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Abstract

Tensor analysis methods have played an important role in identifying human

gaits using high dimensional data. However, when view angles change, it be-

comes more and more difficult to recognize cross-view gait by learning only a

set of multi-linear projection matrices. To address this problem, a general ten-

sor representation framework for cross-view gait recognition is proposed in this

paper. There are three criteria of tensorial coupled mappings in the proposed

framework. (1) Coupled multi-linear locality-preserved criterion (CMLP) aims

to detect the essential tensorial manifold structure via preserving local informa-

tion. (2) Coupled multi-linear marginal fisher criterion (CMMF) aims to encode

the intra-class compactness and inter-class separability with local relationships.

(3) Coupled multi-linear discriminant analysis criterion (CMDA) aims to mini-

mize the intra-class scatter and maximize the inter-class scatter. For the three

tensor algorithms for cross-view gaits, two sets of multi-linear projection matri-

ces are iteratively learned using alternating projection optimization procedures.

The proposed methods are compared with the recently published cross-view gait
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recognition approaches on CASIA(B) and OU-ISIR gait database. The results

demonstrate that the performances of the proposed methods are superior to

existing state-of-the-art cross-view gait recognition approaches.

Keywords: Gait recognition, cross-view gait, tensor representation, framework

1. Introduction

The demand to recognize and authenticate individuals using biometrics has

been rising due to its broad applications in security and surveillance. During

past decades, many biometrics have been applied to practice such as face, fin-

gerprint and iris. These biometrics are unique from person to person, which is5

essential to quickly identify the target’s identity. Different from these biomet-

rics, i.e., face, fingerprint, vein, iris, ear, hand shape, palm print, retina and lip,

gait is a kind of soft biometric which aims to recognize one’s identity by his

unique walking patterns. It is more potential than the biological characteris-

tics in the surveillance field due to the advantage of gait recognition [1, 2] lies10

in the fact that it can be efficiently recognized at a distance without subjects’

cooperation.

The popular gait recognition methods can be roughly classified into the fol-

lowing two categories: model-based [3] and motion-based approaches [4, 5, 6].

Model-based approaches can extract the gait features robustly and avoid the15

noise interference problem. The changes all over the body can be characterized

by a short vector. It is possible for gait recognition to obtain a good per-

formance if the model is established accurately. However, the modelling and

its matching processes are both complex. Compared to model-based methods,

motion-based approaches avoid the complex modelling which can characterize20

the motion patterns of human body without fitted model parameters. Due

to the benefits, motion-based approaches attract more attention recent years.

However, a challenge to motion-based gate recognition is the cross-view issue

[7, 8]. This is because motion pattern changes dramatically as the viewing di-

rections move, even though when it is the same subject’s gait. This is the main25
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reason why most state-of-the-art motion-based gate recognition method do not

perform well [9, 10, 11, 12]. Basically, there is a trend that the larger the varia-

tion of viewing direction is, the worse the recognition performance is. Thus, the

core research question of this paper is how can we find robust and discriminative

representations, such that they can enlarge the discrimination between different30

subjects, and meanwhile compact the variations of the same subject?

Previous methods try to bridge the view biases by constructing 3D model and

performing view transformation model, however, the former is computationally

complex and the latter does not consider discriminability. Data-driven CNN

approaches achieve significant success in many fields [13, 14, 15, 16], which35

can be also applied to gait recognition. Due to its powerful representation

ability, CNN can extract view invariant features. However, limited labelled

data available easily causes the CNN model over-fitting. In another aspect,

CNN model highly relies on expensive GPU hardware to accelerate the training

speed. Different from them, tensors are higher order generalizations of matrices40

[17], which is helpful to reduce the small sample size problem in discriminative

subspace selection. They have been successfully applied to gait recognition

under a fixed angle of view.

Inspired by success of tensor representation, this paper presents a novel gen-

eral tensor representation framework for cross-view gait recognition. Our for-45

mulations model the gait data as a tensor and seek three robust and tensorial

discriminative representations by tensor analysis. Our framework can leverage

structure information and reduce the number of parameters used to model the

cross-view gait recognition. We present three novel criteria of tensorial coupled

mappings. First, by preserving local information, we obtain a common subspace50

that best detects the essential gait manifold structure. Second, by encoding the

intra-class compactness and inter-class separability with local relationships, we

present coupled multi-linear marginal fisher criterion. Third, by minimizing the

intra-class scatter of cross-view gaits, and simultaneously maximizing the inter-

class scatter, we propose coupled multi-linear discriminant analysis criterion.55

These three tensor alignment algorithms of cross-view gaits are achieved by
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alternating projection optimization procedures. The flourishing of cross-view

gait recognition methods depends largely on well-established multi-view gait

databases, such as CASIA(B) [18] and OU-ISIR [19]. To the best of our knowl-

edge, our work is the first attempt to address the cross-view gait recognition60

within a framework of tensor representations. The key contributions of our work

can be summarized as follows:

(1) We propose to model cross-view gait data as tensors and develop a novel

framework of cross-view gait recognition by tensor representations.

(2) We present three novel criteria of tensorial coupled mappings with their65

tensor alignment algorithms of cross-view gaits.

(3) We systematically evaluate our methods on both the largest number of

cross-views gait database and the largest population gait database.

The remainder of this paper is organized as follows: Section 2 briefly re-

views some related works. Section 3 presents our general tensor representation70

framework for cross-view gait recognition. After that, Section 4 proposes 3

criteria of tensorial coupled mappings with their tensor alignment algorithms

of cross-view gaits. Then, Section 5 demonstrates the experimental results on

both CASIA(B) and OU-ISIR gait database. Finally, this paper is concluded

in Section 6.75

2. Related work

In this section, we give a brief literature review of related topics to our work,

i.e., cross-view gait recognition and tensor representation for gait analysis.

2.1. Cross-view gait recognition

Several related work tries to tackle this cross-view gait recognition problem,80

which can be categories into three classes. The first class of work focuses on

constructing 3D gait information via panoramic or multiple calibrated cameras

[10, 20, 21, 22]. These 3D-based methods are usually set-up with complicated
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environment of controlled multi-cameras, which may not be available in prac-

tice. Even if it is available, its practical application can be adversely impacted85

by the computation complexity. The second category is based on view trans-

formation model (VTM). This includes single value decomposition (SVD) and

regression, which have been massively deployed to generate gait features with

the information from the other view [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Although these methods minimize the errors between the transformed features90

and original gaits features, they do not consider the discrimination capability.

The third category is to extract view-invariant gait feature. Generally, it infers

a view-invariant gait feature among cross-view gait data. For example, in [34],

Goffredo et al. proposed a self-calibration of limbs’ pose in the image reference

system. However, this method can only coarsely estimate the limbs’ pose when95

the view of input gait is very different from the registered or front view gaits. To

alleviate this problem, domain transformation [35, 36, 37, 38], metric learning

[39], and deep CNNs [40, 41, 42] have been introduced recently. Especially, deep

CNNs have achieved encouraging recognition accuracy on the cross-view task

due to its powerful representation ability. The premise of using deep CNNs100

requires to a large quantity of labeled training data efficiently, however, the

limited gait data available restricts its application.

2.2. Tensor representation for gait analysis

A variety of multi-linear subspace learning approaches based on tensor rep-

resentation have been applied to gait analysis, which can not only extract105

spatial-temporal gait information but also avoid small size sample problem.

For example, Lu et al. [43] proposed multi-linear principal component analy-

sis (MPCA) to capture most of the original tensorial input variation. Then,

they extend MPCA to Uncorrelated multi-linear principal component analysis

(UMPCA) [44], which can produce uncorrelated features while capturing most110

of the variation in the original tensorial input. However, the above algorithms

only concentrate on unsupervised dimension reduction instead of discrimina-

tive feature extraction and classification. Therefore, multi-linear discriminant
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analysis (MLDA) approaches [45, 46, 47] are proposed for gait feature extrac-

tion and classification. Tao et al. proposed the general tensor discriminant115

analysis (GTDA) [45] via maximizing the differential between inter-class scat-

ters and the weighted intra-class scatters. Yan et al. proposed discriminant

analysis with tensor representation (DATER) [46] via maximizing the ratio of

inter-class scatters to the intra-class scatters. Lu et al. [47] developed un-

correlated multi-linear discriminant analysis (UMDA) to explore uncorrelated120

discriminative features for gait recognition. Li et al. [48] applied locally linear

embedding (LLE) criterion and separability between different classes to for-

mulate tensorization of Discriminant LLE. Aiming at extracting discriminative

geometry-preserving features from the original tensorial data, Ben et al. [49]

proposed maximum margin projection with tensor representation. By charac-125

terizing the multi-factor variation, Chen et al. [50] proposed multilinear graph

embedding (MGE) to adequately characterize local variations. Zhao et al. [51]

adopted sparse constraint in Tensor Discriminative Locality Alignment to select

gait features. However, the exsiting tensor analysis on gait recognition do not

focus on extracting view-invariant gait feature, and the tensor representation130

framework for cross-view gait recognition is still lack of study.

3. A general tensor representation framework for cross-view gait recog-

nition

3.1. Cross-view gait data multi-linear transformation

Human gait samples are usually represented by second-order tensor or higher-135

order tensor. Given two sets of training gait tensorial samples
{
Xi ∈ RH1×H2×···×HN ,

i = 1, 2, . . . ,Mθ} and
{
Yj ∈ RL1×L2×···×LN , j = 1, 2, . . . ,Mϑ

}
from two views θ

and ϑ , where Hn and Ln are mode-n dimensions for views θ and ϑ , respec-

tively. Mθ and Mϑ are the numbers of gait tensorial samples for views θ and

ϑ , respectively. Generally, both share a consistent one-to-one match between140

two views, namely, Mθ = Mϑ = M . Now our goal is to find transformation

functionsfθ (Xi) and fϑ (Yj) to make gait data under different views project
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Table 1: Similarity relationship between Xi and Yi

Side
information

wij =

 1, {Xi,Xj} ∈ C

0, else

Xi and Yi belong
to the identical
individual C.

Cosine
similarity

wij =


vec(Xi)·vec(Xj)

∥vec(Xi)∥∥vec(Xj)∥
, ifXi ∈ Nk (Xj) orXj ∈ Nk (Xi)

0, else

vec(·)denotes a
vectorization operator.
Nk (·) denotes
k nearest neighbor.

Gaussian
similarity

wij =

 exp
(
−∥vec(Xi) − vec(Xj)∥2

/
t
)
, ifXi ∈ Nk (Xj) orXj ∈ Nk (Xi)

0, else

t denotes Gaussian
variance parameter.

into a common space and measure their similarity. The objective of a gen-

eral tensor representation framework for cross-view gait recognition is to find a

pair of multi-linear transformation matrices
{
Un ∈ Hn×Fn , n = 1, . . . , N

}
and145 {

Vn ∈ Ln×Fn , n = 1, . . . , N
}

to project cross-view gait samples into a common

lower-dimensional tensorial subspace F1 ⊗ F2 ⊗ · · · ⊗ FN from both of original

tensorial spaceH1 ⊗H2 ⊗ · · · ⊗HN and L1 ⊗L2 ⊗ · · · ⊗LN respectively. Thus,

Ai = Xi×1U
⊤
1 ×2U

⊤
2 · · · ×NU⊤

N = Xi

N∏
k=1

×kU
⊤
k , (1)

Bj = Yj×1V
⊤
1 ×2V

⊤
2 · · · ×NV⊤

N = Yj

N∏
k=1

×kV
⊤
k , (2)

where Ai and Bj are projected tensor features for the views θ and ϑ ,and Ai,Bj ∈150

RF1×F2×···×FN , i, j = 1, . . . ,M . Fn is the mode-n dimension of the projected

tensor features, and Fn ≤ min (Hn, Ln).

3.2. The similarity of cross-view gait data

To simplify the calculation on the similarity between Xi and Yj across view,

we define155

sim (Xi,Yj) = ∥Ai − Bj∥2F wij , (3)

wij is the similarity relationship between Xi and Xj , which can be calculated

according to side information constraint, Gaussian similarity or Cosine similarity

[52].The similarity presented in Table 1 can be used in this paper.
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Table 2: The criteria, the alignment representation and the objective function used in the

proposed framework
Criteria Alignment representation Objective function for mode n

Coupled
multi-linear
locality-preserved
criterion (CMLP)

 D1 ⊗ I −W ⊗ I

−W⊤ ⊗ I D2 ⊗ I

 arg min
Un,Vn

∑
ij

∥∥∥U⊤
n Xi(n)Ũn − V⊤

n Yj(n)Ṽn

∥∥∥2
F

wij

Coupled
multi-linear
marginal fisher
criterion (CMMF)

 D̄1 ⊗ I −W̄ ⊗ I

−W̄⊤ ⊗ I D̄2 ⊗ I

 D̃1 ⊗ I −W̃ ⊗ I

−W̃⊤ ⊗ I D̃2 ⊗ I

 arg min
Un,Vn

∑
πi=πj

∥∥∥U⊤
n Xi(n)Ũn−V⊤

n Yj(n)Ṽn

∥∥∥2
F

w̄ij∑
πi ̸=πj

∥∥∥U⊤
n Xi(n)Ũn−V⊤

n Yj(n)Ṽn

∥∥∥2
F

w̃
ij

Coupled
multi-linear
discriminant
analysis criterion
(CMDA)

 I − K ⊗ I 0

0 I − K ⊗ I

 K⊗I− 1
M (ee⊤)⊗I 0

0 K⊗I− 1
M (ee⊤)⊗I

 arg max
Un,Vn

C∑
c=1


Nc

∥∥∥U⊤
n X̄

(c)

(n)
Ũn − U⊤

n X̄(n)Ũn

∥∥∥2
F

+Nc

∥∥∥V⊤
n Ȳ

(c)

(n)
Ṽn − V⊤

n Ȳ(n)Ṽn

∥∥∥2
F



C∑
c=1



Nc∑
i=1

∥∥∥U⊤
n X

(c)

i(n)
Ũn − U⊤

n X̄
(c)

(n)
Ũn

∥∥∥2
F

+
Nc∑
j=1

∥∥∥V⊤
n Y

(c)

j(n)
Ṽn − V⊤

n Ȳ
(c)

(n)
Ṽn

∥∥∥2
F



The mode-n unfoldings of Ai and Bj can be derived as

Ai(n) = U⊤
nXi(n) (UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1) = U⊤

nXi(n)Ũn (4)

160
Bj(n) = V⊤

nYj(n) (VN ⊗ . . .⊗Vn+1 ⊗Vn−1 ⊗ . . .⊗V1) = V⊤
nYj(n)Ṽn (5)

where Ũn =
N∏

k=1,k ̸=n

⊗Uk, Ṽn =
N∏

k=1,k ̸=n

⊗Vk. (9) can be written as

sim (Xi,Yj) = ∥Ai − Bj∥2F wij

= Tr


 Un

Vn

⊤  Xi(n)Ũn 0

0 Yj(n)Ṽn

 wij · I −wij · I

−wij · I wij · I

 Xi(n)Ũn 0

0 Yj(n)Ṽn

⊤  Un

Vn




= Tr

(
P⊤

nZ
(n)
ij Gij

(
Z

(n)
ij

)⊤
Pn

)
,

(6)

where Pn =

 Un

Vn

, Z(n)
ij =

 Xi(n)Ũn 0

0 Yj(n)Ṽn

, Gij =

 wij · I −wij · I

−wij · I wij · I

.

The detailed mathematical deductions are put into the Appendix A.

In the following section, we will introduce 3 criteria with tensorial coupled

mappings to obtain Un and Vn. Table 2 shows the alignment representation of165

each criteria used in the proposed framework.
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3.3. Classification

We denote Q1 and Q2 be projection matrices trained by the improved met-

ric learning approach [52] respectively for the vectorized cross-view gait data

vec(Ai), vec(Bj), i, j = 1, . . . ,M .170

In the testing stage, with the learned multi-linear transformation matrices{
Un ∈ RHn×Fn , n = 1, . . . , N

}
and

{
Vn ∈ RLn×Fn , n = 1, . . . , N}, the class

label of a query gait tensor Y ∈ RL1×L2×···×LN under the view ϑ is determined

by πi∗

i∗ = argmin
i

dis (fθ (Xi) , fϑ (Y)) , (7)

where πi∗ denotes the class label of the tensor gait sample which has smallest175

distance to the query gait sample Y, and dis (·, ·)denotes a distance metric

function of transformed gait tensor data. fθ (·) and fϑ (·) are transformation

functions from tensor spaces H1 ⊗H2 ⊗ · · · ⊗HN and L1 ⊗ L2 ⊗ · · · ⊗ LN to a

lower dimensional vector space, where

fθ (Xi) = Q⊤
1 vec(Xi

N∏
k=1

×kU
⊤
k ), (8)

180

fϑ (Y) = Q⊤
2 vec(Yj

N∏
k=1

×kV
⊤
k ). (9)

4. Three criteria of tensorial coupled mappings

In this section, we introduce three different criteria under the unified tonso-

rial framework in the last section and analyse the relationship between them.

4.1. Coupled multi-linear locality-preserved criterion (CMLP)

Preserving local information, tensorial coupled mappings with CMLP crite-185

rion aim to learn a couple of multi-linear projection matrices for views θ and

ϑ to obtain a common subspace that best detects the essential gait manifold

structure. The objective function is defined as

{U∗
n,V

∗
n, n = 1, . . . , N} = argmin

Un,Vn,n=1,...,N

∑
ij

∥∥∥∥∥Xi

N∏
k=1

×kU
⊤
k − Yj

N∏
k=1

×kV
⊤
k

∥∥∥∥∥
2

F

wij .

(10)
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The above objective function does not have a closed-form solution, so an iterative

procedure (see Algorithm 1) is proposed to solve it.190

Its mode-n objective function can be written in a trace form as

arg min
Un,Vn

J (Un,Vn) =
∑
ij

∥∥∥U⊤
nXi(n)Ũn −V⊤

nYj(n)Ṽn

∥∥∥2
F
wij

= Tr


 Un

Vn

⊤  X(n)Ũn 0

0 Y(n)Ṽn

 D1 ⊗ I −W ⊗ I

−W⊤ ⊗ I D2 ⊗ I

 X(n)Ũn 0

0 Y(n)Ṽn

⊤  Un

Vn


 ,

(11)

where X(n) =
[
X1(n),X2(n), . . . ,XM(n)

]
, Y(n) =

[
Y1(n),Y2(n), . . . ,YM(n)

]
, ⊗

denotes Kronecker product, and I is a unit matrix, similarity matrix W is made

of wij , and diagonal matrices D1 and D2 are

D1 =


∑

j w1j 0 0

0
. . . 0

0 0
∑

j wMj

 ,D2 =


∑

i wi1 0 0

0
. . . 0

0 0
∑

i wiM

 . (12)

The detailed mathematical deductions of (11) are put into the Appendix B.195

To simplify (11), several auxiliary matrices are defined as follows

Pn =

 Un

Vn

 ,Z(n) =

 X(n)Ũn 0

0 Y(n)Ṽn

 ,G =

 D1 ⊗ I −W ⊗ I

−W⊤ ⊗ I D2 ⊗ I

 .

(13)

Hence, we have the following objective function for mode-n

{P∗
n, n = 1, . . . , N} = argmin

Pn

Tr
(
P⊤

nZ(n)GZ⊤
(n)Pn

)
, (14)

where P∗
n denotes the optimal solution for mode-n. Therefore, (11) has been

decomposed into N different sub-optimization problems although 2N optimized

variables are coupled in a single objective function.200

With the orthogonal constraints introduced into the (14) to make {P∗
n, n = 1, . . . , N}

unique, we derive

{P∗
n, n = 1, . . . , N} = argmin

Pn

Tr
(
P⊤

nZ(n)GZ⊤
(n)Pn

)
s.t. P⊤

nPn = I,
(15)

10



Algorithm 1: Projection of cross-view gaits with CMLP criterion
Input: Two sets of training gait tensor samples

{
Xi ∈ RH1×H2×···×HN ,

i = 1, 2, . . . ,M} and
{
Yj ∈ RL1×L2×···×LN , j = 1, 2, . . . ,M

}
from two views θ and ϑ, dimensionality of the transformed gait

tensor F1 × F2 × · · · × FN , the maximum iteration Tmax;

Output: The projection matrices (Un,Vn) , n = 1, . . . , N , the aligned

tensors
{
Ai ∈ RF1×···×FN , i = 1, . . . ,M

}
and{

Bj ∈ RF1×···×FN , j = 1, . . . ,M
}

;

1 Initialize U
(0)
n = IHn

,V
(0)
n = ILn

, n = 1, . . . , N ,where their superscript

denotes iteration number;

2 Calculate W,D1,D2 according to Table 1 and (12);

3 while not converged or t <= Tmax do

4 for mode n = 1 : N do

5 Calculate

6
Xi(n)Ũ

(t−1)
n ⇐nXi×1(U

(t)
1 )⊤ . . .×n−1(U

(t)
n−1)

⊤×n+1(U
(t−1)
n+1 )⊤ . . .×N (U

(t−1)
N )⊤

Yi(n)Ũ
(t−1)
n ⇐nYj×1(V

(t)
1 )⊤ . . .×n−1(V

(t)
n−1)

⊤×n+1(V
(t−1)
n+1 )⊤ . . .×N (V

(t−1)
N )⊤

;

7 Calculate auxiliary matrices X(n) and Y(n) in (11), Z(n) and G

in (13);

8 Calculate the eigenvalues and eigenvectors of

Z(n)GZ⊤
(n)p

(t) = λ
(
Z(n)Z

⊤
(n)

)
p(t) and

P
(t)∗
n =

[
(U

(t)
n )⊤ (V

(t)
n )⊤

]⊤
=
[
p
(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

]
where the eigenvectors p

(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

corresponding to

Fn smallest eigenvalues;

9 end

10 Check convergence
∑N

n=1

∥∥∥∥∣∣∣∣P(t)∗
n

(
P

(t−1)∗
n

)⊤∣∣∣∣− I

∥∥∥∥ ≤ ε.

11 end

12 Project the high-dimensional gait tensor to matrices

(Un,Vn) , n = 1, . . . , N , and obtain the low-dimensional tensors

Ai = Xi×1U
⊤
1 ×2U

⊤
2 · · · ×NU⊤

N and Bj = Yj×1V
⊤
1 ×2V

⊤
2 · · · ×NV⊤

N ;

11



where I ∈ RFn×Fn is a unit matrix, e ∈ R2MKn×1 is a column vector of ones,

Kn = Fn+1 × · · · ×FN ×Fn−1 × · · · ×F1, the size of a column vector of zeros 0

is Fn × 1. The solution of 15 are listed in Appendix C205

4.2. Coupled multi-linear marginal fisher criterion (CMMF)

We proposed CMMF criterion to encode the intra-class compactness and

inter-class separability with local relationships. As a result, for each mode n,

the objective function is

{U∗
n,V

∗
n, n = 1, . . . , N} = argmin

Un,Vn,n=1,...,N

∑
πi=πj

∥∥Xi×1U
⊤
1 · · · ×NU⊤

N − Yj×1V
⊤
1 · · · ×NV⊤

N

∥∥2
F
w̄ij∑

πi ̸=πj

∥∥Xi×1U⊤
1 · · · ×NU⊤

N − Yj×1V⊤
1 · · · ×NV⊤

N

∥∥2
F
w̃ij

(16)

where πi and πj denote the class labels of samples i and j, w̄ij denotes the210

similarity of intra-class gait data, and w̃ij denotes the similarity of inter-class

gait data, which are defined as

w̄ij =

 1, if i ∈ N+
k1

(j) or j ∈ N+
k1

(i)

0, else
, w̃ij =

 1, if i ∈ N−
k2

(j) or j ∈ N−
k2

(i)

0, else
,

(17)

where N+
k1

(·) denotes a set of k1 intra-class nearest neighbors, and N−
k2

(·) de-

notes a set of k2 inter-class nearest neighbors.

Like CMLP, the alternating projection optimization procedure can also de-215

compose (16) into N sub-optimization problems as follows

arg min
Un,Vn

J (Un,Vn) =

∑
πi=πj

∥∥∥U⊤
nXi(n)Ũn −V⊤

nYj(n)Ṽn

∥∥∥2
F
w̄ij∑

πi ̸=πj

∥∥∥U⊤
nXi(n)Ũn −V⊤

nYj(n)Ṽn

∥∥∥2
F
w̃ij

,n = 1, · · · , N.

(18)
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Eq. (18) can be rewritten as

arg min
Un,Vn

J (Un,Vn) =

Tr


 Un

Vn


⊤ X(n)Ũn 0

0 Y(n)Ṽ(n)


 D̄1 ⊗ I −W̄ ⊗ I

−W̄⊤ ⊗ I D̄2 ⊗ I


 X(n)Ũn 0

0 Y(n)Ṽ(n)


⊤ Un

Vn




Tr


 Un

Vn


⊤ X(n)Ũn 0

0 Y(n)Ṽ(n)


 D̃1 ⊗ I −W̃ ⊗ I

−W̃⊤ ⊗ I D̃2 ⊗ I


 X(n)Ũn 0

0 Y(n)Ṽ(n)


⊤ Un

Vn



,

(19)

where W̄ and W̃ are intra-class similarity matrix and inter-class penalty simi-

larity matrix respectively and both of their i-th row j-th column elements are

w̄ij and w̃ij . Four diagonal matrices D̄1, D̄2, D̃1 and D̃2 are220

D̄1 =


∑

j w̄1j 0 0

0
. . . 0

0 0
∑

j w̄Mj

 , D̄2 =


∑

i w̄i1 0 0

0
. . . 0

0 0
∑

i w̄iM

 ,

D̃1 =


∑

j w̃1j 0 0

0
. . . 0

0 0
∑

j w̃Mj

 , D̃2 =


∑

i w̃i1 0 0

0
. . . 0

0 0
∑

i w̃iM

 .

(20)

To simplify (19), two alignment matrices are defined as follows

Ḡ =

 D̄1 ⊗ I −W̄ ⊗ I

−W⊤ ⊗ I D̄2 ⊗ I

 , G̃ =

 D̃1 ⊗ I −W̃ ⊗ I

−W̃⊤ ⊗ I D̃2 ⊗ I

 . (21)

Then, (19) reduces to

argmin
Pn

J (Pn) =
Tr
(
P⊤

nZ(n)ḠZ⊤
(n)Pn

)
Tr
(
P⊤

nZ(n)G̃Z⊤
(n)Pn

) . (22)

Like CMLP, a regularizer τI, which can be viewed as a small disturbance,

can be also imposed on the item G̃ to avoid over fitting. Then we have the

following criterion225

argmin
Pn

J (Pn) =
Tr
(
P⊤

nZ(n)ḠZ⊤
(n)Pn

)
Tr
(
P⊤

nZ(n)

(
G̃+ τI

)
Z⊤

(n)Pn

) . (23)
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The above problem can be converted to solving the generalized eigen-decomposition

problem. As a summary, the iterative procedure for the projection of cross-view

gaits with CMMF criterion is presented in Algorithm 2.

4.3. Coupled multi-linear discriminant analysis criterion (CMDA)

General Tensor Discriminant Analysis (GTDA) is a linear Discriminant anal-230

ysis extended in the tensor space, which introduce supervised information into

multi-linear analysis. Motivated by GTDA, the mode n intra-class scatter and

inter-class scatter matrices in the projected tensor space are defined as follows:

Jw (Un,Vn) =
C∑

c=1

(
Nc∑
i=1

∥∥∥U⊤
nX

(c)
i(n)Ũn −U⊤

n X̄
(c)
(n)Ũn

∥∥∥2
F
+

Nc∑
j=1

∥∥∥V⊤
nY

(c)
j(n)Ṽn −V⊤

n Ȳ
(c)
(n)Ṽn

∥∥∥2
F

)
,

Jb (Un,Vn) =
C∑

c=1

(
Nc

∥∥∥U⊤
n X̄

(c)
(n)Ũn −U⊤

n X̄(n)Ũn

∥∥∥2
F
+Nc

∥∥∥V⊤
n Ȳ

(c)
(n)Ṽn −V⊤

n Ȳ(n)Ṽn

∥∥∥2
F

)
,

(24)

where X̄
(c)
(n), Ȳ

(c)
(n) are the means of samples from the class c from two views θ

and ϑ, respectively, X̄(n) and Ȳ(n), are the means of total data sets from two235

views θ and ϑ respectively.

X̄
(c)
(n) =

1

Nc

Nc∑
i=1

X
(c)
i(n), Ȳ

(c)
(n) =

1

Nc

Nc∑
j=1

Y
(c)
j(n), X̄(n) =

1

C

C∑
c=1

X̄
(c)
(n), Ȳ(n) =

1

C

C∑
c=1

Ȳ
(c)
(n).

(25)

Again we wish to construct a large scalar when the mode n intra-class scatter

is small and the mode n inter-class scatter is large.

{
U

∗
n,V

∗
n

}
= argmax

Un,Vn

Jb (Un,Vn)

Jw (Un,Vn)
=

C∑
c=1

(
Nc

∥∥∥U⊤
n X̄

(c)

(n)
Ũn − U⊤

n X̄(n)Ũn

∥∥∥2
F

+ Nc

∥∥∥V⊤
n Ȳ

(c)

(n)
Ṽn − V⊤

n Ȳ(n)Ṽn

∥∥∥2
F

)
C∑

c=1

(
Nc∑
i=1

∥∥∥U⊤
n X

(c)

i(n)
Ũn − U⊤

n X̄
(c)

(n)
Ũn

∥∥∥2
F

+
Nc∑
j=1

∥∥∥V⊤
n Y

(c)

j(n)
Ṽn − V⊤

n Ȳ
(c)

(n)
Ṽn

∥∥∥2
F

)
(26)

(26) can be rewritten as

arg min
Un,Vn

J (Un,Vn) =

Tr


 Un

Vn


⊤ X(n)Ũn 0

0 Y(n)Ṽ(n)


 I − K ⊗ I 0

0 I − K ⊗ I


 X(n)Ũn 0

0 Y(n)Ṽ(n)


⊤ Un

Vn




Tr


 Un

Vn


⊤ X(n)Ũn 0

0 Y(n)Ṽ(n)


 K ⊗ I − 1

M (ee⊤) ⊗ I 0

0 K ⊗ I − 1
M (ee⊤) ⊗ I


 X(n)Ũn 0

0 Y(n)Ṽ(n)


⊤ Un

Vn



.

(27)

The detailed mathematical deductions of (27) are put into the Appendix D.240
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Algorithm 2: Projection of cross-view gaits with CMMF criterion.
Input: Two sets of training gait tensor samples

{
Xi ∈ RH1×H2×···×HN ,

i = 1, 2, . . . ,M} and
{
Yj ∈ RL1×L2×···×LN , j = 1, 2, . . . ,M

}
from two views θ and ϑ, dimensionality of the transformed gait

tensor F1 × F2 × · · · × FN , the maximum iteration Tmax;

Output: The projection matrices (Un,Vn) , n = 1, . . . , N , the aligned

tensors
{
Ai ∈ RF1×···×FN , i = 1, . . . ,M

}
and{

Bj ∈ RF1×···×FN , j = 1, . . . ,M
}

;

1 Initialize U
(0)
n = IHn

,V
(0)
n = ILn

, n = 1, . . . , N , where their superscript

denotes iteration number;

2 Calculate W̄, D̄1, D̄2,W̃, D̃1 and D̃2 according to (17) and (20);

3 while not converged or t <= Tmax do

4 for mode n = 1 : N do

5 Calculate

6
Xi(n)Ũ

(t−1)
n ⇐nXi×1(U

(t)
1 )⊤ . . .×n−1(U

(t)
n−1)

⊤×n+1(U
(t−1)
n+1 )⊤ . . .×N (U

(t−1)
N )⊤

Yi(n)Ũ
(t−1)
n ⇐nYj×1(V

(t)
1 )⊤ . . .×n−1(V

(t)
n−1)

⊤×n+1(V
(t−1)
n+1 )⊤ . . .×N (V

(t−1)
N )⊤.

;

7 Calculate auxiliary matrices X(n),Y(n) and Z(n) as Step 6 in

Algorithm. 1, Ḡ and G̃ in (21);

8 Calculate the generalized eigen-decomposition problem on

(Z(n)

(
G̃+ τI

)
Z⊤

(n))
−1Z(n)ḠZ⊤

(n),

P
(t)∗
n =

[
(U

(t)
n )⊤ (V

(t)
n )⊤

]⊤
=
[
p
(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

]
,

where the eigenvectors p
(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

correspond to Fn

smallest eigenvalues;

9 end

10 Check convergence
∑N

n=1

∥∥∥∥∣∣∣∣P(t)∗
n

(
P

(t−1)∗
n

)⊤∣∣∣∣− I

∥∥∥∥ ≤ ε;

11 end

12 Project the high-dimensional gait tensor to matrices

(Un,Vn) , n = 1, . . . , N , and obtain the low-dimensional tensors

Ai = Xi×1U
⊤
1 ×2U

⊤
2 · · · ×NU⊤

N and Bj = Yj×1V
⊤
1 ×2V

⊤
2 · · · ×NV⊤

N .
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To simplify (27), several auxiliary matrices are defined as follows

Pn =

 Un

Vn

 ,Z(n) =

 X(n)Ũn 0

0 Y(n)Ṽn

 ,G =

 I−K⊗ I 0

0 I−K⊗ I

 ,

G′ =

 K⊗ I− 1
M (ee⊤)⊗ I 0

0 K⊗ I− 1
M (ee⊤)⊗ I

 .

(28)

Then, (27) reduces to

argmin
Pn

J (Pn) =
Tr
(
P⊤

nZ(n)GZ⊤
(n)Pn

)
Tr
(
P⊤

nZ(n)G′Z⊤
(n)Pn

) . (29)

The above problem can be converted to solve the generalized eigen-decompos-

ition problem. As a summary, the iterative procedure for the projection of

cross-view gaits with CMDA criterion is presented in Algorithm 3.245

4.4. Analysis

Complexity analysis. For all of the three criteria, the time complexity in-

cludes three aspects: n-mode projection in step 5 of Algorithm 1 and 2, step 4

in Algorithm 3, the scatter calculation and general eigenvalue decomposition.

In each iteration, the time complexity of the n-mode projection and general250

eigenvalue decomposition can be respectively computed by O(M
∑N

n=1 H
2
nH̃n+

L2
nL̃n) and O(

∑N
n=1(Hn + Ln)

3) for all the three variations, where H̃n =

ΠN
i=1,i̸=nHi and L̃n = ΠN

i=1,i̸=nLi. For CMLP, the complexity to compute

the scatter matrices in the optimization procedure is O(
∑N

i=1 2MKn(Hn +

Ln)(2MKn +Hn +Ln)). CMMF and CMDA considers both inter-class scatter255

and intra-class scatter, which doubles the computation cost, i.e., O(
∑N

i=1 4MKn(Hn+

Ln)(2MKn+Hn+Ln)). For simplicity, we assume that Hn = Ln = (
∏N

n=1 Hn)
1/n =

(
∏N

n=1 Ln)
1/n = I, thus the computing complexity of CMLP can be denoted as

O(2MN · I(N+1) + 8N · I3 + 8MNI(M · F (N − 1) + I) ∗ F (N − 1)) where it

is assumed the dimensionality of transformed tensor ∀Fn = F, n = 1, 2, . . . , N .260

Similarly, CMMF and CMDA double the computational complexity.
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Algorithm 3: Projection of cross-view gaits with CMMF criterion.
Input: Two sets of training gait tensor samples

{
Xi ∈ RH1×H2×···×HN ,

i = 1, 2, . . . ,M} and
{
Yj ∈ RL1×L2×···×LN , j = 1, 2, . . . ,M

}
from two views θ and ϑ, dimensionality of the transformed gait

tensor F1 × F2 × · · · × FN , the maximum iteration Tmax;

Output: The projection matrices (Un,Vn) , n = 1, . . . , N , the aligned

tensors
{
Ai ∈ RF1×···×FN , i = 1, . . . ,M

}
and{

Bj ∈ RF1×···×FN , j = 1, . . . ,M
}

;

1 Initialize U
(0)
n = IHn

,V
(0)
n = ILn

, n = 1, . . . , N , where their superscript

denotes iteration number.

2 while not converged or t <= Tmax do

3 for mode n = 1 : N do

4 Calculate

5
Xi(n)Ũ

(t−1)
n ⇐nXi×1(U

(t)
1 )⊤ . . .×n−1(U

(t)
n−1)

⊤×n+1(U
(t−1)
n+1 )⊤ . . .×N (U

(t−1)
N )⊤

Yi(n)Ũ
(t−1)
n ⇐nYj×1(V

(t)
1 )⊤ . . .×n−1(V

(t)
n−1)

⊤×n+1(V
(t−1)
n+1 )⊤ . . .×N (V

(t−1)
N )⊤

;

6 Calculate auxiliary matrices X(n),Y(n),Z(n),G,G′ in (28);

7 Calculate the generalized eigen-decomposition problem on

(Z(n) (G
′ + τI)Z⊤

(n))
−1Z(n)GZ⊤

(n),

P
(t)∗
n =

[
(U

(t)
n )⊤ (V

(t)
n )⊤

]⊤
=
[
p
(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

]
,

where the eigenvectors p
(n,t)
1 ,p

(n,t)
2 , . . . ,p

(n,t)
Fn

correspond to Fn

smallest eigenvalues;

8 end

9 Check convergence
∑N

n=1

∥∥∥∥∣∣∣∣P(t)∗
n

(
P

(t−1)∗
n

)⊤∣∣∣∣− I

∥∥∥∥ ≤ ε;

10 end

11 Project the high-dimensional gait tensor to matrices

(Un,Vn) , n = 1, . . . , N , and obtain the low-dimensional tensors

Ai = Xi×1U
⊤
1 ×2U

⊤
2 · · · ×NU⊤

N and Bj = Yj×1V
⊤
1 ×2V

⊤
2 · · · ×NV⊤

N .
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Relationship analysis. All of the proposed three variations under the unified

framework aim to learn a shared multi-linear subspace in which the data bi-

ases caused by view differences are alleviated. Then, gait across different views

can be directly measured in the shared subspace. However, the three criteria265

construct different manifold structure in the subspace. As in Table 2, different

alignment representation are embedded into the manifold graph, which makes

the subspace discriminable. In detail, CMLP constructs a graph incorporating

neighbourhood information across gait views spanned on the dataset. From

perspective of Laplacian, we asymmetrically map the tensor data points from270

different gait views into a shared subspace by a couple of multi-linear projec-

tion matrices, which the multi-linear transformation optimally preserves local

neighbourhood structure in the shared subspace. CMMF also blurs the data

bias across views by optimally learning asymmetrical projections based on local

neighbourhood information. However, CMMF is a multi-linear tensor discrim-275

inative model, which encodes both the intra-class compactness and inter-class

separability with local neighbourhood relationships in the manifold. CMDA is

also a discriminative model which make the samples from the same class com-

pact and samples from the different class separate in the shared subspace. In

contrast to CMLP and CMMF, CMDA encodes not only local neighbourhood280

information but also global relationships between classes. Though the three

criteria follow the same framework, each of them build unique manifold.

5. Experiments

In this section, the effectiveness of the proposed framework is assessed by

extensive experiments conducted on two databases: (1) CASIA(B) gait database285

and (2) OU-ISIR large population gait database. Videos/images in both databases

are collected from multi-view cameras; therefore they are most applicable to

evaluate the performance of cross-view gait recognition. For each gait sequence,

we use dual-ellipse fitting approach [53] to detect gait periodicity. Then, we

adopt gait energy image (GEI) [54] as the gait feature in a gait cycle. After that,290
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Figure 1: GEIs from the CASIA(B) database.

GaborD-based, GaborS-based and GaborSD-based gait representations [45] are

used as recognized feature. GaborD and GaborS features are respectively ob-

tained by the direction summation and scale summation of Gabor features, and

GaborSD feature is obtained by both direction and scale summation of Gabor

features. For these three gait representations, the dimension of MPCA is chosen295

according to a 98% energy criterion as in [43]. Furthermore, the proposed three

criteria of tensorial coupled mappings are used for extracting features. Finally,

the nearest neighbor classifier is used for classification.

5.1. Databases

5.1.1. CASIA(B) gait database300

The CASIA(B) gait database contains 13640 sequences of 124 subjects. For

each subject, gaits are recorded by the cameras from 11 views, i.e. 0◦, 18◦, 36◦,

54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, and 180◦. There are 10 gait sequences

for each subject: 6 samples under normal condition, 2 samples walking with

coats and 2 samples carrying bags. Since the samples of walking with coats and305

carrying bags are too limited to calculate intra-class scatter, all the 6 samples

containing normal walk for each subject are selected for the experiments in this

paper. These normal walk samples are divided into training and testing sets,

and the first 64 subjects are used for training and the rest 60 subjects are used to

test the performance of gait recognition approaches under the view change. All310

the GEIs are cropped and normalized to 64×64 pixels. Figure 1 shows the GEIs

from 11 viewing angles. After Gabor filter with the above-mentioned 5 scales

and 8 directions, the sizes of GaborD-based, GaborS-based and GaborSD-based

gait features are 64× 64× 8, 64× 64× 5 and 64× 64, respectively.

5.1.2. OU-ISIR large population gait database315

The OU-ISIR large population gait database has been released recently. It

contains 1912 subjects whose gait sequences are captured from 4 different ob-
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Figure 2: GEIs from the OU-ISIR database.

servation angles of 55◦, 65◦, 75◦ and 85◦. We randomly divide OU-ISIR gait

database into two sets equally for 5 times. Therefore, 956 subjects compose

the training set, and the rest 956 subjects make up the testing set. In our ex-320

periments, the size of GEIs is aligned to 64 × 44 pixels. Figure 2 shows GEIs

from 4 different views. Compared with the CASIA(B) database, this database

contains more subjects with wider range of age variations but narrower range

of view variations. The sizes of GaborD-based, GaborS-based and GaborSD-

based gait features are 64× 44× 8, 64× 44× 5 and 64× 44 respectively in our325

experiments.

5.2. Performance evaluation

5.2.1. Evaluation on the CASIA(B) gait database

In this section, we evaluate the effectiveness of the proposed GaborD-CMLP,

GaborD-CMMF, GaborD-CMDA, GaborS-CMLP, GaborS-CMMF, GaborS-CMDA,330

GaborSD-CMLP, GaborSD-CMMF and GaborSD-CMDA using the CASIA(B)

gait database. The numbers of iteration of CMLP, CMMF and CMDA are

all set to 5. For fair comparison, the recognition accuracies with optimal pa-

rameters are reported. Table 3 illustrates the recognition rates of probe view

54◦. It can be seen that when the difference increases between the probe and335

the gallery sample is 18◦, the recognition rates of the proposed 9 methods, are

above 90%, and the recognition rate of each method is very close. In addition,

the recognition rates decrease as the view difference between the gallery and

probe views, but slow down the downward trend at a symmetrical gallery view

angle.340

We compare the proposed methods with state-of-the-art cross-view gait

recognition methods including GEI[54], CMCC[31], VTM+QM[23], SVD[24],

SVR[32], MvDA[55] and GEI + Deep CNNs [40]. GEI is a kind of spatial-

temporal template, which is the state-of-the-art feature representation in gait
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Table 3: Comparison on various methods on CASIA(B) under Probe view 54◦ (the best record

under each Gallery view is marked in bold, the second best is marked by underline ’_’.)
Gallery view 0◦ 18◦ 36◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

GEI [54] 0.04 0.09 0.30 0.22 0.18 0.17 0.38 0.19 0.02 0.03
CMCC [31] 0.24 0.65 0.97 0.95 0.63 0.53 0.48 0.34 0.23 0.22

VTM+QM [23] 0.21 0.67 0.96 0.97 0.70 0.66 0.39 0.33 0.20 0.22
SVD [24] 0.13 0.46 0.87 0.81 0.49 0.31 0.27 0.19 0.18 0.16
SVR [32] 0.22 0.64 0.95 0.93 0.59 0.51 0.42 0.27 0.20 0.21

MvDA [55] 0.28 0.70 0.98 0.97 0.72 0.68 0.53 0.42 0.25 0.28
GEI + CNNs [40] 0.5 0.67 0.99 0.99 0.93 0.90 0.79 0.73 0.63 0.62

GaborD-CMLP 0.37 0.78 0.99 0.97 0.82 0.69 0.64 0.55 0.33 0.32
GaborD-CMMF 0.43 0.72 0.99 0.98 0.82 0.71 0.66 0.56 0.37 0.30
GaborD-CMDA 0.31 0.51 0.92 0.86 0.57 0.58 0.53 0.30 0.25 0.25
GaborS-CMLP 0.38 0.74 0.99 0.97 0.79 0.73 0.73 0.51 0.38 0.33
GaborS-CMMF 0.42 0.78 0.99 0.98 0.81 0.76 0.65 0.53 0.37 0.35
GaborS-CMDA 0.31 0.66 0.96 0.95 0.74 0.61 0.61 0.42 0.34 0.29

GaborSD-CMLP 0.36 0.70 0.98 0.96 0.82 0.73 0.70 0.57 0.37 0.33
GaborSD-CMMF 0.37 0.72 0.99 0.98 0.81 0.77 0.76 0.57 0.42 0.33
GaborSD-CMDA 0.25 0.52 0.93 0.90 0.64 0.59 0.54 0.42 0.39 0.29

recognition. We utilized GEI to characterize gait patterns in all of the compared345

approaches. For CMCC, the computing complexity includes four parts, i.e., bi-

partite graph modelling, bipartite graph multipartitioning, correlation optimiza-

tion by CCA and linear approximation processes, which take O(MI2), O(I3), O((I ′)3)

and O(MI), respectively, where I ′ is the dimension of the GEI segment. The

complexity of VTM+QM and SVD is dominated by SVD factorization, which is350

O(2M2I). For SVR, the complexity is related to the number of support vectors

Sv, which is O(S3
v + MS2

v + MISv) with upper bound O(M2I). For MvDA,

computational costs are mainly from matrix inversion and eigenvalue decompo-

sition, and both are O(8I3). Table 3 tabulates comparison results under Probe

view 54◦. As shown in Table 3, the proposed methods consistently outperform355

other state-of-the-art methods. The average recognition rate of the proposed

methods is 14%, 13% , 27%, 16% and 7% higher than CMCC, VTM+QM, SVD,

SVR and MvDA. Particularly, the proposed methods achieve more remarkable

increase under large view differences. Compared to GEI + CNNs, the proposed

approaches achieve equivalent performances under small view variance, i.e., 18◦.360

But, the performances of the proposed approaches are still posterior when the
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view differences are enlarged. Though GEI + CNNs achieves better perfor-

mances, it demands large volume of labelled data and high computational costs

which is not practical in gait recognition. In contrast, our proposed approaches

overcome the drawbacks which aims at small size sample problem and reduces365

dependences on computational sources. Especially, our framework can achieve

equal performance under small view variances.

5.2.2. Evaluation on the OU-ISIR large population gait database

Since OU-ISIR gait database contains two gait sequences per subject, each

query subject’s one angle view GEIs are used as gallery samples, and GEIs370

under other angle view are used as query samples. We repeat the experiment

by swapping the samples in the training and testing sets, therefore, we test the

recognition rates for 10 times for each cross-view as [55]. The average recognition

rates over these 10 runs are reported in this paper.

We evaluate the accuracies of the proposed GaborD-CMLP, GaborD-CMMF,375

GaborD-CMDA, GaborS-CMLP, GaborS-CMMF, GaborS-CMDA, GaborSD-

CMLP, GaborSD-CMMF and GaborSD-CMDA, and also the effect of view angle

variations. Table 4 illustrates the recognition rates with the gallery view and

probe view of 55◦, 65◦, 75◦ and 85◦. We observe that the recognition rates

decrease monotonically as the view difference between the gallery and probe380

views. The lowest recognition rate can reach more than 96% even when the

maximum view difference is 30◦ (85◦ − 55◦).

We also compare the proposed methods with those above-mentioned state-of-

the-art cross-view gait recognition methods using OU-ISIR database. Because

the performance results of the proposed method are very close, the data is385

retained to the third digit after the decimal point, which is easier to distinguish

between the pros and cons of them. Namely, we report the results accurate

to one-thousandth for the OU-ISIR database. Table 4 presents the results in

terms of recognition rate for the different methods. We can see that the proposed

methods yield average increases of 13%, 17%, 19%, 20% and 5% as compared to390

CMCC, VTM+QM, SVD, SVR and MvDA. These results, again, corroborate
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Table 4: Comparison on various methods on OU-ISIR (the best record under each Gallery

view is marked in bold, the second best is marked by underline ’_’.)
Probe View (◦) 55 65 75 85

Gallery View (◦) 65 75 85 55 75 85 55 65 85 55 65 75

GEI [54] 0.284 0.058 0.277 0.277 0.670 0.195 0.507 0.640 0.969 0.262 0.207 0.969
CMCC[31] 0.968 0.785 0.646 0.974 0.963 0.826 0.800 0.975 0.969 0.749 0.785 0.965

VTM+QM[23] 0.941 0.704 0.491 0.957 0.966 0.785 0.756 0.971 0.964 0.555 0.838 0.978
SVD [24] 0.932 0.704 0.523 0.923 0.936 0.771 0.774 0.940 0.947 0.523 0.763 0.925
SVR [32] 0.936 0.710 0.531 0.940 0.943 0.720 0.753 0.943 0.941 0.511 0.711 0.938

MvDA[55] 0.975 0.922 0.858 0.974 0.984 0.949 0.925 0.984 0.985 0.877 0.957 0.988
GEI+CNNs[40] 0.983 0.960 0.805 0.963 0.973 0.833 0.942 0.978 0.851 0.900 0.960 0.984
GaborD-CMLP 0.999 0.990 0.972 1.000 1.000 0.996 0.989 1.000 0.995 0.969 0.996 1.000
GaborD-CMMF 0.998 0.991 0.970 1.000 1.000 0.996 0.990 1.000 0.999 0.971 0.994 1.000
GaborD-CMDA 0.998 0.992 0.967 1.000 1.000 0.995 0.991 1.000 1.000 0.967 0.994 1.000
GaborS-CMLP 0.999 0.992 0.971 1.000 1.000 0.997 0.993 1.000 1.000 0.972 0.996 1.000
GaborS-CMMF 0.999 0.992 0.972 1.000 1.000 0.997 0.993 1.000 1.000 0.970 0.997 1.000
GaborS-CMDA 0.998 0.989 0.968 1.000 1.000 0.997 0.990 1.000 1.000 0.963 0.997 1.000

GaborSD-CMLP 0.998 0.989 0.971 1.000 1.000 0.997 0.975 1.000 1.000 0.970 0.993 1.000
GaborSD-CMMF 0.999 0.991 0.965 1.000 1.000 0.996 0.987 0.999 1.000 0.966 0.994 1.000
GaborSD-CMDA 0.998 0.984 0.967 1.000 1.000 0.994 0.988 1.000 1.000 0.964 0.994 1.000

the useful tensor representation framework in addressing the cross-view gait

recognition. It worth to point out that the proposed approaches achieve slightly

prior performance compared to GEI + CNNs. This verifies the conclusion on

CASIA(B) dataset that the proposed framework is effective when view difference395

is relevant small.

5.2.3. Ablation Study

In this section, we evaluate the effectiveness of each component, i.e., Gabor-

based features and tensor-based coupled metric learning framework. Figure

3 compares identification accuracies versus various tensorial coupled mapping400

methods using GEI and Gabor-based features on OU-ISIR large population gait

dataset. We show the recognition results of various gallery views under fixed

probe view 75◦ in sub-figure (a)-(c). From the figures, it can be seen that Gabor-

based features achieve superior performances than GEI in most cases when the

tensorial coupled mapping approach is fixed. This verifies that Gabor-based405

feature features boost the performances compared vanilla GEI. It is reasonable

since Gabor-based features are learned from GEIs and sensitive to gait pattern
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Figure 3: A comparison of different features on the OU-ISIR database.
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Figure 4: An illustration of the proposed tensorial coupled mapping framework with Gabor-

based features on the OU-ISIR database.

variations. The conclusion is also verified in many deep learning studies [56, 57],

and they prove that CNN learns Gabor features in shallow layers.

Figure 4 illustrates the effectiveness of the proposed tensorial coupled map-410

ping framework. Sub-figure (a)-(c) show the recognition results of various gallery

views, i.e., 55◦, 65◦ and 85◦, when the probe view is set to 75◦. It is easy to

observe that the proposed approaches under the unified tensorial coupled map-

ping framework outperform the deep CNNs with a large margin when combining

with Gabor-based features. It demonstrates the effectiveness of our proposed415

tensorial coupled mapping framework. In another aspects, it exposes the short-

age of deep CNNs that it is easy to be overfitting when the training data is

limited. In particular, gait data is simple which also restricts the depth of deep

CNNs [40]. It is worth to noting that GEI + CNNs achieves better performance

than Gabor-based features + CNNs as in Table 4. We believe that the reason420

is two-fold: one is that data-driven learned filters using deep CNNs are more
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appropriate than hand-crafted filters using Gabor; the other one is that it is

easier to overfit for Gabor-based features than GEI when using the same depth

CNN framework, because the deep CNNs learn Gabor features in shallow layers

[56].425

Thus� it is appropriate to combine Gabor-based features and the proposed

tensorial coupled mapping framework together. Each component improves per-

formance of the whole gait recognition system.

5.3. Discussion

Based on the comparative experiments on the CASIA(B) and OU-ISIR gait430

databases, we discuss and analyze the effects of Gabor gait representation and

three criteria of tensorial coupled mappings.

(1) The experiments in Section 5.2 show that the GaborS-based representation

performs slightly better than GaborD-based representations which some-

what outperforms the GaborSD representation for cross-view gait recogni-435

tion. This observation is consistent with [45]. GaborS and GaborD benefit

cross-view gait recognition with Gabor functions over scales and directions

representation.

(2) CMLP criterion has the ability to learn the essential gait manifold struc-

ture. By minimizing the distance between gait tensor data under two differ-440

ent observation angles for the identical subject, simultaneously suppressing

the similarity of different subjects, as defined in (10), CMLP algorithm

can enlarge the discrimination between different subjects, and meanwhile

compact the variations of the same subject. Therefore, GaborD-CMLP,

GaborS-CMLP and GaborSD-CMLP generally achieve good performance.445

(3) CMMF criterion minimizes the ratio of intra-class similarity to the inter-

class similarity, which ensures the intra-class compactness and inter-class

separability. Compared with CMLP criterion, CMMF criterion relies on

Fisher discrimination which is more conducive to classification. Therefore,

CMMF criterion yields better recognition performance than CMLP crite-450

rion.
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(4) Due to the lack of constrained relationship between cross-view gait tensor

data, CMDA criterion is worst among the three criteria. Still, it is far

superior to other state-of-the-art methods.

6. Conclusion455

Cross-view gait recognition is a challenging task because the appearance

change caused by view variation. We handle this problem by designing a gen-

eral tensor representation framework that employs coupled metric learning from

cross-view gait tensor data. First, we use GaborD, GaborS and GaborSD to

extract Gabor feature with different scales and directions from GEIs. To en-460

hance discrimination between different subjects, and meanwhile compact the

variations of the same subject, three criteria of tensorial coupled mappings are

proposed to project Gabor-based representations to a common subspace for

recognition. Extensive experiments conducted on CASIA(B) and OU-ISIR gait

database demonstrate the proposed methods are superior to other state-of-the-465

art methods. Moreover�the proposed methods achieve slightly prior performance

compared to GEI + CNNs when view difference is relevant small. When view

difference is large, the advantage of CNNs may be more obvious. In the fu-

ture, we will try a CNN representation framework to select view-invariant gait

features for large cross-view gait recognition.470

Appendix A. Similarity between Ai and Bi

sim (Ai,Bj) = ∥Ai − Bj∥2F wij

= Tr

((
U⊤

nXi(n)Ũn −V⊤
nYj(n)Ṽn

)(
U⊤

nXi(n)Ũn −V⊤
nYj(n)Ṽn

)⊤
wij

)

= Tr


 Un

Vn

⊤  Xi(n)Ũn 0

0 Yj(n)Ṽn

 wij · I −wij · I

−wij · I wij · I

 Xi(n)Ũn 0

0 Yj(n)Ṽn

⊤  Un

Vn




Appendix B. Derivation of mode-n objective function of (11)

The mode-n objective function of (11) is obtained as follows:
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arg min
Un,Vn

J (Un,Vn) =
∑
i,j
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= Tr


 Un
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(n) −X(n)Ũn (W ⊗ I) Ṽ⊤
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= Tr
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 D1 ⊗ I −W ⊗ I

−W⊤ ⊗ I D2 ⊗ I

 X(n)Ũn 0
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Appendix C. The solution of (15)

(15) can be solved by a generalized eigen-decomposition of

Z(n)GZ⊤
(n)p = λ

(
Z(n)Z

⊤
(n)

)
p. (C.1)

Taking the eigenvectors p(n)
1 ,p

(n)
2 , . . . ,p

(n)
Fn

corresponding to Fn (Fn ≤ max (Hn, Ln))480

smallest eigenvalues λ
(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
Fn

, the optimal solution of (22) can

be represented as

Pn =

 Un

Vn

 =
[
p
(n)
1 ,p

(n)
2 , . . . ,p

(n)
Fn

]
. (C.2)

Z(n)Z
⊤
(n) is usually non-invertible. In order to eliminate the singularity and

to avoid over fitting, a regularizer τI is imposed on the item Z(n)Z
⊤
(n), where

I ∈ R(Hn+Ln)×(Hn+Ln) and is a small positive constant, such as τ = 10−6 used in485

this paper. Pn can be divided into two matrices Un and Vn. Un corresponds

to the 1st to Hn-th rows of Pn and Vn corresponds to the (Hn + 1)-th to

(Hn + Ln)-th rows of Pn.

27



Appendix D. Derivation of the mode-n objective function of (27)

The denominator of (27) can be rewritten as490

Jw (Un,Vn) = Tr
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(D.1)

where Xc(n) = [X
(c)
1(n), · · · ,X

(c)
M(n)], for c = 1, · · · , C, X(n) = [X1(n), · · · ,XC(n)],

Kij =

 1
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)(
X

(c)
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)⊤
=

C∑
c=1

(
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j(n)Ṽn − Ȳ
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Thus, the alignment expression is obtained as Jw (Un,Vn) =

Tr
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The numerator of (27) can be rewritten as
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Thus, the alignment expression is obtained as follows
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⊤  Un

Vn





So the objective function for mode n can be expressed as (27).
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