by sampling from a weighted combination of
label topics, where the mixture coefficients are determined by the instance features. Based
on the assumption that all the output labels can be recovered by a small subset, multi-label
classification via column subset selection approach (CSSP) is proposed in [4]. Given a matrix
Y , CSSP seeks to find a column index set C ⊂ {1, . . . , L} with cardinality d (d� L) so that
columns with indices in C can approximately span Y . The subset of columns is selected
using a randomized sampling procedure. The problem is formulated as follows.

min
C
‖Y − YCY †CY ‖F (1)

where ‖ · ‖F is Frobenius norm, YC denotes the submatrix consisting of columns of Y with
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indices in C and YCY
†
C is the projection matrix onto the d-dimensional space spanned by

columns of YC . Alternatively, there have been emerging interests in recent multi-label meth-
ods that take the correlation information as prior knowledge while modeling the embedding
(encoding). These methods can be efficient when the mapped label space has significantly
lower dimensionality than the original label space [13].

In recent years, matrix factorization (MF) based approach is frequently used to achieve
the LE which aims at determining two matrices U ∈ RN×d and V ∈ Rd×L. The matrix
U can be viewed as the basis matrix, while the matrix V can be treated as the coefficient
matrix and a common formulation is the following optimization problem.

min
U,V

`(Y, U, V ) + λR(U, V ) (2)

where `(·) is a loss function that measures how well UV approximates Y , R(·) is a regulariza-
tion function that promotes various desired properties in U and V (sparsity, group-sparsity,
etc.) and the constant λ ≥ 0 is the regularization parameter which controls the extent
of regularization. In [24], a MF based approach is used to learn the label encoding and
decoding matrix simultaneously. The problem is formulated as follows.

min
U,V
‖Y − UV ‖2F + αΨ(X,U) (3)

where U ∈ RN×d is the code matrix, V ∈ Rd×L is the decoding matrix, Ψ(X,U) is used
to make U feature-aware by considering correlations between X and U as side information
and the constant α ≥ 0 is the trade-off parameter. In order to reduce the noisy information
in the label space, the method proposed in [19] decompose the original space to a low-
dimensional space. One encouraging property of this low-dimensional space is that most of
the structures in the original output label space can be explained and recovered. Instead
of globally projecting onto a linear low-dimensional subspace, the method proposed in [3]
learns embeddings which non-linearly capture label correlations by preserving the pairwise
distances between only the closest (rather than all) label vectors.

3. GroPLE: The Proposed Method

In this section, a novel method of multi-label classification is proposed. The proposed
method GroPLE has three major stages namely (1) Identification of groups of labels; (2)
Embedding of label vectors to a low rank-space so that the sparsity characteristic of individ-
ual groups remain invariant; and (3) Determining a linear mapping that embeds the feature
vectors onto the same set of points, as in stage 2, in the low-dimensional space.

Identification of groups of labels: The label groups are not given explicitly and it is
necessary to learn from the label matrix Y . One approach is to cluster the columns of Y .
There are several clustering algorithms proposed in the literature such as k-means [18, 17],
hierarchical clustering [21] and spectral clustering [42, 25, 37]. We adopt spectral clustering.
We do not claim that spectral clustering is the best option. We first construct a graph
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G =< V , E > in the label space, where V denotes the vertex/label set, and E is the edge
set containing edges between each label pair. We adopt heat kernel weight with self-tuning

technique (for parameter σ) as edge weight if two labels are connected Ai,j = exp(
(−‖Yi−Yj‖2)

σ
)

where Yi and Yj are the ith and jth column of matrix Y [42]. Labels can be grouped into
K clusters by performing k-means with K largest eigenvectors as seeds of the normalized
affinity matrix L = D−

1
2AD−

1
2 , where D is a diagonal matrix with Di,i =

∑
j Ai,j.

Label Space Embedding: Given a label matrix Y , each column corresponds to a label
and our assumption is that related labels form groups. Let the columns of Y ∈ {−1, 1}N×L
are divided into K groups as Y = (Y 1, . . . , Y K), where Y k ∈ {−1, 1}N×Lk and

∑K
k Lk = L.

Matrix factorization based approach of label embedding aims to find latent factor matrices
U and V to approximate Y . In the present case, where labels are divided into groups, we
approximate Y k using U and V k. Ideally, there should be a subset of columns of U associated
with any group and hence, the corresponding vector in V k of a label should have nonzero
values only for the entries which correspond to the subset of columns of U associated with
the group. More concretely, we expect that for deciding any label group all the features are
not important and each label in that group can be decided by linear combination of fewer
group features. To achieve this, we add a `2,1-norm regularization on V k that encourages
row sparsity of V k. Then the sub-objective to learn the embedding from original label space
is given by

min
U,V 1,...,V K

f(U, V 1, . . . , V K) =
K∑
k=1

‖Y k − UV k‖2F + λ1‖U‖2F + λ2

K∑
k=1

‖V k‖2,1 (4)

where for a given matrix A ∈ Rn×m, ‖A‖2F =
∑n

i=1

∑m
j=1A

2
ij and ‖A‖2,1 =

∑n
i=1

√∑m
j=1A

2
ij.

We can solve Eq. (4) by alternating minimization scheme that iteratively optimizes each
of the factor matrices keeping the other fixed. The details of derivation can be found
in Appendix A.

We feel that our proposal of group sparsity preserving label embedding may pave the
way to overcome the difficulty in handling the infrequently occurring labels more efficiently.
Due to the presence of infrequently occurring (tail) labels, the low-rank assumption does
not hold in label embedding based multi-label classification [3, 40]. The proposed method
can tackle the problem at two different stages - while identifying the groups of labels and
while embedding of label vector to a low-dimensional space. In the first stage, the label
grouping can be implemented either by adopting a technique in which the prior estimate of
number of groups is not required or by tuning the number of groups parameter based on
label distribution. In this stage, the set of infrequent labels may form one or more separate
clusters and hence these can be handled separately in the label embedding phase. On the
other hand, if such an infrequent label is part of a group having frequently occurring labels,
it might be sharing some common characteristics with frequently occurring labels in the
group, which is handled by the optimization problem in Eq. (4).
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Feature Space Embedding: The U matrix computed above as a result of the learning
process represents a set of points and it is desired that these points, in some sense, represent
the training objects. We assume that there exists a linear embedding Z ∈ RD×d that
maps the feature matrix X to U . Thus, we justify our hypothesis that there exists a
low-dimensional space where both X and Y are embedded and this embedding retains the
intrinsic feature-label relation as well as the group information. In order to achieve the
embedding of feature vectors, we try to capture the correlation that exists in the embedded
space and formulate the objective function as follows.

min
Z
‖XZ − U‖2F + α

d∑
j=1

RijZ
T
i Zj + β‖Z‖1 (5)

where Zi is the ith column of matrix Z and Rij = 1− Cij, where Cij represent the correla-
tion coefficient between ith and jth column of matrix U . We employ LLSF [14] to learn the
transformation matrix Z.

Complexity Analysis: We analyze the computational complexity of the proposed method.
The time complexity of GroPLE mainly comprises of three components: formation of label
groups and the optimization of the problem given in Eq. (4) and (5). The formation of label
groups has two parts: construction of neighbourhood graph and spectral decomposition of
a graph Laplacian. This part takes O(NL2 + L3). For each iteration in Algorithm 1 (see
Appendix A), updating U requires O(NLd + d3 + Nd2). For simplicity of representation,
we are ignoring the number of groups K and using the total number of labels L. Hence,
the updation of V takes O(NLd + d3 + Nd2 + Ld2). Let t1 be the maximum number of
iterations required for gradient update, then overall computation required in LE process is
O(NL2 +L3)+O(t1(NLd+d3 +Nd2))+O(t1(NLd+d3 +Nd2 +Ld2)), that is, O(t1(NLd+
d3 +Nd2 + Ld2)). Similarly, the complexity of feature space embedding is O(ND2 +D3) +
O(2NDd+Dd2), that is, O(t2(2NDd+Dd2)), where t2 is the number of iterations. Hence the
overall computation required by GroPLE is O(t1(NLd+d3+Nd2+Ld2)+t2(2NDd+Dd2)).

4. Experimental Analysis

To validate the proposed GroPLE, we perform experiments on twelve commonly used
multi-label benchmark data sets. The detailed characteristics of these data sets are summa-
rized in Table 1. All the data sets are publicly available and can be downloaded from meka1

and mulan2.

4.1. Evaluation Metrics

To measure the performance of different algorithms, we have employed four evaluation
metrics popularly used in multi-label classification, i.e. accuracy, example based f1 measure,

1http://meka.sourceforge.net/#datasets
2http://mulan.sourceforge.net/datasets-mlc.html
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Table 1: Description of the Experimental Data Sets.

Data set #instance #Feature #Label Domain LC
genbase 662 1185 27 biology 1.252
medical 978 1449 45 text 1.245
CAL500 502 68 174 music 26.044
corel5k 5000 499 374 image 3.522
rcv1 (subset 1) 6000 944 101 text 2.880
rcv1 (subset 2) 6000 944 101 text 2.634
rcv1 (subset 3) 6000 944 101 text 2.614
bibtex 7395 1836 159 text 2.402
corle16k001 13766 500 153 image 2.859
delicious 16105 500 983 text(web) 19.020
mediamill 43907 120 101 video 4.376
bookmarks 87856 2150 208 text 2.028

macro f1 and micro f1 [44, 31]. Given a test data set D = {xi, yi | 1 ≤ i ≤ N}, where
yi ∈ {−1, 1}L is the ground truth labels associated with the ith test example, and let ŷi be
its predicted set of labels.
Accuracy for an instance evaluates the proportion of correctly predicted labels to the total
number of active(actual and predicted) labels for that instance. The overall accuracy for a
data set is the average across all instances.

Accuracy =
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

Example based F1 Measure is the harmonic mean of precision and recall for each example.

F1 =
1

N

N∑
i=1

2piri
pi + ri

where pi and ri are precision and recall for the ith example.

Macro F1 is the harmonic mean of precision and recall for each label.

MacroF1 =
1

L

L∑
i=1

2piri
pi + ri

where pi and ri are precision and recall for the ith label.

Micro F1 treats every entry of the label vector as an individual instance regardless of label
distinction.

Micro F1 =
2
∑L

i=1 TPi

2
∑L

i=1 TPi +
∑L

i=1 FPi +
∑L

i=1 FNi

where TPi, FPi and FNi are true positive, false positive and false negative for ith label,
respectively.
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4.2. Baseline Methods

For performance comparison, we consider seven well-known state-of-the-art algorithms
and these are the following.

• BSVM [5]: This is one of the representative algorithms of problem transformation
methods, which treat each label as separate binary classification problem. For every
label, an independent binary classifier is trained by considering the examples with
given class label as positive and others as negative. LIBSVM [7] is employed as the
binary learner for classifier induction to instantiate BSVM.

• LLSF [34]: This method addresses the inconsistency problem in multi-label classifi-
cation by learning label specific features for the discrimination of each class label.

• PLST [34]: Principal label space transformation (PLST) uses singular value decom-
position (SVD) to project the original label space into a low dimensional label space.

• CPLST [8]: CPLST is a feature-aware conditional principal label space transforma-
tion which utilizes the feature information during label embedding.

• FAiE [24]: FAiE encodes the original label space to a low-dimensional latent space
via feature-aware implicit label space encoding. It directly learns a feature-aware
code matrix and a linear decoding matrix via jointly maximizing recoverability of the
original label space.

• LEML [41]: In this method a framework is developed to model multi-label classifica-
tion as generic empirical risk minimization (ERM) problem with low-rank constraint
on linear transformation. It can also be seen as a joint learning framework in which
dimensionality reduction and multi-label classification are performed simultaneously.

• MLSF [33]: Based on the assumption that meta-labels with specific features exist in
the scenario of multi-label classification, MLSF embed label correlations into meta-
labels in such a way that the member labels in a meta-label share strong dependency
with each other but have weak dependency with the other non-member labels.

A linear ridge regression model is used in PLST, CPLST and FAiE to learn the association
between feature space and reduced label space. For PLST, CPLST, FAiE and LEML the
number of reduced dimensions d is searched in {d0.1Le, d0.2Le, . . . , d0.8Le}. The regular-
ization parameter in ridge regression, the parameter α in FAiE, the parameter λ in LEML
and the parameters α and β in LLSF are searched in the range {10−4, 10−3, . . . , 104}. For
MLSF, the number of meta-labels K is searched in {dL/5e, dL/10e, dL/15e, dL/20e} and the
parameters γ and ρ are tuned from the candidate set {10−4, 10−3, . . . , 104}. The remaining
hyper-parameters were kept fixed across all datasets as was done in [33]. Implementations
of LLSF, PLST, CPLST, FAiE, LEML and MLSF were provided by the authors.
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4.3. Results and Discussion

We first demonstrate the effect of group sparsity regularization to support our hypothesis
that there exists label groups and labels belonging to the same group share similar sparsity
pattern (feature representation) in their latent factor representation. We have therefore
performed an experiment on the Medical data set. As discussed previously, in the real-
world data sets, the label groups are not given explicitly and it is necessary to learn from
the label matrix Y . We have employed the method described in Section 3 to divide the
label matrix Y into five groups. The feature matrix V k, 1 ≤ k ≤ 5, for each group is learnt
using the procedure given in Algorithm 1. For this experiment, the regularization parameter
λ1 and λ2 in Eq. (4) are selected using cross-validation. We plotted the recovered feature
matrix V k for each group in Figure 1. For simplicity of representation, the non-zero rows
in the recovered matrix V k are shown as shaded rows and a gap is artificially created to
distinguish between different V k’s. It is evident from Figure 1 that the labels corresponding
to the same group have similar feature representation and in case if a feature is not present
in a group, all the labels have the corresponding feature entries as zero. It can also be seen
that the feature matrix recovered for different groups exhibits a different sparsity pattern.

Figure 1: Latent factor matrix V k recovered with five label groups.

To study the sensitivity of GroPLE with respect to the regularization parameters λ1 and
λ2, we have conducted experiments on Medical and Genbase data sets. We perform five-
fold cross validation on each data set and the mean value of accuracy is recorded. In this
experiment, the latent dimension space d is fixed to 100, the number of groups K is fixed
to 5 and the regularization parameters λ1 and λ2 are searched in {10−3, 10−2, . . . , 102}. For
each (λ1, λ2) -pair, the regularization parameters α, β are searched in {10−4, 10−3, . . . , 104}.
Figure 2a and 2b report the influence of parameters λ1 and λ2 on Medical and Genbase data
set, respectively. It can be seen from Figure 2 that in most cases: (a) GroPLE perform worse
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(a) Medical dataset (b) Genbase dataset

Figure 2: Influence of regularization parameters λ1 and λ2.

when the value of λ1 is large; (b) The performance of GroPLE is stable with the different
values of group sparsity regularization λ2, but larger values such as λ2 > 1 is often harmful.
Therefore, we fixed the regularization parameter λ1 and λ2 to 0.001 and 1, respectively, for
the subsequent experiments.

(a) Accuracy (b) Micro F1

Figure 3: Performance of GroPLE on rcv1 (subset 2) data set with different group size.
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We have also analyzed the performance of GroPLE with respect to the latent dimension
d and the number of groups K on rcv1 (subset 2) data set. We have conducted five-
fold cross validation and the mean value of accuracy is recorded. The latent dimension
d is varied from [20, 100] with step size 10 and the number of groups K is selected from
{1, 5, 10, 15, 20, . . . , 40}. The regularization parameters α and β are tuned in the range given

Table 2: Experimental results of each comparing algorithm (mean±std rank) in terms of Accuracy, Example Based F1, Macro
F1, and Micro F1. Method that cannot be run with available resources are denoted as “-”.

Data set
Accuracy

GroPLE LLSF PLST CPLST FAiE LEML MLSF BSVM

genbase 0.972 ± 0.014 3 0.971 ± 0.015 5 0.968 ± 0.013 7 0.971 ± 0.013 5 0.965 ± 0.014 8 0.971 ± 0.014 5 0.973 ± 0.015 2 0.976 ± 0.010 1

medical 0.765 ± 0.026 2.5 0.762 ± 0.035 5.5 0.762 ± 0.034 5.5 0.763 ± 0.033 4 0.765 ± 0.034 2.5 0.690 ± 0.025 8 0.773 ± 0.026 1 0.753 ± 0.034 7

CAL500 0.233 ± 0.010 2 0.222 ± 0.009 5.5 0.224 ± 0.007 3.5 0.224 ± 0.007 3.5 0.235 ± 0.007 1 0.222 ± 0.006 5.5 0.165 ± 0.036 8 0.202 ± 0.007 7

corel5k 0.150 ± 0.002 1 0.120 ± 0.002 2 0.054 ± 0.002 6.5 0.054 ± 0.001 6.5 0.089 ± 0.003 3 0.053 ± 0.002 8 0.086 ± 0.007 4 0.081 ± 0.002 5

rcv1 (subset 1) 0.333 ± 0.003 1 0.297 ± 0.009 3 0.231 ± 0.009 7 0.232 ± 0.008 6 0.265 ± 0.008 5 0.223 ± 0.006 8 0.320 ± 0.010 2 0.288 ± 0.010 4

rcv1 (subset 2) 0.374 ± 0.008 1 0.340 ± 0.012 4 0.299 ± 0.014 6.5 0.299 ± 0.013 6.5 0.328 ± 0.011 5 0.286 ± 0.013 8 0.371 ± 0.012 2 0.348 ± 0.012 3

rcv1 (subset 3) 0.376 ± 0.015 2 0.296 ± 0.008 5 0.288 ± 0.014 6.5 0.288 ± 0.015 6.5 0.319 ± 0.018 4 0.280 ± 0.014 8 0.380 ± 0.013 1 0.347 ± 0.009 3

bibtex 0.330 ± 0.005 2 0.350 ± 0.005 1 0.284 ± 0.009 8 0.288 ± 0.007 6 0.310 ± 0.004 5 0.287 ± 0.007 7 0.328 ± 0.008 3.5 0.328 ± 0.008 3.5

corel16k001 0.158 ± 0.006 2 0.166 ± 0.005 1 0.038 ± 0.001 5.5 0.038 ± 0.001 5.5 0.080 ± 0.002 3 0.039 ± 0.002 4 0.025 ± 0.004 7.5 0.025 ± 0.002 7.5

delicious 0.185 ± 0.001 1 0.153 ± 0.001 2 0.109 ± 0.001 6.5 0.109 ± 0.002 6.5 0.134 ± 0.001 3 0.093 ± 0.001 8 0.120 ± 0.008 5 0.130 ± 0.001 4

mediamill 0.434 ± 0.004 1 0.412 ± 0.003 5 0.414 ± 0.003 3.5 0.414 ± 0.003 3.5 0.425 ± 0.003 2 0.411 ± 0.003 6 0.379 ± 0.017 8 0.393 ± 0.004 7

bookmarks 0.281 ± 0.004 0.246 ± 0.002 0.174 ± 0.002 − − 0.174 ± 0.002 0.163 ± 0.004 −

Data set
Example based F1

GroPLE LLSF PLST CPLST FAiE LEML MLSF BSVM

genbase 0.978 ± 0.013 2 0.977 ± 0.014 4.5 0.975 ± 0.012 7 0.977 ± 0.013 4.5 0.973 ± 0.012 8 0.977 ± 0.013 4.5 0.977 ± 0.014 4.5 0.980 ± 0.010 1

medical 0.796 ± 0.025 2.5 0.795 ± 0.034 4 0.793 ± 0.034 6 0.794 ± 0.033 5 0.796 ± 0.034 2.5 0.738 ± 0.027 8 0.799 ± 0.023 1 0.783 ± 0.032 7

CAL500 0.369 ± 0.013 1.5 0.354 ± 0.011 6 0.357 ± 0.009 3.5 0.357 ± 0.009 3 0.369 ± 0.009 1.5 0.355 ± 0.008 5 0.277 ± 0.053 8 0.330 ± 0.010 7

corel5k 0.229 ± 0.002 1 0.168 ± 0.002 2 0.078 ± 0.002 6.5 0.078 ± 0.002 6 .5 0.127 ± 0.004 3 0.076 ± 0.002 8 0.119 ± 0.009 4 0.114 ± 0.004 5

rcv1 (subset 1) 0.446 ± 0.004 1 0.384 ± 0.010 3 0.298 ± 0.009 7 0.299 ± 0.008 6 0.339 ± 0.009 5 0.288 ± 0.006 8 0.395 ± 0.009 2 0.379 ± 0.012 4

rcv1 (subset 2) 0.468 ± 0.010 1 0.398 ± 0.013 4 0.346 ± 0.015 6.5 0.346 ± 0.014 6.5 0.380 ± 0.011 5 0.331 ± 0.014 8 0.433 ± 0.011 2 0.423 ± 0.012 3

rcv1 (subset 3) 0.471 ± 0.013 1 0.397 ± 0.008 4 0.335 ± 0.015 6 0.334 ± 0.015 7 0.371 ± 0.018 5 0.325 ± 0.014 8 0.440 ± 0.013 2 0.422 ± 0.008 3

bibtex 0.415 ± 0.003 2 0.426 ± 0.005 1 0.335 ± 0.009 8 0.339 ± 0.008 6 0.367 ± 0.004 5 0.338 ± 0.008 7 0.397 ± 0.008 4 0.400 ± 0.008 3

corel16k001 0.227 ± 0.008 2 0.243 ± 0.007 1 0.053 ± 0.002 5 0.053 ± 0.002 5 0.111 ± 0.002 3 0.053 ± 0.003 5 0.033 ± 0.004 8 0.034 ± 0.002 7

delicious 0.293 ± 0.001 1 0.237 ± 0.002 2 0.169 ± 0.002 6.5 0.169 ± 0.002 6.5 0.209 ± 0.001 3 0.142 ± 0.002 8 0.184 ± 0.012 5 0.201 ± 0.002 4

mediamill 0.553 ± 0.004 1 0.532 ± 0.004 5 0.533 ± 0.004 3.5 0.533 ± 0.004 3.5 0.544 ± 0.004 2 0.530 ± 0.003 6 0.489 ± 0.021 8 0.515 ± 0.004 7

bookmarks 0.322 ± 0.006 0.271 ± 0.001 − 0.179 ± 0.002 − 0.180 ± 0.002 0.166 ± 0.003 −

Data set
Macro F1

GroPLE LLSF PLST CPLST FAiE LEML MLSF BSVM

genbase 0.710 ± 0.087 5 0.731 ± 0.088 2 0.709 ± 0.068 6 0.711 ± 0.075 4 0.682 ± 0.066 8 0.704 ± 0.077 7 0.728 ± 0.091 3 0.737 ± 0.082 1

medical 0.369 ± 0.026 6 0.354 ± 0.034 7 0.373 ± 0.025 5 0.378 ± 0.030 4 0.383 ± 0.025 2.5 0.342 ± 0.025 8 0.402 ± 0.044 1 0.383 ± 0.037 2.5

CAL500 0.133 ± 0.008 1 0.102 ± 0.006 6 0.110 ± 0.006 3 0.104 ± 0.005 5 0.118 ± 0.004 2 0.109 ± 0.005 4 0.032 ± 0.008 8 0.057 ± 0.001 7

corel5k 0.048 ± 0.002 1 0.036 ± 0.002 4 0.016 ± 0.002 6.5 0.016 ± 0.001 6.5 0.026 ± 0.001 5 0.015 ± 0.002 8 0.046 ± 0.003 2 0.044 ± 0.002 3

rcv1 (subset 1) 0.262 ± 0.007 1 0.209 ± 0.009 4 0.126 ± 0.006 6 0.125 ± 0.005 7.5 0.163 ± 0.009 5 0.125 ± 0.005 7.5 0.255 ± 0.008 3 0.257 ± 0.005 2

rcv1 (subset 2) 0.250 ± 0.008 1 0.175 ± 0.009 4 0.111 ± 0.006 7.5 0.112 ± 0.006 6 0.148 ± 0.004 5 0.111 ± 0.006 7.5 0.241 ± 0.013 2 0.240 ± 0.007 3

rcv1 (subset 3) 0.244 ± 0.003 1 0.230 ± 0.011 4 0.109 ± 0.003 6 0.105 ± 0.004 8 0.143 ± 0.007 5 0.108 ± 0.004 7 0.239 ± 0.016 2 0.231 ± 0.012 3

bibtex 0.304 ± 0.014 4 0.343 ± 0.008 1 0.197 ± 0.005 8 0.208 ± 0.008 6.5 0.236 ± 0.007 5 0.208 ± 0.008 6.5 0.323 ± 0.006 3 0.327 ± 0.004 2

corel16k001 0.088 ± 0.004 1 0.079 ± 0.006 2 0.015 ± 0.001 7 0.015 ± 0.002 7 0.023 ± 0.002 5 0.015 ± 0.002 7 0.040 ± 0.009 3 0.036 ± 0.005 4

delicious 0.089 ± 0.001 4 0.095 ± 0.001 3 0.048 ± 0.001 7 0.048 ± 0.002 7 0.059 ± 0.002 5 0.048 ± 0.002 7 0.101 ± 0.002 1 0.100 ± 0.003 2

mediamill 0.086 ± 0.001 1 0.044 ± 0.000 5 0.045 ± 0.000 3.5 0.045 ± 0.001 3.5 0.055 ± 0.001 2 0.043 ± 0.000 6 0.031 ± 0.008 8 0.032 ± 0.001 7

bookmarks 0.138 ± 0.007 0.158 ± 0.002 0.057 ± 0.001 − − 0.059 ± 0.001 0.043 ± 0.002 −

Data set
Micro F1

GroPLE LLSF PLST CPLST FAiE LEML MLSF BSVM

genbase 0.957 ± 0.030 8 0.971 ± 0.014 5 0.969 ± 0.012 6 0.972 ± 0.013 4 0.967 ± 0.013 7 0.973 ± 0.013 3 0.977 ± 0.011 2 0.979 ± 0.008 1

medical 0.819 ± 0.025 4 0.813 ± 0.030 6 0.821 ± 0.030 3 0.822 ± 0.029 2 0.823 ± 0.030 1 0.739 ± 0.018 8 0.817 ± 0.020 5 0.812 ± 0.027 7

CAL500 0.374 ± 0.012 1.5 0.358 ± 0.011 6 0.360 ± 0.008 4 0.361 ± 0.009 3 0.374 ± 0.008 1.5 0.359 ± 0.007 5 0.271 ± 0.052 8 0.327 ± 0.009 7

corel5k 0.241 ± 0.003 1 0.215 ± 0.004 2 0.105 ± 0.003 6.5 0.105 ± 0.002 6.5 0.162 ± 0.004 3 0.103 ± 0.003 8 0.149 ± 0.008 4 0.143 ± 0.005 5

rcv1 (subset 1) 0.462 ± 0.005 1 0.443 ± 0.009 2 0.349 ± 0.010 7 0.351 ± 0.010 6 0.384 ± 0.009 5 0.344 ± 0.008 8 0.403 ± 0.007 3 0.394 ± 0.009 4

rcv1 (subset 2) 0.461 ± 0.006 1 0.425 ± 0.012 2 0.373 ± 0.016 6.5 0.373 ± 0.015 6.5 0.403 ± 0.012 5 0.362 ± 0.015 8 0.417 ± 0.010 3 0.411 ± 0.009 4

rcv1 (subset 3) 0.461 ± 0.009 1 0.387 ± 0.003 5 0.366 ± 0.009 6 0.365 ± 0.010 7 0.396 ± 0.012 4 0.359 ± 0.010 8 0.423 ± 0.011 2 0.409 ± 0.008 3

bibtex 0.419 ± 0.015 5 0.474 ± 0.004 1 0.390 ± 0.006 8 0.396 ± 0.007 6.5 0.420 ± 0.004 4 0.396 ± 0.007 6.5 0.421 ± 0.005 3 0.424 ± 0.002 2

corel16k001 0.256 ± 0.007 2 0.274 ± 0.007 1 0.071 ± 0.003 4.5 0.070 ± 0.003 6 0.137 ± 0.004 3 0.071 ± 0.004 4.5 0.052 ± 0.007 7 0.049 ± 0.003 8

delicious 0.230 ± 0.003 3 0.304 ± 0.002 1 0.194 ± 0.003 6.5 0.194 ± 0.003 6.5 0.241 ± 0.002 2 0.172 ± 0.002 8 0.211 ± 0.013 5 0.226 ± 0.003 4

mediamill 0.581 ± 0.003 1 0.545 ± 0.002 5 0.547 ± 0.002 3.5 0.547 ± 0.002 3.5 0.562 ± 0.002 2 0.543 ± 0.002 6 0.498 ± 0.023 8 0.520 ± 0.003 7

bookmarks 0.257 ± 0.044 0.281 ± 0.004 0.201±0.002 − − 0.202 ± 0.002 0.1801 ± 0.003 −
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previously. The plots of Figure 3 shows the classification performance of GroPLE in terms
of accuracy and micro f1. It can be seen from Figure 3 that the classification performance
of GroPLE is nearly constant for different group size when the latent dimension d is small
which is also obvious as there are less number of features to differentiate between one group
from others. The classification performance is improved as we increase the number of groups
K for sufficiently large d. It can also be seen from Figure 3b the performance degrade for
sufficiently large group size K. Hence, by considering the balance between latent dimension
d and number of groups K, we fixed the value of K and d to 10 and 100, respectively, for
subsequent experiments.

Table 2 gives the comparative analysis of the proposed method GroPLE against state-of-
the-art algorithms on twelve data sets. We have conducted five-fold cross validation and the
mean, std and rank is recorded. For any data set and given evaluation metric where two
or more algorithms obtain the same performance, the rank of these algorithm are assigned
with the average rank of them. Furthermore, the best results among all the algorithms being
compared are highlighted in boldface. For each data set, the number of latent dimension
space d is fixed to 100 and the number of groups K is set to 10. The regularization parameter
λ1 and λ2 are fixed to 0.001 and 1, respectively, and the parameters α and β are searched
in the range given previously.

Table 3: Summary of the Friedman Statistics FF (K = 8,N = 11) and the Critical Value in Terms of Each
Evaluation Metric(K: # Comparing Algorithms; N : # Data Sets).

Metric FF Critical Value (α = 0.05)

Accuracy 7.758

2.143
Example Base F1 8.810

Macro F1 7.234

Micro F1 4.318

To conduct statistical performance analysis among the algorithms being compared, we
employed Friedman test3 which is a favorable statistical test for comparing more than two
algorithms over multiple data sets [10]. Table 3 provides the Friedman statistics FF and
the corresponding critical value in terms of each evaluation metric. As shown in Table 3 at
significance level α = 0.05, Friedman test rejects the null hypothesis of equal performance
for each evaluation metric. This leads to the use of post-hoc tests for pairwise comparisons.
The Nemenyi test [10] is employed to test whether our proposed method GroPLE achieves
a competitive performance against the algorithms being compared. The performance of
two classifiers is significantly different if the corresponding average ranks differ by at least

the critical difference CD = qα

√
K(K+1)

6N . At significance level α = 0.05, the value of qα =

3.031, for Nemenyi test with K = 8 [10], and thus CD = 3.1658. Figure 4 gives the

3 Results of bookmarks data set is not included for this test.
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(a) Accuracy (b) Example based F1

(c) Macro F1 (d) Micro F1

Figure 4: CD diagrams of the comparing algorithms under each evaluation criterion.

CD diagrams [10] for each evaluation criterion, where the average rank of each comparing
algorithm is marked along the axis (lower ranks to the left). It can be seen from the Figure 4
that the proposed method GroPLE achieve better performance as compared to the other
algorithms in terms of each evaluation metric.

Furthermore, we have also evaluated the approximation of label matrix Y by comparing
different label embedding based comparing algorithms. On each data set, we have conducted
five-fold cross validation and the mean, std and rank is recorded. Table 4 reports the
approximation result in terms of different evaluation metrics. It can be seen from the
Table 4 that the proposed method GroPLE is ranked higher among the algorithms being
compared. It can also be seen that the approximation result of PLST is better than FAiE
but the same is not being reflected in Table 2. In FAiE, the goal is towards learning a
predictable representation of label vectors by using the correlation that exists in the feature
space. This prompts a new line of future research in which we plan to incorporate feature
space correlation in GroPLE while learning the label embedding.

We have also demonstrated the effect of the reduced dimension space d that varied from
{d0.1Le, d0.2Le, . . . , d0.8Le} for each embedding based comparing algorithm. For each value
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Table 4: Approximation degree of each label embedding based comparing algorithm (mean±std rank) in terms of Accuracy,
Example Based F1, Macro F1, and Micro F1. Method that cannot be run with available resources are denoted as “-”.

Data set
Accuracy Example based F1

GroPLE PLST CPLST FAiE GroPLE PLST CPLST FAiE

genbase 1.000 ± 0.000 1 0.995 ± 0.001 2.5 0.995 ± 0.001 2.5 0.994 ± 0.001 4 1.000 ± 0.000 1 0.997 ± 0.001 2 0.996 ± 0.000 3.5 0.996 ± 0.001 3.5

medical 1.000 ± 0.000 1 0.989 ± 0.001 4 0.993 ± 0.000 2.5 0.993 ± 0.000 2.5 1.000 ± 0.000 1 0.992 ± 0.001 4 0.994 ± 0.000 2.5 0.994 ± 0.000 2.5

CAL500 0.984 ± 0.001 2 1.000 ± 0.000 1 0.755 ± 0.003 3 0.548 ± 0.003 4 0.992 ± 0.000 2 1.000 ± 0.000 1 0.856 ± 0.002 3 0.700 ± 0.003 4

corel5k 0.847 ± 0.001 3 0.947 ± 0.001 1 0.917 ± 0.003 2 0.530 ± 0.002 4 0.901 ± 0.001 3 0.967 ± 0.001 1 0.948 ± 0.002 2 0.644 ± 0.002 4

rcv1 (subset 1) 1.000 ± 0.000 1 0.986 ± 0.000 2 0.980 ± 0.001 3 0.903 ± 0.001 4 1.000 ± 0.000 1 0.992 ± 0.000 2 0.988 ± 0.001 3 0.937 ± 0.000 4

rcv1 (subset 2) 1.000 ± 0.000 1 0.989 ± 0.000 2.5 0.989 ± 0.001 2.5 0.902 ± 0.002 4 1.000 ± 0.000 1 0.994 ± 0.000 2.5 0.994 ± 0.000 2.5 0.933 ± 0.001 4

rcv1 (subset 3) 1.000 ± 0.000 1 0.996 ± 0.000 2 0.964 ± 0.002 3 0.894 ± 0.001 4 1.000 ± 0.000 1 0.998 ± 0.000 2 0.977 ± 0.001 3 0.926 ± 0.001 4

bibtex 0.871 ± 0.004 3 0.974 ± 0.003 2 0.975 ± 0.002 1 0.764 ± 0.002 4 0.897 ± 0.004 3 0.980 ± 0.002 1.5 0.980 ± 0.002 1.5 0.801 ± 0.002 4

corel16k001 0.953 ± 0.001 2 0.983 ± 0.000 1 0.908 ± 0.002 3 0.202 ± 0.003 4 0.969 ± 0.001 2 0.990 ± 0.000 1 0.937 ± 0.001 3 0.271 ± 0.004 4

delicious 0.649 ± 0.001 3 0.992 ± 0.000 1 0.836 ± 0.001 2 0.372 ± 0.001 4 0.774 ± 0.001 3 0.996 ± 0.000 1 0.906 ± 0.000 2 0.513 ± 0.001 4

mediamill 1.000 ± 0.000 1 0.912 ± 0.001 3 0.927 ± 0.001 2 0.804 ± 0.001 4 1.000 ± 0.000 1 0.931 ± 0.001 3 0.940 ± 0.001 2 0.860 ± 0.001 4

Average Rank 1.73 2 2.41 3.86 1.73 1.91 2.55 3.82

Total Order GroPLE � PLST � CPLST � FAiE GroPLE � PLST � CPLST � FAiE

Data set
Macro F1 Micro F1

GroPLE PLST CPLST FAiE GroPLE PLST CPLST FAiE

genbase 1.000 ± 0.000 1 0.879 ± 0.017 3 0.881 ± 0.020 2 0.853 ± 0.025 4 1.000 ± 0.000 1 0.997 ± 0.001 2 0.996 ± 0.001 3 0.995 ± 0.001 4

medical 1.000 ± 0.000 1 0.716 ± 0.012 4 0.809 ± 0.006 2 0.805 ± 0.011 3 1.000 ± 0.000 1 0.992 ± 0.001 4 0.995 ± 0.000 2.5 0.995 ± 0.000 2.5

CAL500 0.893 ± 0.004 2 1.000 ± 0.003 1 0.502 ± 0.003 3 0.332 ± 0.004 4 0.992 ± 0.000 2 1.000 ± 0.000 1 0.861 ± 0.002 3 0.713 ± 0.002 4

corel5k 0.337 ± 0.003 3 0.569 ± 0.003 1 0.482 ± 0.006 2 0.112 ± 0.001 4 0.918 ± 0.001 3 0.973 ± 0.001 1 0.958 ± 0.002 2 0.695 ± 0.002 4

rcv1 (subset 1) 1.000 ± 0.000 1 0.772 ± 0.005 2 0.730 ± 0.006 3 0.606 ± 0.004 4 1.000 ± 0.000 1 0.991 ± 0.000 2 0.986 ± 0.001 3 0.940 ± 0.001 4

rcv1 (subset 2) 1.000 ± 0.000 1 0.817 ± 0.008 3 0.820 ± 0.006 2 0.618 ± 0.006 4 1.000 ± 0.000 1 0.992 ± 0.000 2.5 0.992 ± 0.001 2.5 0.938 ± 0.001 4

rcv1 (subset 3) 1.000 ± 0.000 1 0.893 ± 0.008 2 0.668 ± 0.006 3 0.598 ± 0.004 4 1.000 ± 0.000 1 0.997 ± 0.000 2 0.973 ± 0.001 3 0.934 ± 0.001 4

bibtex 0.821 ± 0.006 3 0.970 ± 0.004 2 0.973 ± 0.004 1 0.761 ± 0.004 4 0.937 ± 0.002 3 0.988 ± 0.001 1.5 0.988 ± 0.001 1.5 0.871 ± 0.002 4

corel16k001 0.753 ± 0.004 2 0.883 ± 0.002 1 0.636 ± 0.006 3 0.044 ± 0.001 4 0.975 ± 0.001 2 0.991 ± 0.000 1 0.952 ± 0.001 3 0.325 ± 0.004 4

delicious 0.223 ± 0.001 3 0.969 ± 0.002 1 0.476 ± 0.002 2 0.122 ± 0.001 4 0.802 ± 0.001 3 0.997 ± 0.000 1 0.913 ± 0.000 2 0.553 ± 0.001 4

mediamill 1.000 ± 0.000 1 0.379 ± 0.003 3 0.505 ± 0.004 2 0.191 ± 0.001 4 1.000 ± 0.000 1 0.969 ± 0.000 3 0.980 ± 0.000 2 0.898 ± 0.001 4

Average Rank 1.73 2.09 2.27 3.91 1.73 1.91 2.5 3.86

Total Order GroPLE � PLST � CPLST � FAiE GroPLE � PLST � CPLST � FAiE

of d, the comparing algorithm’s parameters are searched in the range given previously. On
each data set, we have conducted five-fold cross validation for each value of d and the rank
is recorded. For any (data set, d)-pair and given evaluation metric, the algorithms are
ranked in a similar way as shown in Table 2. We report the average rank of each comparing
algorithms on eleven data sets3 in Figure 5. It can be seen that for each value of d, the
proposed method GroPLE is ranked better than that of other algorithms in terms of each
evaluation metric.

The proposed method GroPLE uses LSSF to map the original data point to their low-
dimensional representation obtained as a result of label embedding process. In LLSF, the
mapping is achieved by minimizing a loss function (Eq. 5) which consists of components to
measure the approximation error and to preserve the correlation information that exists in
the embedded space (or, label space). A similar formulation for feature space embedding is
used in MLSF to learn the meta-label specific features. The difference lies precisely in the
use of components to preserve the correlation in the embedded space. In MLSF, the authors
propose the use of group information present in the original feature and label space to learn
the meta-labels. Once the meta-labels are known, a feature-space embedding is learnt from
the feature space to the meta-label space without guaranteeing preservation of correlation
between the meta-labels. To observe the effect of correlation component, we modify the
objective function of MLSF and include a component to preserve the correlation between
the meta-labels. For fair comparison with GroPLE and LLSF, we further adopt Accelerated
Proximal Gradient search [35] to optimize the objective function for feature space embedding.
We have considered two different combinations - one without the component to preserve
correlation i.e., with α = 0 and the other with α > 0. For both the combinations, the
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(a) Accuracy (b) Example based F1

(c) Macro F1 (d) Micro F1

Figure 5: Average rank of each embedding based comparing algorithm for different values of d.

parameter β is tuned in the range given previously. On each data set, we have conducted
five-fold cross validation for each combination of α and β i.e., (α = 0, β > 0) and (α > 0,
β > 0) and recorded the rank. Figure 6 depicts the average rank obtained by the comparing
algorithms. For simplicity of representation, we have used A∗ to denote that the feature
space embedding is performed without the correlation components in method A. It can be
seen from Figure 6 that the performance of GroPLE and LLSF have improved when the
embedding process is guided by the correlation information. It can also be seen that the
performance of MLSF has slightly decreased after the meta-labels correlation is incorporated.
This is due to the reason that the meta-labels are formed by converting the label groups
to equivalent decimal value. This conversion helps capture the statistics of a group (meta-
label) so that the group specific feature can be learnt without capturing the statistics of
other groups.
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Figure 6: Average rank of GroPLE, LLSF and MLSF for two different combinations of α and β.

5. Conclusions

This paper presented a new multi-label classification method, called GroPLE, which
embeds the original label vectors to a low-dimensional space by retaining the group de-
pendencies. We ensure that labels belonging to the same group share the same sparsity
pattern in their low-dimensional representations. In order to achieve the embedding of fea-
ture vectors, a linear mapping is then learnt that maps the feature vectors onto the same
set of points which are obtained as a result of label embedding phase. We achieve this by a
separate optimization problem. Extensive comparative studies validate the effectiveness of
GroPLE against the state-of-the-art multi-label learning approaches.

In the future, it is interesting to see whether GroPLE can be further improved by con-
sidering side information from feature space while label embedding. Furthermore, designing
other ways to fulfill the strategy of group formation and modeling group-specific label em-
bedding is a direction worth studying.

Acknowledgements

We thank the anonymous reviewers whose comments/suggestions helped improve and
clarify this manuscript to a large extent.

17



Appendix A. Derivation of the Criterion in Eq. (4)

For simplicity of notation, the matrix formed by arranging the columns of V k, 1 ≤ k ≤ K,
according to indices of columns in Y will be referred to as V in subsequent discussion, f(U, V )
is written as fV (U) when V is held constant and fU(V ) when U is held constant. For given
V , the factor matrix U can be obtained by solving the following subproblem

min
U

fV (U) = ‖Y − UV ‖2F + λ1‖U‖2F + c (A.1)

where c ≥ 0 is a constant. The subproblem given in Eq. (A.1) has a closed form solution.
Taking the derivative of fV (U) w.r.t U , and setting the derivative (in matrix notation) to
zero, we have

∇fV (U) = 2((Y − UV )(−V T ) + λ1U) = 0

⇒ U = Y V T (V V T + λ1I)
−1

(A.2)

For fixed U , the matrix V k, k ∈ {1, . . . , K}, can be obtained by solving the following
subproblem

min
V k

fU(V k) = ‖Y k − UV k‖2F + λ2‖V k‖2,1 + c (A.3)

The above objective function is a composite convex function involving the sum of a smooth
and a non-smooth function of the form

min
V k

fU(V k) = g(V k) + h(V k) (A.4)

where g(V k) = ‖Y k − UV k‖2F is convex and differentiable and h(V k) = λ2‖V k‖2,1 is closed,
convex but non-differentiable.

We further show that for any two matrices V
′k

, V
′′k ∈ Rd×Lk , the function g(V k) is

Lipschitz continuous. The gradient of g(V k) (in matrix notation) is given by

∇g(V k) = 2(UTUV k − UTY )

For any two matrices V
′k

and V
′′k

, we have

‖∇g(V
′k

)−∇g(V
′′k

)‖2F = ‖2(UTUV
′k − UTY )− 2(UTUV

′′k − UTY )‖2F
= ‖2UTU(V

′k − V ′′k)‖2F
≤ ‖2UTU‖2F ‖V

′k − V ′′k‖2F

Therefore, the Lipschitz constant is

Lg =
√
‖2UTU‖2F (A.5)

We employ Accelerated Proximal Gradient search [35] which is specifically tailored to

18



minimize the optimization problem given in Eq. (A.4). Such an optimization strategy is
suitable in the present situation as the computation of the proximal operation is inexpensive.
The optimization step of Accelerated Proximal Gradient iterates as follows

Gt = V k(t) +
bt−1 − 1

bt
(V k(t) − V k(t−1)) (A.6)

V k(t) = proxh(Gt −
1

Lg
∇g(Gt)) (A.7)

It is shown in [35] that setting bt satisfying b2t − bt ≤ b2t−1 can improve convergence rate

to O( 1
t2

), V k(t) is the result of tth iteration. Proximal mapping of a convex function h is
given by

proxh(V
k) = argmin

W

(
h(W ) +

1

2
‖W − V k‖22

)
(A.8)

In the present situation, where h(V k) = λ2‖V k‖2,1, proxh(V k) is the shrinkage function
S[·] and is given by

S λ2
Lg

[V k] =

[
vki
‖vki ‖2

(‖vki ‖2 − λ2/Lg)+
]i=d
i=1

(A.9)

where (z)+ = max(z, 0) and vki is the ith row of V k. Algorithm 1 outlines the main flow of
the optimization steps to solve Eq. (4).

Algorithm 1: Label-Embedding ( Y , d, K, λ1, λ2)

input : Label Matrix: Y , Size of Latent Dimension Space: d, Number of Groups: K,
Regularization Parameters: λ1 and λ2

output: Basis Matrix: U , Coefficient Matrix: V

initialize : U
Form label groups Y 1, Y 2, . . . , Y K

repeat
for k ∈ {1,. . . , K} do

V k ← APG(U , Y k, λ2)
end
V ← Combine(V 1, V 2, . . . , V k)

U ← Y V T (V V T + λ1I)
−1

until stop criterion reached ;
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Algorithm 2: APG (U , Y k, λ2)

input : Basic Matrix: U , Label Matrix: Y k and Regularization Parameters: λ2
output: Coefficient Matrix: V k

initialize :
b0, b1 ← 1, V k

0 , V k
1 ← (UTU + γI)

−1
UTY k

repeat

Gt ← V k(t) + bt−1−1
bt

(V k(t) − V k(t−1))

V k(t) = S λ2
Lg

[Gt − 1
Lg
∇g(Gt)]

bt ←
1+
√

1+4b2t
2

t← t+ 1
until stop criterion reached ;
V k ← V k

t
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