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ABSTRACT 

Facial aging variation is a major problem for face recognition systems due to large intra-personal variations caused by age 

progression. A major challenge is to develop an efficient, discriminative feature representation and matching framework, which is 

robust to facial aging variations. In this paper, we propose a robust deep-feature encoding-based discriminative model for age-

invariant face recognition. Our method learns high-level deep features using a pre-trained deep-CNN model. These features are 

then encoded by learning a codebook, which converts each of the features into a discriminant S-dimensional codeword for image 

representation. By incorporating the locality information in the whole learning process, a closed-form solution is obtained for both 

the codebook-updating and encoding stages. As the features of the same person at different ages should have certain correlations, 

canonical correlation analysis is utilized to fuse the pair of training features, for two different ages, to make the codebook 

discriminative in terms of age progression. In the testing stage, the gallery and query image’s features are encoded using the learned 

codebook. Then, linear mapping based on linear regression is employed for face matching. We evaluate our method on three 

publicly available challenging facial aging datasets, FGNET, MORPH Album 2, and Large Age-Gap (LAG). Experimental results 

show that our proposed method outperforms various state-of-the-art age-invariant face recognition methods, in terms of the rank-

1 recognition accuracy. 

Keywords—Age-invariant face recognition, canonical correlation analysis, deep learning, discriminative model, feature encoding, 

linear regression. 

1. Introduction

Face recognition in unconstrained environments is one of the most widely studied topics in the pattern recognition

community, and has achieved remarkable progress in recent years due to better feature extraction and matching 

frameworks. Despite the progress, recognizing face images with large age-variations require considerable amount of 

attention. Age-invariant face recognition (AIFR) has many practical applications, e.g. criminal identification using 
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photographs, finding missing children, etc. The major challenge is the large intra-personal variations due to the complex 

age progression, as shown in Fig.1. Age progression is a non-linear process, which greatly affects the facial appearance 

in two phases of life. From childhood to adulthood, the greatest change occurs in terms of shape, while change in 

texture takes place from adulthood to old age. All these factors create hurdles in learning age-invariant patterns.  

 

                                                  Age 18              Age 25               Age 35               Age 60 

 

                                                               Age 2                Age 10               Age 29               Age 43 

Fig.1 Sample images from the FGNET data set from two different persons with large age variations, where each row represents the face images 

of the same person.  

The most important part of a face recognition system is to extract distinctive features from face images to reduce the 

intra-personal variations, caused by illumination, expression, pose, age, etc. Among the existing feature descriptors, 

local features have shown high robustness to pose, expression, and illumination variations. However, these features are 

not optimal for solving AIFR problem [1] and provide limited performance. Furthermore, their performance heavily 

depends on the properly preprocessed face images. To make these features more discriminative for recognition, various 

feature-encoding-based methods [2-8] have been proposed, which convert extracted features into a discriminative 𝑁-

dimensional codeword for image representation. This brings major improvements in the recognition performance under 

unconstrained environments. Recently, deep-learning methods [9-12] have also gained a lot of attention in the face-

recognition community, due to their superior performance. Those methods have already achieved more than 99% 

recognition rate on the challenging Labeled Faces in the Wild (LFW) data set, which even surpasses the human-level 

performance. However, their performance is limited in solving the aging face-recognition problem. 

To tackle the abovementioned challenges, we propose a robust feature-encoding method based on locality constraint, 

which converts extracted deep features into an S-dimensional codeword for face representation. In this regard, we first 

learn an age-discriminative codebook, which uses the same codeword to represent the same identity at different ages. 
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Our method imposes locality constraint in the whole learning process, which generates an optimized codebook that 

better fits the data’s local structure. Furthermore, it reduces the intra-personal variations by sharing the same local 

bases of the learned codebook for images of the same identity. However, dissimilar bases are shared among the images 

of different identities, so this enhances the inter-personal variations. Using a pair of face images with a large age 

difference, we first exploit their correlation by projecting them into a coherent feature subspace using Canonical 

Correlation Analysis (CCA), and then perform feature fusion. Those fused features are then used to learn an age-

discriminative codebook. In the testing stage, the gallery and query image’s features are encoded using the learned 

codebook. To accelerate the encoding process, only a few codebook entries, which are close to the query feature, are 

selected for reconstruction. The selection is based on the 𝑘-NN search strategy. Furthermore, the resultant encoded 

features are sparse, which enhances the discriminative power of the learned features. In the final stage, the linear-

regression model [13] is employed to determine the relationship between the encoded gallery and the query image’s 

features at different ages, in terms of a coefficient vector. By using this coefficient vector, residual values are computed 

for face matching.  

1.1 Motivation 

Data locality is considered as a key issue in numerous computer vision applications, such as dimensionality 

reduction, clustering, image classification, etc. Wang et al. [8] proposed a feature-encoding framework based on 

locality constraint, namely Locality Constrained Linear coding (LLC), which projects the extracted features into a local 

coordinate system. It was argued that locality is more essential than sparsity, as locality will always lead to sparsity for 

the resultant encoded coefficients, but not vice versa. Motivated by this idea, we learn an age-discriminative codebook 

by taking the data’s local structures into account. One of the major advantages of locality constraint is that it captures 

the correlation between the features of the same identity by sharing the local bases of the codebook. Therefore, this 

ensures that the same codeword is used to represent face images of the same identity taken at different ages. For cross-

age face recognition, these codewords are explored.  

The major contributions of this paper are as follows: 

• A robust feature-encoding framework based on locality constraint is proposed, which encodes the extracted deep 

facial features into a discriminative codeword. In comparison to LLC [8], our algorithm incorporates the locality 
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information during the whole learning process and provides closed form solutions for both sparse coding and the 

codebook updating stage.  

• In the training stage, we maximize the correlation between the deep features of the same identity with a large age 

difference using CCA, which are then used to learn an age-discriminative codebook. The learned codebook is 

proved to be robust to age variations, as supported by our experimental results.  

• Extensive experiments have been conducted on three challenging face-aging data sets, and experiment results show 

that our proposed method outperforms other state-of-the-art age-invariant face recognition methods, in terms of 

recognition rate. Furthermore, our proposed method shows robustness to externally added noise, and achieves 

superior performance, as verified by our experimental results.  

The rest of the paper is organized as follows. In Section 2, we briefly review some related work of age-invariant face 

recognition. In Section 3, we introduce the process of deep-feature extraction using a pre-trained deep-CNN model 

(AlexNet). In Section 4, we present our feature-encoding framework based on the Euclidean locality adaptor, which 

makes the extracted deep features more robust to age variations. In Section 5, we explain the concept of feature fusion 

using CCA. In Section 6, we discuss the use of linear regression for classification. Section 7 presents the experimental 

results of our proposed discriminative model, along with discussions. Finally, Section 8 concludes our paper. 

2. RELATED WORK 

Existing research work, related to facial aging, mainly focuses on either age estimation [14-22] or age simulation 

[23-30]. A typical approach to age-invariant face recognition is to synthesize a test face image to be the same age as 

the gallery image before performing recognition, i.e. it is based on generative models. These generative model-based 

methods have some limitations. First, constructing an accurate aging model requires strong parametric assumptions, as 

well as the real ages of the training images, which makes it unsuitable for real-time face recognition systems. 

Furthermore, it divides the whole recognition framework into two steps, which creates difficulties in achieving optimal 

recognition performance in an end-to-end manner. Moreover, the synthesized face images bring some additional noises, 

which has a severe impact on recognition performance.   

Recently, discriminative models have been proposed for AIFR, which focus on developing features insensitive to 

facial aging. Ling et al. [31] utilized the Gradient Orientation Pyramid (GOP) for feature extraction, and then used 
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Support Vector Machine (SVM) for classification. In [32], the feature descriptors, Multi-scale Local Binary Pattern 

(MLBP) and Scale Invariant Feature Transform (SIFT) were utilized, and a fusion framework, based on random 

sampling, was proposed to improve the recognition performance. Gong et al. [33] proposed a probabilistic model, 

which represents a face image as a combination of two components, identity and age, that affect facial appearance. A 

learning process based on the Expectation-Maximization (EM) algorithm was proposed, which estimates aging and 

identity features simultaneously. Later, a novel feature descriptor [34], namely Maximum Entropy Feature Descriptor 

(MEFA), was proposed, which analyses facial images on a micro level and encodes the information in a form of discrete 

codes. The approach is based on a new matching framework, known as identity factor analysis, which estimates the 

probability that the two given face images are from the same identity. Chen et al. [35] proposed a new coding 

framework, which performs feature encoding by using reference images with an age-invariant reference space. Li et 

al. [36] proposed a hierarchical model with two stages of learning. Firstly, discriminative features are learned from 

microstructures of facial images, which are then converted into integer codes for face recognition. Recently, Zhou et 

al. [37] proposed an identity-inference model, which uses appearance-age labels to learn the aging subspace. The model 

utilizes probabilistic linear discriminant analysis (PLDA) to represent the identity and aging components. After that, 

the identity subspace is determined in an iterative way using the EM algorithm. The learned identity component is then 

used to perform face recognition. 

2.1 Deep-learning-based Methods 

Deep-learning-based models [38-41] handles age-variations by learning age-invariant face representation with 

specific loss functions. Inspired by this, Wen et al. [38] learned age-invariant deep features in an end-to-end manner 

based on latent identity analysis. The method keeps the identity components separated from the aging variations in 

learning the deep features. However, it assumes that the combination of the identity and aging features is linear. Hence, 

it ignores the correlation between the aging and identity component. Another deep learning framework [39] for age-

invariant face recognition was proposed, which shares the same feature layers with the identity and the aging networks. 

Both networks are trained alternately to separate the identity features from the aging features. Xu et al. [40] proposed 

an auto-encoder network to learn the complex non-linear aging progression. The method decomposes a face image into 

identity, age, and noise components by proposing a non-linear factor analysis method. Recently, a novel distance metric 
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optimization method [41] based on deep learning was proposed. The method used large number of matched pairs from 

the training set to learn the identification information. These matched pairs then serve as an input to enhance the 

differences between unmatched pairs. The model parameters are updated using the classical gradient descent algorithm. 

Therefore, the learned features and distance metric are optimized simultaneously. However, the major drawbacks of 

deep learning-based methods are the high computational cost and the large amount of labeled training data.  

2.2 Feature-encoding techniques 

Bag of Features (BOF) [2] is one of the earliest proposed methods, which represents the extracted local features in 

terms of a histogram, based on a set of learned vocabularies. The major drawback of this method is that it does not 

consider the layout structure of the features, which makes it unsuitable for capturing the shape of an object. Many 

extensions [3-5] of BOF were proposed, which can be classified into two categories, the generative model and the 

discriminative model based on codebook learning. These methods have achieved superior performances by using 

Spatial Pyramid Matching (SPM). This matching approach first computes feature descriptors from densely located 

feature points, and then applies the learned vocabularies or codebook with 𝑁 entries to convert the descriptors into an 

𝑁-dimensional codeword. To further increase the scalability, Yang et al. [6] proposed using sparse coding to obtain 

non-linear codes for non-linear feature representations. Yu et al. [7] achieved an improvement to the Sparse Coding 

(SC)-based approach by proposing a model, namely Local Coordinate Coding (LCC), which performs feature-encoding 

based on the locality information. Like SC, the model also needs to solve the 𝑙1-norm minimization problem, which 

makes it computationally expensive. A fast implementation of LCC was proposed in [8], which projects each feature 

descriptor into its local coordinate system using locality constraint. This approach preserves the local information, 

which favors both better feature representation and classification. 

 

Fig.2. AlexNet architecture (Adapted from [62]). 
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3. Discriminative Model 

Our proposed discriminative model consists of four main parts: (1) deep-feature extraction, (2) age-discriminative 

codebook learning, (3) feature-encoding using learned codebook, and (4) face matching based on linear mapping. We 

will explain all these stages in the following sections.  

3.1 Deep-Feature Extraction 

In our work, we utilize a pre-trained deep-CNN model, namely AlexNet [42], to extract high-level deep features. 

AlexNet is selected, due to its simple architecture and superior performances. Fig. 2 shows the architecture of AlexNet. 

CNN models have the capability of extracting both low-level, as well as high-level, features from input images. 

AlexNet consists of 5 convolutional layers, 3 pooling layers, and 3 fully connected (FC) layers. The output of each 

convolutional and FC layer is fed to the ReLU activation function. The first convolutional layer filters the input face 

image of size 227 × 227 × 3, with 96 kernels of size 11 × 11 × 3, using a stride of 4 pixels. The output of the first 

convolutional layer is fed to the second convolutional layer, after passing through the normalization and pooling layer. 

Finally, the network learns high-level deep features at the last FC layer, with a dimension of 4096. All fully connected 

layers are regularized by using a drop-out scheme.  In our method, we extract features from the FC layer (fc7). In deep 

learning-based methods, networks are trained for feature extraction and recognition from end to end. In our proposed 

approach, we use deep-learning-based CNN model to extract features, which are then converted into discriminative 

codewords for recognition. Fig.3 shows the features learned at the different convolutional layers of the CNN.  

 

Fig.3. Visualization of the learned deep features from different convolutional layers of AlexNet. 
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4. Feature Encoding based on Locality Information 

We now explain our proposed feature-encoding framework, based on the Euclidean locality adaptor. Before we 

proceed, we first explain the major differences between data sparsity and data locality. The advantages of using locality 

information for accurate classification (recognition) will also be discussed. Our proposed method provides a better 

feature-encoded representation, which enhances the discriminability of the extracted deep features in terms of age 

progression.  

4.1 Locality vs Sparsity 

Data locality information has proven to be important for the success of various pattern-recognition applications, e.g. 

density estimation [43], dimensionality reduction [44], and image classification [45]. Sparse Representation-based 

Classification (SRC) was used for face recognition under large occlusion and achieved state-of-the-art performances. 

However, is it enough, or essential, for resolving this kind of a problem? This query has recently been examined in [8], 

which concluded that exploitation of sparse information only is not enough to handle pattern recognition with large 

occlusion. 

As discussed before, data locality is more necessary than sparsity, as locality will also lead to sparsity for the resultant 

encoded coefficients, but not vice versa. By using locality information, codebook entries near the query input will be 

selected for the reconstruction of data samples. However, classification based on sparse representation minimizes the 

class-wise reconstruction error, so it may use codebook entries far away from the query input for reconstruction, and 

this is not desirable. According to the assumption made by the kNN classifier, those codebook entries far away from 

the input have less probability of belonging to the same class. The standard feature-encoding method [6], based on data 

sparsity, does not preserve the local structure of data samples during the encoding stage, but LLC [8] does. Like locality 

constraint, sparse coding also leads to a low reconstruction error by utilizing number of local bases from a learned 

codebook. However, the regularization term used in SC is not smooth. Furthermore, SC can select different bases for 

the similar data samples, which results in a loss of correlation between the codewords. The use of locality constraint 

ensures that the same or similar codewords for the images belonging to the same class will be used. Moreover, the 

optimization techniques required by SC are computationally expensive. This motivates us to propose a feature-
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encoding-based framework based on the locality constraint, which preserves the data structure and can achieve a better 

feature representation, and hence, enhances the recognition performance.  

4.2 Locality-based feature-encoding framework 

In this section, we present our feature-encoding framework based on the Euclidean locality adaptor to achieve a more 

compact and discriminative feature representation. We propose to encode the features by projecting each of them into 

its local coordinate system. Consider that 𝑀 feature vectors of dimension 𝐷 are extracted, which are represented as 

𝑭 = [𝒇1, 𝒇2, … , 𝒇𝑀] ∈ 𝑅
𝐷×𝑀. Firstly, a codebook 𝑾 with 𝑆 entries, i.e. 𝑾 = {𝒘1, 𝒘2, … ,𝒘𝑆}, is generated using 𝑘-

means clustering, which is then used to convert each local descriptor into a 𝑆-dimensional codeword for final image 

description. Our proposed feature-encoding approach focuses on the Euclidean locality constraint rather than the 

sparsity constraint. Our proposed locality-based objective function is defined as follows: 

                                                                               min
𝑾,𝑪
‖𝑭 −𝑾𝑪‖2 + 𝜆∑‖𝒍𝑘  ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

,                                                            (1) 

 s. t. 𝟏𝑇𝒄𝑘 = 1,                                                                         

where ⨂ represents the element-wise multiplication operator, 𝜆 is a regularization parameter, 𝒍𝑘 ∈ 𝑅
𝑆 represents the 

locality term that consists of a Euclidean adaptor, which provides freedom to each basis vector depending on its 

similarity to the given descriptor 𝒇𝑘. 𝑪 = [𝒄1, 𝒄2, … , 𝒄𝑀] is the set of codes for 𝑭.  

Each entry of the locality term 𝒍𝑘 can be defined as follows: 

                                                                           𝒍𝑘𝑠 = (𝜎
2 + ‖𝒇𝑘 −𝒘𝑠‖

2)−1  ,                                                           (2) 

where ‖𝒇𝑘 −𝒘𝑠‖
2 is the Euclidean distance between the deep-feature 𝒇𝑘 and the 𝑠th codebook entry 𝒘𝑠, and 𝜎 is a 

constant used to control the weight decay speed for the locality term. In our method, we choose 𝜎 = 0.5. The locality 

term in equation (2) is the Euclidean adaptor, which defines how local coding varies with respect to the distances 

‖𝒇𝑘 −𝒘𝑠‖. It utilizes the student 𝑡-distribution to provide a degree of freedom, such as Cauchy distribution. One of 

the major properties of the student 𝑡-distribution is that (𝜎2 + ‖𝒇𝑘 −𝒘𝑠‖
2)−1 follows an inverse square law when the 

pairwise distance ‖𝒇𝑘 −𝒘𝑠‖
2 is large. 𝒍𝑘 is further normalized to have a value between 0 and 1 by taking a difference 

between max (‖𝒇𝑘 −𝒘𝑠‖
2) and ‖𝒇𝑘 −𝒘𝑠‖

2. Local bases 𝒘𝑘 are selected for each feature descriptor, such that a local 

mailto:15902620r@connect.polyu.hk
mailto:enkmlam@polyu.edu.hk


10 

 

* Corresponding author 

Email addresses: 15902620r@connect.polyu.hk (M. Saad Shakeel) 

enkmlam@polyu.edu.hk (K.-M. Lam) 

 

 

coordinate system can be built. Local bases can be considered as the nearest neighbors of 𝒇𝑘, which lead to a more 

compact and simplified linear system for feature coding.  

To solve (1), we utilize the Lagrange multiplier, which is defined as follows: 

                                                 𝐿(𝒄𝑘 , 𝜂) = ‖𝒇𝑘 −𝑾𝒄𝑘‖
2 + 𝜆‖𝒍𝑘  ⨂ 𝒄𝑘‖2

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1).                                        (3)                                                    

Let 𝒀 = (𝒇𝑘𝟏
𝑇 −𝑾)𝑇(𝒇𝑘𝟏

𝑇 −𝑾) ∈ 𝑅𝑆×𝑆, which is symmetrical. Equation (3) can be rewritten as: 

                                                  𝐿(𝒄𝑘 , 𝜂) = 𝒄𝑘
𝑇𝒀𝒄𝑘 + 𝜆𝒄𝑘

𝑇diag(𝒍𝑘)
2𝒄𝑘 + 𝜂(𝟏

𝑇𝒄𝑘 − 1) ,                                          (4) 

where diag(𝒍𝑘) is a diagonal matrix. To determine the optimal solution of (4), its partial derivative is set to zero, which 

gives the following equation: 

                                                        
𝜕(𝐿(𝒄𝑘,𝜂))

𝜕(𝒄𝑘)
= 2𝒀𝒄𝑘 + 2𝜆diag(𝒍𝑘)

2𝒄𝑘 + 𝜂
𝑇𝟏 = 0 .                                                  (5) 

Let 𝚽 = 2(𝒀 + 𝜆diag(𝒍𝑘)
2), we have 

                                                                                 𝚽𝒄𝑘 + 𝜂𝟏 = 0  ,                                                                            (6) 

Multiply (6) by 𝟏𝑇Φ−1, the following equation is obtained: 

                                                                       𝟏𝑇𝚽−1𝚽𝒄𝑘 + 𝜂(𝟏
𝑇𝚽−1𝟏) = 0                                                          (7) 

According to the constraint 𝟏𝑇𝒄𝑘 = 1, 𝟏𝑇𝚽−1Φ𝒄𝑘 = 1, (7) becomes: 

1 + 𝜂(𝟏𝑇𝚽−1𝟏) = 0, 

                                                                              𝜂 = −(𝟏𝑇𝚽−1𝟏)−1.                                                                      (8) 

Putting 𝜂 in (8) into (6), we obtain the following equation: 

𝚽𝒄𝑘 = (𝟏
𝑇𝚽−1𝟏)−1𝟏. 

After some transformations, we have 

                                                                           𝒄𝑘 =
𝚽−1𝟏

𝟏𝑇𝚽−1𝟏
=

1

2
𝚽−1𝟏

𝟏𝑇(
1

2
𝚽−1𝟏)

.                                                                (9) 

In this way, we obtain the analytical solution of our proposed objective function, which is given as follows: 
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  �̃�𝑘 =
1

2
𝚽−1𝟏 = (𝒀 + 𝜆diag(𝒍𝑘)

2)−1𝟏, 

                                                                                 𝒄𝑘 = �̃�𝑘/(𝟏
𝑇�̃�𝑘).                                                                        (10) 

To update the codebook 𝑾, it needs to solve the following equation: 

                                                                          min
𝑾
‖𝑭 −𝑾𝑪‖2 + 𝜆∑‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

.                                                               (11) 

Let the objective function (11) be denoted as 𝓕(𝑾). Analytical solution of (11) can be derived by computing the partial 

derivative of 𝓕(𝑾) with respect to 𝒘𝑠 for 𝑠 ϵ {1,2,… , 𝑆}, which gives us the following equation: 

                                                                 
𝜕𝓕

𝜕𝒘𝑠
=∑−2𝑐𝑘𝑠(𝒇𝑘 −𝑾𝒄𝑘

𝑀

𝑘=1

) − 2𝜆𝑐𝑘𝑠
2 (𝒇𝑘 −𝒘𝑠)                                              (12) 

In an equivalent form, it can be written as: 

                                              (
𝜕𝓕

𝜕𝒘𝑠
)
𝑇

=∑(−2𝑐𝑘𝑠(1 + 𝜆𝑐𝑘𝑠)(𝒇𝑘)
𝑇 + 2(𝜆𝑐𝑘𝑠

2 𝒘𝑠
𝑇 + 𝑐𝑘𝑠∑𝑐𝑘𝑗𝒘𝑗

𝑇))

𝑆

𝑗=1

𝑀

𝑘=1

 .                     (13) 

To compute the global minimum of (11), we set the partial derivatives in (13) to zero. After setting the partial derivative 

of (11) to zero for 𝑠 = 1, 2, 3, … , 𝑆, we obtain 

                                                                                        𝑷𝑾𝑇 = 𝑸,                                                                           (14) 

where the matrices 𝑷 ∈ ℝ𝑆×𝑆 and 𝑸 ∈ ℝ𝑆×𝑑 are 

𝑷 = ∑

(

 

(1 + 𝜆)𝑐2𝑘1 𝑐𝑘1𝑐𝑘2 ⋯ 𝑐𝑘1𝑐𝑘𝑆
𝑐𝑘1𝑐𝑘2 (1 + 𝜆)𝑐2𝑘2 ⋯ 𝑐𝑘2𝑐𝑘𝑆
⋮ ⋮ ⋱ ⋮

𝑐𝑘1𝑐𝑘𝑆 𝑐𝑘2𝑐𝑘𝑆 ⋯ (1 + 𝜆)𝑐𝑘𝑆
2 )

 

𝑀

𝑘=1

, 

 

                                                                           𝑸 = ∑

(

 

𝑐𝑘1(1 + 𝜆𝑐𝑘1)(𝒇𝑘)
𝑇

𝑐𝑘2(1 + 𝜆𝑐𝑘2)(𝒇𝑘)
𝑇

⋮
𝑐𝑘𝑆(1 + 𝜆𝑐𝑘𝑆)(𝒇𝑘)

𝑇)

 .

𝑀

𝑘=1

                                                                   (15) 

 

 

mailto:15902620r@connect.polyu.hk
mailto:enkmlam@polyu.edu.hk


12 

 

* Corresponding author 

Email addresses: 15902620r@connect.polyu.hk (M. Saad Shakeel) 

enkmlam@polyu.edu.hk (K.-M. Lam) 

 

 

Algorithm 1: Codebook updating scheme (Training stage) 

Input:𝐖𝑖𝑛𝑖𝑡 ∈ 𝑅
𝐷×𝑆, 𝑭 ∈ 𝑅𝐷×𝑀, 𝜎, 𝜆 

Output: W 

1: 𝐖 ←𝐖𝑖𝑛𝑖𝑡  (Initialize the codebook using k-means) 

2: for 𝑘 = 1:𝑀 do 

3:    𝒍 ← 1 × 𝑆  (Locality constraint) 

4:    for 𝑘 = 1: 𝑆 do 

5:        𝒍𝑘𝑠 ← (𝜎
2 + ‖𝒇𝑘 −𝒘𝑠‖

2)−1   

6:    end for 

7:    𝒍 → 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(0,1)(𝒍) 

8:    Lagrange function to solve (1) 

       𝐿(𝒄𝑘 , 𝜂) = ‖𝒇𝑘 −𝑾𝑐𝑘‖
2 + 𝜆‖𝒍𝑘  ⨂ 𝒄𝑘‖2

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1) 

       𝒄𝑘 = �̃�𝑘/(𝟏
𝑇�̃�𝑘) Eqs. (3) − (10) (Analytical solution) 

9:    Codebook Updating: 

(
𝜕𝓕

𝜕𝒘𝑠
)
𝑇

=∑(−2𝑐𝑘𝑠(1 + 𝜆𝑐𝑘𝑠)(𝒇𝑘)
𝑇 + 2(𝜆𝑐𝑘𝑠

2 𝒘𝑠
𝑇 + 𝑐𝑘𝑠∑𝑐𝑘𝑗𝒘𝑗

𝑇))

𝑆

𝑗=1

𝑀

𝑘=1

 

10: 𝑷𝑾𝑇 = 𝑸   

11: end for 

12: Updated Codebook W 

Finally, the updated codebook can be obtained by solving the system of linear equation (14). Therefore, the optimal 

solutions for encoding the parameters 𝑪 and the codebook 𝑾 are obtained. This kind of iterative process is known as 

coordinate descent method. In this process, we optimize 𝑪(𝑾) based on the existing value of 𝑾(𝑪), alternately. The 

solutions of both 𝑪 and 𝑾 are unique, and their sequences also converge to stationary points. In the encoding stage, 

when codebook 𝑾 is fixed, we derive the analytical solution of 𝑪 using (10). Similarly, during the codebook-updating 

process, the closed form solution of 𝑾 is derived using (14). The training process is illustrated in Algorithm 1. During 

the testing stage, each query face image’s feature is encoded using the learned codebook 𝑾. Our experiments also 

show that, by encoding features at different ages using locality constraint, we can obtain more discriminative feature 

representation for age-invariant face recognition. The testing process is illustrated in Algorithm 2.  

4.3. Important Properties 
 

• In sparse coding, an input feature can be linearly represented in terms of an overcomplete dictionary, which is 

learned by using a 𝑙1-minimization technique. By incorporating locality information, higher weights are only given 
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to those codebook entries, which are close to the input feature vector. However, this property does not hold for 

sparse coding. 

• In sparse coding, non-zero sparse coefficients can be obtained for more than one class (subject), especially in the 

presence of noise. This can lead towards the sharing of dissimilar bases for the images of the same subject. 

However, locality constraint ensures the sharing of similar bases for the images of the same subject.  

• It is computationally efficient, as only a few codebook entries (nearest neighbours) are selected for feature 

encoding, that makes it useful, in practical terms.  

  

Fig.4. Training Stage of our proposed framework. 

5. Feature Fusion using CCA 

Codebook learning is the most important and critical step of our proposed algorithm. To recognize faces across 

different ages, the learned codebook must be discriminative in terms of age progression. To do this, we perform feature-

level fusion using CCA. There are different ways to fuse the features. The simplest way is by computing the z-score, 

which is done by normalizing the two feature vectors and then concatenating them to create a high-dimensional feature 

vector. The major disadvantage of this method is that it does not take the correlation between the two features into 

account. In our algorithm, features are extracted and encoded at different ages. Features of the same person at different 
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ages should have a certain degree of correlation. Therefore, we first project the features of the training image’s pairs 

into a coherent feature subspace and then concatenate them to form the final feature vector. This concatenated feature 

vector is used to learn a discriminative codebook. 

Given two sets of training features, with each pair extracted from images of the same subject but at different ages, 

denoted as 𝑭𝑎𝑔𝑒1, and 𝑭𝑎𝑔𝑒2, we employ CCA to learn the pairs of directions 𝜶 and 𝜷, which maximize the correlation 

among the two aging features, such that 𝒒𝑗
1 = 𝜶𝑇𝑭𝑎𝑔𝑒1 and 𝒒𝑗

2 = 𝜷𝑇𝑭𝑎𝑔𝑒2, where 𝑭𝑎𝑔𝑒1 and 𝑭𝑎𝑔𝑒2 are the features 

extracted from a younger and an older images, respectively. 𝒒𝑗
1 and 𝒒𝑗

2 are the projected training image’s features. 𝜶 

and 𝜷 can be computed by maximizing the following function. 

                                                                            𝐾(𝜶, 𝜷) =
𝜶𝑇𝑪𝑥𝑦𝜷

√𝜶𝑇𝑪𝑥𝑥𝜶.𝜷
𝑇𝑪𝑦𝑦𝜷

,                                                                     (16) 

where 𝑪𝑥𝑥 and 𝑪𝑦𝑦 are the covariance matrices of 𝒒𝑗
1 and 𝒒𝑗

2, respectively, while 𝑪𝑥𝑦 is the cross-variance matrix. 

After solving (16), 𝜶 and 𝜷 are the eigenvectors of 𝑪𝑥𝑥
−1𝑪𝑥𝑦𝑪𝑦𝑦

−1𝑪𝑥𝑦
𝑇 , and 𝑪𝑦𝑦

−1𝑪𝑥𝑦
𝑇𝑪𝑥𝑥

−1𝑪𝑥𝑦, respectively.                         

Algorithm 2: Feature encoding using a learned Codebook (Testing Stage) 

1: Input: 𝑾𝑠 for 𝑠 ∈ {1,2,… , 𝑆}, 𝒒 be a feature of a query image.  

2: for k = 1 : 𝑁𝑘𝑛𝑛 do       (𝑁𝑘𝑛𝑛 is number of nearest neighbors (number of local bases selected from the codebook)) 

3: The Euclidean locality adaptor 𝒍𝑘 is computed 

    𝒍𝑘𝑠 = (𝜎
2 + ‖𝒒 −𝒘𝑘𝑠‖

2)−1   

4: Solve Equation (1) to obtain the analytical solution 

     min
𝒄𝑘
‖𝒒 −𝑾𝑘𝒄𝑘‖

𝟐 + 𝜆‖𝒍𝑘 ⨂ 𝒄𝑘‖2
2  

     𝜷𝑘 = (𝒀𝑘 + 𝜆diag(𝒍𝑘)
2)−1𝟏 

      𝒄𝑘 = 𝜷
𝑘/(1𝑇𝜷𝑘) 

     where 𝒀𝑘 = (𝒒𝟏
𝑇 −𝑾𝑘)

𝑇(𝒒𝟏𝑇 −𝑾𝑘) 

5: Similarly, encoding gallery image’s features using Step (4). Denote the set of codewords obtained for all the gallery 

features as 𝑮𝑘.  

6: Compute the coefficient vector 𝜸𝑘 using Equation (17).   

7: Compute the residuals 𝑟𝑘(𝒒) = ‖𝒄𝑘 − 𝑮𝑘𝜸𝑘‖ 

8:  end for  

9:  identity(𝒒) = argmin
𝑘
𝑟𝑘(𝒒)     
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Fig.5. Testing stage of our proposed framework. 

 

6. Feature Matching using Linear Regression 

In order to determine the similarity between the encoded gallery and the query images’ features, we utilize a linear 

regression model [13]. The assumption is that the features of different samples lie in a linear subspace, so a query face 

image can be represented as a linear combination of all its face images in the gallery. The relationship between the 

query (test) and gallery sample is determined by a coefficient vector 𝜸. The vector is estimated by using the least-

squares method. It is also considered as a prediction problem having a solution based on a regression framework. If a 

query image 𝒒 belongs to the 𝑘th class, then there must exist a linear relationship between this query image and the 

gallery samples 𝑿𝑘 from the same class, which is defined as follows: 

                                                                                       𝒒 = 𝑿𝑘𝜸𝑘 ,                                                                            (17) 

After estimating the coefficient vector 𝜸, the corresponding residual values are computed. The decision will be in favor 

of the gallery image, that has the minimum distance to the query image. Mathematically, it can be written as: 

                                                                          𝑗 = min
𝑘
‖𝒒 − 𝑿𝑘𝜸𝑘‖.                                                               (18) 

mailto:15902620r@connect.polyu.hk
mailto:enkmlam@polyu.edu.hk


16 

 

* Corresponding author 

Email addresses: 15902620r@connect.polyu.hk (M. Saad Shakeel) 

enkmlam@polyu.edu.hk (K.-M. Lam) 

 

 

Fig.5. shows the flowchart for the testing framework.  

            

(a)     

            

                                                              (b) 

Fig.6. Sample images with age variations, where each row represents the face images of the same person. (a) MORPH data set, and (b) LAG data 

set. 

7. Experimental Results and Analysis 

Creating a data set with a large age variation is a difficult task. Currently, only a few aging datasets are available, 

which limits the research on age-invariant face recognition. For comprehensive analysis of our proposed AIFR 

algorithm, face datasets should have the following attributes: (1) many samples per subject, (2) significant age 

variations among the images of the same person, and (3) images must be taken in unconstrained environments. The 

performance of our proposed method is evaluated by conducting extensive set of experiments on three challenging 

face-aging data sets: FGNET [46], MORPH [47], and LAG datasets [48]. There are large variations of pose, expression, 

and lighting conditions in these data sets. For all the three data sets, we first locate the face region in an image using 

the Viola-Jones face detector [49], and then resize the face region to 227 × 227 pixels. In addition to the Linear 

Regression (LR)-based classifier, we also utilize the Nearest Neighbor (NN) classifier for feature matching. We also 

evaluate the performance of our proposed feature-encoding framework by fusing two efficient local features, namely 

Densely sampled Scale Invariant Feature Transform (DSIFT) [50] and Local Binary Pattern Difference Feature (LBPD) 

[51]. Furthermore, we also evaluate the performance of our proposed method after removing outliers using the Hampel 

filter [52]. The details regarding the outlier’s detection and removal will be explained later in this Section.    
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7.1 Experimental Results on the FGNET Database 

FGNET is a challenging data set, containing 1,002 images of 82 subjects taken at different ages, with the minimum 

age of 0 (less than 12 months), and maximum being 69. Due to the small number of subjects, more images per subject 

are available. In addition to aging variations, images in this data set also contain large variations in terms of expression, 

illumination, and pose. For experiments, we follow the same protocol as used in [32, 33], and use the leave-one-out 

scheme for performance evaluation. We compare our method with various state-of-the-art AIFR methods. These 

include: (1) the 3D age modeling technique for age estimation and recognition [28]; (2) a discriminative model for 

AIFR [32]; (3) hidden factor analysis [33], which represents face images with the identity and age components; (4) the 

maximum entropy feature descriptor [34]; and (5) deep-learning approach based on latent factor guided convolutional 

neural networks [38]; (6) the method based on the coupled auto-encoder network [40]; and (7) the identity-inference 

model [37], which has achieved the highest recognition rate so far on this most challenging face aging data set. From 

Table 1, we can observe that our proposed feature-encoding-based discriminative model clearly outperforms other 

AIFR methods and achieves the highest rank-1 recognition rate.  

TABLE 1 

Comparative results in terms of the Rank-1 recognition rate on the FGNET dataset. 

Algorithms Rank-1 Recognition rates 

Park et al. [28] 37.4% 

Li et al. [32] 47.5% 

Gong et al. [33] 69.0% 

MEFA [34] 76.2% 

CNN-baseline  84.4% 

LF-CNN [38] 88.1% 

Xu et al. [40] 86.5% 

AG-IIM [37] 88.23% 

Proposed Method (DSIFT+LBPD) + NN 90.48% 

Proposed Method (DSIFT+LBPD) + LR 89.13% 

Proposed Method (Deep features) + NN 91.46% 

Proposed Method (Deep features) + LR 90.24% 

Proposed Method (Deep Features) + NN (Hampel) 92.23% 

Proposed Method (Deep Features) + LR (Hampel) 91.20% 

7.2 Experimental Results on the MORPH Database 

We also conducted experiments on one of the largest publicly available face-aging data set, i.e. MORPH Album 2. 

This data set contains 78,000 face images from 20,000 subjects. The number of images per subject are small (around 
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4 images per person) due to the availability of large number of subjects. We divide the data set into a training set and 

a testing set. The training data, used to learn a codebook for feature encoding, contains 20,000 images from 10,000 

distinct subjects (2 images per person), with the large age difference. For testing, a gallery set, and a probe set are 

constructed from the other 10,000 subjects; the probe set consists of 10,000 face images of the oldest age of the subjects, 

while the gallery set consists of 10,000 face images of the youngest age. The age gap in this data set is 5-6 years. In 

the experiments, we choose the images with largest age difference between the gallery and probe set. We compared 

our method with various state-of-the-art conventional and deep-learning-based AIFR methods. Comparative results are 

tabulated in Table 2, which shows that our method significantly outperforms other state-of-the-art AIFR methods and 

achieves the highest recognition rate. Sample face images from this data set are shown in Fig.6 (a).  

TABLE 2 

Comparative results in terms of the Rank-1 recognition rates on the MORPH database (Album 2). 

Algorithms Rank-1 Recognition rates 

Park et al. [28] 79.80% 

Li et al. [32] 83.90% 

Gong et al. [33] 91.14% 

MEFA [34] 92.26% 

CARC [35] 92.80% 

HOG+LPS [36] 94.20% 

LPS [36] + Gong et al. [33] 94.87% 

LF-CNN [38] 97.51% 

AG-IIM [37] 95.62% 

AFJT-CNN [39] 97.85% 

Li et al. [41] 93.60% 

Proposed Method (DSIFT+LBPD) + NN 96.06% 

Proposed Method (DSIFT+LBPD) + LR 96.50% 

Proposed Method (Deep features) + NN 97.93% 

Proposed Method (Deep features) + LR 98.00% 

Proposed Method (Deep Features) + NN (Hampel) 98.43% 

Proposed Method (Deep Features) + LR (Hampel) 98.67% 

7.3 Experimental Results on the LAG Database 

The Large Age-Gap (LAG) data set [48] was recently released for studying the cross-age face-recognition problem. 

All the images were taken in the wild, with a very large age difference (0-80) yrs. The data set is created using a Google 

search. It consists of 3,828 images from 1,010 identities. At least one child and one adult image are available for each 

identity. Sample face images from this data set are shown in Fig. 6 (b). For performance evaluation, we utilize a two-

fold cross validation scheme. Subjects are alternatively assigned to the first and the second fold, and then the average 
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recognition accuracy is computed. The training set is formed by flipping the images in horizontal and vertical 

directions. The vertically flipped images are further rotated horizontally. There are 8 images of each subject in the 

training set. The performance of our proposed method is compared with the state-of-the-art high-dimensional LBP 

feature [53], and some similarity metric learning methods, such as Cosine similarity [54], one shot similarity kernel 

(OSS) [55], Joint Bayesian [56], and sub-SML [57]. It should be noted that all these similarity metric learning methods 

used the 𝑓𝑐7 features extracted from DCNN [9] (trained on the CASIA-Web Face dataset [58]). Results are tabulated 

in Table 3.  

TABLE 3 

Comparative results, in terms of the Rank-1 average recognition rates, on the LAG database. 

Algorithms Rank-1 Recognition rates 

DCNN [9] + SML [57] 72.43% 

DCNN [9] + OSS [55] 66.42% 

DCNN [9] + Cosine Similarity [54] 65.08% 

DCNN [9] + Joint Bayesian [56] 66.33% 

DCNN [9] + CARC [35] 74.82% 

HDLBP [53] 71.53% 

Bianco et al. [48] 84.95% 

Proposed Method (DSIFT+LBPD) + NN 79.88% 

Proposed Method (DSIFT+LBPD) + LR 80.00% 

Proposed Method (Deep features) + NN 91.00% 

Proposed Method (Deep features) + LR 89.44% 

Proposed Method (Deep Features) + NN (Hampel) 91.63% 

Proposed Method (Deep Features) + LR (Hampel) 90.50% 

7.4 Parameter Settings  

To perform comprehensive analysis of our proposed discriminative model, we evaluate the performance of our 

algorithm with respect to the number of nearest neighbors selected as the local bases of the codebook, as described in 

Section 4. As discussed previously, the codebook is first generated by using k-means clustering. As the results on the 

FGNET data set are evaluated using the leave-one-out scheme, we initialize the codebook with 𝑁 − 1 entries, where 

𝑁 is the number of subjects in the data set. The computational complexity of the algorithm depends on the number of 

nearest neighbors of the feature descriptor 𝒇𝑘, which can also be considered as the local bases 𝒘𝑘. A small number of 

neighbors will lead to faster computation.  
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To search the nearest neighbors, the 𝑘NN search approach based on the hierarchical model [59] is utilized. The 

approach quantizes each descriptor into 𝑃 subspaces. A codebook is then applied for each subspace. For the FGNET 

data set, we measured the recognition rates with different numbers of nearest neighbors, from 50 to 150, and the results 

are shown in Fig. 10(b). When we increase the number of neighbors, the recognition rate also increases. With the FG-

NET data set, the highest recognition rate obtained is 91.46%, by searching for 150 nearest neighbors to form the local 

bases in the computation of the codes. For the MORPH data set, recognition results are recorded with different numbers 

of nearest neighbors, ranging from 20 to 150, as shown in Fig. 11(b). The highest recognition rate obtained is 98.00%, 

which is slightly better than the deep-learning-based method [39]. It is found that the modeling capacity can be greatly 

improved by using a larger codebook. For the LAG data set, the highest recognition rate of 89.44% is achieved, using 

the linear-regression (LR)-based classifier. The parameter 𝜎 in Equation (2) is set to 0.5. The value of 𝜎 controls the 

locality error of the encoding scheme. Theorem 2 in [60] shows that locality error reduces, as the value of 𝜎 decreases. 

Therefore, the value of 𝜎 must be as small as possible. In our experiments, we vary the value of 𝜎 from 0.1 to 0.7 and 

found that 𝜎 = 0.5 gives the best recognition performance. The choice of the parameter 𝜆 in Equation (1) can be well 

explained by Equation (10). It is worth noting that the matrix 𝒀 is symmetric as well as semi-positive. If 𝒀 becomes 

singular or close to singular, the matrix 𝒀 + 𝜆diag(𝒍𝑘)
2 is still conditioned. The reason for this is that 𝜆diag(𝒍𝑘)

2 

penalizes large distances and captures the correlation among the data samples. By choosing 𝜆 < 10−6, the matrix 

becomes singular or close to singular, which will produce inaccurate results. Experiments show that 𝜆 = 0.001 

provides the optimal recognition results. Moreover, the performance of our method is also evaluated on all the three 

data sets, using deep features of different dimensions, and results are tabulated in Figs. 10, 11, and 12(a), respectively. 

In addition to this, we also evaluated the face-recognition performance, with and without performing the proposed 

feature-encoding scheme. The results using the nearest neighbor (NN) classifier and the linear regression (LR) classifier 

are shown in Fig. 7. It can be observed that our proposed feature-encoding framework boosts the recognition accuracy 

by 20-35%.  

As discussed before, CCA enhances the correlation among the images of the same subject taken at different ages. 

To evaluate the superiority of CCA for feature fusion, we perform the comparative analysis of CCA-based feature 

fusion with simple concatenation of the two features. Experimental results are reported for all the three datasets with 
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optimal feature dimensions and the number of nearest neighbors used for feature encoding. Fig. 8 shows the 

corresponding comparative analysis. It can be observed that the feature-fusion framework based on CCA brings a 

significant improvement in recognition rate.  

 

Fig.7. Recognition rates with and without performing feature encoding for all the three data sets at the corresponding optimal feature dimensions.  

 

 

Fig.8. Recognition rates with and without performing feature fusion using CCA for all the three data sets at the corresponding optimal feature 

dimensions.  

Another important parameter of our proposed framework is the number of image pairs per person, which are used 

for the CCA pairwise training. For the FGNET data set, 10 images per subject are available. Therefore, we divide these 
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images into two subsets, with 5 images each, and then use them for CCA training. One subset consists of those younger 

images, while the other one contains the older images. As the performance on the FGNET data set was evaluated using 

the leave-one-out cross validation scheme, we used 81 image pairs for training. For the MORPH data set, 10,000 image 

pairs were used. The training set consists of 10,000 subjects, with the two images having the largest age difference for 

each subject. Images of each subject were divided equally into two subsets for pairwise CCA training. For the LAG 

data set, the two-fold scheme was used for performance evaluation. For training, we selected eight images per subject, 

with a large age difference. As the total number of subjects in this dataset was 1,010, we used 505 image pairs for CCA 

training in each fold. 

 

Fig.9. Comparative analysis with respect to LLC [8] at the optimal feature dimensions and number of nearest neighbors.  

7.5. Difference from LLC 
 

In this section, we will explain the major differences between the proposed feature encoding scheme and LLC [8]. 

LLC provides an approximated solution by using different constraints. One of the constraints used by LLC is the norm-

bounded constraint ‖𝒘𝑠‖2 ≤ 1, where each codebook entry is required to have a unit length. However, we found that 

this constraint is not essential in the codebook learning process, due to two main reasons. First, due to the locality 

constraint, the length of columns of 𝑾 cannot be large. Second, better optimized values can be obtained for the 

proposed objective function, due to the smaller number of constraints. By removing this constraint, we can obtain a 

better optimized codebook that better incorporates the local structure of the data samples. This results in an improved 

classification performance. Moreover, we can also obtain the closed-form solutions for both the sparse coding phase 

and the codebook updating stage. Our proposed algorithm directly minimizes  ∑ 𝑓(𝑾, 𝒇𝑘)
𝑀
𝑘=1 , while LLC [8] 
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minimizes 𝑓(𝑾, 𝒇𝑘), when the feature 𝒇𝑘 is drawn from 𝑭, and hence provides an approximated form of the objective 

function. Another major difference is that LLC does not incorporate the locality information during the process of 

codebook optimization. However, our method uses the locality information during both the codebook-updating and 

encoding stages. Furthermore, we compare our proposed method with LLC in terms of recognition rate. To obtain the 

optimal performance from LLC, we keep the parameters the same as those described in the original LLC paper. After 

the process of deep feature extraction and fusion, we employ the LLC algorithm to encode the features. The 

comparative results are shown in Fig. 9. It can be observed that our proposed feature encoding scheme outperforms 

LLC in terms of recognition rates and achieves superior performance. 

            
                         (a)                                                                                                      (b) 

Fig.10. Recognition rates obtained on the FGNET data set. (a) Feature dimensions with 150-NN, and (b) Number of nearest neighbors (40-D 

features). 

 

         
                                                                 (a)                                                                                                         (b) 

Fig.11. Recognition rates obtained on the MORPH data set. (a) Feature dimensions with 150-NN, and (b) Number of nearest neighbors (40-D 

features). 
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                     (a)                                                                                                           (b) 

Fig.12. Recognition rates obtained on the LAG data set. (a) Feature dimensions with 150-NN, and (b) Number of nearest neighbors (40-D 

features). 

 

7.6.   Outlier Detection and Removal 

In the feature matching stage, there may exist some outliers in the gallery set, which can create problems in learning 

the relationship between the gallery and the probe images. Therefore, it is better to first detect and remove the outliers 

from the gallery set. In order to detect and remove the outliers, we utilize the Hampel filter [52]. In this regard, an 

image is first transformed into the frequency domain using Fast Fourier Transform (FFT), and then Hampel identifier 

is used to detect outliers in both the real and imaginary spectra. The detected outliers are replaced by the interpolated 

values, and then the clean spectrum is transformed into the original domain using inverse Fourier transform. The 

outliers are identified by first computing the median of a window consisting of the sample and its six neighboring 

samples, three on each side. In the second step, the standard deviation is computed with respect to the median of the 

window using the Median Absolute Deviation (MAD). If the difference between the sample and the mean exceeds 

three times the standard deviation, then it will be replaced by the median. The only tuning parameter in this filtering 

operation is the 𝑚 neighbors in the measurement window. In our experiments, we set 𝑚 = 4, which provides the 

optimal performance. The number of outliers identified in the FGNET, MORPH, and LAG dataset are 0.36%, 4.18%, 

and 0.44%, respectively. In this paper, those outliers are denoted as internal outliers. After removing these outliers 

using the Hampel filter, 0.2-0.6% improvement in recognition rate is observed. To further evaluate the robustness of 

our proposed method, we manually add outliers to the gallery set, which are called external outliers. The outliers are 

samples, which are a certain multiple of the standard deviation from the mean. Mathematically, it can be written as 

𝑚𝑒𝑎𝑛 (𝐺𝑎𝑙𝑙𝑒𝑟𝑦) + (𝑘 × 𝑆𝑡𝑑). In our experiments, we set 𝑘 = 4. The number of outliers in FGNET, MORPH, and 
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LAG are increased to 4.27%, 9.02%, and 1.25%, respectively. After adding the outliers, we first compute the 

recognition rate without using the Hampel filter. We observed that our proposed method shows high robustness even 

against the large number of outliers. For all the three datasets, only 4-5% decline in recognition rate is observed. In the 

second phase, we apply the Hampel filter for removing the added outliers, which also provides promising results. Fig. 

13 shows the recognition rates of our proposed method, with and without using the Hampel filter for both internal and 

externally added outliers. The recognition results are reported at the optimal feature dimensions and the optimal number 

of nearest neighbors used for encoding.    

   

Fig.13. Recognition rates with and without using the Hampel filter, in the presence of internal, as well as externally added outliers, where Hampel 

(I) and Hampel (EO) represent the outlier removal operation for internal and external outliers, respectively.  

7.7 Overall Benchmark Comparison 

In our experiments, the performance of our proposed method is compared with state-of-the-art aging face recognition 

methods. For the MORPH Album 2 data set, all the methods compared have the same settings as those used in their 

original literature, and the same protocol is used for the training set and the testing set. 10,000 pairs of face images are 

used for training, while the remaining subjects are used for testing. FGNET is one of the most challenging data sets for 

aging-face recognition. All the images were taken in the wild, with the age gap of 0-45 years. Our proposed method 

achieves the highest rank-1 recognition rate on this data set, which is 91.46% by using deep features. Recognition 

results were recorded using the NN classifier and the LR-based classifier. It is worth noting that in our proposed 

algorithm, the closed-form solution for 𝑾 can be derived using (14), in which the matrix 𝑷 is positive definite. On the 

other hand, analytical solution of 𝑪 can be obtained as shown in (10). Our proposed algorithm is also computationally 

efficient as it does not need to solve the 𝑙1 minimization problem.  



26 

 

 

      

                                                        (a)                                                                                            (b) 

Fig. 14. Visualization of the learned features before and after encoding using t-SNE. (a) before encoding and (b) after encoding.  

7.8 Better Reconstruction 

According to the sparse-coding theory, each feature can be represented as a sparse linear combination of codewords 

for reconstruction. However, it is sensitive to feature variance, which may lead to selecting codewords far away from 

the input test feature in reconstruction. In this way, two similar features may select different codewords. Conversely, 

our method is based on locality information in searching the nearest neighbors, so only the codebook entries near to 

the input (test) feature are selected, and the selected local visual codewords can achieve better feature reconstruction. 

In other words, locality constraint ensures that the features of the same person at different ages have the same 

codewords. Learning the codebook with the locality adaptor offers the following advantages: (1) non-smooth 

optimization can be avoided due to the use of a smooth objective function, and (2) codebook size with locality adaptor 

has nothing to do with the data’s dimension. For better understanding of our proposed feature encoding framework, 

we visualize the deep features, obtained before and after encoding, using t-distributed Stochastic Neighbor Embedding 

(t-SNE) [61]. For visualization, we randomly selected 10 subjects, each with 7 images from the LAG dataset. Fig. 14 

shows the deep features learned before and after applying our encoding framework. The encoded features are well 

separated in the feature subspace. In other words, features of the same identity are represented by the same or similar 

codewords.  

7.9 Robustness to Noise Variations 

In face recognition, a query face image may suffer from noise, due to various factors, such as environmental 

conditions, transmission errors, etc. These noise variations degrade the performance of face recognition systems. In 
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this section, we evaluate the performance of our proposed method with respect to noise variations. Previously proposed 

methods [33, 34, 40] first decompose a face image into identity, aging, and noise components, and then use the identity 

component for recognition. Xu et al. [40] proposed a coupled autoencoder to eliminate the noisy component from input 

images, and then performed recognition. It is worth noting that these methods only consider the inherent noise in 

images, not the externally added noises, such as Gaussian noise, salt & pepper, etc.  

                                                       (a)                                                       (b)                                                        (c)

Fig. 15. Original images and noisy images obtained after adding Gaussian noise. (a) FGNET, (b) MORPH, and (c) LAG data sets. 

 

Fig. 16. Recognition rates of our proposed method on all the three data sets, with and without noise variations.  

To evaluate the robustness of our algorithm against noise variations, we add external Gaussian noise into the probe 

face images. The added Gaussian noise affects 30% of the pixels in each probe image. Our experimental results show 

the robustness of our proposed method in the presence of noise variations. Only a 3-4% drop in recognition performance 

is observed for the MORPH and LAG data sets. However, a 20-25% drop in recognition rate is observed for the FGNET 

data set. The reason for this is that some images in the FGNET data set are of very poor quality, especially those 

childhood images. On the other hand, face images in the MORPH and LAG data sets have better visual quality, as 

compared to the FGNET data set. This problem can be solved by using some denoising filters, prior to feature 

extraction. Images obtained, after adding external Gaussian noise, are shown in Fig. 15. Fig. 16 shows the recognition 

results of our proposed method, with and without noise variations, using the NN and the LR-based classifiers [13].  
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7.10  Computational Complexity Analysis 

 

Our proposed method consists of three major parts, which are: (1) feature fusion using CCA, (2) codebook learning, 

and (3) feature encoding. In this section, we will evaluate the computational time of these three learning stages. As 

discussed before, the computational complexity of the feature-encoding stage depends on the number of nearest 

neighbors selected for encoding. Therefore, we report the results using the corresponding optimal feature dimension 

and the number of nearest neighbors for all the three datasets. Table 4 shows the computation times in seconds for both 

the feature-fusion and the codebook-learning processes.  The computational complexity with the FGNET dataset is 

much lower than the MORPH and LAG data sets, as the size of the training set is small. The training set based on the 

MORPH and LAG data sets consist of 20,000 and 4,000 images, respectively. For the MORPH data set, the results are 

reported with a feature dimension of 40, and 150-NN. For the LAG data set, the results are reported with a feature 

dimension of 40, and 100-NN. Table 5 tabulates the computation times in seconds of performing feature encoding for 

the whole testing set, and a single testing image.  

TABLE 4 

Computation time in seconds for the two stages of learning (Training).  

Data set Feature Fusion using CCA Codebook Learning 

FGNET 0.011s 0.88s 

MORPH 0.264s 54.80s 

LAG 0.120s 16.10s 

TABLE 5 

Computation time in seconds of performing feature encoding for all the three datasets (Testing).  

Data set Feature encoding (single image) Feature encoding (Whole data set) 

FGNET 0.0029s 0.12s 

MORPH 0.0096s 9.60s 

LAG 0.0052s 0.26s 

7.11 Comparison with Local Feature Descriptors 

We also evaluate our proposed feature-encoding framework using two local feature descriptors, namely DSIFT [50] 

and LBPD [51]. To extract local features, each face image is divided into non-overlapping patches, and the selected 

feature descriptors are extracted from each of the patches. The extracted features are then concatenated to create a high-
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dimensional feature vector. In our proposed method, we perform dense sampling of the SIFT feature descriptors from 

the whole face image, which is equivalent to placing a regular grid on a face region as shown in Fig. 17.  

 

Fig.17. Placement of a regular grid on a face image using DSIFT. 

Better recognition performance can be achieved by extracting information from dense grids, instead of a few sparse 

key points. In this way, we can extract the information about the distribution of edge directions in the entire face region, 

which has been proved to be age-invariant discriminant information in [32].  

 

Fig. 18. Recognition rates with different feature dimensions using local feature descriptors (DSIFT+LBPD), with 150 nearest neighbors. 

Recently, a numerical variant of LBP [51], known as LBPD, was proposed, which offers several advantages over 

LBP. The LBPD feature is computed by taking the difference between the LBP codes and its corresponding mean of a 

given local region. After extracting these two local features, we concatenate them to form a final feature vector, which 

is of very high dimensionality. To reduce the feature dimension, PCA is employed, before performing our proposed 

feature-encoding method. Recognition rates with different feature dimensions for all the three data sets are shown in 

Fig. 18. It is observed that our method can obtain state-of-the-art performance with local feature descriptors but there 
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are some drawbacks. First, the DSIFT feature is computationally expensive, as it requires computing the gradient for 

each pixel. Second, the handcrafted features are sensitive to noise, and their performance heavily depend on the 

preprocessing of face images. 

8. Conclusion 

In this paper, we have proposed a robust feature-encoding-based discriminative model for age-invariant face 

recognition. Our method extracts high-level deep features using a pre-trained Deep-CNN model (AlexNet), and then 

performs feature encoding by using a Euclidean locality adaptor. By using the locality information, we can obtain 

closed form solutions for both the sparse-coding phase and the codebook updating stage. It can be observed that the 

utilization of locality information during the codebook-updating process better incorporates the local structure of the 

data samples, and provides improved classification performance. We also show that the utilization of the norm-bounded 

constraint ‖𝒘𝑠‖2 ≤ 1 is not essential for the codebook learning process. By using a lesser number of constraints, better 

optimized values can be obtained. Furthermore, using CCA for feature fusion takes into consideration the correlation 

among the features of the same person at different ages. This helps in learning a codebook insensitive to aging 

variations. At the testing stage, the query and gallery image’s features are encoded using a learned codebook, with very 

low computational complexity. Our proposed method encodes the identity of the same person at different ages using 

the same or similar codewords. Experiment results on three challenging face-aging data sets show that our method 

outperforms the state-of-the-art age-invariant face recognition methods, and obtains the highest recognition accuracy. 

In our future work, we will focus on designing a new convolutional layer, which can be embedded into the feature 

extraction network to realize both feature fusion and codebook learning in an end-to-end manner. Therefore, the 

optimization of feature representation and feature fusion can be achieved at the same time and the correlated 

complementary information between the two steps can be maximized. 
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