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Abstract

In this paper we derive practical and novel upper bounds for the resubstitution

error estimate by assessing the number of linear decision functions within the

problem of pattern recognition in neuroimaging. Linear classifiers and regressors

have been considered in many fields, where the number of predictors far exceeds

the number of training samples available, to overcome the limitations of high

complexity models in terms of computation, interpretability and overfitting.

Typically in neuroimaging this is the rule rather than the exception, since the

dimensionality of each observation (millions of voxels) in relation to the number

of available samples (hundred of scans) implies a high risk of overfitting. Based

on classical combinatorial geometry, we estimate the number of hyperplanes

or linear decision rules and the corresponding distribution-independent perfor-

mance bounds, comparing it to those obtained by the use of the VC-dimension

concept. Experiments on synthetic and neuroimaging data demonstrate the

performance of resubstitution error estimators, which are often overlooked in

heterogeneous scenarios where their performance is similar to that obtained by

cross-validation methods.

∗Corresponding author
1email: gorriz@ugr.es, jg825@cam.ac.uk
2email: javierrp@ugr.es
3email: js369@cam.ac.uk

Preprint submitted to Pattern Recognition February 13, 2019



Key words: Resubsitution error estimate, lineal classifiers, upper bounds,

neuroimaging, VC dimension

1. Introduction

The pattern recognition problem [40] consists on determining the random

class pattern ω, defined on the set of {1, . . . , k}, given a set of observations

x ∈ Rd, without knowing any information about the underlying probability

distribution functions (pdf); i.e. p(x, w) . Instead, we exclusively have several5

realizations of the pair {xi, ωi}, for i = 1, . . . , l, that is, the training sample,

and a finite set of decision rules {α} with cardinality equal to N with a fixed

complexity selected by the user; for example, linear classifiers.

Different methods have been proposed in machine learning (ML) for the

computation of the best classifier, in terms of performance, within a set of10

decision rules [42, 6, 20]. However, all of them have in common the use of a

minimization or maximization strategies of a specific cost function in order to

adjust the model. As an example, the Support Vector Machine (SVM) paradigm

[43] maximizes the separation margin between classes, whilst the least squares

(LS)-based classification [14] minimizes the mean squared error between the15

estimated and the true outputs. Once the classifier with parameter α̂ is designed

and selected from the set {α}, it is expected to provided a low empirical or

resubstitution error:

Pemp(α̂) =
1

l

l∑
i=1

(wi − F (α̂,xi)) (1)

where F (x, α) : X → Ω is the selected decision rule with complexity given by

α. Nevertheless, the actual performance of the classifier is measured in terms of20

its generalization ability; that is, the error rate when encountering new patterns

xu with unknown classes or labels ωu. Indeed, one of the major problems in

pattern recognition is the overfitting problem in high dimensional settings (d)

with a small sample size (l), where the designed classifiers are over-adjusted to
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the training set, providing an almost vanishing empirical error, but with a poor25

actual risk or true error rate, which is defined in terms of probability as:

P (α̂) = p(F (α̂,xu) ̸= ωu) (2)

Unfortunately, in neuroimaging this situation is the rule rather than the

exception, since the dimensionality of each observation (millions of voxels) in

relation to the number of available samples (hundred of scans) implies a high

risk of overfitting [29]. This risk can be also explained in terms of the high30

probability of the training set to be separable by a given surface in high dimen-

sional spaces [10]. The solution to this problem is multi-fold. In fact, we can

overcome this situation by increasing l by resampling methods (i.e. boosting

[20] and bagging [6]), or by decreasing d using feature extraction and selection

(FES) approaches [18, 16]. In addition, the model complexity is also linked to35

the concept of overfitting, as it decreases the empirical risk up to a point, the

bias trade-off, where the overfitting occurs and the true error rate increases. In

general, the estimation of an increasing number of model parameters (complex

models) increases the variance of the error estimation, whereas a model with

a restricted number of degrees of freedom can have considerably less total un-40

certainty [4]. To preserve complex models from overfitting, some solutions can

be adopted that are well established on cross-validation (CV) methods [31]. In

this sense, several authors have studied numerous accuracy estimation methods

using complex classifiers [24, 12]. Assessing their validity on real-word datasets

with a high number of attributes, the most common method for model selection45

is ten-fold stratified cross-validation. However, this implies splitting the dataset

into folds which could be intractable with small sample sizes [12] and heteroge-

neous datasets; i.e. classifiers often perform with unacceptably high variability,

particularly if l is small.

A possible solution is the use of linear models, that is linear SVMs are regu-50

larized, and therefore less prone to be overfitted. Their parameter configuration

at the training stage is considered as a relevant measures of variable importance
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[7] in feature selection [18], recursive feature elimination [19], lasso regression

[38], and elastic networks [46].

This paper considers the use of the resubstitution error estimate when us-55

ing linear classifiers in small sample sizes and low dimensional scenarios. A

novel upper bound on the actual risk is proposed based by the direct applica-

tion of a theorem in classical combinatorial geometry for linear classifiers, such

as the linear SVMs. We provide an analytic expression for the upper bound,

tighter than the ubiquitous upper bound on the actual risk based on VC di-60

mension [42], that is applicable for a range of sample sizes l and dimension

values d. It is well known that this data-driven error estimate is generally an

optimistic estimation of the real error rate P (αemp), given the selection rule

αemp, and therefore is usually overlooked. However, the major advances in

machine learning over the last decades, i.e. [41], are based on this error esti-65

mator, as it easily allows the computation of the upper bounds of the actual

risk, i.e. P (αemp) ≤ Pemp(αemp) + ϕ(l, d). Moreover, in some heterogeneous-

data applications, resubstitution has been demonstrated to be competitive with

cross-validation schemes in terms of ranking accuracy, in addition to the enor-

mous savings in computation time afforded by resubstitution [5]. In fact, this70

is the main difference with other CV-based error estimators that could pro-

vide tighter, but more computationally-demanding upper bounds on the actual

error rate in general scenarios. This situation forces the reassessment of these

bounds in an empirical manner due to the complexity of the underlying problem,

with only a limited number of prior studies having tried theoretical modelling75

[9, 37, 40]. The latter model applied to the neuroimaging paradigm provides a

novel insight in the classification of heterogeneous and small sample size data

sets, where complex validation procedures fail to reveal hidden patterns in the

classification problem. This solution, having been successfully implemented and

applied to the analysis of the autistic pattern [17], is theoretically justified in80

this work and subsequently generalized to other neurological conditions such as

Alzheimer and Parkinson Diseases.
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2. Methods

In this section we provide the background necessary for the development of

the novel upper bounds on the actual risk derived subsequently. It may allow85

the use of the resubstitution error estimate as a robust estimator, at a high con-

fidence level with probability 1− η, under some theoretical conditions assumed

throughout the paper. In this scenario, other CV-based estimators provide

higher variance and consequently may overlook, depending on the sample real-

ization, the variable importance of each dimension, yielding poorer classification90

results in the pattern recognition problem.

2.1. A background on uniform convergence of means

One of the major advances in machine learning theory has been the appli-

cation of the law of large numbers, in terms of the third Hoeffding inequality

[21], to the minimization of the empirical risk [41]. Given a finite set of rules

denoted by {αi}, for i = 1, . . . , N , the probability that the actual risk P (αi) is

greater than the empirical risk Pemp(αi) by a small value ϵ, for a fixed rule αi,

is bounded by:

P{P (αi)− Pemp(αi) ≥ ϵ)} ≤ e−2lϵ2 (3)

Considering the two-sided convergence of this inequality we can easily rewrite

equation 3 as:

P{|P (αi)− Pemp(αi) ≥ ϵ)|} ≤ 2e−2lϵ2 (4)

The higher the difference between actual and empirical risks, the lower is the

bound to this probability. Thus, we may take the supremum in the set of

decision rules and bound its probability as:

P{supi |P (αi)− Pemp(αi)| ≥ ϵ)} ≤∑N
i=1 P{|P (αi)− Pemp(αi)| ≥ ϵ)} ≤ 2Ne−2lϵ2

(5)

This inequality holds for all the decision rules αi including αemp. If we require

that this probability does not exceed a threshold η, then we can establish a

bound for the actual risk:

P{|P (αemp)− Pemp(αemp)| ≤ ϵ} ≥ (1− η) (6)
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where ϵ =
√

ln2N−ln(η/2)
2l .

2.2. On the upper bound of the actual risk for linear classifers

As aforementioned, linear classifiers provide considerably less total uncer-

tainty in the determination of model parameters. In this sense, with a restricted

number of degrees of freedom we can easily measure the overall number of clas-

sifiers contained in the class of decision rules. A homogeneous linear threshold

(HLT) function F (α, x) : Rd → {−1, 0, 1} is defined in terms of the weight

vector α as:

F (α,x) =


−1 , α · x < 0

0 , α · x = 0

1 , α · x ≥ 0

(7)

naturally dividing the Rd space into two subspaces or dichotomies {X+,X−}95

by the hyperplane {x : α · x = 0}.

Definition 1: A set of l vectors {x1, . . . ,xl} is in general position (i.g.p) in

Rd space if every subset of d or fewer vectors is linearly independent.

100

The necessary and sufficient condition for this property is that the proba-

bility be zero that any point will fall on any given d − 1 dimensional subspace

(measure zero), making this property more than feasible in real problems. A

generalization of the Function-Counting theorem [10] can be given considering

that the number p of points that fall on the separation hyperplane is zero, and105

rewritten as a Lemma for our purposes as:

Lemma 1: Given a training set {xi, ωi}, for i = 1, . . . , l, distributed i.g.p.

in Rd and α the class of HLT functions, if the set of roots of any F (x, α) on the

training set is ∅, then the number of functions in {α} is:

N(l, d) = 2

d−1∑
k=0

(
l − 1

k

)
(8)
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Under the conditions of this lemma the number of functions F (x, α) corresponds

to the number of different ways of dichotomizing l points i.g.p. in the Rd space.

Thus, we only need to demonstrate the Function-Counting Theorem expressed110

in equation 8, which has been analyzed by several authors in the past [45, 22, 10]

in different manners. See Appendix 1 for a demonstration of this lemma.

3. The one-sided free-distribution upper bound:

Once the cardinality of the finite set of decision rules has been determined

N(l, d), a novel upper bound is derived in terms of the one-sided uniform con-

vergence of the means, which means tighter bounds [15]. In particular, we are

interested in assessing for a given significance level η and fixed classifier αi:

P{sup
i
(P (αi)− Pemp(αi)) > ϵ} < η (9)

where P (αi) = P (F (x, αi)) ̸= ωreal. Of course, with a sample size l → ∞, the

law of large numbers expressed in terms of the third Hoeffding inequality [21]

for any functional αi establishes that:

lim
l→∞

P{sup
i
(P (αi)− Pemp(αi)) > ϵ} = 0 (10)

and the uniform convergence in equation 9 is achieved. In the other case l < ∞,

the aforementioned inequality can be used to establish the bound of the actual

risk as:

P{Γi > ϵ} ≤
N(l,d)∑
i=1

P{γi > ϵ} < η = N(l, d) exp(−2ϵ2l) (11)

where Γi = supi(γi), γi = P (αi) − Pemp(αi) and N(l, d) is the finite number

of functional dependencies previously determined. Since the inequality is valid

for all decision functions F (x, αi), the actual risk obtained by αemp is bounded

with probability 1− η by:

γemp ≤

√
1

2l
log

(
N(l, d)

η

)
(12)

where a similar bound, considering the additional Q(l, d) functions in equation

18, could also be derived.115
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Figure 1: Bounds for the linear classifier using one-sided and two-sided uniform convergence

in the Hoeffding inequality at a 95% confidence level.

In general, these bounds could be further improved by considering the rela-

tive deviations [41, 15] under scenarios where P (αi) tends to the extremes 0, 1;

that is, far from our problem. However, we took a step further by limiting the set

of F (α,x) to the class of linear classifiers, allowing use of the analytical expres-

sion shown in equation 12 for the upper bound (similar to the VC-dimension)

that does not depend on the empirical risk, unlike previous approaches [15]. As

an example, if d ≃ l then N(l, d) ≃ 2l, the number of functions is such that it

separates the sample size in all possible ways (non-falsifiable learning machine),

the minimum of the empirical risk is zero, and the upper bound of P (αemp) is

trivial (> 0.5), independent of the sample size l, at a high confidence level. On

the contrary, if d << l the actual risk reaches its maximum value close to the

empirical risk, i.e. for d = {1, 2, 3} and l = 120, the maximum deviation of the

frequencies are obtained with probability 1− η (= 0.95) as:

γemp ≤ {0.1398, 0.1879, 0.2286} (13)

Nevertheless, for complex statistical classifiers even with the Pemp(αemp)

close to 0, the deviation of the frequencies will be very large as the number of

decision functions or dependenciesN increases, i.e. N(l, (d+r)!d!r!) dichotomies
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by an rth-order rational variety [10].

4. Connection to Vapnik’s Bound120

It is worth exploring the relation of the proposed bound with that commonly

used in machine learning, namely:

γV C ≤
√

h(log (2l/h) + 1)− log (η/4)

l
(14)

where h is the VC dimension equal to d + 1 for linear functions [42]. This ex-

pression is obtained considering the two-sided uniform convergence of equation

9, and is therefore expected to be greater than that proposed in equation 14

making it inadequate for the purposes of working with low dimensional patterns

extracted by FE algorithms, and suggesting that the proposed bound is a valu-125

able solution in machine learning to avoid overfitting. Indeed, the two bounds,

together with that obtained by the inclusion of p = 1, . . . , d−1 roots of the class

of HLT functions α, are plotted in figure 1. The expected behavior is clearly

observed and the analitical relationship is shown in Appendix 2.

The bounds obtained by Vapnik [42] are derived under the assumption of130

i.i.d. samples for the construction of the random entropyH = E{N(x1, . . . ,xl)},

or the growth function G = ln
(
supx1,...,xl

N(x1, . . . ,xl)
)
, where the random

variable N(x1, . . . ,xl) is the number of subdivisions of the sample which can

be accomplished by the rules F (x, α). Consequently, the bounds are derived on

the rate of uniform convergence from the inequalities of the theory of bounds,135

as shown in equation 14. The following lemma establishes the connection in

terms of Vapnik’s theory.

Lemma 2: The analytical i.g.p. sample-based growth function N(l, d) ma-

jorizes the classical growth function G(l) and, at the same time, is majorized

by:

sup
x1,...,xl

N(x1, . . . ,xl) < N(l, d) < 1.5
ld−1

(d− 1)!
< 1.5

lh

h!
, for d < l (15)

where h is the largest number of points that can be separated in all possible

ways using functions of the given class (VC dimension), i.e. for linear classifiers
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h = d+ 1. Note that the right hand side of the last inequality is often used to140

derive the looser Vapnik’s upper bound in equation 14. The demonstration of

this lemma is shown in Appendix 3.

The statistical independence of samples implies their linear independency,

but the reverse is not necessarily true. To reduce the number of dichotomies a

further, and so the bound, the concept of in general-position (i.g.p.) distributed145

samples is considered in equation 12. This assumption is reasonable with real

data, as shown in figure 2, and is already included in the i.i.d assumption [41].

The novel assumption is especially relevant in brain MR imaging where the

research problems are usually solved by locally modeling the MRI signals due

to the intensity non-uniformity, partial volume effect, scanner specificity, and150

the intrinsic properties of tissue types, such as T1 and T2 relaxation times and

proton density, which vary across an individual brain [39].

5. Machine learning in Computer-Aided Diagnosis Systems

The application of machine learning methods to neuroimaging data needs

to overcome the small sample size problem found in these applications, that is,155

l << d. One of the machine learning tricks for solving this problem is to reduce

d by FES approaches prior to Computer-Aided Diagnosis (CAD) classification.

FE methods radically reduce the input dimension d by projecting the data into

feature spaces where the relevant information in the reduced set of features

is preserved [16, 27]. In this scenario, the proposed theoretical upper bound is160

useful as it effectively connects the empirical and actual risks for linear classifiers

within a small confidence interval. Therefore, the resubstitution error estimate

using these simple classifiers is an accurate measure of the importance of the

variable in the feature space. Moreover, under the unstable condition of the

inducer [24], which can be met in heterogenous datasets including sub groups165

or classes that avoid CAD systems to generalize well from training to test sets,

the resubstitution estimate could be the only suitable choice.
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Figure 2: The i.g.p. assumption on real data (Partial least squares features of the dataset in

[26]) is fulfilled by analyzing the log determinant and the condition number of the
(l
d

)
d × d

matrices obtained from the l × d data matrix.
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5.1. Feature Extraction Methods

One of the classical feature extraction methods, the Partial least Squares

(PLS) method, is considered at this step to manage the small sample size prob-170

lem. PLS has been widely used in neuroimaging for performing image analysis

and classification [28, 35]. It is a statistical method which models relationships

among sets of observed variables by means of latent variables [35]. It includes

regression analysis and classification tasks and is intended as a dimension reduc-

tion technique [18]. The starting point for PLS is the very simple assumption175

that the observed data is generated by a system or process which is driven by

a smaller number of latent (not directly observed or measured) variables. PLS

finds the relationship between the input data Xl×d and the set of labels Yl×1 as

linear combinations of the score matrices via the matrices of loadings assuming

an error matrix (X = XsX
T
l + E). The main idea of this dimension reduction180

is to truncate the number of components to the first k components (k < d),

thus the d × k loading matrix Xl contains the transformation of the d original

features to the new k-dimensional space, that is, X̃l×k = Xl×dWd×k.

5.2. Ova Multi-label Classification with a linear SVM classifier

In Error-Correcting Output Codes (ECOC) we combine binary dichotomiz-

ers to solve a multi-label classification problem [13]. In the one-versus-all (ova)

ECOC strategy, all the classes are considered by each dichotomizer as a mem-

ber of one or both possible partitions of classes that define each binary problem.

This results in K binary problems for a given K-class problem. In this paper

we applied this strategy to the neuroimaging example, analyzed in the following

section, to develop a MRI-based CAD system within the methodological frame-

work proposed in [32], that includes feature selection using ANOVA, PLS-based

feature extraction and a classification stage based on linear classifiers such as

SVM. The latter classifiers have been predicated on the minimization of the

VC dimension and successfully shown to be a robust solution in classification

learning [42] that minimizes the separation margin between the binary-labeled

training data by constructing an HLT decision function F (α,x) whose norm is
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minimum [42]:

||α||2 + C

l∑
i=1

ξi (16)

subject to

ωi(α · xi) ≥ 1− ξi; ξi ≥ 0; i = 1, . . . , l

where ξi are slack variables, C is a constant that allows a trade-off between185

training error and model complexity, and the decision rule is defined as F (x, α)

in previous sections. The solution is computed using α =
∑l

i=1 aiyixi, where the

multipliers 0 ≤ ai ≤ C were derived using the sequential minimal optimization

[30] of a dual Lagrangian problem in equation 16.

6. Experimental Analysis190

Experiments were run on an Intel(R) Core(TM) i-5-5200U CPU at 2.20

GHz with 8GB RAM. Several experiments were carried out to analyze the per-

formance of the resubstitution error estimate in combination with FE methods

and bagging ensemble learning approaches. In particular, ensembles of linear

SVMs with increasing dimensionality of the input vector were used to train195

the most representative method of SVM: the SMO implementation developed

in [30]. The loss of the resulting predictors was estimated through a ten-fold

stratified CV process, a leave-one-out CV and the resubstitution analysis, where

the feature extraction methods were applied in the CV loop to avoid overfitting

in this neuroimaging example. The synthetic comparisons were performed with200

increasing task complexity (increasing dimension) to highlight and model a real

pattern classification problem found in heterogeneous datasets [26, 44]. These

simulations allow an effective estimate of the actual risk and therefore check

the theoretical bounds proposed in the previous sections. Given that, we apply

our resubstitution estimate to the selected and extracted features derived from205

a CAD system in neuroimaging using MRI scans.

The dual purpose of the novel upper bounds developed in the previous sec-

tions is described in this experimental section. First, given a fixed number of
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samples (l) and predictors (d) a strong connection is naturally established be-

tween actual and empirical risks, depending on the number of decision functions210

or dependencies N (an additional optimization of the learning parameters of the

classifier could strengthen this relation [17]). In this sense, this methodology

could be applied to other learning scenarios in neuroimaging, such as the deep

learning (DL), where architectures are employed for FE, e.g. stack-autoencoders

as a decomposition method [2] that learns low-dimensional representations of215

an image. Consequently, the low-dimensional features resulting from the output

layer of the encoder (Z-layer) could be analyzed with the upper bounds devised

in this paper. Second, the upper bounds can be used as a method for determin-

ing the optimal sample size l of a machine-learning-based study that best avoids

type II (false negative) errors.220

This methodology was partially tested on several brain Imaging datasets

of autistic individuals corroborating predictions of the “extreme male brain”

theory of autism [3] in sexual dimorphic areas, by the evaluation of several

statistical tests, such as the spatial overlap analysis on reference maps obtained

from different statistical hypothesis testing approaches [17]. As expected, the225

proposed learning machine revealed how autism was modulated by biological

sex using a low-dimensional feature space extracted from VBM, whereas other

standard CV methodologies were not able to effectively address the subclass

problem in Autism.

6.1. A simulated-heterogeneous dataset with a controlled-actual risk230

The developed experiment consisted of generating a large number of sam-

ples (lT = 20000 ≃ ∞) drawn from a standard normal distribution N (0, 1), in

an increasing dimensional space Rd, d = {1, 2, . . . , 8}. The puporse of this

synthetic dataset was to simulate the heterogeneity pattern in Autism MR

imaging, i.e. Male Control vs. Male Autism, or in Alzheimer’s Disease (AD)235

structural/functional imaging compared with mild cognitive impairment (MCI).

Thus, beyond the classical binary classification problem between two popula-

tions drawn from known distributions, an agglomerative hierarchical cluster tree
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Figure 3: Schematic representation of the data synthesis in three dimensions. The number

of clusters of the tree was set to four and the Ward’s linkage was used for the optimization

procedure. The downsampling procedure of the large dataset results in a reduced set of 100

samples in this example.

was built within the multidimensional generated data. In particular, we min-

imized the variance within each cluster using the inner squared distance and240

the Ward’s linkage [23]. As a result, we obtained a number of C overlapping

clusters, i.e. C = 4, as shown in figure 3 (step 1).

One particular cluster models the control class (labeled as 0) whilst the oth-

ers characterizes a heterogeneous class containing three subgroups (labeled as 1),

i.e. MA. Then, for each binary “one versus all” (ova) classification problem, we245

randomly downsampled without replacement from data lS = {100, 200, . . . , 500} <<

lT realizations and cross-validated the selected linear SVM model in the result-

15



Figure 4: Example of each ova experiment in one dimension. Observe how multi-modal

distributions arise (green) using the modelling procedure described in section 6.1, especially

in the “3 out of 4” ova experiment (bottom on the left).

ing binary classification problem. We then compared the resubstitution, the

leave-one-out and the K-fold CV estimates. Finally, we repeated the experi-

ment fifty times and averaged the results. To approximate the actual risk (the250

real error) we fitted the same linear SVM classifier in each ova experiment using

all the available samples, i.e l = 103 ∼ ∞ balanced binary samples. Thus, we

have a robust estimation of the theoretical error to compare with the empirical

risks obtained from each cross-validation model. Each ova experiment defined

a different pattern recognition problem, as shown in figure 4, where the actual255

risk is also displayed.

In figure 5 we show the upper bounds, the averaged error estimates of the

resubstitution error and the commonly used CV-estimation errors in a Monte-
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Carlo simulation (50 runs). We show, for linear classifiers and low dimension d,

the out-performance of the proposed upper bound in comparison with Vapnik’s260

upper bound, which is under conservative. Both limit the empirical risk obtained

with all the CV error estimates. In addition, we plot the approximate actual

risk computed using the balanced version of the whole data set (20.000 samples)

in black. It is worth mentioning from this figure that: i) for the different tasks,

the resubstitution error estimate is more optimistic than LOO or K-fold CVs265

as expected, but very similar to the mean of both; ii) the empirical errors are

non-monotonic increasing functions (related to the upper bound behavior) as

the dimension (task complexity) increases.

Figure 5: Error Estimates (averaged on 50 runs) in the proposed one vs. all classification

problem. Comparison of the resubstitution error estimate with leave-one-out and K-fold cross

validations in a low dimension d for several downsample sizes.
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From figure 6, we note an interesting finding regarding the variance of the es-

timations that, under the stability conditions stated in [24], is inversely propor-270

tional to the number of samples; that is, var(Pemp(l)) = Pemp(l)(1−Pemp(l))/l,

approximately. The variance of estimators exhibits a non-monotonically in-

creasing behaviour with increasing task complexity. However, the robustness of

the resubstitution estimate to perturbed datasets is observed, unlike the LOO-

CV estimate (see for example the “3 out of 4” task in the same figure). The275

stability condition of the inducer must be held in any of the random selected

K-folds to obtain robust estimations [24]; i.e. the prevalence of each subgroup

within a heterogeneous class must be equal in the folds. As an example, given a

population size of l samples, and assuming two subgroups with the same preva-

lence l/2 in the heterogeneous class, the probability of selecting m samples from280

one subgroup in each fold of l/K samples follows a hypergeometric distribution

p(X = m) =
(
l/2
m

)(
l/2

l/K−m

)
/
(

l
l/K

)
. Thus, the probability of having an unbal-

anced fold is P (X ≤ m) =
∑m

i=0 p(X = i), for m < l/2K. For l = 100, K = 10

and m = 4, P (X ≤ m) ≃ 37% in each fold.

This is related to the inherent problem of failure of cross-validation meth-285

ods using majority inducers as shown in [24]. The stable condition is partially

unfulfilled in the latter task, where the cross-validation methods provide error

estimations above the true error rate and the resubstitution estimate (see fig-

ure 7), thus increasing the false negative rate in the detection problem. This

hypothesis may be tested in heterogeneous datasets including Autism or MCI290

individuals, which have been described as classes including several subgroups

[25, 11]. Thus, the resubstitution error is a good candidate, in low dimensional

scenarios and small samples sizes, to estimate the performance of the classifier

since it avoids dividing data into folds with a small upper bound. This be-

haviour was also observed for a different experimental setups with the number295

of clusters C = 8, 12, reinforcing the heterogeneous class.
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Figure 6: Error Estimate Variances (averaged on 50 runs) in the proposed one vs. all clas-

sification problem. Comparison of the resubstitution error estimate with leave-one-out and

K-fold cross validations in a low dimension d for several downsample sizes.
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6.2. Application to a neuroimaging challenge dataset

Datasets provided by the International challenge for automated prediction

of mild cognitive impairment from MRI data (https://inclass.kaggle.com/c/mci-

prediction) were considered for the evaluation of the proposed method in a neu-300

roimaging context. MRIs were selected from the Alzheimer’s disease Neuroimag-
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Figure 7: Deviations of the empirical risk under an unstable condition due to perturbed

datasets (including subgroups).
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ing Initiative (ADNI, http://www.adni-info.org) and preprocessed by Freesurfer

(v5.3) [33]. The dataset consisted of 429 demographical, clinical as well as corti-

cal and subcortical MRI features for each subject. The challenge provided a real

classification problem defined on two separated datasets, one for training pur-305

poses and another for testing a hold-out set in a four class-classification problem
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with unknown labels. Subjects were grouped into four classes according to their

diagnosis status: healthy control (HC) subjects, AD patients, MCI individuals

whose diagnosis did not change in the follow-up and converter MCI (cMCI) in-

dividuals that progressed from MCI to AD in the follow-up period. The training310

dataset contained 240 ADNI individuals (60 HC, 60 MCI, 60 cMCI and 60 AD).

The testing dataset consisted of 500 individuals: 160 real participants and 340

dummy subjects, artificially generated from the real data. The demographic

information of the participants can be found in [33, 32]. No information about

the class labels of the test set was available during the competition. The test set315

was half split into public and private test sets and only the accuracy score on

the public dataset was available for competitors until the challenge ended. Once

the challenge finished, class labels for the images in the test set were provided

to the competitors. The accuracy score on the real participants of the testing

set was used as the figure of merit in the competition.320

First, we demonstrate that the previous simulations are in accordance with

the statistical properties of the PLS features extracted from the MRI-study

groups. In figure 8 the group box plots of the main 9 features selected by

the proposed ANOVA test is shown, where a “notch” analysis is included to

highlight the overlap between classes. In the same figure (bottom) we show the325

resulting one dimensional PLS-features after FE for each ova experiment. It

is clear from the latter figures that each data division into folds including the

multi-modal class will provide an unstable inducer as claimed in [24].

In table 1 we show the Acc results when applying Resubstituion vs K-fold

to the training set. We notice a larger variance in the K-fold approach and an330

a-priori optimistic estimation of the Acc provided by the resubstitution-based

method. However, this estimation is good enough for low dimensional PLS

feature vectors as shown in the figure 9, where the K-fold subestimates the actual

risk, and the resubstitution error estimate allows the hidden patterns to be

effectively distinguished in each ova experiment. As can be readily seen from the335

latter figure, the resubstitution error estimate outperforms the K-fold approach

up to d = 10, where the upper bound (variance) of the estimator increases
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Figure 8: Ova experiments for multi-label classification in the CAD system, a) The nine

more discriminant features using ANOVA-based feature selection, b) PLS-feature distribution

showing multi-modal classes within the remaining classes for each binary dichotomizer.
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providing an optimistic classification accuracy, unlike the K-fold estimate that

provides a pessimistic estimation. The real accuracy (plotted in red) is estimated

by the application of the fitted CAD system, using K-fold cross validation, to the340

real hold-out set (unseen new samples, excluding fake ones). The box-plot on

each PLS-dimension for the K-fold estimate reveals that the median of the Acc

distribution over the folds is, in 16 out of 20 experiments, lower than the actual

risk. Acc values above 55% were ranked in second position of the challenge [8],

thus only 10 submissions to the kaggle platform (including one with an Acc of345

58.13%) would be enough to achieve such a score using linear classifiers in a

ECOC-ova experiment (see table 2).

Table 1: Final performance (Acc(var)) of the 4-label classification system applied to the

training set. The class comparisons were extracted from confusion matrices and the Acc

results were averaged on folds and # of PLS components

Method Overall MCI HC vs. AD Elapse Time

% % % (s)

Resubs. 57.77(0.27) 22.38(1.01) 93.17(0.07) 40.45

K-fold 51.10(0.61) 16.13(1.30) 86.08(1.20) 424.95

7. Conclusions

In this paper we focus on the development of novel upper bounds for the

resubstitution error estimate. In this sense we provide upper bounds tighter350

than the commonly used Vapnik’ bounds, that are similar in computational

demands to our proposed method. To obtain such findings we use some results

from classical combinatorial geometry, such as the Function-Counting theorem,

to estimate the cardinality of the set of linear decision rules or dichotomizers

under two assumptions; that is, the number of roots of these functions on the355

training set is zero or non zero. Moreover, we applied these upper bounds to

synthetic and real databases and compared with standard CV-methods. We
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Table 2: Ranking of the classifier’s accuracies (identified through the name of the teams) as

calculated on the platform at the closing of the competition, not including the fake subjects

and extended to the whole test set [8].

Team Accuracy on test set # of submissions

S. Dimitriadis/D. Liparas 0.61875 18

SiPBA-UGR 0.5625 56

Sørensen 0.55 41

Bari Medical Physics Group 0.55 15

GRAAL 0.54375 9

Jean-Baptiste Schiratti 0.54375 4

Neuroimage Div./CIFASIS/ARG 0.54375 22

Salvatore C./Castiglioni I. 0.5375 79

Loris Nanni 0.53125 37

BrainE 0.525 38

utaphys 0.525 2

gogogo 0.525 6

ChaseCowart 0.51875 7

agrickard 0.50625 2

fengxy 0.5 9

JocelynHoye 0.5 4

DevinAnnaWilley 0.46875 3

BoyX 0.4625 3

Webiolab 0.2125 2

Proposed CAD System 0.5813 10

demonstrate that under unstable conditions (perturbations caused by subclass

imbalanced folds at the training stage) the variance of CV-method increases and

the resubstitution error estimate is good choice in terms of bias, variance and360

computational demand.
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Figure 9: Accuracy results for the K-fold (box plots) and resubstitution (orange line) ap-

proaches at the training stage and the actual error or accuracy on the test set (red line).
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Appendix 1

By induction, consider l points x1, . . . ,xl i.g.p. and the N(l, d) homoge-

neously linearly separable dichotomies {X+,X−} in d-space. If each of the

N(l, d) dichotomies of X is separable by the set of weight vectors {α} then

either {X+ ∪ xl+1,X
−} or {X+,X− ∪ xl+1} are also separable by the sets of

weight vectors {α+} ⊂ α or {α−} ⊂ α, respectively. In addition, we can build

a weight vector α̂ = −(α− · xl+1)α
+ + (α+ · xl+1)α

− orthogonal to xl+1, i.e.

α̂ · xl+1 = 0, by picking up a couple of separating vectors within the previous

sets {α+, α−} ⊂ α, that separates the dichotomy {X+,X−}. Therefore, the

projection of the l points to the (d − 1) dimensional orthogonal space to xl+1

is also separable in N(l, d − 1) dichotomies by the induction assumption. The
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total number of dichotomies, after some manipulations, is then:

N(l + 1, d) = N(l, d) +N(l, d− 1) =

2
∑d−1

k=0

(
l−1
k

)
+ 2

∑d−2
k=0

(
l−1
k

)
=

2
∑d−1

k=0

[(
l−1
k

)
+

(
l−1
k−1

)]
= 2

∑d−1
k=0

(
l
k

) (17)

where the last equality holds using Pascal’s rule †.

A generalization of this result can be found in [10] (Theorem 4, page 328)

by imposing p = 0 on the number of functions in α when p points are on the

decision surface:

Q(l, d) = 2

d−1∑
p=0

d−p−1∑
m=0

(
l

p

)(
l − p− 1

m

)
(18)

At the same time this result can be demonstrated by induction on l and d [10]

or using the results shown in the appendix in [18].365

Appendix 2

Furthermore, the relationship between both upper bounds can be obtained

as the following. The squared ratio between the two bounds is proportional to:

Γγemp/γV C
≈ log (N(l, d))

(d+ 1)(log (2l/(d+ 1)) + 1)
(19)

Assuming that l = β · d, with β ≥ 2 and using the Badahur’s expansion [1] the

numerator of equation 19 can be expressed as:

log (N(l, d)) = log
(

1
2

(
l−1
d−1

)
F (l, 1; l − d+ 1; 1/2)

)
≈ (l − 1) log(l − 1)− (d− 1) log(d− 1)− (l − d) log(l − d)

+ log (F (l, 1; l − d+ 1; 1/2)))

(20)

where F is the hypergeometric function and the second approximation follows

from the Stirling’s formula. Taking the limit d → ∞ in equation 19, and after

some manipulations, we have:

limd→∞ Γγemp/γV C
≈ limd→∞

log(N(l,d))
(d+1)(log(2βd/(d+1))+1) =

limd→∞
d(β log(β)+(1−β) log(β−1)+log(F (βd,1;d(β−1)+1;1/2))

d(log(2β+1)) = (β log(β)+(1−β) log(β−1)
log(2β+1)

(21)
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where the second term of the numerator term, limd→∞ log(F (βd, 1; d(β − 1) +370

1; 1/2)) = log(β−1
β−2 ), for β ≥ 2, is cancelled by the denominator. Note that this

relation is always less than 1 as shown in figure 10, thus our upper bound is

theoretically demonstrated to be tighter than Vapnik’s bound.

Figure 10: Upper Bound ratio Γ between both approximations for increasing d, where l = βd

and β ≥ 2.
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Appendix 3

In the derivation of a sufficient condition for the uniform convergence of

frequencies to their probabilities [41], that is, liml→∞
G(l)
l = 0, the growth

function is bounded by the function Φ(l, d) as:

sup
x1,...,xl

N(x1, . . . ,xl) < Φ(l, d) (22)
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This function Φ(l, d) verifies a recursive relation similar to the one found in375

equation 17 (see page 164 in [41]), and is uniquely determined for l > 0 and

d > 0 as Φ(l, d) =
∑d−1

k=0

(
l
k

)
, assuming Φ(l, 1) = 1 and Φ(l ≤ d + 1, d) = 2l.

Surprisingly, this function also appears in other theoretical works in combina-

torial theory when introducing the concept of shattering finite sets by classes of

measurable subsets [34, 36], i.e. the Sauer-Shelah lemma.380

Firstly, it is easy to see that Φ(l, d) ≤ N(l, d) ≤ 2l 4. Then, following similar

steps as in the appendix to chapter six in [41], the inequality N(l, d) < Γ(l, d) ≡

1.5 ld−1

(d−1)! is easily proved by checking it on the boundary l = d + 1 and by the

recursion in equation 17. Indeed, on the boundary N(l, d) < 2d, and Γ(l, d) ≥

1.2 1√
2·π·le

l, for l ≥ 5, using the Stirling’s formula. Given, 1.2 1√
2·π·le

l > 2l−1,385

then the inequality is fulfilled on the boundary. For all l > d+1, the inequality

is easily demonstrated by an induction on l and verifying that Γ(l + 1, d) ≥

Γ(l, d) + Γ(l, d− 1) †.
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[18] Górriz, J.M., Ramı́rez, J., Suckling, J., Illán, I.A., Ortiz, A., Martinez-

Murcia, F.J., Segovia, F., Salas-González, D., Wang, S., 2017.
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