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Abstract

This paper shows that pairwise PageRank orders emerge from two-hop walks.

The main tool used here refers to a specially designed sign-mirror function

and a parameter curve, whose low-order derivative information implies pair-

wise PageRank orders with high probability. We study the pairwise correct

rate by placing the Google matrix G in a probabilistic framework, where G

may be equipped with different random ensembles for model-generated or real-

world networks with sparse, small-world, scale-free features, the proof of which

is mixed by mathematical and numerical evidence. We believe that the underly-

ing spectral distribution of aforementioned networks is responsible for the high

pairwise correct rate. Moreover, the perspective of this paper naturally leads

to an O(1) algorithm for any single pairwise PageRank comparison if assuming

both A = G− In, where In denotes the identity matrix of order n, and A2 are

ready on hand (e.g., constructed offline in an incremental manner), based on

which it is easy to extract the top k list in O(kn), thus making it possible for

PageRank algorithm to deal with super large-scale datasets in real time.
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1. Introduction

The PageRank algorithm and related variants have attracted much attention

in many applications of practical interests [1, 2, 3], especially known for their

key role in the Google’s search engine. These principal eigenvector (the one

corresponding to the largest eigenvalue) based algorithms share the same spirit

and were rediscovered again and again by different communities from 1950’s.

PageRank-type algorithms have appeared in the literatures on bibliometrics

[4, 5, 6], sociometry [7, 8], econometrics [9], or web link analysis [10], etc. Two

excellent historical reviews on this technique can be found in [11, 12].

Regardless of various motivations, this family of algorithms stand on the

similar observations: an entity (person, page, node, etc) is important if it is

pointed by other important entities, thus the resulting importance score should

be computed in a recursive manner. More precisely, given a n-dimensional

matrix G with its element gij encoding some form of endorsement sent from

the jth entity to the ith entity (both G and the transpose of G are alternately

used in literatures, but which introduces no essential difference. Here, the former

is adopted for convenience), then the importance score vector r is defined as the

solution of the linear system:

Gr = r. (1)

However, some constraints are required for G such that there exists an unique

and nonnegative solution in (1). In the PageRank algorithm, G is constructed

by [10, 13]

G = α(Ĝ + udT ) + (1− α)v1T , (2)

where Ĝ is the column-normalized adjacent matrix of the web graph, i.e., the

(i, j)th element of Ĝ is one divided by the outdegree of the jth page if there

is an link from the jth page to the ith page (zero otherwise), 1 is the all-ones

vector, d is the indicator vector of dangling nodes (those having no outgoing

edges), u and v are nonnegative and have unit l1 norm (known as the dangling-

node and personalization vectors, respectively. By default u = v = 1/n), and

α ∈ [0, 1) is the damping factor (had better not be too close to 1. Usually
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α = 0.85 by default) for avoiding the “sink effect” caused by the modules with

in- but no out-links [14]. Then, it is easy to verify that G constructed as above

is a markov matrix with each column summing to one, and has an unrepeated

largest eigenvalue valued 1 corresponding to the left eigenvector 1 (the modulus

of the second largest eigenvalue of G is upper-bounded by α [15]). Due to the

Perron−Frobenius theorem [9], this means that the (right) positive principal

eigenvector of G actually is the unique PageRank vector in (1). Note that such

a solution is only defined up to a positive scale, but introducing no harm in the

ranking context.

1.1. Related Work

The humongous size of the World Wide Web and its fast growing rate make

the evaluation of the PageRank vector one of the most demanding computational

tasks ever, which causes the main obstacle of applying the PageRank algorithm

to real-world applications since current principal eigenvector solvers for matri-

ces of order over hundreds of thousands are still prohibitive in both and time

and memory. Much effort for accelerating the PageRank algorithm has been

carried out from different view, such as Monte Carlo method [16], random walk

[17], power method or general linear system [18, 19], graph theory [20, 21, 22],

Schrödinger equation [23], and quantum networks [24, 25]. More recent related

advances on this topic can be found in [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

However, it seems that one important fact is totally ignored when achieving

speed-up: the exact value of the PagaRank vector is generally immaterial and

what is really interesting is the ranking list, especially the top k list in general.

To the best of our knowledge, no research has been carried out on this way.

The problem addressed in this paper will follow this direction for extracting the

pairwise PageRank order in O(1) using a very different insight if assuming both

G− In and (G− In)
2 are ready in memory, based on which it is straightforward

to obtain the top k list in O(kn). Our proposed algorithm avoids any effort of

computing the exact value of the principle eigenvector of G.
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1.2. Outline of Our Algorithm

In this paper, we always assume that G is a nonnegative real matrix with the

spectral radius 1, and 1 is an unique eigenvalue. We will use r = [r1, · · · , rn]T to

denote arbitrary nonnegative principal eigenvector of G although the PageRank

vector may be defined up to a positive scale. Let A = G − In = (aij), where

In is the unit matrix of order n. The main tool used in this paper is a specially

designed curve F(A,w, t) = [F1(t), · · · , Fn(t)] ∈ Rn, where A,w and t are

three parameters. Here, we drop the dependency of Fk(t) on A and w to make

notations less cluttered. Throughout the paper, we will indicate vectors and

matrices using bold faced letters.

We expect F(A,w, t) to have the following properties: (a). For any positive

w, the curve converges to the positive principal eigenvector of A (thus converges

to r) as t → ∞. Let ∆ij(t) = Fi(t) − Fj(t), thus the task of comparing the

PageRank score between the ith and jth nodes is reduced to determining the

sign of ∆ij(∞) = Fi(∞) − Fj(∞) = ri − rj ; (b). Denote by F(m)(A,w, t) the

mth-order derivative of F w.r.t. t, which had better be a simple function of w

and A such that evaluating it at t = 0 causes relatively low computational cost;

(c). Around the neighbourhood of t = 0, the shape of (Fi(t), Fj(t)), i 6= j, on

the xixj plane (spanned by the ith and jth axes in Rn) can be flexibly controlled

by w and F(k)(A,w, t), k = 1, · · · ,m.

With a carefully chosen w, it is possible to find a scale function φij(A,w,

F(1)(A,w, 0),· · ·,F(m)(A,w, 0)), simplified as φij , such that the probability

πij = Pr(φij∆ij(∞) > 0) is sufficiently close to one. We call φij the sign-

mirror function for ∆ij(∞) since it reflects the sign of ∆ij(∞) in a probabilistic

sense shown as above, although φij itself only contains the local information

of F(A,w, t) around t = 0. Furthermore, to avoid unnecessary computational

cost, we also expect that small m can do this job.

Section 2 provides a curve equipped with the above properties with m ≥ 2.

There we also construct the corresponding sign-mirror function φij and for-

mulate πij as a function of θ, an angle variable dependent on the eigenvalue

distribution of A. In the same section, we discuss some extensions of the al-
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Figure 1: Four possible trajectories of (Fi(t), Fj(t)) on the xixj plane with the xi and xj axes

along horizontal and direction, respectively. In all the cases, w’s are picked out such that

(Fi(0), Fj(0))’s locate on the line xi = xj . The last two are our desired cases, where both

trajectories are tangent to xi = xj with nonequal acceleration at t = 0. Roughly speaking,

this is due to the fact that in such cases we have more confidence to predict the sign of

Fi(∞)− Fj(∞) only based on A,w, and F
(k)(A,w, 0), k = 1, · · · , m.

gorithms. Section 3 checks the numerical properties of θ, then verifies that πij

keeps small for variant types of model-generated or real-world graphs (sparse,

scale-free, small-world, etc). This means that with a high probability the pro-

posed algorithm succeeds to extract the true pairwise PageRank order for those

common types of graphs mentioned as above. Then, it is relatively straightfor-

ward to develop a top k list extraction algorithm based on partial (not total)

pairwise orders, which will be discussed in section 4.

Nevertheless, it will be helpful to roughly imagine how such a curve possibly

looks. Fig. 1 plots four possible trajectories of (Fi(t), Fj(t)) on the xixj plane.

Intuitively, (Fi(t), Fj(t))’s plotted in Fig. 1(a) and (b) are unpredictable in the

sense that intuitively we have no confidence to predict whether they will cross

the line xi = xj at some t > 0 or not. On the contrary, (Fi(t), Fj(t))’s shown

in Fig. 1(c) or (d) seem more revealing due to the following facts: with higher

probability, those two curves will not cross the line xi = xj again for t > 0 since

both have been tangent to the line xi = xj at t = 0, and will locally move away

from the line xi = xj soon since they have unequal acceleration along axes at

t = 0. In fact, the imagined Fig. 1(c) and (d) do motivate us to construct an

eligible sign-mirror function from a geometric view.

Finally, we point out that the algorithm of this paper is not only valid for

the Google matrix defined in (2), which can even be applied to the non-markov
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matrix G as long as G meets the two conditions presented at the beginning of

this subsection.

2. Model

Let i =
√
−1 be the imaginary unit and diag[A1, · · · ,As] be a block diagonal

matrix, where Ak, k = 1, · · · , s, is a square matrix at the ith diagonal block.

Unless specially mentioned, in this paper A = G− In and G is defined at the

beginning of subsection 1.2. From a practical view, we also assume that G (thus

A) is diagonalizable since any matrix can be perturbed into a diagonalizable

one with perturbation arbitrary small. Thus, A is real and diagonalizable, and

all the eigenvalues of A except the unrepeated zero eigenvalue have negative

real parts.

2.1. Designing Curve

Lemma 1. [37] For any real and diagonalizable matrix A of order n, there is

an invertible matrix P such that

A = P ·diag[λ1, · · · , λr︸ ︷︷ ︸
r

,Ar+1, · · · ,Ar+s︸ ︷︷ ︸
s

] ·P−1, r+2s = n, 0 ≤ r ≤ n, (3)

where

P = [p1 , · · · , pr︸ ︷︷ ︸
r real eigenvectors

,pR,r+1,pI,r+1, · · · ,pR,r+s,pI,r+s︸ ︷︷ ︸
s pairs of complex eigenvectors

],

Ar+k =


 λR,r+k λI,r+k

−λI,r+k λR,r+k


 , k = 1, · · · , s.

In the above equation, λk, k = 1, · · · , r, are r real eigenvalues of A sorted in

descending order, corresponding to the r real eigenvectors pk, and λR,r+k ±
iλI,r+k, k = 1, · · · , s, are s pairs of complex eigenvalues of A (sorted descend-

ingly w.r.t. the real parts) corresponding to the s pairs of complex eigenvectors

pR,r+k ± ipI,r+k, respectively.

In this paper, there exists λ1 = 0, and all the other λk’s (k = 2,· · ·, r)
as well as λR,k’s (k = r + 1, · · · , r + s) are negative. Moreover, we will use
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pk to denote the kth column of P in lemma 1 for convenience, i.e., P = [p1,

· · ·,pr,pR,r+1, pI,r+1,· · ·,pR,r+s,pI,r+s] = [p1, · · · ,pn]. Since p1,· · ·,pn, are

linearly independent, any w takes the form as

w =

n∑

k=1

wkpk. (4)

Let V = [vT
1 , · · · ,vT

n ]
T = P−1, and define for k = 1, · · · , s,

Br+k=pr+2k−1v
T
r+2k−1+pr+2kv

T
r+2k, Cr+k=pr+2k−1v

T
r+2k−pr+2kv

T
r+2k−1.

Then it is ready to construct the following curve with the desired properties

given in subsection 1.2:

F(A,w, t)=

(
r∑

k=1

eλktpkv
T
k+

s∑

k=1

eλR,r+kt [cos(λI,r+kt)Br+k+sin(λI,r+kt)Cr+k]

)
w, (5)

where t ≥ 0 is the time parameter and w is the n-dimensional “shape adjusting”

vector. Although pk and vk appear in (5), it is not necessary to compute them

throughout our algorithm, which will be clear in the sequel.

Lemma 2. There exist F(A,w, 0) = w and F(A,w,∞) = w1p1, where w1

is the projection of w on p1.

Proof. Noting F(A,w, 0) = (
∑n

k=1 pkv
T
k )w and PV = In, thus the first equal-

ity holds. Since λ1 = 0, λk < 0 for k = 2, · · · , r, and λR,r+k for k = 1, · · · , s,
there exists F(A,w,∞) = p1v

T
1 w. Due to VP = In, thus vT

k pk = 1 and

vT
k ph = 0 for ∀k 6= h, which yields

F(A,w,∞) = p1v
T
1

n∑

k=1

wkpk = w1p1.

thus proving the second equality.

Clearly, w1 6= 0 with probability 1, thus let us assume w1 6= 0. In the sequel,

we will also restrict w to be nonnegative, from which it is easy to see that w1p1

is always nonnegative, regardless of p1 being the nonpositive or nonnegative

principal eigenvector of G. Based on the above analysis and lemma 2, we can

write F(A,w,∞) = r, which verifies the property (a) presented in subsection
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1.2. Thus, the task of comparing the PageRank score for the pair of (i, j)th

pages is equivalent to determining the sign of ∆ij(∞) = Fi(∞)− Fj(∞).

The next lemma shows that both the first- and second-order derivatives of

F(A,w, t) have a neat relation w.r.t. A and w at t = 0, which coincides with

the highly desired property (b) given in subsection 1.2.

Lemma 3. There exist F(1)(A,w, 0) = Aw and F(2)(A,w, 0) = A2w.

Proof. From (3), we have

A =

r∑

k=1

λkpkv
T
k +

s∑

k=1

[(λR,r+kpr+2k−1−λI,r+kpr+2k)v
T
r+2k−1

+(λI,r+kpr+2k−1 + λR,r+kpr+2k)v
T
r+2k]

=

r∑

k=1

λkpkv
T
k +

s∑

k=1

(λR,r+kBr+k + λI,r+kCr+k). (6)

Similarly, from the equality A2 = P ·diag[λ2
1,· · ·, λ2

r ,A
2
r+1,· · ·,A2

r+s] ·P−1, a

simple computation shows that

A2 =

r∑

k=1

λ2
kpkv

T
k +

s∑

k=1

[(λ2
R,r+k − λ2

I,r+k)Br+k + 2λR,r+kλI,r+kCr+k)]. (7)

Based on the definition of F(A,w, t) as in (5), a direct computation yields

F(1)(A,w, 0)=
dF(A,w, t)

dt
|t=0=

(
r∑

k=1

λkpkv
T
k +

s∑

k=1

(λR,r+kBr+k + λI,r+kCr+k)

)
w

(6)
== Aw,

F(2)(A,w, 0)=
d2F(A,w, t)

dt2
|t=0

=

(
r∑

k=1

λ2
kpkv

T
k +

s∑

k=1

(
λ2
R,r+kBr+k+2λR,r+kλI,r+kCr+k−λ2

I,r+kBr+k

)
)
w

(7)
== A2w.

thus proving the lemma.

2.2. Designing the Sign-Mirror Function

Let F
(m)
k (A,w, 0) and (Amw)k,m = 1, 2, be the kth element ofF(m)(A,w, 0)

and Amw, respectively. In this subsection, we will focus on the key part of our

eigenvector-computation-free algorithm: constructing the sign-mirror function
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φij for ∆ij(∞) (recall the notations defined in subsection 1.2). Obviously, the

bigger πij is, with more confidence ∆ij(∞) and φij share the same sign, In

such a manner, we say that the sign of ∆ij(∞), which indicates the PageRank

score order for the pair of the (i, j)th pages, is mirrored by the sign of φij . As

mentioned before, Fig. 1 suggests an intuition for constructing the sign-mirror

function as follows: Let φij=F
(2)
i (A,w, 0)−F(2)

j (A,w, 0), under the constraints

F
(1)
i (A,w, 0) = F

(1)
j (A,w, 0),w ≥ 0 and wi = wj . From lemma 3, the above

equations can be rewritten into

φij =(A2w)i−(A2w)j , with wi = wj , w ≥ 0, (Aw)i = (Aw)j , (8)

which possibly is the simplest form for φij to adapt in practice. Although other

more sophisticated candidates may be considered, φij constructed as above has

worked well enough for our goal.

Note that there exit many choices for w meeting the constraints in (8). For

reducing computational cost, in this paper we suggest to restrict w in the type

of vectors only composed of three different values.

Let J ${1,· · ·, n} be an index subset containing i and j such that
∑

k∈J (aik−
ajk) 6=0. Clearly, J does not exist if and only if aii + aij =aji + ajj and aik=

ajk, ∀k 6= i, j, which corresponds to an event with zero probability if regarding

A as a random matrix. In what follows we assume the existence of J .
Let h /∈ J be any index such that aih − ajh has the opposite sign to that of

∑
k∈J (aik − ajk) (the exceptional case where h does not exist will be discussed

later). Then, let ζij =
∑

k/∈{h}∪J (ajk − aik) and define w by

wk=
−q(aih−ajh)−ζij∑

k∈J (aik−ajk)
,z, ∀k∈J ; wh=ε+max(0,

ζij
aih−ajh

),q; otherwise wk=1. (9)

where ε is an adjustable positive constant (ε = 10−5 is used in our simulation).

It is easy to verify that w constructed as above meets all the constraints in (8).

Let bij be the (i, j)th element of B = A2 = (bij). A simple simplification shows

that with w as in (9) φij can be rewritten into:

φij = z
∑

k∈J
(bik − bjk) + q(bih − bjh) +

∑
k/∈J∪{h}

(bik − bjk).

9



Input: A = G− In and its square B, where G is constructed as (2).

1 Randomly choose J satisfying i, j ∈ J ${1,· · ·, n},∑k∈J (aik−ajk) 6=0.

2 Randomly choose h /∈ J satisfying (aih − ajh)
∑

k∈J (aik − ajk) < 0.

3 Compute φij = z
∑

k∈J (bik − bjk) + q(bih − bjh) +
∑

k/∈J∪{h}(bik − bjk),

with z and q defined in (9).

Output: φij > 0 ⇒ ri > rj or φij < 0 ⇒ ri < rj , where ri and rj are

the estimated PageRank score of nodes i and j.

Algorithm 1: Comparing the PageRank score between nodes i and j.

Specially, in the case of J = {i, j}, i.e., aii + aij 6= aji + ajj , which cor-

responds to an almost sure event in practice, let us denote by sumk(A) and

sumk(B) the sum of the kth row of A and B, respectively. In this case, φij

takes a more computation-friendly form:

φij = sumi(B)− sumj(B)+(z−1)(bii+bij−bji−bjj)+(q−1)(bih−bjh), (10)

where q and z =
sumj(A)−sumi(A)+(1−q)(aih−ajh)

aii+aij−aji−ajj
+1 are computed from (9) with

J = {i, j}. Now, we conclude our pairwise PageRank ranking algorithm as

follows:

φij > 0 ⇒ ri > rj or φij < 0 ⇒ ri < rj . (11)

The whole algorithm flow is depicted inAlgorithm 1. As for the exceptional

case that no index h exists, i.e., aik−ajk, k 6= i, j, are all positive (or negative),

which is an almost null event in practice, it is intuitive to claim ri > rj (or

ri<rj) due to the PageRank principle.

Finally, we provide a complexity analysis for single run of (11). If A and

B = A2 (constructed offline) are ready in memory, the time cost comes from two

parts: time for finding the index h plus a dozen of simple algebraic computation

involved in (9) and (10). Given
∑

k∈J (aik−ajk), let p be the probability that

aih−ajh has the same sign as that of
∑

k∈J (aik−ajk) for a randomly chosen h /∈J .
Then, the mean number of sampling h equals to limn→∞

∑
n
k=1k(1−p)pk−1 =

1
(1−p)2 , just a small constant. Thus, the time complexity for single run of (11)

is O(1). Moreover, it is easy to see that both A and B can be constructed

10



incrementally. Actually, the whole algorithm (11) is almost ready to work in an

incremental fashion with slight modifications, which is omitted here.

2.3. Evaluating πij

Here, we study the probability πij=Pr(φij∆ij(∞)>0) (recall the notations

defined in subsection 1.2) given φij constructed in (8), which determines the

correct rate of our algorithm (11). Let pk = [p1k, · · · , pnk]T , k = 1, · · · , n, and
τ ijk = pik − pjk, thus ∆ij(∞) = w1τ

ij
1 from the second equality in lemma 2.

Based on (4), the constraint wi=wj in (8) means
∑n

k=1 wkτ
ij
k = 0, i.e.,

∆ij(∞) = w1τ
ij
1 = −

n∑

k=2

wkτ
ij
k . (12)

Based on (4) and (6), the constraint (Aw)i = (Aw)j in (8) indicates

0 =

r∑

k=2

λkwkτ
ij
k +

s∑

k=1

[λR,r+k(wr+2k−1τ
ij
r+2k−1+wr+2kτ

ij
r+2k)

+λI,r+k(wr+2kτ
ij
r+2k−1−wr+2k−1τ

ij
r+2k)]. (13)

where we use the fact λ1 = 0, vT
k pk = 1 and vT

k ph = 0 for ∀k 6= h. Similarly,

using (4) and (7), φij = (A2w)i − (A2w)j can be rewritten into

φij =

r∑

k=2

λ2
kwkτ

ij
k +

s∑

k=1

[(λ2
R,r+k−λ2

I,r+k)(wr+2k−1τ
ij
r+2k−1+wr+2kτ

ij
r+2k)

+ 2λR,r+kλI,r+k(wr+2kτ
ij
r+2k−1−wr+2k−1τ

ij
r+2k)]. (14)

Next, we want to eliminate one redundant item from both (12) and (14) with

the help of (13). This redundant item corresponds to (wr+1τ
ij
r+1+wr+2τ

ij
r+2) if

there exists λR,r+1 (i.e, there are at least one pair of complex eigenvalues, called

case 1 ), or to w2τ
ij
2 if there exists λ2 (i.e, there are two or more real eigenvalues,

called case 2 ). A direct computation gives the following theorem:

Theorem 4. Given any pair of (i, j), we have φij∆ij(∞) = (λ̂
T

1 β
ij)(λ̂

T

2 β
ij).

11



In case 1, there exists

βij=[w2τ
ij
2 , · · · , wrτ

ij
r︸ ︷︷ ︸

r−1

, γij
r+2, · · · , γij

r+2s︸ ︷︷ ︸
2s−1

]T ∈ Rn−2,

λ1=[
λ2

λR,r+1
−1,· · ·, λr

λR,r+1
−1

︸ ︷︷ ︸
r−1

,
λI,r+1

λR,r+1
,
λR,r+2

λR,r+1
−1, λI,r+2

λR,r+1
,· · ·, λR,r+s

λR,r+1
−1, λI,r+s

λR,r+1︸ ︷︷ ︸
2s−1

]T ∈Rn−2,

λ2=[d2,· · ·, dr︸ ︷︷ ︸
r−1

, er+1−cλI,r+1, fr+2−cλR,r+2, er+2−cλI,r+2,· · ·, fr+s−cλR,r+s, er+s−cλI,r+s︸ ︷︷ ︸
2s−1

]T ∈Rn−2, (15)

where γij
r+2k−1=wr+2k−1τ

ij
r+2k−1+wr+2kτ

ij
r+2k, γ

ij
r+2k=wr+2kτ

ij
r+2k−1−wr+2k−1τ

ij
r+2k, k=

1,· · ·, s, c = (λ2
R,r+1−λ2

I,r+1)/λR,r+1, dk = λk(λk− c) for k = 2,· · ·, r, er+k =

2λR,r+kλI,r+k for k=1,· · ·, s, and fr+k=λ2
R,r+k−λ2

I,r+k for k=1,· · ·, s.
In case 2, there exists

βij = [w3τ
ij
3 ,· · ·, wrτ

ij
r︸ ︷︷ ︸

r−2

, γij
r+1,· · ·, γij

r+2s︸ ︷︷ ︸
2s

]T ∈Rn−2,

λ1 = [
λ3

λ2
−1, · · · , λr

λ2
−1

︸ ︷︷ ︸
r−2

,
λR,r+1

λ2
−1, λI,r+1

λ2
,
λR,r+2

λ2
−1,· · ·, λR,r+s

λ2
−1, λI,r+s

λ2︸ ︷︷ ︸
2s

]T ∈Rn−2,

λ2 =[d3,· · ·, dr︸ ︷︷ ︸
r−2

, fr+1−cλR,r+1, er+1−cλI,r+1, fr+2−cλR,r+2,· · ·, fr+s−cλR,r+s, er+s−cλI,r+s︸ ︷︷ ︸
2s

]T∈Rn−2,

Here, all variables are same to those in (15) except c = λ2.

It is worthy noting that λ1 and λ2 are two (n − 2)-dimensional random

vectors only dependent on the eigenvalue distribution of A = G − In, and βij

is a (n− 2)-dimensional random vector w.r.t. the eigenvector distribution of A

and the projections of w along eigenvectors. From now on, will treat the Google

matrix G as a random one that encodes the topological structure of a model-

generated or real-world networks following different ensembles, e.g., scale-free

[38], or small-world [39], etc.

Denote by θ the angle between λ1 and λ2. The above theorem provides a

geometric interpretation for πij . Imagining the bounded subspace in Rn−2 where

βij lives, as depicted in Fig. 2, theorem 4 shows that the event φij∆ij(∞) ≤ 0

corresponds to two dark spherical wedges enclosed by the two (n−2)-dimensional

hyperplanes V1 and V2 whose normal vectors are λ̂1 and λ̂2, respectively. Hence,
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¯
1

¯
2

V1 V2

Figure 2: Two dark spherical wedges correspond to the event φij∆ij(∞) ≤ 0, meaning that

πij = 1− θ

180
◦ .

in principle we can write πij = 1 − Vol(dark)/Vol(all), where Vol(dark) and

Vol(all) denote the weighted volumes of two dark wedges and the total subspace,

respectively. Here, the volume is weighted by the probability density function of

βij , denoted by ρ. In general, it is impossible to obtain the analytical form of ρ

for the purpose of evaluating πij , but it is interesting to note that when θ → 0,

there approximately exists πij → 1, regardless of the exact form of ρ and the

direction of λ̂k, k = 1, 2. Note that in this claim we use an intuitive assumption

that the support of ρ is not extremely concentrated around any low-dimensional

hyperplane, which seems true from a practical view and will be discussed more

later.

The above analysis also explains why we try eliminating an redundant item

from ∆ij(∞) and φij . The reason is that the resulting θ in such a manner

would be close to a small angle as n→ ∞ (e.g., n > 1000, in what follows n is

always assumed to be large enough unless specially stated) for a variant types

of common networks, which will be detailedly verified in the next section.

Nevertheless, let us first look at some special cases to reveal the hidden

motivation. To this end, let us consider the following types of undirected graphs

as examples: 1). G← abs(rand(n)) or abs(randn(n)), followed by G← G+G
′

or G ∗G′
, where “randn(·)” and “rand(·)” are the functions, respectively for

13



generating matrices whose elements follow the standard normal N (0, 1) and

uniform distribution in [0,1], and “abs(·)” denote the absolute value function in

Matlab; 2). G is the adjacent matrix for an Erdös-Reényi (ER) graph [40]. We

normalize each column of G to get Ĝ, then obtain G following (2) with default

parameters.

In such a way, although G is generally asymmetric, ||G−G′|| is very small

with high probability since the sums of each column of G are equal with high

probability (thus Ĝ is almost a constant scale ofG), meaning that G is “asymp-

totically symmetric”, i.e., all the eigenvalues of G are real with high probability.

Surprisingly, in all of our experiments based on the above graphs generated by

different n (We also varied the sparse density for ER graphs), no complex eigen-

value appears at all! (however, it has been proven in [41] that for matrices

with the elements following the standard normal distribution, the number of

real eigenvalues scales with
√
n, instead of n). In a word, all the eigenvalues in

these example typically are real, corresponding to the case 2 in theorem 4, and

λk, k = 1, 2, will now take a more clean form as

λ1 = [λ3 − λ2,· · ·, λn − λ2]
T /λ2, λ2 = [λ3(λ3 − λ2),· · ·, λn(λn − λ2)]

T ,

βij = [w3τ
ij
3 , · · · , wnτ

ij
n ]T . (16)

At first glance, if assuming all the eigenvalues are equally spaced on the

real line (however, it is not true in general), a direct computation shows θ→
arccos(

√
15/4) = 14.74◦. In fact, smaller θ may be expected. Note that the

diagonal elements of G in these examples should have the same expectation, so

should the off-diagonal elements. Therefore, the Theorem 1 in [42] or Theorem

1.1 in [43] can be applied here, which says that the gap between λ1 and λ2 is

O(n), and that between λi and λi+1, i ≥ 2, is only O(
√
n). Such unbalanced gap

distribution was also observed in [44, 45] (e.g., refer to Fig. 1 in [44]) for Google

matrices constructed from the Albert-Barabási model [38] or randomized real-

world University networks [46]. Based on the above analysis, roughly speaking,

there are O(
√
n) eigenvalues λk satisfying λk/λ3 → 1, meaning from (16) that

the first O(
√
n) coordinates of λ1 and λ2 tend to be “collinear”. It is such an

14



n = 100 n = 1000 n = 2000

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

E(θ) 1.42◦ 0.16◦ 1.84◦ 0.15◦ 8.51◦ 6.17◦ 0.46◦ 0.09◦ 0.6◦ 0.01◦ 3.22◦ 2.19◦ 0.32◦ 0.04◦ 0.43◦ 0.008◦ 2.33◦ 1.57◦

Var(θ) 10−4 10−6 10−3 10−5 10−2 10−3 10−6 10−9 10−6 10−8 10−4 10−5 10−8 10−10 10−7 10−10 10−6 10−6

Table 1: Mean and variance of the angle between λ1 and λ2 in (16) averaged over 800

runs. Here, the Google matrix G is constructed as (2) with default parameters, where Ĝ is

the column-normalized version of G corresponding to six types of graphs Tk. T1 (or T2)

corresponds to G ← abs(rand(n)) followed by G ← G + G
′

(or G ∗ G
′

). T3 (or T4) is

generated similarly to T1 (or T2), but with “rand(n)” replaced by “randn(n)”. T5 and T6

correspond to ER graphs with the sparse density valued at 0.1 and 0.2, respectively.

intrinsic “collinear effect” that forces θ close to zero.

Table. 1 depicts the mean and variance of θ in aforementioned examples

over 800 sequential runs for each case, from which we see that in all the cases θ

is concentrated around 0◦ while the variance approaches to zero as n increases.

Generally, if assuming that ρ is approximately constant along arbitrary direction

in Rn−2, there exists

πij ≈ 1− θ

180◦
. (17)

We will show in the next section that the above formula is highly agrees with

our experimental results especially for large n, even although θ is not so close

to 0 (as shown in the next section, typically θ is a small angle less than 10◦ in

most cases).

2.4. Higher-Order Sign-Mirror Functions

Motivated by the φij constructed in (8), it is natural to consider its higher-

order version: φij = (Amw)i − (Amw)j , satisfying

wi=wj , w≥0, (Akw)i=(A
kw)j , k=1, · · · ,m−1, (18)

where m is a preassigned positive integer. However, the practical algorithm in

form keeps unchanged as (11).

To study πij in this case, similar to what we do previously for the case of

m=2, we first expand Akw, k=1,· · ·,m, using (3) and (4). Then, from the con-

straint (Akw)i=(Akw)j , k=1,· · ·,m−1, we obtain m−1 linear equations w.r.t.
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n=100,m=3n=100,m=4n=1000,m=3n=1000,m=4n=2000,m=3n=2000,m=4

T5 T6 T5 T6 T5 T6 T5 T6 T5 T6 T5 T6

E(θ) 5.97◦ 4.46◦ 4.61◦ 3.48◦ 2.42◦ 1.68◦ 1.93◦ 1.34◦ 1.76◦ 1.20◦ 1.41◦ 0.97◦

Var(θ)10−2 10−3 10−2 10−3 10−5 10−5 10−5 10−5 10−6 10−6 10−6 10−6

Table 2: Mean and variance of θ based on higher-order sign-mirror functions with m = 3, 4,

averaged over 500 runs in each case, where T5 and T6 are the same graph ensembles used in

Table. 1.

w2τ
ij
2 , · · · , wrτ

ij
r , γij

r+1, · · · , γij
r+2s, thus we can represent w2τ

ij
2 , · · · , wmτ ijm using

the linear combination of wm+1τ
ij
m+1, · · · , wrτ

ij
r , γij

r+1, · · · , γij
r+2s (here, without

loss of generality we assume λm ≥ λR,r+1). Next, let us eliminate w2τ
ij
2 , · · · ,

wmτ ijm , from the expressions of ∆ij(∞) in (12) and φij = (Amw)i−(Amw)j

in (18), finally leading to a tight form φij∆ij(∞) = (λ̂
T

1 β
ij)(λ̂

T

2 β
ij) which for-

mally is the same to that in theorem 4. However, λ̂k, k = 1, 2, and βij are

of order n −m in this case, and λ̂k takes a more complex dependence on the

eigenvalues. The biggest benefit own to higher-order sign-mirror functions lies

in our numerical observations, as shown in Table. 2, that θ gets closer to zero

as m increases, which we believe is due to the stronger“collinear effect” between

λ̂1 and λ̂2 for bigger m. However, this benefit is at the expense of more compu-

tational cost since up to m-order power of A is required. Moreover, to ensure

the existence of w meeting the constraints in (18), there should be at least m−1
free variables in w (generally, the constraint w ≥ 0 requires a few additional

free variables involved in w), which is different from the case of m = 2 where w

can be composed of three different values as shown in (9).

At the end of this section, we provide a direct extension of (18) to multiple

pairwise comparisons in one pass through the algorithm. Let S be the set

containing the indexes of nodes in question. Then, for any i, j ∈ S, consider
φij=(Amw)i−(Amw)j with the following constraints:

wk′ = wk′′ , k′, k′′ ∈ S, w ≥ 0, (Akw)k′ =(Akw)k′′ , k=1, · · · ,m− 1. (19)

In such a manner, single calculation of w that meets the above constraints

resolves all the φij ’s, i, j∈S, i.e., via single evaluating w all the pairwise orders

induced from S emerge based on (11). To guarantee the existence of w in (19),
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Parameter T7T8 Parameter T7 T8

ST: γ, exponent in scale-free target degree distribution1.5 1 CM: η, probability that a new node is assigned a new color .01 .02

KL: q, number of random connections to add per node 2 4 PR: d, mean degree 2 4

SM: p, probability of adding a shortcut in a given row .2 .5 RA: λ, fixed base of geometric decaying factor .9 .95

Table 3: Alterable parameters “T7” and “T8” in six graph models. Parameter markers used

here coincide with those used in Matlab codes [50].

w should at least contain |S|(m− 1) free variables (plus additional freedom for

satisfying w ≥ 0), where |S| denotes the size of S.

3. Numerical Verification for θ

This section provides numerical evidence to support the concentration prop-

erty of θ near to small angles along with its universality on various types of di-

rected (DI) or undirected (UD) graphs generated by UD Stickiness (ST) model

[47], UD Kleinberg’s model (KL) [48], DI Color Model (CM) [44], DI Prefer-

ential Attachment (PR) model [38], DI Small-World (SM) model [39], and DI

Range Dependent (RA) model [49], as well as several real-world networks. The

Matlab toolbox for generating six model based graphs can be downloaded from

[50], and all the input parameters were set to default unless specially mentioned.

For six model based graphs, experiments were carried out using twelve differ-

ent groups of parameter settings, say, for each fixed n = 100, 1000 or 2000 (the

number of nodes) and m = 2 or 4 (the order of the sign-mirror function), we

performed experiments using two different parameters “T7” and “T8” to control

the sparseness of graphs, the actual meaning of which varies with the type of

graphs as shown in Table. 3. Table. 4 depicts the mean and variance of θ (aver-

aged over 800 runs in each case), the correct rate of pairwise comparisons based

on the algorithm (11) (averaged over 5 × 107 comparisons in each case), and

the estimate of πij from (17). In all the cases, the correct rate corresponding to

m = 4 is slightly bigger (generally no more than 2%) than that corresponding to

m = 2, thus we omit it in the table for clear view. From Table. 4, we see that:

(a). The mean of θ is observably concentrated around a small anger (less than

11◦ in all the cases) while the variance is much smaller. Typically, it decreases
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n=100,m=2 n=100,m=4 n=1000,m=2 n=1000,m=4 n=2000,m=2 n=2000,m=4

T7 T8 T7 T8 T7 T8 T7 T8 T7 T8 T7 T8

Est(θ) 10.77◦ 9.18◦ 7.11◦ 6.18◦ 9.10◦ 8.68◦ 7.88◦ 7.69◦ 8.63◦ 8.42◦ 8.34◦ 8.26◦

Varst(θ) 1.62◦ 4.21◦ 3.56◦ 4.45◦ 3.92◦ 5.60◦ 3.07◦ 2.91◦ 5.46◦ 6.37◦ 2.62◦ 2.53◦

1 − Est(θ)/180 94.01% 94.89% 96.04% 96.56% 94.93% 95.17% 95.61% 95.72% 95.20% 95.32% 95.36% 95.40%

Correct rate 92.47% 96.84% - - 92.54% 97.73% - - 95.32% 97.86% - -

Ecm(θ) 3.58◦ 2.61◦ 1.83◦ 1.34◦ 2.28◦ 2.13◦ 1.07◦ 1.02◦ 2.35◦ 2.26◦ 1.04◦ 1.01◦

Varcm(θ) 0.03◦ 2.09◦ 0.02◦ 0.51◦ 1.06◦ 1.38◦ 0.15◦ 0.48◦ 1.20◦ 1.18◦ 0.30◦ 0.77◦

1 − Ecm(θ)/180 98.01% 98.55% 98.98% 99.26% 98.73% 98.82% 99.41% 99.43% 98.69% 98.74% 99.42% 99.44%

Correct rate 97.72% 98.61% - - 97.94% 99.51% - - 98.58% 99.47% - -

Ekl(θ) 9.69◦ 9.14◦ 5.68◦ 5.43◦ 9.25◦ 9.26◦ 5.50◦ 5.53◦ 9.30◦ 9.30◦ 5.56◦ 5.57◦

Varkl(θ) 0.02◦ 0.31◦ 0.01◦ 0.08◦ 0.40◦ 0.37◦ 0.12◦ 0.12◦ 0.40◦ 0.39◦ 0.13◦ 0.13◦

1 − Ekl(θ)/180 94.61% 94.91% 96.83% 96.98% 94.85% 94.85% 96.94% 96.92% 94.83% 94.82% 96.90% 96.90%

Correct rate 92.43% 93.46% - - 92.80% 95.59% - - 91.29% 94.85% - -

Epr(θ) 10.51◦ 10.13◦ 5.80◦ 5.25◦ 10.20◦ 10.14◦ 5.28◦ 5.26◦ 10.17◦ 10.14◦ 5.28◦ 5.27◦

Varpr(θ) 0.04◦ 1.15◦ 0.01◦ 0.17◦ 1.17◦ 1.16◦ 0.19◦ 0.18◦ 1.17◦ 1.16◦ 0.18◦ 0.18◦

1 − Epr(θ)/180 93.60% 94.37% 96.77% 97.08% 94.33% 94.36% 97.02% 97.07% 94.34% 94.36% 97.06% 97.07%

Correct rate 82.82% 91.69% - - 96.22% 98.75% - - 98.71% 99.67% - -

Esm(θ) 10.77◦ 10.79◦ 5.43◦ 4.53◦ 10.80◦ 10.82◦ 5.53◦ 5.54◦ 10.82◦ 10.83◦ 5.54◦ 5.55◦

Varsm(θ) 10−3◦ 0.01◦ 10−3◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦ 0.01◦

1 − Esm(θ)/180 96.92% 96.91% 93.43% 93.42% 96.91% 96.91% 93.45% 93.44% 96.97% 96.92% 93.44% 93.43%

Correct rate 84.11% 88.09% - - 89.45% 93.81% - - 91.59% 94.70% - -

Era(θ) 7.11◦ 6.20◦ 4.74◦ 3.99◦ 6.22◦ 6.20◦ 4.02◦ 4.03◦ 6.21◦ 6.21◦ 4.05◦ 4.05◦

Varra(θ) 0.01◦ 0.84◦ 0.01◦ 0.55◦ 0.84◦ 0.84◦ 0.58◦ 0.57◦ 0.84◦ 0.84◦ 0.59◦ 0.58◦

1 − Era(θ)/180 96.04% 96.55% 97.36% 97.77% 96.54% 96.55% 97.72% 97.75% 96.54% 96.54% 97.74% 97.74

Correct rate 95.04% 97.87% - - 96.56% 96.74% - - 96.47% 97.11% - -

Table 4: Mean and variance of θ (averaged over 800 runs in each case), pairwise correct rate

(averaged over 5 × 107 comparisons in each case), and estimate of πij based on (17) for six

types of graphs with 12 groups of different parameter settings. Meaning of “T7” and “T8”

for each model can be found in Table. 3. In all the cases, the correct rate corresponding to

m = 4 is slightly larger (generally no more than 2%) than that corresponding to m = 2, which

is omitted here for clear view.

with the increasing of the size of graphs; (b). The mean of θ based on m = 4

tends to be smaller than that based on m = 2 although the resulting pairwise

correct rate has no significant difference; (c). The pairwise correct rate is well

approximated by πij in most cases, especially when n is relatively large; (d).

The pairwise correct rate is over 90% in almost all the cases corresponding to

n = 1000, 2000. In fact, we believe that θ and πij becomes less random for large

n, and the potential principle is mainly due to the special structure (16) and

“the large number law for random matrices”.

Next, we perform simulations on a set of real-world networks. Here, eight

datasets were used here including four (“Roget”, “ODLIS”, “CSphs” and “Net-
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Roget ODLIS CSphd Networktheory EMN PGP p2p-Gnutella08p2p-Gnutella09

Properties DI/UWDI/UWDI/UW DI/WI DI/UWDI/UW DI/UW DI/UW

Number of nodes 1022 2909 1882 1589 453 10680 6301 8114

Number of edges 5075 18419 1740 2742 4596 24340 20777 26013

θ 9.02◦ 8.70◦ 1.95◦ 1.29◦ 3.31◦ 5.56◦ 3.10◦ 2.86◦

Correct rate 90.95% 91.71% 95.92% 93.59% 93.09% 92.77% 98.34 % 98.47%

Table 5: Pairwise correct rate (evaluated after all the possible pairs pass through the algo-

rithm) and θ on eight real-world graphs.

worktheory”) taken from [51], two (“p2p-Gnutella08” and “p2p-Gnutella09”) in

the SNAP collection [52], and two (“Elegans Metabolic Network (EMN)” and

“PGP”) taken from [53]. Table. 5 depicts the properties (direct/undirect and

weighted/unweighted, respectively abbreviated by DI/UD and WE/UW in the

table. See more information in the dataset documents), number of nodes and

edges along with θ and the pairwise correct rate computed from all possible

pairwise comparisons. From the figure, we see the consistent performance due

to the small θ and high pairwise correct rate.

4. From Pairwise Order to Top k List

This section provides an O(kn) algorithm for extracting the top k list. Let

ni be the number of remaining nodes after the ith iteration with n0=n. In the

(i+1)th iteration, ni nodes are randomly divided into ni

m1k
,m1>1, subgroups such

that there are m1k nodes in each subgroup. Then we run the naive Subgroup

Ranking Algorithm (SRA, will be discussed shortly) to obtain the whole ranking

list for each subgroup, which performs m1k(m1k− 1)/2 comparisons using (11)

in each subgroup, thus totally leading to (m1k−1)ni/2 runs of (11). Thereafter,

only the top m2k, 1 ≤ m2 < m1, nodes in each subgroup are kept for the follow-

up processing, meaning ni+1 = m2ni/m1. Thus, we can compute the total

number required for pairwise ranking operators as

n(m1k−1)
2

[1+
m2

m1
+(

m2

m1
)2+· · · ]= kn

2
· m

2
1−m1

k

m1 −m2
=

kn

2
·[m1−m2+

m2
2−m2

k

m1 −m2
+2m2−

1

k
].

The above equation reaches its minimum kn[
√
m2

2−m2/k+m2−(1/2k)]≈2m2kn

(generallym2/k is small) iff m1=m2+
√
m2

2−m2/k≈2m2. Since single pairwise
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ranking based on (11) causes O(1) cost averagely, our top k extraction algorithm

totally has an O(kn) time complexity. Note that when SRA perfectly computing

the ranking list for each subgroup, we can let m2=1 since every element in the

final top k list surely belongs to any of the top k lists for those temporarily

generated subgroups containing that element during iterations.

Subgroup Ranking Algorithm (SRA): Denote by v1,· · ·, vm1k, the nodes in

a subgroup, and associate vi with a score fi (initialized to zero). For each pair

of (vi, vj), let fi←fi+1 if vi is ranked higher than vj based on (11), otherwise

fj←fj+1. Repeat the above processing until m1k(m1k−1)/2 pairs pass through

the algorithm. Finally, the ranking list is constructed based on fi’s.

Clearly, SRA is specially well-qualified on relatively clean pairwise orders,

which is just the case here. More sophisticated variants can be found in [54]

and the references therein, but most of which are specially designed for noisy

cases thus lead to higher computational cost.

Without loss of generality, assume f1≥ · · · ≥ fm1k. Some interesting issues

emerge in SRA: (a). In the ideal case that (11) generates 100% correct outputs

for all the pairs, we have fi = m1k − i, thus the ranking list based on fi’s

perfectly matches the truth; (b). With the probability πij (over 90% for various

types of graphs as shown in the last section), our algorithm outputs a correct

pairwise order. Thus, fi may diverge a little from its ideal value m1k−i, causing
potential disorders in the ranking list. A typical case is that there possibly

exists fi= fj , i 6= j, such that we can not rank vi and vj using their scores. In

practice, we just put the nodes with equal score together as a chunk, not to tell

the precedence between them. However, fi will not to diverge too much from

m1k− i since πij is high enough, neither will the ranking list. Thus, we suggest

to choose m2 slightly more than one in practice, e.g, m2 = 1/πij ≈ 1.15 is used

in the following simulation.

Finally, we use an application to demonstrate the performance of the algo-

rithm of this paper based on the top k list extraction while comparing it with

other four iteration based methods, i.e., the popular principle eigenvector solver

Power Method (PM) [37], and three Power-Method-originated PageRank solver:
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Power-Inner-Outer (PIO) [27], Power-Arnoldi (PA) and GMRES-Power (GP)

methods [36]. In what follows, the PM, PA, PIO, and GP are called as the

iteration based methods for convenience. Note that among all the algorithms

for computing the PageRank score, the algorithm of this paper seems to be the

only one explicitly avoiding eigenvector computations, thus there exists no triv-

ial way for other PageRank solvers to directly achieve the top k list extraction.

The common way on this task for the iteration based methods is first to run

iterations up to v rounds, then reports the top k elements in the resulting vector

as an approximation for the ground truth.

In this simulation, all the experiments were carried out on a Matlab 2015b/2.4

GHz/32 GB RAM platform. Two large-scale networks are employed here. The

first one with the dimension of 20 × 104 was generated by the Color Model

[44] (the mean degree was chosen around 7), an extension of the Preferential

Attachment model [38], which is a more popular choice for artificially imitating

the real WWW networks. Another is the sparse Web-Stanford web networks

with 281,903 nodes and 2,312,497 links [55] from the real world. Since a larger

α in (2) leads to a more challenging problem [15], here we set α = 0.99, which is

similarly to that used in [36]. All the parameters of five algorithms were set to

their default values, e.g., m = 2 was used in our proposed algorithm, the restart

number valued at 6 was used in GP [36], all-one initial vectors were used in the

iteration based methods, and the tolerance τ = 10−8 was used for measuring

the convergence. That is to say, when the 2-norm of the difference between two

successive iterative vectors is less than 10−8, the iteration based methods are

regarded to get converged. Here, we not only ran the iteration based methods

until convergence, we but also ran them in a fixed number v of iterations, i.e.,

we also compared the performance achieved by those four algorithms in the

context of early stopping before convergence. Such an experimental design is

due to the considerations that we want to compare our proposed algorithm to

the iteration based methods that are equipped with an ability to freely choose

the tradeoff between the running time and precision. The following index was
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employed to measure the precision of the algorithms:

precision =
#{The computed top k list

⋂
The ground truth}

k
,

where #{·} denotes the number of elements in a set.

Table 6 shows for the iteration based methods the running time in seconds

and the corresponding precision for various combinations of v = 1, 5, 10, 20, 40

and k = 20, 50, 100, on two aforementioned networks, as well as those after

convergence, which is depicted in the three sub-columns tied to the “Stable”

symbol. Since the algorithm of this paper, denoted by the “Our” symbol in

the table, is not an iteration based one, its performance is thus only shown in

the “Stable” column, where we also illustrate the iteration steps required for

the four iteration based methods to get converged. Note that in the iteration

based methods the iterations substantially dominated the running time while

that consumed by sorting is negligible, thus we only response to v in the table.

On the contrary, the time consumed by our proposed algorithm is clearly related

to k since it is based on pairwise comparisons with the complexity O(kn). In

addition, each of five algorithms is described in the table by two successive rows,

respectively corresponding to the running time or the precision in the upper or

lower row. The performance on the Color Model generated networks were aver-

aged on 800 successive runs of algorithms. From the table, we see that: (1). All

the four iteration based methods got converged in both experiments, e.g., it took

23.84/33.24 and 7.14/9.96 seconds, respectively for the PM and GP methods,

to perfectly extract the top k = 20/50/100 list; (2). Among the four iteration

based methods , the GP achieved the best precision with the fastest speed before

convergence. It reached the precision of 95.7%/94.2%/93.3% in 5.41 seconds on

the Color Model generated networks, and 93.3%/92.5%.91.4% in 8.11 seconds

on the Web-Stanford web networks, respectively for k = 20/50/100; (3). Our

proposed method did the work with the precision of 98.9%/98.9%/98.8% for

k = 20/50/100 on the Color Model generated networks only in less than 0.5

seconds, and with the precision of 97.4%/97.3%/97.3% for k = 20/50/100 on

Web-Stanford web networks only in less than 0.7 seconds, which definitely shows
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the essential improvement on the running speed of our proposed algorithm for

approximating the top k list with super precision.

As the end of this section, we point out that more studies are necessary to

go deeper along this way, e.g., more advanced knowledge from other communi-

ties, especially from the insights of random matrices, will definitely helpful to

this line. Moreover, more efficient top k extraction algorithms based on noisy

pairwise comparisons will do much benefit in practice. We hope that this paper

casts the first stone for penetrating the PageRank related algorithms from a

probability point of view while not computing the exact value of eigenvectors.

5. Conclusion

This paper provides anO(1) algorithm for pairwise comparisons of PageRank

score from a probabilistic view, based on which the top k list can be extracted in

O(kn). It is not necessary to compute the exact values of the principle eigenvec-

tors of the Google matrix based on our proposed frameworks because pairwise

PageRank orders naturally emerge from two-hop walks. The key tool used in

this paper is a specially designed sign-mirror function and a parameter curve,

whose low-order derivative information implies pairwise PageRank orders with

high probability, which is essentially due to the underlying spectral distribution

law of random matrices. Although more quantitative analysis from the com-

munities of random matrices is required to get deeper insight, this paper has

shed the first light on this direction and the algorithm of this paper has made

it possible for PageRank to deal with super large-scale datasets in real time.
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