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Abstract

Extending previous work on quantile classifiers (q-classifiers) we propose the q*-classifier for the 

class imbalance problem. The classifier assigns a sample to the minority class if the minority class 

conditional probability exceeds 0 < q* < 1, where q* equals the unconditional probability of 

observing a minority class sample. The motivation for q*-classification stems from a density-

based approach and leads to the useful property that the q*-classifier maximizes the sum of the 

true positive and true negative rates. Moreover, because the procedure can be equivalently 

expressed as a cost-weighted Bayes classifier, it also minimizes weighted risk. Because of this 

dual optimization, the q*-classifier can achieve near zero risk in imbalance problems, while 

simultaneously optimizing true positive and true negative rates. We use random forests to apply 

q*-classification. This new method which we call RFQ is shown to outperform or is competitive 

with existing techniques with respect to tt-mean performance and variable selection. Extensions to 

the multiclass imbalanced setting are also considered.
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1. Introduction

Random forests, introduced by Leo Breiman [1], is an increasingly popular learning 

algorithm that offers fast training, excellent performance, and great flexibility in its ability to 

handle all types of data [2, 3]. It provides its own internal generalization error estimate (i.e., 

out-of-bag error) as well as measures of variable importance [1, 4, 5, 6] and class probability 

estimates [7]. Random forests has been used for predictive tasks as varied as modeling 

mineral prospectivity [8], lake water level forecasting [9], identifying potentially salvageable 

tissue after acute ischemic stroke [10], identifying biomarkers for diagnosis of Kawasaki 
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disease [11], classifying childhood onset schizophrenia [12], electrical load forecasting [13], 

and for pedestrian detection [14]. The random forests algorithm has also been generalized 

beyond classification and regression, most importantly to random survival forests, where 

each terminal node of a tree in the forest provides a survival function estimate [15, 16]. 

Random survival forests has been used to analyze survival problems with great success; for 

example, in esophageal cancer staging [17, 18].

In biomedical and other real world applications, a common problem is the occurrence of 

imbalanced data, defined as data featuring high-imbalance in the frequency of the observed 

class labels (see Section 2 for a formal definition). Some examples are disease prediction 

[19] and diagnosing aviation turbulence [20]. Imbalanced data has been observed to 

seriously hinder the classification performance of learning algorithms, including random 

forests and other ensemble methods because their decisions are based on classification error 

[21] and where there is high-imbalance in the frequency of the observed class labels a low 

error rate can be achieved by classifying all of the samples as members of the majority class.

Classification of class imbalanced data sets has been identified as a top problem in machine 

learning [22] and there is an ever increasing body of literature devoted to this extremely 

important problem. He and Garcia [23] and Sun et al. [24] systematically reviewed 

classification in the presence of class imbalance. As examples of more specialized reviews, 

Galar et al. [21] focused specifically on using ensembles to learn class imbalanced data and 

Lopez et al. [25, 26] explored imbalanced data characteristics. Finally, three very recent, 

useful reviews deserve mentioning: Krawczyk [27] thoroughly reviewed open research 

challenges in learning imbalanced data; Haixiang et al. [28] exhaustively reviewed existing 

papers on imbalanced data published between 2006–2016 and categorized them with respect 

to method and the journals in which they were published; and Das et al. [29] provided a 

comprehensive review of current approaches to imbalanced data and class overlap and open 

issues with the same in the broader context of data irregularities.

Section 2 formally defines the class imbalance problem and provides a breakdown of 

methods that have been used to address this problem. As discussed there, of the various 

methods proposed, under-sampling the majority class so that its cardinality matches that of 

the minority class is among the most popular. In the context of random forests, 

undersampling the majority class provides improved classification performance with respect 

to the minority class [30] and appears to be the most common approach when using random 

forests to learn imbalanced data due to the fact that it was implemented in Breiman’s 

original Fortran code [4] used by the randomForest R-package [31]. This method is called 

balanced random forests (BRF) and and it is an example of what has been referred to in the 

literature [32] as a data level method, which transform the distributions of the classes in the 

training data. We will show that BRF has an important connection to our approach even 

though our method is not an example of a data level method.

In Section 3, we propose our new approach to the class imbalance problem using a density-

based argument. This results in a classifier that can be seen to be an example of a quantile 
classifier, or q-classifier [33], which classifies samples based on whether the conditional 

probability of the minority class exceeds a specified threshold 0 < q < 1. Theorem 2 shows 
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that the specific threshold value q* of this classifier (q*-classifier) has the useful property 

that it maximizes the true positive and true negative rates. Moreover, because it can be 

equivalently expressed as a cost-weighted Bayes classifier, it is also shown to minimize 

weighted risk. Because of this dual optimization, unlike the traditional Bayes classifier 

(which is a q = 0.5 median classifier), the q*-classifier can achieve near zero risk in highly 

imbalanced data, while simultaneously optimizing true positive and true negative rates. 

Furthermore, we show surprisingly that balanced sampling as used by BRF also has this 

optimality property of maximizing the true positive and true negative rates (Theorem 3). 

Moreover, we show that the q*-classifier’s optimality continues to hold even if sampling 

strategies are imposed (Theorem 4). Because we choose to implement q*-classification 

using the full data, this means means balanced sampling, while achieving the same 

optimality property, comes at the cost of efficiency since it only uses a fraction of the data. 

We apply q*-classification with random forests, which we call RFQ, using a large 

comparative benchmark study (Section 4) and find it highly competitive and not only that 

but we are able to identify conditions under which RFQ significantly outperforms BRF 

(Section 5). These findings are further confirmed using synthetic data and through in-depth 

case study analyses. Section 6 shows RFQ also outperforms BRF with respect to variable 

selection. Section 7 considers the extension of RFQ to the multiclass imbalanced setting. 

Section 8 compares RFQ to boosting methods. Section 9 concludes with a discussion of our 

findings.

2. Imbalanced data setting

We now formally define the imbalanced data setting and introduce notation to be used 

throughout the paper. Denote the learning data by ℒ = (Xi, Yi)1≤i≤N where Xi ∈ 𝒳 is the d-

dimensional feature and Yi ∈ {0, 1} is the binary ordinal response. It is assumed that (Xi, 

Yi) are i.i.d. from a common distribution ℙ. Let (X, Y ) denote an independent generic data 

point with distribution ℙ.

Our goal is to build an accurate classifier for Y given X = x when the learning data is 

imbalanced. To help quantify what is meant by “imbalancedness”, we start by first defining 

the imbalance ratio (IR). Following the convention in the literature, we assume that the 

majority class labels are 0, and outnumber the minority class labels, 1.

Definition 1. The imbalance ratio (IR) is defined as IR = N0/N1 where N0 and N1 denote the 
cardinality of the majority and minority samples, respectively. A data set is imbalanced if IR 

≫ 1.

It has been observed that class imbalance is not a problem in and of itself and does not 

necessarily lead to poor generalization in classification. If the training data is such that the 

classes can be separated in the feature space, then good classification will be achieved 

irrespective of IR. Rather the problem is that of training the classifier on too few minority 

examples in the presence of class overlap and small subgroups of minority class examples 

surrounded by majority class examples in the data space (some-times referred to as “small 

disjuncts”), which frequently characterize imbalanced data. This combination of 
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characteristics, termed “concept complexity,” [34] make it difficult for a classifier to 

construct a good decision boundary leading to poor classification performance [35, 36, 37].

In order to quantify the complexity of imbalanced data, we adopt the approaches in [38] and 

[36], where they evaluate the distribution of the two classes in the local neighborhood of 

each minority example using k = 5 nearest neighbors. We adopt their taxonomy of types of 

minority examples except that we make no distinction between minority examples with 4/5 

and 5/5 nearest neighbors of the majority class.

Definition 2. A minority class example is safe, borderline, or rare if 0 to 1, 2 to 3, or 4 to 5 
of its 5 nearest neighbors are of the majority class, respectively.

We show in Section 5 that the percentage of minority class samples that are rare plays an 

important role in explaining differences between the q*-classifier and BRF.

Now we define some formal notions of imbalancedness. Following [39], we distinguish 

between marginally imbalanced and conditionally imbalanced data.

Definition 3. The data is marginally imbalanced if p(x) ≪1/2 for all x ∈ 𝒳 where p(x) = 

ℙ{Y = 1|X = x}.

Thus, marginally imbalanced data is data for which the probability of the minority class is 

close to zero throughout the feature space.

Definition 4. The data is conditionally imbalanced if there exists a set A ⊂ 𝒳 with nonzero 
probability, ℙ{X ∈ A} > 0, such that ℙ{Y = 1|X ∈ A} ≈ 1 and p(x) ≪1/2 for x ∉ A.

In contrast to marginally imbalanced data, conditional imbalancedness occurs when the 

probability of the minority class is close to 1 given the features lie in a certain set, and 

approximately zero otherwise. In both cases, it is assumed that the minority class is rare.

2.1. Related work

As briefly mentioned in the Introduction, there is a vast literature on methods that have been 

used for the class imbalance problem. Methods to address the problem can be broadly 

grouped into data level methods, which transform the distributions of the classes in the 

training data, and algorithmic level methods, which adapt existing learning algorithms or 

develop new ones [32].

2.1.1. Data level methods—Data level methods, by far the most popular approach to 

imbalanced data [28], can be further subdivided into those that undersample the majority 

class or oversample the minority class to achieve balanced training data.

• One-Sided Sampling [40] selectively subsamples the majority class, removing 

only majority class instances that are either redundant with other majority class 

instances or have minority class in-stances as their 1-NN. These “Tomek links” 

are removed since a small amount of attribute noise can push these examples to 

the incorrect side of the decision boundary.
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• Balanced Random Forests (BRF) [30], discussed in the Introduction, 

undersamples the majority class so that its cardinality matches that of the 

minority class in each bootstrap sample. BRF is a common approach when using 

random forests due to the fact it is implemented in the popular randomForest R-

package [31].

• Neighborhood Balanced Bagging [38] focuses bootstrap sampling toward 

minority examples that are difficult to learn while simultaneously decreasing 

probabilities of selecting examples from the majority class. The extent to which 

an example is considered difficult to learn is quantified by determining the 

number of majority examples among its k-nearest neighbors.

• Synthetic Minority Over-sampling Technique (SMOTE) [41, 42] generates new 

artificial minority class examples by interpolating among the k-nearest neighbors 

that are of the minority class (i.e., artificial minority instances are introduced on 

the lines between each minority instance and its k-nearest minority class 

neighbors until the class frequencies are approximately balanced).

• A number of methods that combine boosting with sampling the data at each 

boosting iteration have been developed; SMOTEBoost [43] combines SMOTE 

with boosting, RUSBoost [44] combines random undersampling with boosting, 

and EUSBoost [45] combines evolutionary undersampling with boosting.

2.1.2. Algorithmic level methods—As an alternative to sampling the data to balance 

the cardinality of the classes, learning algorithms can be modified to improve classification 

over the minority class.

• SHRINK [46] labels all the instances in a region as minority class provided the 

region contains at least one minority class example. SHRINK then searches over 

these regions for the optimal minority class region with the greatest number of 

minority class samples relative to majority class samples. However, SHRINK 

fails in data sets where there exists more than one substantial cluster of minority 

class instances and it provides no advantage in data sets without significant class 

overlap.

• Hellinger Distance Decision Trees (HDDT) [47] use Hellinger distance, a 

measure of distributional divergence, as the splitting criterion. The authors argue 

that the skew insensitivity of Hellinger distance makes it superior to standard 

splitting rules such as the Gini index in the presence of imbalanced data.

• Near-Bayesian Support Vector Machines (NBSVM) [48] combines decision 

boundary shifting with unequal regularization costs for the majority and minority 

classes. NBSVM uses the empirical relative frequencies of the two classes as 

estimates of the prior probabilities to shift the decision boundary toward the 

Bayes optimal decision boundary. However, the performance of NBSVM is 

kernel-dependent (as with standard SVM) and is poor when the minority class is 

compact in comparison to the majority class.
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• Class Switching according to Nearest Enemy Distance [49] adapts a technique 

proposed by Breiman [50] to highly imbalanced data by switching the labels of 

majority class samples with a probability proportional to their Euclidean distance 

to the closest minority class sample.

3. An optimal quantile classifier for class imbalanced data

Our approach falls under the class of algorithmic level procedures. Following [33], we 

define a quantile classifier (q-classifier) as

δq x = 1 p x ≥ q ,

where 0 < q < 1 is a prespecified quantile threshold. If we have q = 1/2, which [33] term a 

median classifier, we obtain the familiar Bayes classifier:

δB x = 1 p x ≥ 1/2 .

As noted in [33], minimizing loss subject to unequal misclassification costs is equivalent to 

classification based on p(x) ≥ q using thresholds q other than 1/2. This will be demonstrated 

presently and in so doing explain why imbalanced data is so challenging for classifiers.

Define the risk for a classifier δ(x) as

r δ , 𝓁0, 𝓁1 = 𝔼 𝓁01
δ X = 1, Y = 0 + 𝓁11

δ X = 0, Y = 1 . (1)

Here ℓ0, ℓ1 > 0 are fixed constants associated with the cost of making one of the two 

classification errors: A0 is the cost of misclassifying a majority class instance; ℓ1 is the cost 

for misclassifying a minority class instance. Assigning specific losses leads to the 

interpretation of (1) as a cost-weighted risk function. Under uniform weights ℓ0 = ℓ1 = 1, the 

risk (1) simplifies to classification error, ℙ δ X ≠ Y , which we denote as r δ .

Under the cost-weighted risk (1), the optimal classifier is the cost-weighted Bayes rule, 

defined as

δWB x = 1
p x ≥ 𝓁0/ 𝓁0 + 𝓁1

, (2)

which we recognize as a quantile classifier with q = ℓ0/(ℓ0 + ℓ1). The following well known 

result establishes the optimality of the cost-weighted Bayes classifier [51]. For convenience 

we provide a proof in Appendix A.

Theorem 1. The cost-weighted Bayes rule is optimal in that its risk satisfies 
r δWB, 𝓁0, 𝓁1 ≤ r δ , 𝓁0, 𝓁1  for any classifier δ :𝒳 0, 1 . Its risk equals
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r δWB, 𝓁0, 𝓁1 = 𝔼 min 𝓁1p X , 𝓁0 1 − p X . (3)

Thus, (3) is the smallest weighted risk achievable by a decision rule.

Now consider what happens in imbalanced data if performance is measured using 

misclassification error, ℓ0 = ℓ1 = 1. In this case, the cost-weighted Bayes classifier reduces to 

the (unweighted) Bayes classifier. Assuming marginal imbalance, i.e. p(x)≪ 0.5, the Bayes 

rule is δB(x) = 0, thereby classifying all observations as majority class labels. Under 

classification error we know this must be the optimal rule. In particular by (3), the Bayes 

error equals r(δB) = [min{p(X), 1 − p(X)}] =  [p(X)] ≈ 0 which is essentially perfect.

3.1. A density-based approach

We see that classification error provides a strong incentive for learning algorithms to 

correctly classify majority class samples at the expense of misclassifying minority class 

samples. This is obviously problematic and a better approach is to demand good 

performance from a classifier under both types of classification errors. Define the TNR (true 

negative) and TPR (true positive) value for a classifier δ  as follows:

TNR δ = ℙ δ X = 0 Y = 0 , TPR δ = ℙ δ X = 1 Y = 1

Our goal is to find a classifier that achieves both high TNR and TPR values in imbalance 

problems. The Bayes rule, δB, does not achieve this goal because it has a TNR value of 1 but 

a TPR value of 0.

Definition 5. A classifier δ :𝒳 0, 1  is said to be TNR+TPR-optimal if it maximizes the 
sum of the rates, TNR + TPR.

To achieve the goal of TNR+TPR optimality, we introduce the following classifier derived 

from a density-based approach. The classifier, denoted by δD(x), assigns an instance x to the 

minority class if its data density for minority class labels, fX|Y (x|1), is larger than the data 

density for majority class labels, fX|Y (x|0):

δD x = 1
f X Y x 1 ≥ f X Y x 0

.

Basing the classifier on the conditional density of the features, fX|Y, rather than the 

conditional density of the response, p(x), removes the effect of the prevalence of the 

minority class labels. This is one way to see how δD is able to handle imbalancedness. More 

directly we can show that δD is TNR+TPR-optimal. Here is an informal argument showing 

this. First notice that for a classifier δ  to achieve TNR+TPR-optimality it should maximize 

the probability of the events δ X = 0|Y = 0 and δ X = 1|Y = 1 ; this being equivalent to 

tracking the regions of the data space where the respective conditional densities are 

maximized. The value of TNR + TPR conditional on ℒ for the classifier δ  equals
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δ x = 0 f X Y x 0 dx +
δ x = 1 f X Y x 1 dx

≤
f X Y x 0 > f X Y x 1

f X Y x 0 dx +
f X Y x 0 ≤ f X Y x 1 f X Y x 1 dx .

The right-hand side is the TNR + TPR value for δD, which shows that it is the optimal TNR

+TPR-rule. A more formal proof of this fact is given shortly.

Before proceeding, we introduce a table of notation that will be particularly useful in this 

and subsequent Sections (see Table 1).

3.2. The q*-classifier

While it is convenient theoretically to describe the density-based classifier in terms of the 

conditional density of the data, in practice it will be difficult to implement the classifier as 

stated. However, we can rewrite δD(x) using the following identity:

f X Y x 1
f X Y x 0 =

f X, Y x, 1 /ℙ Y = 1
f X, Y x, 0 /ℙ Y = 0 =

ℙ Y = 1 X = x f X x /ℙ Y = 1
ℙ Y = 0 X = x f X x /ℙ Y = 0 .

Cancelling the common value fX (x) in the numerator and denominator, and using the 

notation of Table 1, we have

δD x = 1
ΔD x ≥ 1 , Where ΔD x =

f X Y x 1
f X Y x 0 = p x 1 − π

1 − p x π . (4)

With a little bit of rearrangement, we now see that (4) is a q-classifier with q = π (notice 

analogously for the Bayes classifier that δB(x) = 1{∆B (x)≥1} where ∆B(x) = p(x)/(1 − p(x)), 

which is a q-classifier with q = 0.5). This leads to the following definition of the proposed 

classifier.

Definition 6. Call δq* (x) = 1{p(x)≥π} the q*-classifier (and keep in mind δq* = δD).

Although [33] introduced the extremely useful concept of a quantile classifier, they did not 

address how to select the optimal q. In deriving the q*-classifier, we have informally argued 

that q should be π. In the following result, we formally justify our selection of q by showing 

that the q*-classifier is able to achieve a near zero risk while jointly optimizing TNR and 

TPR.

Theorem 2. The q*-classifier is TNR+TPR-optimal. Furthermore, it is the cost-weighted 
Bayes rule (2) under misclassification costs ℓ0 = π and ℓ1 = (1 − π).
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Theorem 2 shows that the q*-classifier is not only TNR+TPR-optimal, but also weighted 

risk optimal under misclassification costs ℓ0 = π and ℓ1 = (1 − π). In particular, by (3) of 

Theorem 1 we have

r δq*, π,1‐π = 𝔼 min 1 − π p X , π 1 − p X ≤ 𝔼 π 1 − p X ≤ π.

Notice that the right-hand side will be nearly zero for both types of imbalanced data: 

marginally and conditionally imbalanced. Moreover, unlike the Bayes rule, which also 

achieves a near zero risk, Theorem 2 shows the q*-classifier is able to do this while 

satisfying the requirement of a jointly optimized TNR and TPR.

Proof of Theorem 2. Maximizing TNR and TPR is equivalent to minimizing FPR = 1− TNR 

and FNR = 1− TPR. For any classifier δ , we have by definition

FPR δ + FNR δ

= ℙ δ X = 1 Y = 0 + ℙ δ X = 0 Y = 1

=
ℙ δ X = 1, Y = 0

ℙ Y = 0 +
ℙ δ X = 0, Y = 1

ℙ Y = 1

= 𝔼
1

δ X = 1, Y = 0
𝓁1

+
1

δ X = 0, Y = 1
𝓁0

.

Minimizing the above expression does not change if we multiply by ℓ0ℓ1 throughout. 

Therefore, minimizing the FPR and FNR rate is equivalent to minimizing

𝔼 𝓁01
δ X = 1, Y = 0 + 𝓁11

δ X = 0, Y = 1

which is the weighted risk r(δ , ℓ0, ℓ1) where ℓ0 = π and ℓ1 = 1 − π. By Theorem 1, this is 

minimized by the weighted Bayes rule (2), which equals the q*-classifier under the stated 

choices for ℓ0 and ℓ1. □

3.3. Response-based sampling: balancing the data

One common strategy to overcome the imbalance problem is to undersample the majority 

class to evenly balance the data. We can describe this process more formally by introducing 

auxiliary variables Si ∈ {0, 1} where values Si = 1 indicate subsampled cases. The 

subsampled learning data is defined as ℒS = {(Xi, Yi) : Si = 1, i = 1, …, N } where data 

values are selected with probability that depend only on the value of Y and not X. This is 

called response-based sampling. In particular,
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ℙ S = 1 Y =
πS 1 , if Y = 1
πS 0 , otherwise, (5)

Where 0 < πs Y < 1.

By (5), the probability a randomly selected Y from ℒS equals Y = 1 is

πS: = ℙ Y = 1 S = 1 = ℙ S = 1 Y = 1 ℙ Y = 1
ℙ S = 1 =

πS 1 π
ℙ S = 1 . (6)

Likewise, 1 − πS = ℙ Y = 0 S = 1 = πS 0 1 − π /ℙ S = 1 . In order to have balanced labels 

we must have πS = 1/2, or equivalently πS = 1 − πS, which implies by (6)

πS 1
πS 0 = 1 − π

π . (7)

The factor (7) calls to mind the factor in (4) that modulates the difference between δB and 

δD. This is not a coincidence as we now show. In what follows, we expand upon the 

justification for undersampling provided by [33], which can be inferred from [52]. Let δB
S  be 

the Bayes rule constructed using ℒS (call this the subsampled Bayes rule). For a given x,

δB
S x = 1 if pS x

1 − pS x
≥ 1,

where by definition pS x = ℙ Y = 1 X = x, S = 1 . By Bayes theorem,

pS x =
f X, Y
S x, 1

f X
S x

, 1 − pS x =
f X, Y
S x, 0

f X
S x

.

Consequently,

δB
S x = 1 if

f X, Y
S x, 1

f X, Y
S x, 0

≥ 1.

By definition,

f X, Y
S x, 1 = ℙ X = x, Y = 1 S = 1 = ℙ X = x, Y = 1, S = 1

ℙ S = 1 .
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Noting that

ℙ X = x, Y = 1, S = 1 = ℙ S = 1 X = x, Y = 1 ℙ X = x, Y = 1
= ℙ S = 1 Y = 1 f X, Y x, 1
= πS 1 p x f X x ,

we have

f X, Y
S x, 1 =

πS 1 p x f X x

ℙ S = 1 .

Applying a similar argument to f X, Y
S x, 0 , and cancelling the common value fX (x) and 

ℙ S = 1 , deduce that

pS x
1 − pS x

=
f X, Y

S x, 1
f X, Y

S x, 0
=

p x πS 1
1 − p x πS 0 . (8)

Therefore,

δB
S x = 1 if p x

1 − p x ≥
πS 0
πS 1 .

Under (7), the right-hand side equals π/(1 − π). Hence, δB
S x = δD x  under (7). This implies 

that the subsampled Bayes rule is TNR+TPR-optimal under (7).

Theorem 3. Under balanced subsampling (7), the subsampled Bayes rule δB
S  is TNR+TPR-

optimal.

3.4. The q*-classifier is invariant to response-based sampling

In contrast, the q*-classifier is unaffected by response-based sampling and retains its TNR

+TPR-optimality no matter what the target balance ratio is. Let δq*
S x  be the q*-classifier 

constructed using LS. By definition, δq*
S x = 1

pS x ≥ πS  where πS = ℙ Y = 1 S = 1 . 

Equivalently,

δq*
S x = 1 if

pS x 1 − πS

1 − pS x πS ≥ 1.

Therefore, using (8),
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δq*
S x = 1 if

p x πS 1 1 − πS

1 − p x πS 0 πS = p x /π
1 − p x / 1 − π ≥ 1, (9)

where we have used the following identity which follows from (6)

πS 1 /πS

πS 0 / 1 − πS = ℙ S = 1 /π
ℙ S = 1 / 1 − π .

In other words, δq *
S = δq * (compare (9) to (4)). We can therefore conclude that δq* remains 

TNR+TPR-optimal. Combined with Theorem 3 we have therefore established the following.

Theorem 4. Under response-based sampling of the form (5), δq *
S = δq *, and therefore δq *

S  is 

TNR+TPR-optimal. Moreover, under balanced sampling (7), all three methods are 
equivalent:

δB
S = δq *

S = δq *,

and all three methods are TNR+TPR-optimal.

4. Application to random forests

In practice, the value of p(x) is unknown and therefore must be estimated. In this scenario, 

when we refer to q*-classification we mean classification using an estimated value for p(x) 

to classify observations using the quantile q = π. In general, we can apply q-classification 

based on any specified 0 < q < 1. Here we investigate the performance of q*-classification 

when applied with random forests. We refer to this procedure as RFQ. As a comparison 

procedure, we will use balanced random forests, which we continue to refer to as BRF. We 

also use the standard random forests algorithm as comparison and refer to this as RF.

Algorithm 1 provides a description of the RF classification algorithm. The algorithm 

requires the following parameters: ntree (number of trees trained in the forest), nodesize 

(target terminal node size), and mtry (number of random features used to split a tree node). 

RFQ and BRF apply Algorithm 1 exactly as RF does but with the following one line 

modifications:

RFQ: Line 17 of Algorithm 1 is modified as follows. In place of median (Bayes) 

classification, δRF x = 1 pRF x ≥ 1/2 , RFQ applies q*-classification, 

δRFQ x = 1 pRF x ≥ π .

BRF: Line 5 of Algorithm 1 is modified as follows. Rather than selecting a bootstrap 

sample of size N, a sample of size 2N1 is used, where the probabilities for minority 

and majority class instances to be selected for the bootstrap sample are πS (1) = 
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(N0/N1)πS (0), thus satisfying the balancing condition (7). Keep in mind that BRF 

uses the Bayes rule for classification; thus the classification rule used in Line 17 is 

the same for BRF.

4.1. Performance comparisons on benchmark imbalanced data

In theory, both BRF and RFQ will possesses the TNR+TPR-property: this is true for BRF by 

Theorem 3 because it satisfies the balancing condition (7), while for RFQ this holds by 

Theorem 2 because it applies q*-classification. However this is predicated on knowledge of 

the true probability function p(x), which in practice must be estimated, and therefore 

performance in practice may be very different. In particular, an advantage of RFQ is that is 

uses a much larger sample size than BRF which should increase its efficiency in estimating 

p(x).

Algorithm   1 Random Forest Classification  RF
Input:

1: Learning data ℒ = Xi, Yi 1 ≤ i ≤ N

2: User specified values of ntree,nodesize,mtry
Learning Phase:

3:   procedure RF(ℒ,ntree,nodesize,mtry)
4: for m = 1, …, ntree do
5: Select N values with replacement from L and grow a tree using this data as follows
6: for all tree nodes do
7: while observations in node>nodesize & impurity present do
8: Randomly select without replacement mtry features for splitting
9: Determine decrease in impurity for each selected feature for splitting
10: Split on the variable whose optimal split decreases impurity the most
11: end   while
12: end for
13: Calculate pm ⋅ , the tree estimated value for p ⋅

14: end for

15: Let pRF ⋅ = m = 1
ntree pm ⋅ /ntree be the RF ensemble estimator for p ⋅

16: end procedure
Classification Phase:
17:Classify x using the ensemble classifier δRF x = 1 pRF x ≥ 1/2

To see how the two methods performed in practice we tested them using a diverse collection 

of 143 benchmark imbalanced data sets (see Figure 1 for summary statistics of the data sets; 

Supplementary Materials Appendix C provides background information on the data). 

Analyses were performed in R [53] using the R-package randomForestSRC [54]. Forests of 

size ntree = 1000 were used for each training data set. Default settings for random forests 

were used: trees were grown to purity (nodesize = 1), and random feature selection was set 

at mtry = d/3. Tree node splits (Lines 6–12 of Algorithm 1) were implemented using Gini 

splitting. The value q* = π required for RFQ was estimated using the empirical relative 

frequency of the minority class labels, π = N1/(N0 + N1). In addition to BRF and RF, we also 
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considered standard random forests under Hellinger distance splitting [47], and BRF with 

Hellinger splitting.

4.1.1. Performance metrics: the G-mean—In assessing performance, we used TNR, 

TPR, and the G-mean. The G-mean is the geometric mean of TNR and TPR, i.e., G-mean = 

(TNR × TPR)1/2 and it is meant to replace misclassification rate in imbalanced data settings, 

since an overall accuracy close to 1 can be achieved by classifying all data points as majority 

class labels for heavily imbalanced data as previously noted. By way of contrast, the tt-mean 

is close to 1 only when both the true negative and true positive rates are close to 1 and the 

difference between the two is small [46].

4.1.2. The q*-classifier appears to optimize the G-mean—Before discussing the 

results, it is worth noting that even though the q*-classifier was not specifically developed to 

maximize the G-mean, we observed that by applying random forests q-classification under 

different values of q, that the maximum G-mean is achieved when q is approximately π (i.e., 

the G-mean appears to be maximized by RFQ). This is illustrated in Figure 2 using 8 

selected benchmark data sets. This is strong evidence that TNR+TPR-optimality is a useful 

property for a classifier.

4.1.3. Results—For the analysis of the 143 benchmark data sets, we used 10-fold cross-

validation repeated 250 times. The G-mean for each procedure is reported in Figure 3. We 

observe that RFQ and BRF outperform all other methods. We also observe that using 

Hellinger distance as the splitting criterion instead of the Gini index does not noticeably 

improve performance, and thus we did not include it in further experiments.

5. Analyzing performance differences between RFQ and BRF

From Figure 3 it appears that RFQ and BRF have roughly similar performance overall. 

However, upon further investigation (Figure 4), we found that when the imbalance ratio is 

high, and when the percent of minority class examples of the rare type is high, and when d is 

high, RFQ outperformed BRF. We investigate this effect further in this Section.

5.1. An explanation of why RFQ is better

As we have noted previously, while RFQ and BRF both possess the TNR+TPR optimality 

property, in practice the difference between the two methods is that RFQ utilizes all N data 

points, whereas BRF uses the smaller sample size of 2N1, which it must in order to balance 

the data.

We suggested that the reduced sample size of BRF reduces its efficiency in estimating 

unknown model parameters. We now provide a more detailed explanation of how this affects 

BRF’s performance for the scenarios described above. We consider a simple logistic 

regression setting where the true conditional class probability function is

p x = 1
1 + exp −α − βTx

.
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By (4), δq* (x) = 1 if log(∆D(x)) ≥ 0. Hence x is classified as a minority class instance if

log p x
1 − p x ≥ log π

1 − π .

Under the logistic model this simplifies to α + βT x ≥ γ, where γ = log(π/(1 − π)) (as 

comparison, the Bayes rule, δB(x), classifies x as a minority class sample if log(∆B(x)) ≥ 0, 

which simplifies to α + βT x ≥ 0). To gain more insight into δq* (x), first note the following 

identity for π:

π =ℙ Y = 1 = f Y /X 1/x f X x dx = p x f X x dx .

Now in the setting of marginal imbalance, since p(x) ≈ 0, we must have α ≪ 0, and 

therefore,

π = 1
1 + exp −α − βTx

f X x dx

= exp α 1
exp α + exp −βTx

f X x dx

≈ exp α exp βTx f X x dx .

Combining this with π ≈ 0, deduce that

γ = log π
1 − π ≈ log π ≈ α + log exp βTx f X x dx .

The q*-classifier classifies x as a minority class instance if α + βT x ≥ γ. Hence, δq* (x) = 1 

if

βTx ≥ log exp βTx f X x dx .

For example, if X ∼ N(µ, Σ)

exp βTx f X x dx = exp βTμ + 1
2 βT∑ β .

Therefore, δq* x = 1 if βTx ≥ βTμ + 1/2 βT ∑ β

The above represents the theoretical boundary for achieving TNR+TPR optimality, but RFQ 

and BRF must classify the data according to an estimated δq*. Suppose the two procedures 

directly estimate δq* (x) by estimating θ = (β, βT µ, βT Σβ) (i.e., instead of indirectly 

estimating p(x)). Then RFQ will have an advantage because estimating θ uses data across 
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both classes and RFQ uses all N data points whereas BRF uses a sample size of 2N1 evenly 

split across the two classes. Furthermore, performance differences will become magnified as 

the imbalance ratio increases (since 2N1 becomes even smaller compared with N ) and when 

the dimension d increases (since estimation becomes more difficult). This also explains why 

RFQ is better in rare instance settings. Recall from Definition 2 that a minority class 

example x is rare if 4 to 5 of its nearest neigbors are majority class examples. We can 

imagine a setting where rare instances are a by product of indistinguishable conditional 

densities. That is, for x′ close to x we have f (x′|1) = f (x′|0). If this region has positive 

measure, then by the identification of finite mixtures of multivariate normals, f (x|1) = f (x|0) 

= f (x) almost everywhere. This shows data from both classes are important for estimating 

all components of θ, thus further favoring RFQ.

5.2. Performance comparisons on simulated data

To provide further evidence for the above, we converted five simulations from the mlbench 

R-package [55] into imbalanced data in addition to simulating imbalanced data directly 

using caret package [56] as detailed in Table 2. We repeated each experiment 250 times 

with forests of 5000 trees grown on each training data set (nodesize=1, mtry=d/3). We 

compared the performance of RFQ to BRF and standard random forests (RF) and obtained 

the following results reported in Table 3. The results are consistent with what we observed 

across the 143 benchmark data sets. Clearly, RFQ outperforms BRF (as well as RF) with 

respect to the G-mean, across all of the six simulated high-dimensional imbalanced data 

models (Wilcoxon signed rank test p-value = 0.03). This shows RFQ can offer significant 

improvement for complex imbalanced data in high-dimensional settings.

5.3. Cognitive impairment data

We chose the Alzheimers Disease CSF Data from the AppliedPredictiveModeling R-

package [57] to further explore performance of RFQ in difficult settings. This data set is a 

modified version of the data in [58]. There are N = 333 observations with d = 130 predictors; 

the outcome is presence/absence of cognitive impairment with N0 = 242 controls and N1 = 

91 impaired, for an IR of 2.66. We explored the relationship among performance, 

dimensionality, and IR by adding progressively more noise variables (obtained by 

resampling the predictor variables) and by progressively subsampling the minority class, 

where each smaller subsample of the minority class was randomly sampled from the 

subsample of the previous iteration (i.e., nested subsamples). Table 4 contains the results of 

10-fold cross-validation repeated 250 times under the various scenarios with forests of 5000 

trees grown on each training data set with nodesize=1, mtry=d/3 for each scenario.

Even though the unaltered cognitive impairment data features a modest IR of 2.66, standard 

random forests (RF) only classifies slightly more than half of the patients with cognitive 

impairment correctly and its performance rapidly deteriorates with the addition of noise and 

increasing IR through subsampling the minority class. While BRF tends to perform well on 

the unaltered data and under increasing IR, its performance rapidly deteriorates in higher 

dimensions (i.e., with increasing noise) to the point that its performance is not much better 

than RF and significantly inferior to RFQ. In contrast, RFQ outperforms BRF (and RF) with 

respect to the G-mean under all scenarios considered except for the unaltered data with no 
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noise and the data with 40 of the 91 cognitively impaired patients randomly selected with no 

noise (Wilcoxon signed rank test p-value < 0.001). Under all scenarios the performance of 

RFQ over the minority class remains constant and is superior to BRF and RF, although with 

the cost of an increased FPR with increasing dimensions.

5.4. Customer churn data

As another example, we looked at the Customer Churn Data from the C50 R-package [59]. 

This is artificial customer churn data modeled on real world data where the outcome is 

customer churn yes/no. The data is already split into training and test data, so no cross-

validation is required. In the training data there are N = 3333 observations of which N1 = 

483 are instances of customer churn, for an IR of 5.90.

As with the cognitive impairment data, we progressively add more noise variables and 

progressively subsample the minority class. Table 5 contains the results of running the test 

data through the forests under the various scenarios with forests of 5000 trees grown on each 

training data set with nodesize=1, mtry=d/3 for each scenario.

We observe exactly the same pattern of performance with the customer churn data as with 

the cognitive impairment data. As before, the performance of RF rapidly deteriorates with 

the addition of noise and increasing IR; BRF performs decently on the unaltered data and 

under increasing IR but its performance rapidly deteriorates in higher dimensions; RFQ 

outperforms BRF and RF with respect to the G-mean under all scenarios except for the 

unaltered data with no noise and the data with 240 of the 483 instances of customer churn 

randomly selected with no noise (Wilcoxon signed rank test p-value < 0.001). Under all 

scenarios the performance of RFQ over the minority class remains constant and is superior 

to BRF and RF but with increased FPR in higher dimensions.

6. Variable importance

We claim that the standard variable importance (VIMP) measure in random forests 

introduced by Breiman and Cutler [1, 4], called Breiman-Cutler importance [6], is 

inappropriate for RFQ in the presence of significantly imbalanced data due to the fact that 

almost all nodes in an individual tree will con-tain 0’s. We propose instead to assess variable 

importance using the G-mean combined with Ishwaran-Kogalur importance [15, 54], the 

latter being an ensemble rather than tree-based measure.

In Breiman-Cutler permutation importance, a variable’s OOB (out-of-bag) data is permuted 

and run down the tree. The original OOB prediction error is subtracted from the resulting 

OOB prediction error, resulting in tree importance. Averaging this value over the forest 

yields permutation importance. This type of importance, which is tree-based, is appropriate 

for BRF because each tree is a reasonably good classifier, therefore making prediction error 

a reasonable way to assess a variable’s contribution to the model.

For RFQ this will not be a good measure because RFQ’s good prediction performance arises 

from converting a random forest ensemble classifier into a random forest ensemble q-

classifier. Therefore, we will instead use Ishwaran-Kogalur importance [15, 54], an 
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ensemble-based measure, defined as the prediction error for the original ensemble subtracted 

from the prediction error for the new ensemble obtained by permuting a variable’s data. For 

RFQ, performance is measured by the G-mean. Thus, we apply Ishwaran-Kogalur 

importance using G-mean prediction error. Ensembles were defined in blocks of 20 trees. 

For BRF, we also use G-mean for prediction error, but with Breiman-Cutler importance. We 

also compare results to standard random forests (RF) using Breiman-Cutler importance 

calculated using classification error (the standard approach).

To assess performance of the proposed variable importance measures, we used the 

twoClassSim function from the caret package [56]: 2 factors, 15 linear variables, 3 non-

linear variables, and 20 noise variables. Sample size was N = 1000 with IR = 6 which was 

induced by downsampling class 2. Results averaged from 1000 runs are displayed in Figure 

5. The results show RFQ outperforms BRF which, in turn, outperforms RF.

7. Multiclass imbalanced data

In this Section we explore the performance of RFQ, BRF and RF in the multiclass 

imbalanced data setting. We accomplish this by decomposing the multiclass imbalanced data 

into K(K-1)/2 two-class data sets, where K is the number of classes, obtaining classifiers on 

each and then taking a majority vote over the results. The empirical results that follow are 

based on forests of 5000 trees grown on each training data set with nodesize=1, mtry=d/3 

and 50 resampled noise variables.

7.1. Waveform simulations

As a preliminary exploration of the more challenging multiclass imbalance data setting [60], 

we chose the waveform data simulation from the mlbench R-package [55], which produces 

three classes of (approximately) equal size. We generated N = 1000 samples for the training 

(initially) and test data sets. To obtain multiclass imbalanced data, we subsampled the 

second and third classes to obtain different class ratios. For each of the three class 

imbalanced data sets derived from the waveform simulation, we adopted the approach of 

[61] and trained RFQ, BRF and RF on 
3
2 = 3 two-class data sets. The multiclass classifier 

was obtained by taking a majority vote over the three predicted class labels for the test data. 

We compared the performance of the RFQ, BRF and RF multiclass classifier using 

Friedman’s one-vs-one approach using the true positive rate for each of the three classes and 

the G-Mean. This we did 250 times, averaging the results, which are listed in Table B.1 of 

Appendix B, where the “true positive rates” (i.e., the performance metrics within each class) 

are denoted by TPR1, TPR2 and TPR3, respectively.

The (unweighted) G-mean is not necessarily the appropriate metric for measuring 

classification performance in the multiclass imbalanced data setting, especially in cases of 

extreme imbalance. For the imbalanced data sets with the ratios 100:25:1, 100:10:1 and 

100:5:1 the G-means for RFQ and BRF are similar but TPR for the third class with the 

fewest instances is in the range 85–86 for RFQ whereas the range is 42–44 for BRF. 

Granted, TPR over the first class with far more instances than the other classes is 

approximately 52–55 for RFQ whereas it is approximately 86–87 for BRF, but in real-world 
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settings the cost associated with misclassifying the class with the fewest instances is likely to 

be far higher, as with two class imbalanced data. To account for this, we also looked at the 

G-means for two classes at a time, denoted as G-meankk’’ for classes k and k’’, as well as 

the weighted G-mean, which in the three class setting we define as

Weighted G − Mean = TPR1
β1 × TPR2

β2 × TPR3
β3

1/ β1 + β2 + β3
.

Specifically, in Table B.2 of Appendix B, we looked at the weighted G-mean with β1 = 1/2 

and β2 = β3 = 1, which is not necessarily ideal because it does not take into account the 

imbalance between the second and third classes; nevertheless, it is sufficient to illustrate our 

point.

In Table B.2 we see a pronounced difference in the weighted G-mean with β1 = 1/2, β2 = 1, 

and β3 = 1 for the highly imbalanced data sets with the ratios 100:25:1, 100:10:1 and 

100:5:1. To see why this is appropriate we look at the two class G-means. The performance 

of RFQ is superior to BRF with respect to G-mean13 and G-mean23, whereas BRF is 

superior to RFQ only with respect to G-mean12. Even though the performance of RFQ is 

superior with respect to two of the three two class G-means and the difference in G-mean23 

in favor of RFQ is approximately the same as the difference in G-mean12 in favor of BRF, 

the unweighted G-mean is insensitive to this. For this reason, we believe that the weighted 

G-mean in especially appropriate in the multiclass imbalanced data setting.

7.2. Cassini simulations

As another example, we chose the cassini data simulation from the mlbench R-package [55], 

which produces three classes of in the ratio 2:2:1. As with the waveform simulation, we 

generated N = 1000 samples for the training (initially) and test data sets with noise variables 

and then subsampled the second and third classes to obtain different class ratios.

The averaged results from 250 repetitions are listed in Table B.3 of Appendix B. In contrast 

to the waveform imbalanced data sets, for the cassini data sets with the most extreme class 

imbalance, i.e., 100:50:1, 100:25:1, 100:10:1 and 100:5:1, RFQ is clearly superior to BRF 

with respect to the unweighted G-mean.

We then looked at the weighted G-mean with β1 = 1/2 and β2 = β3 = 1. In Table B.4 of 

Appendix B, we see an even more pronounced difference in performance between RFQ and 

BRF with respect to the weighted G-mean with β1 = 1/2, β2 = 1, and β3 = 1 for the 

extremely imbalanced data sets with the ratios 100:50:1, 100:25:1, 100:10:1 and 100:5:1 and 

essentially identical performance over most of the other imbalanced data sets.

It should be noted that these results are limited in that we only considered three class 

imbalanced data, which is a special case in that the number of competent classifiers (i.e., 

classifiers trained on a given class) outnumber non-competent classifiers (i.e., classifiers that 

were not trained on the class in question); for three class imbalanced data using one-vs-one 

there are exactly two competent classifiers and one non-competent classifier, so 
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classification by majority vote works. However, the ratio of competent to non-competent 

classifiers becomes 1:1 for data with four classes and monotonically decreases in favor of 

non-competent classifiers as the number of classes increases. In these imbalanced multiclass 

settings, a more sophisticated approach using some form of weighted voting should be used 

instead [60, 62].

8. Comparison to boosting

Gradient boosting is another machine learning method known to possess state of the art 

classification performance. Therefore we sought to compare performance of RFQ to 

boosting. For boosting procedures, we used boosted parametric splines using binomial loss 

(Spline Boost). For nonparametric boosting, we boosted trees using binomial loss (Tree 

Boost) and Huber loss (Tree Hboost). Parametric spline boosting was implemented using the 

R-package mboost [63] and tree boosting by the R-package gbm [64]. In both cases, 1000 

trees were boosted with regularization parameter 0.1. Depth of trees was set to three 

interactions and spline bases were set to default values used by mboost.

As an enhancemnent to RFQ we also considered an extension using variable selection. 

Using a preliminary RF, we calculated Ishwaran-Kogalur importance using G-mean 

prediction error as in Section 6. Variables were then removed if they were deemed non-

significant at the 5% level, where level of significance was obtained using asymptotic 

confidence regions calculated using random forest variable importance subsampling [6]. 

Using the remaining non-filtered variables, RFQ was then run as before. We call this method 

RFQvsel.

We used the three Friedman simulations to test performance. Sample size was set to N = 

1250 with G-mean performance assessed on a test set of the same size. Low dimensional 

simulations with 25 noise features and high dimensional simulations with 250 noise features 

were used. All experiments were repeated independently 250 times.

Figures 6 and 7 display the test set G-mean performance values for the low and high 

dimensional simulation scenarios, respectively. Overall, the results are very encouraging for 

RFQ procedures which are overwhelmingly superior to boosting procedures. Interestingly, 

the dimension reduction used by RFQvsel performed very well, especially in the high 

dimensional simulations. For example, in the Friedman 1 simulation performance of 

RFQvsel is more robust to increasing dimension than RFQ. In terms of the boosting 

procedures there appears to be no overall consensus. Sometimes Huber loss for trees is 

better than binomial loss. There is also no clear winner between parametric and 

nonparametric boosting.

9. Discussion

We introduced a classifier based on the ratio of data densities for learning imbalanced data 

and showed this resulted in a q-classifier with the property that its threshold q = q* yielded 

TNR+TPR-optimality. We called this the q*-classifier and implemented q*-classification 

using random forests. We coined this method RFQ and showed RFQ to be highly 

competitive with the current and widely used balanced random forests (BRF) method of 
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undersampling the majority class (used by the randomForest R-package for example). In our 

experiments with 143 imbalanced benchmark data sets, we observed that while BRF 

significantly improves classification with respect to the minority class, and unquestionably 

outperforms the standard random forests algorithm, its performance is roughly the same as 

RFQ on standard imbalanced data sets, but generally inferior in the difficult setting of high-

complexity, high-imbalancedness, and high-dimensionality. This was further confirmed by 

in depth experiments on simulated and real world data sets. Furthermore, we demonstrated 

that RFQ is better at selecting variables across imbalanced data using G-mean as the 

performance criterion with Ishwaran-Kogalur importance than BRF with Breiman-Cutler 

importance (the standard method used in random forest analyses). In the multiclass 

imbalanced setting, we showed that RFQ also outperforms BRF over extremely imbalanced 

data sets.

However one advantage of BRF is that it is computationally faster due to the low sample 

size used to construct its trees. At the same time, this advantage does not appear to be large. 

Figure 8 displays relative CPU times and log-relative CPU times for RFQ versus BRF for 

the Friedman 1 simulation as N and d are varied. Even when d = 100 and N = 50, 000, the 

relative CPU time is only 14. We also observe that as N increases, relative CPU times 

asymptote which suggests that in big data settings these differences may not be 

insurmountable. In fact, Theorem 4 suggests subsampling could be used as a simple remedy 

for RFQ in big N settings. Recall that Theorem 4 shows as long as the data is subsampled 

according to a response based sampling scheme, RFQ will continue to maintain its TNR

+TPR optimality property. Subsampling will greatly reduce computational time and 

importantly the sampling can be devised so that the majority class label cardinality is much 

larger than the value of N1 used by BRF, thereby also ensuring good classification 

performance.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A:: Proof of Theorem 1

Although Theorem 1 is well known we provide a proof here for the convenience of the 

reader.

Proof. We will show that

𝔼
j = 0

1
𝓁i 1

δ x = 1 − j, Y = j
− 1

δWB X = 1 − j, Y = j
≥ 0 (A.1)
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which implies that r δ , l0, l1 − r δWB, l0, l1 ≥ 0. The first term in the sum (A.1) when j = 0 

equals

𝓁0 1
δ X = 1, Y = 0 − 1

δWB X = 1, Y = 0

= 𝓁0 1
δ X = 1 − 1

δWB X = 1
1 Y = 0

= 𝓁0 1 − 1
δ X = 0 − 1 − 1

δWB X = 0
1 − 1 Y = 1

= 𝓁0 1
δWB X = 0

− 1
δ X = 0 1 − 1 Y = 1 .

Similarly, the second term in the sum (A.1) when j = 1 is

𝓁1 1
δ X = 0, Y = 1 − 1

δWB X = 0, Y = 1

= 𝓁1 1
δ X = 0 − 1

δWB X = 0
1 Y = 1

= 𝓁1 1 − 1
δ X = 1 − 1 − 1

δWB X = 1
1 Y = 1

= 𝓁1 1
δWB X = 1

− 1
δ X = 1 1 Y = 1 .

Taking the expectation of Y conditional on X and L of the sum in (A.1), yields

𝓁0 1
δWB X = 0

− 1
δ X = 0 1 − p X + 𝓁1 1

δWB X = 1
− 1

δ X = 1 p X ,

where recall that p X = ℙ Y = 1 X . We will show that the above sum is greater than or 

equal to zero. Taking the expectation over X and ℒ completes the argument.

When p(X) ≥ 𝓁0/ 𝓁0 + 𝓁1 , we have

𝓁0 0 − 1
δ X = 0 1 − p X + 𝓁1 1 − 1

δ X = 1 p X .

If δ X = 1, we have 𝓁0 0 − 0 1 − p X + 𝓁1 1 − 1 p X = 0. If δ X = 0, we have (ℓ0 + ℓ1)p(X) 

− ℓ0 ≥ 0.

When p(X) < 𝓁0/ 𝓁0 + 𝓁1 , we have

𝓁0 1 − 1
δ X = 0 1 − p X + 𝓁1 0 − 1

δ X = 1 p X .
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If δ X = 1, we have 𝓁0 − 𝓁0 + 𝓁1 p X ≥ 0. If δ X = 0, we have 

𝓁0 1 − 1 1 − p X + 𝓁1 0 − 0 p X = 0.

This establishes (A.1). To complete the proof, we have to show

r δWB, 𝓁0, 𝓁1 = 𝔼 min 𝓁1p X , 𝓁0 1 − p X .

The proof above reveals that r(δWB, l0, l1) is the expected value of

𝓁0 1 − p X 1
δWB X = 1

+ 𝓁1p X 1
δWB X = 0

= 𝓁0 1 − p X 1
p X ≥ 𝓁0/ 𝓁0 + 𝓁1

+ 𝓁1p X 1
p X < 𝓁0/ 𝓁0 + 𝓁1

= min 𝓁0 1 − p X , 𝓁1p X ,

where the last line follows because 𝓁0 1 − p X ≤ 𝓁1p X if and only if p X ≥ 𝓁0/ 𝓁0 + 𝓁1 . □

Appendix B:: Results from Multiclass Imbalanced Data

Section 7 explored the performance of RFQ, BRF, and RF in the multiclass imbalanced data 

setting. This was accomplished by decomposing the multiclass imbalanced data into 3 two-

class data sets, obtaining classifiers on each and then taking a majority vote over the results. 

Here we list the tables from the empirical analysis which were based on forests of 5000 trees 

grown on each training data set with nodesize=1, mtry=d/3 and 50 resampled noise 

variables.
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Highlights

• The new classifier jointly optimizes true positive and true negative rates for 

imbalanced data while simultaneously minimizing weighted risk.

• It outperforms the existing random forests method in complex settings of rare 

minority instances, high dimensionality and highly imbalanced data.

• Its performance is superior with respect to variable selection for imbalanced 

data.

• The classifier is also highly competitive for multiclass imbalanced data.

O’Brien and Ishwaran Page 31

Pattern Recognit. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Summary of 143 benchmark imbalanced data sets. Top figures display dimension of feature 

space d, sample size N, and imbalance ratio IR. Bottom figure displays d versus N with 

symbol size displaying value of IR. This identifies several interesting data sets with large IR 

values, with some of these having larger d.
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Figure 2: 
G-mean from random forests q-classification using various q for thresholding 

including q = π  for 8 different bench-mark data sets. Notice that the maximum value is near 

π in all instances.
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Figure 3: 
G-mean performance of different classifiers across 143 benchmark imbalanced data sets. 

(BRF=Balanced Random Forests; RF=Random Forests; RFQ = Random Forests q*-

classifier).
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Figure 4: 
A closer look at difference in G-mean performance of RFQ and BRF for benchmark data 

sets. Vertical axis plots difference in G-mean as a function of % rare minority class 

examples, feature dimension d, and imbalance ratio IR. There is an increasing trend upwards 

(thus favoring RFQ) as % rare minority class examples increases with increasing d and 

increasing IR.

O’Brien and Ishwaran Page 35

Pattern Recognit. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Variable importance (VIMP) for RFQ, BRF and RF from 1000 runs using simulated 

imbalanced data. There are 2 factors, 15 linear variables, 3 non-linear variables, and 20 noise 

variables (no signal). Top panel displays signal variables, bottom panel are noisy variables.
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Figure 6: 
G-mean performance of boosting classifiers versus RFQ for Friedman low dimensional 

simulations. (Spline Boost, Tree Boost are boosted splines and boosted trees using binomial 

loss; Tree HBoost are boosted trees with Huber loss; RFQvsel is RFQ with variable 

selection filtering).
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Figure 7: 
G-mean performance of boosting classifiers versus RFQ for Friedman high dimensional 

simulations. (Spline Boost, Tree Boost are boosted splines and boosted trees using binomial 

loss; Tree HBoost are boosted trees with Huber loss; RFQvsel is RFQ with variable 

selection filtering).
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Figure 8: 
Computational times for RFQ and BRF for Friedman 1 simulation for different sample sizes 

N and feature dimension d. Top plot is relative CPU time for RFQ versus BRF. Bottom plot 

is log-relative CPU time.
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Table 1:

Notation used throughout the paper.

δ x generic classifier

𝓁0, 𝓁1 misclassification costs for majority and minority classes

r δ , 𝓁0, 𝓁1 risk for δ x

π the marginal probability that Y = 1, π = ℙ {Y = 1}

π= N1/N relative frequency of minority class

p(x) conditional class probability function, p(x) = ℙ {Y = 1|X = x}

fX (x density for X

δq(x) quantile classifier (q-classifier)

δB(x) Bayes classifier

δWB(x) cost-weighted Bayes classifier

δq* (x) q*-classifier (quantile classifier with q = π)

Pattern Recognit. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Brien and Ishwaran Page 41

Table 2:

Simulated data sets.

N
a

Signal
b

Noise
c

IR
d

% Rare
e

Two Norm
f 1250 20 500 49  99%

Waveform
g 1250 21 500 49  99%

TwoClassSim
h 1250 20 500  9  92%

Friedman 1
i 1250 5 500 49  99%

Friedman 2
i 1250 4 500 48  99%

Friedman 3
i 1250 4 500 49  99%

a
The sample size for training data and test data.

b
The number of signal (true) variables.

c
The number of resampled noise variables.

d
As defined in Definition 1.

e
As defined in Definition 2.

f
Class 2 is randomly downsampled to 25 instances.

g
Classes 1 + 2 form the majority class; class 3 is randomly down-sampled to 25 instances.

h
Intercept =16 and 100 of the 500 noise variables correlated with ρ = 0.7.

i
Where y ≥ yq=0.98 are classified as 1 and 0 otherwise.
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Table 3:

Performance comparisons on simulated data sets.

RFQ BRF RF

TPR TNR G-mean TPR TNR G-mean TPR TNR G-mean

Two Norm 86.71 58.88 71.34 13.55 100 35.37 1.96 100 14.00

Waveform 91.58 56.04 71.56 53.98 94.29 70.87 1.96 100 14.00

TwoClassSim 84.73 56.32 69.00 7.38 99.79 26.28 1.86 99.98 11.49

Friedman 1 68.20 54.13 60.46 2.93 99.97 16.43 2.00 100 14.12

Friedman 2 95.54 56.26 73.27 11.35 99.89 31.99 1.98 100 14.02

Friedman 3 48.71 54.84 51.33 2.06 100 14.26 2.01 100 14.14
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Table 4:

Performance on cognitive impairment data.

RFQ BRF RF

TPR TNR G-mean TPR TNR G-mean TPR TNR G-mean

Scenario 1
a 88.78 71.48 79.34 75.82 88.14 81.33 49.66 96.42 68.34

Scenario 2
b 89.72 69.21 78.50 65.83 89.82 76.35 27.83 98.86 50.93

Scenario 3
c 89.09 66.89 76.87 59.11 90.84 72.64 14.45 99.64 36.19

Scenario 4
d 87.92 62.58 73.78 48.67 92.44 66.24 8.23 100 27.57

Scenario 5
e 88.82 65.87 76.13 65.68 89.78 76.19 13.79 99.59 35.14

Scenario 6
f 89.37 60.48 73.11 52.82 92.55 69.09 7.27 99.99 26.06

Scenario 7
g 88.94 55.19 69.56 39.03 94.53 59.36 5.75 100 23.68

Scenario 8
h 88.83 47.01 64.01 22.25 97.11 44.33 5.27 100 22.92

Scenario 9
i 84.54 62.10 71.97 56.98 89.57 70.61 6.85 99.95 25.38

Scenario 10
j 84.94 53.33 66.73 38.26 94.42 58.45 5.46 100 23.23

Scenario 11
k 85.17 45.42 61.56 20.99 97.14 42.53 5.23 100 22.86

Scenario 12
l 84.46 36.85 55.01 9.46 99.24 28.80 5.21 100 22.83

Scenario 13
m 78.76 61.26 68.88 49.17 88.42 64.65 5.55 100 23.37

Scenario 14
n 78.33 51.41 62.84 25.64 95.35 46.63 5.22 100 22.84

Scenario 15
o 79.15 43.84 58.21 12.10 98.41 31.94 5.21 100 22.83

Scenario 16
p 78.96 36.10 52.63 6.49 99.74 24.68 5.21 100 22.83

a
Original data

b
Original data + 200 noise variables

c
Original data + 500 noise variables

d
Original data + 1000 noise variables

e
Subsampled data with 40 cases randomly selected and all controls

f
Subsampled data with 40 cases randomly selected and all controls + 200 noise variables

g
Subsampled data with 40 cases randomly selected and all controls + 500 noise variables

h
Subsampled data with 40 cases randomly selected and all controls + 1000 noise variables

i
Subsampled data with 20 cases randomly selected and all controls

j
Subsampled data with 20 cases randomly selected and all controls + 200 noise variables

k
Subsampled data with 20 cases randomly selected and all controls + 500 noise variables

l
Subsampled data with 20 cases randomly selected and all controls + 1000 noise variables

m
Subsampled data with 10 cases randomly selected and all controls

Pattern Recognit. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O’Brien and Ishwaran Page 44

n
Subsampled data with 10 cases randomly selected and all controls + 200 noise variables

o
Subsampled data with 10 cases randomly selected and all controls + 500 noise variables

p
Subsampled data with 10 cases randomly selected and all controls + 1000 noise variables
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Table 5:

Performance on customer churn data.

RFQ BRF RF

TPR TNR G-mean TPR TNR G-mean TPR TNR G-mean

Scenario 1
a 86.19 90.02 88.09 83.52 95.64 89.37 73.72 99.79 85.77

Scenario 2
b 89.31 75.55 82.14 64.37 94.11 77.83 30.07 100 54.83

Scenario 3
c 91.09 71.60 80.76 42.98 96.33 64.35 18.49 100 42.99

Scenario 4
d 90.20 69.80 79.34 34.08 97.64 57.68 6.46 100 25.41

Scenario 5
e 87.08 87.88 87.48 82.18 93.21 87.52 61.69 99.93 78.52

Scenario 6
f 88.42 71.46 79.49 47.44 94.94 67.11 9.13 100 30.22

Scenario 7
g 88.42 67.16 77.06 35.41 97.02 58.61 2.45 100 15.65

Scenario 8
h 85.75 62.94 73.46 21.16 99.17 45.81 0.22 100 4.72

Scenario 9
i 81.29 84.55 82.91 73.27 91.83 82.03 46.55 100 68.23

Scenario 10
j 80.40 67.93 73.90 31.85 95.98 55.29 2.00 100 14.16

Scenario 11
k 81.29 64.81 72.58 25.61 97.37 49.94 0.22 100 4.72

Scenario 12
l 78.62 59.82 68.58  8.69 99.58 29.41 0.22 100 4.72

Scenario 13
m 82.63 84.34 83.48 65.26 91.69 77.35 12.25 100 35.00

Scenario 14
n 80.85 62.11 70.86 30.96 96.19 54.57 2.90 100 17.02

Scenario 15
o 79.51 59.33 68.69 13.59 98.96 36.67 2.45 100 15.65

Scenario 16
p 80.40 56.01 67.11 2.00 99.86 14.15 0.22 100 4.72

a
Original data

b
Original data + 200 noise variables

c
Original data + 500 noise variables

d
Original data + 1000 noise variables

e
Subsampled data with 240 cases randomly selected and all controls

f
Subsampled data with 240 cases randomly selected and all controls + 200 noise variables

g
Subsampled data with 240 cases randomly selected and all controls + 500 noise variables

h
Subsampled data with 240 cases randomly selected and all controls + 1000 noise variables

i
Subsampled data with 120 cases randomly selected and all controls

j
Subsampled data with 120 cases randomly selected and all controls + 200 noise variables

k
Subsampled data with 120 cases randomly selected and all controls + 500 noise variables

l
Subsampled data with 120 cases randomly selected and all controls + 1000 noise variables

m
Subsampled data with 60 cases randomly selected and all controls
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n
Subsampled data with 60 cases randomly selected and all controls + 200 noise variables

o
Subsampled data with 60 cases randomly selected and all controls + 500 noise variables

p
Subsampled data with 60 cases randomly selected and all controls + 1000 noise variables
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