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Abstract

One key issue in managing a large scale 3D shape dataset is to identify an effective

way to retrieve a shape-of-interest. The sketch-based query, which enjoys the flexibility

in representing the user’s intention, has received growing interests in recent years due

to the popularization of the touchscreen technology. Essentially, the sketch depicts an

abstraction of a shape in a certain view while the shape contains the full 3D information.

Matching between them is a cross-modality retrieval problem, and the state-of-the-art

solution is to project the sketch and the 3D shape into a common space with which the

cross-modality similarity can be calculated by the feature similarity/distance within.

However, for a given query, only part of the viewpoints of the 3D shape is representative.

Thus, blindly projecting a 3D shape into a feature vector without considering what

is the query will inevitably bring query-unrepresentative information. To handle this

issue, in this work we propose a Deep Point-to-Subspace Metric Learning (DPSML)

framework to project a sketch into a feature vector and a 3D shape into a subspace

spanned by a few selected basis feature vectors. The similarity between them is defined

as the distance between the query feature vector and its closest point in the subspace by

solving an optimization problem on the fly. Note that, the closest point is query-adaptive

and can reflect the viewpoint information that is representative to the given query. To

efficiently learn such a deep model, we formulate it as a classification problem with a

∗Corresponding author
Email addresses: yinjie@scu.edu.cn (Yinjie Lei), ziqinzhou@stu.scu.edu.cn

(Ziqin Zhou), jssxzhpp@mail.dlut.edu.cn (Pingping Zhang), yulan.guo@nudt.edu.cn
(Yulan Guo), mazijun@stu.scu.edu.cn (Zijun Ma), lingqiao.liu@adelaide.edu.au
(Lingqiao Liu)

1The second author has the equal contribution as the first author for this work.

Preprint submitted to Pattern Recognition May 1, 2019



special classifier design. To reduce the redundancy of 3D shapes, we also introduce a

Representative-View Selection (RVS) module to select the most representative views of

a 3D shape. By conducting extensive experiments on various datasets, we show that

the proposed method can achieve superior performance over its competitive baseline

methods and attain the state-of-the-art performance.

Keywords: sketch-based 3D shape retrieval, cross-modality discrepancy,

representative-view selection, point-to-subspace distance

1. Introduction

With the rapid development of 3D sensing techniques, 3D shape data has received

increasing research interests in the field of computer vision. Since the volume of 3D

shape data grows significantly, shape retrieval has been becoming a crucial problem for

3D shape data management [1–6]. In its early year, a keyword is first labeled for each5

3D shape, and is used as the query for retrieval [7, 8]. However, the keyword labeling

is a time-consuming process, and is also impractical for the real-world applications,

especially when dealing with large-scale datasets. Then, by using a 3D shape as

query, considerable research has been devoted to the content-based 3D shape retrieval

techniques. However, the acquisition of a query shape itself is difficult due to the nature10

of the 3D modality. Recently, the prevalence of touchscreen technologies (e.g., smart

phones and tablet computers) enable the hand-drawing sketch a more convenient way

for representing the user’s intention. Compared with using a keyword or 3D shape as

query, the sketch-based 3D shape retrieval is more straightforward and thus easier to be

implemented in practical applications [9–12].15

The hand-drawing sketches usually contain limited information and only reflect

certain views of 3D shapes. As a result, obtaining a discriminative 3D shape features

aiming to reduce the cross-modality discrepancy to sketch becomes a key issue. In order

to extract 3D shape features, different 3D shape representations have been proposed. Re-

cently, the point-cloud based [13–16] and the multi-view based [17–20] representations20

gradually become dominate choices. In particular, the multi-view based representations

have achieved state-of-the-art performance so far [17–20]. For this type of representa-

tions, the 3D shape is initially rendered by a family of 2D views, as shown in Fig. 1.

On top of that, one can then leverage the well-established 2D image deep models (e.g.,

AlexNet [21], VGG [22] and ResNet [23]), which are pre-trained on large-scale datasets25
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(a) 3 views (b) 4 views (c) 6 views (d) 12 views (e) 18 views

Figure 1: The camera array settings for the multi-view representation of a 3D shape.

(e.g., ImageNet [24]), for feature extraction.

Despite the promising prospect of the sketch-based 3D shape retrieval, there still

exists three major challenges which have been hindering its development. First, the

free-hand sketch drawing is a subjective activity, resulting in large variation among

different individuals. Second, the sketch and 3D shape have a large cross-modality30

discrepancy, which makes it difficult to obtain modality-independent features. Third, the

sketch usually reflects certain view of a 3D shape, and the visual appearance of different

views may vary significantly. Aiming to handle these problems, the existing methods

can be coarsely categorized into traditional descriptor based [2, 25] and deep-learned

descriptor based [26, 27]. The first kind methods commonly apply the hand-crafted35

or shallow-learned features to describe both sketches and 3D shapes for similarity

measurement. Nevertheless, it is difficult to design discriminative feature descriptors

applied for both sketches and 3D shapes due to the large cross-modality discrepancy

[11]. In contrast, the second kind methods, which are based on the deep-learned features

are considered to be more robust and with more discriminative power. It can better40

accommodate the cross-modality discrepancy, and attain an improved retrieval accuracy.

As mentioned above, the query sketch is only representative to part views of a

3D shape, and the unrepresentative views offer minor contribution or even be harmful

for retrieval. However, many existing methods [20, 28–30] treat all the views equally

without considering the viewpoint information. In order to resolve this problem, we45

propose a Deep Point-to-Subspace Metric Learning (DPSML) framework. First, a

Representative-View Selection (RVS) module is applied to obtain several most repre-

sentative 3D shape views, and then a subspace spanned by feature vectors from the

selected views is generated for describing a 3D shape. Later, the similarity between a

sketch and a 3D shape is defined as the distance between the sketch feature vector and50

its closest point in the spanned subspace by solving an optimization problem on the fly.

Note that, the closest point is query-adaptive and can reflect the viewpoint information
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captured by the query sketch. Moreover, in order to efficiently learn a deep model, we

formulate the representation learning problem as a classification problem without the

pairwise sample learning process used by many existing methods [29, 31]. In summary,55

the proposed DPSML is an end-to-end framework, and its effectiveness and robustness

are extensively demonstrated by a set of experiments on three widely used benchmark

datasets i.e., SHREC 2013, 2014 and 2016.

The rest of this paper is organized as follows. Section 2 describes the related works

which are representative to the proposed method. Then, we give a method overview.60

Section 3 presents a detailed explanation of the proposed framework. Section 4 provides

the details of the used benchmark datasets, evaluation metrics and the implementation

details. The experimental results, comparisons to the state-of-the-arts along with a

discussion are provided in Section 4. Finally, Section 6 concludes this work.

2. Related Works and Overviews65

2.1. Related works

The work in [12, 32] provided a comprehensive survey and comparison of the

sketch-based 3D shape retrieval methods. In the following, we restrain the review to

the representative methods closely related to this work. More specifically, we cover

the traditional sketch-based 3D shape retrieval methods e.g., hand-crafted or shallow-70

learned features and the deep-learned descriptors for the task of 3D shape retrieval in

Subsection 2.1.1 and 2.1.2, respectively.

2.1.1. Traditional sketch-based 3D shape retrieval

In its early year, most existing sketch-based 3D shape retrieval methods rely on

developing the modality-invariant features for matching between the sketch and the75

3D shape. Eitz et al. [9] develops a Gabor local line based feature (GALIF) with a

bag-of-features (BoF) framework for sketch-based 3D shape retrieval. In [33], a method

based on view clustering (SBR-VC) and a parallel relative frame based shape context

matching is proposed. Furuya and Ohbuchi [11] integrate the dense scale-invariant

feature transform (SIFT) and BoF with a manifold ranking for matching similarity80

between sketch and 3D shape. In [33], the histogram of edge local orientations (HELO),

histogram of oriented gradients (HOG) and Fourier descriptors are applied to describe

sketches and 3D shapes. Then, the KD-tree with Manhattan distance is calculated as the
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cross-modality similarity measurement. An integrated descriptor ZFEC is designed in

[12] for describing both sketches and 3D shapes. ZFEC combines Zernike moments,85

contour-based Fourier descriptor, eccentricity features and circularity features. Tatsuma

et al. [32] propose a local improved pyramid of histogram of orientation gradients

(iPHOG) and the similarity constrained manifold ranking (SCMR). Zhu et al. [34] apply

the sparse coding spatial pyramid matching (ScSPM) for describing sketches and the

view-invariant local depth scale-invariant feature transform (LD-SIFT) for 3D shapes.90

In [35], Yasseen et al. propose the chordal axis transform based shape descriptor and the

dynamic time warping based matching framework for sketch-based 3D shape retrieval.

In [36], the HOG-SIFT feature is applied to describe sketches and 3D shapes. Then, a

sparse coding based matching method is used to perform retrieval. Li et al. [37] propose

a semantic sketch-based 3D retrieval method using viewpoint entropy distribution for95

describing a 3D shape and an adaptive view clustering method.

Due to the limited discriminative power of the hand-crafted and shallow-learned

features, the performance of the traditional sketch-based 3D shape retrieval methods is

unsatisfactory.

2.1.2. Deep-learned 3D shape descriptors100

In recent years, the deep neural networks have been successfully applied to many

research fields, and achieved the state-of-the-art performance. The deep-learned de-

scriptors for the 3D shapes are believed to be more complex, discriminative and with

more generalization ability. For completeness, in this subsection we also include some

works using a 3D shape rather than a sketch as query for 3D shape retrieval [18–20, 28–105

30, 38, 39]. The sketch-based 3D shape retrieval is a cross-modality matching task,

which is considered to be more challenging than shape-based 3D shape retrieval. Nev-

ertheless, we include both sketch-based and shape-based methods here since the two

share some similarities in learning deep representations for 3D shapes.

In [31], the authors first select two representative views of a 3D shape. Then, a pair110

of Siamese convolutional neural networks are used, e.g., one for sketch and another for

3D shape. A loss function, composed of a within-modality term and a cross-modality

term, is used to learn deep features for both sketches and 3D shapes. Su et al. [28]

propose a multi-view CNN to learn discriminative features from the rendered views of

a 3D shape. Then, a max-pooling operation is used to combine the obtained features115

to form a compact descriptor. Based on multi-view CNN, Bai et al. [38] propose
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a speeding-up mechanism to enable a real-time 3D shape retrieval. Xie et al. [17]

introduce the Wasserstein barycenter learning to obtain a compact descriptor from the

rendered views of 3D shapes. Their proposed barycenter is obtained by considering

all the views of a 3D shape. In [40], an adversarial learning method is developed to120

train the transformation model between sketches and 3D shapes. The multi-views of

a 3D shape is aggregated by an average view-pooling operation. Dai et al. [41, 42]

propose a deep correlated metric learning model to mitigate the modality discrepancy

between the sketches and 3D shapes. A discriminative loss and a correlation loss are

defined to jointly train two deep nonlinear transformations to map the two modalities125

into a common feature space. Feng et al. [19] propose a group-view convolutional

neural network (GVCNN) framework for hierarchical correlation modeling from the

rendered views of a 3D shape to obtain a discriminative descriptor. Yu et al. [30] extract

the effective 3D shape feature by aggregating local convolutional features from the

rendered views of a 3D shape through bilinear pooling. They calculate the patches-to-130

patches similarity among different views rather than view-based pooling. He et al. [29]

propose a triplet-center loss to learn the compact 3D shape descriptor from the rendered

views. The resulted features are with more discriminative power than using traditional

classification loss. Sarkar et al. [39] propose another perspective of view-generation

for 3D shape, where it is represented by the multi-layered height-maps (MLH). Then, a135

novel view-merging method for combining view dependent information is proposed to

obtain a compact descriptor. In [20], a combined features for 3D shapes are achieved

based on both point-cloud and multi-view representations, and the resulted features are

with more discriminative power. Based on the multi-view representation of 3D shapes,

Kanezaki et al. [18] propose a CNN based model (RotationNet), which is learned in an140

unsupervised manner during the training phase. The resulted model can jointly estimate

the pose and class label of a 3D shape.

Deep-learned 3D shape features have shown superior performance over the hand-

crafted and shallow-learned features [17–20]. Nevertheless, most the multi-view based

deep-learned 3D shape descriptors use a pooling scheme to equally fuse all rendered145

views into a compact descriptor. Only few works [19, 30] pay attention on the different

discriminative power among the views.
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Figure 2: The block diagram of the proposed DPSML framework. Our proposed model consists of two

branches to learn the original features for sketches and 3D shapes separately via pre-trained deep models fMF
and fSF , which have the same structure without sharing weights. Then, the RVS module fR is proposed to

obtain fusion weights for rendered views of 3D shape and generate representative views. Next, two metric

networks fMM and fSM are used to reduce the dimension of extracted features. Therefore, a sketch is described

by a feature vector as a “point” in the representation space, while a 3D shape is spanned as a “subspace” by

features vectors from the representative views. We randomly initialize a “virtual center” for each class in

order to accelerate clustering in the training phase and develop the DPSML framework with a modified loss

function. Note that, the distance from “point” to “subspace” is calculated by solving an optimization problem

on the fly.

2.2. Method overview

We propose a novel framework, called Deep Point-to-Subspace Metric Learning

(DPSML) for sketch-based 3D shape retrieval. Fig. 2 shows its block diagram, and the150

main steps are briefly described as follows. First, a 3D shape is represented by the a

family of 2D views e.g., 12 views used in this work. The pre-trained deep models e.g.,

AlexNet, VGG and ResNet, are used to extract the original features for both sketches

and 3D shapes. As a result, one feature vector is obtained for the sketch and 12 feature

vectors for a 3D shape. Then, a Representative-View Selection (RVS) module is used155

to select the most representative views. Third, the DPSML framework is proposed to

project a sketch to a point and the selected views of a 3D shape to a subspace. The

similarity is defined by the distance between the sketch point and its closest point in the

shape subspace. Note that, the resulted closest point is query-adaptive and can reflect

the viewpoint information determined by the query sketch.160

The main contributions of the proposed work can be summarized as follows:

• A RVS module is designed to identify the most representative views of a 3D

shape for reducing the redundancy.
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• The DPSML framework is proposed to calculate the query-adaptive similarity for

sketch-based 3D shape retrieval.165

• The representation learning problem is formulated as a classification problem,

resulting in an efficient training process.

• A comprehensive experiments and comparisons are conducted on three large

publicly available datasets, i.e. SHREC 2013, 2014 and 2016, to demonstrate the

superior performance of the proposed method.170

3. Methodology

As shown in Fig.2, the proposed framework mainly contains three modules. First,

the feature extraction module is described in Subsection 3.1. Then, the details of the

proposed RVS module are given in Subsection 3.2. Last, the detailed explanation of the

DPSML framework is described in Subsection 3.3.175

3.1. Feature Extraction

The proposed framework learns the sketch and 3D shape representations by solving

a classification problem during the training phase. Specifically, we aim to build a

shared classifier to identify a sketch or a 3D shape into its correct class, e.g., “Airplane”,

“Chair” and etc. The classifier layer is shared to ensure the representation learned for180

both modalities are comparable and close within each class. More details about the

shared classifier are introduced in Section 3.3. The sub-networks for obtaining the

representations before the classification layer, however, i.e., not shared. Thus, we need

to switch between these sub-networks according to its modality. Note that, the samples

of the two modalities are randomly selected from the datasets, without any pairwise185

samples as input like some existing works [29, 31, 40–42].

Two branches fSF and fMF with the same pre-trained initialization weights (e.g.,

those obtained from the AlexNet, VGG or ResNet) are used to extract the original

features for both sketches and the rendered views of 3D shapes. Note that, depending

on the input modality, the two branches are fine-tuned separately. The dimension of190

the extracted feature is denoted as l (e.g., 4,096 for AlexNet and VGG11-16-19/25,088

for ResNet18-34/100,352 for ResNet50). Thus, the feature of a sketch is denoted as

vS
F ∈ Rl, and VM

F ∈ Rl for a 3D shape.
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Figure 3: Some 2D views of 3D shapes e.g., bush, ice_cream_cone and wheel from 1st to 3rd rows respectively,

where the framed images indicate views with similar appearance.

Figure 4: Structure of RVS module. n∗ (less than n) vectors are obtained as fusion weights, which are applied

on the original features to form n∗ fusion feature vectors.

3.2. Representation-view Selection Metric Learning

As described above, n original feature vectors are obtained for a 3D shape. However,195

some views are redundant due to the their visual appearance similarity (see Fig. 3).

In order to reduce the complexity of models, a Representative-View Selection (RVS)

module fR is introduced to eliminate such redundancy and results in an enhanced

representation with n∗ feature vectors, where n∗ indicates the number of selected

representative views and that is less than n. Specifically, fR performs a weighted-sum-200

pooling operation (which works as a soft selection operator) by n∗ times on the original

view-based feature vectors as illustrated in Fig. 4. For each operation, the weights for

sum-pooling are calculated by a dedicated attention function separately. The structure

of fR consists of a fully connection layer followed a soft-max layer.

For a given 3D shape, the input for RVS is its original features denoted as VM
F =205

[v1,v2, . . .vn] ∈ Rl×n . The output of the fully connected (linear) layer is a set of

weights denoted by A ∈ Rn×n∗
and can be calculated as:
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Aj = (wR)>j VM
F + (bR)j j ∈ {1, 2, · · ·n∗} (1)

where {wR, bR} are the parameters of the fully connected layer. Aj ∈ Rn is one

column of A. Each dimension of Aj indicates the importance of the corresponding

view in the view of the j-th selector. Aj is then normalized by using the soft-max210

operator, formally:

Aj = softmax(Aj) =
exp(Aj)∑n

t=1 exp(A(t, j))
, (2)

where A(t, j) indicates the t-th dimension of Aj . Aj is the normalized selection weight

which is used to perform weighted sum-pooling of VM
F :

VM
R (t, :) =

n∑
t=1

VM
F (t, :) ∗A(t, j), j = 1, 2, . . . n∗ (3)

where VM
R ∈ Rl×n∗

is n∗ feature vectors from the selected views by the RVS module.

In the above design, Aj essentially acts as an anchor, where the original view215

features close to Aj tend to have large inner product values and thus will be “selected”

after the soft-max normalization. Note that, similar view features tend to have similar

attention weights, and consequently they tend to be selected or de-selected by the same

pooling operator which effectively merges the redundant features. Later, two MLPs

sub-networks (i.e., fSM and fMM ), called metric sub-networks, are designed to extract220

high-level features for sketches and 3D shapes. Those two metric networks consist of a

set of fully connection layers, the output dimension of the last layer is fixed to l∗, and

l∗ = 100 for fair comparison (see implementation details in Subsection 4.3). We denote

the vS
M ∈ Rl∗ the final feature vector of a sketch and VM

M ∈ Rl∗×n∗
is a set of feature

vectors for a 3D shape. More specifically, a sketch is projected into a “point” and a225

shape is projected into a “subspace” spanned by a set of basis vectors.

3.3. Deep Point-to-Subspace Metric Learning

3.3.1 Distance as Similarity Score

When perform retrieving, we need to calculate the distance between a sketch and

a 3D shape to rank the retrieval results. Since a sketch is described by a point and230

a 3D shape by a subspace, the distance between vS
M and VM

M can be defined as the

closest distance between vS
M and a point in the subspace spanned by VM

M, which can
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be formally calculated by the following equation:

D = min
a
‖vS

M −VM
Ma‖2 (4)

where a ∈ Rn∗
is the combination coefficients for basis feature vectors in VM

M, and

thereforeVM
Ma represents the closest point to vS

M in the subspace. The RHS of the235

above equation is essentially an quadratic programming optimization problem and can

be solved by:

a = (VM
M
>VM

M)−1VM
M
>vS

M. (5)

To avoid the possible numerical problem, we add an identity matrix αI before taking

the inverse operation as follows:

a = (VM
M
>VM

M + αI)−1VM
M
>vS

M, (6)

where I is an identity matrix and α is a constant.240

3.3.2 Training Loss Function

With the distance defined in Eq. 4, one can use triplet loss [43] as the training loss

function to encourage similar sketch-shape pairs to produce smaller distances than those

are not paired. However, training with the triplet loss usually needs to carefully design a

sample strategy to sample from a huge space of possible triplets and often results in a245

slow training process. Recent study shows that classification based loss [44] can achieve

competitive results with much a simpler training step. The idea of this kind of methods

is to convert the feature representation learning problem into a classification problem.

For general feature learning/metric learning, we expect that the samples within the same

class are similar to each other while being different from the samples in the other classes.250

The work in [44] shows that we can first train a deep network by a classification task

and the learned representations before the classification layer can roughly satisfy the

above desired property.

Our method is inspired by the center loss [44] but is different in two aspects: (1)

instead of using a linear classifier which is inner-product-based, we adopt a distance-255

based classifier. (2) for the 3D shape part, the distance to the class center is calculated

by solving a problem similar to Eq. 4. More specifically, the parameters of our classifier

are a set of “virtual centers” for each class, denoted as C = [c1, ...ct, . . . ck] ∈ Rl∗×k,

11



where k indicates the total number of classes in the training set and C is learned with

the network parameters in an end-to-end fashion. Inside the classifier, the distances260

between a sketch representation and class centers or the distance between a 3D model

representation and class centers are calculated as follows:

1) Each sketch is described by one feature vector vS
M, and the distances between a

sketch and all class centers dS can be calculated as:

dS = [dS1 , d
S
2 , . . . d

S
k ] ∈ Rk , with dSt = ||vS − ct||2 (7)

2) Each 3D shape is described by a subspace spanned by VM
M = {vM

1 ,vM
2 , . . .vM

n∗}265

, the distances between shape and all class-centers dM can be calculated as:

dM = [dM1 , d
M
2 , . . . d

M
k ] ∈ Rk (8)

with dMt = min
a
‖VM

Ma− ct‖2 (9)

Note that, the 3D shape is described by a subspace, its distance to each class center can

be obtained similarly by solving an optimization problem as demonstrated in Subsection

3.3.

The loss function is supposed to minimize the mutual distance of samples falling270

into the same class and maximize the mutual distance for samples not belonging to

the same class. In our method and other classification based representation methods,

this requirement is approximated by minimizing the distance between a sample to its

corresponding center and maximizing the distance between a sample to centers of other

classes.275

Specifically, we design a loss to encourage this property with two loss terms, that is,

a relative distance loss and a absolute distance loss:

L = H(−d, y) + λ · G(d, y), (10)

where d = dS or dM and y represents the ground-truth class label. H is called relative

distance loss and G is called absolute distance loss. Their definitions and roles are as

follows:280

• relative distance loss tends to maximize relative distance ratio between the dis-

tance to the true class center and the distance to other centers. It also works as a

12
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Figure 5: A toy illustration of the process of our overall loss function.

standard classification loss. We design it in a similar fashion as the cross entropy

loss:

L1 = H(−d, y) = −log(
exp(−dy)∑
j exp(−dj)

), (11)

where dj indicates the distance to the j-th center.

• absolute distance loss aims to minimize the within-class distance and it works as

a regularization term. It is defined as

L2 = G(d, y) = dy, (12)

in other words, we design to minimize the distance between a sample and its

corresponding center.285

The different roles of the above two loss functions can be explained by Fig. 5. From

which one can see that the relative distance loss makes the samples from different classes

far from each other and the absolute distance loss makes the samples within the same

class close to each other.

3.3.3 Gradient Calculation290

To train the model with the proposed loss function. One needs to perform back

propagation to the distance in Eq. 8, which involves calculating a gradient for a function

expressed as an optimization problem. In other words, we need to calculate the following

two terms:

∂d(c, θ)

∂θ
=
∂mina ‖VM

M(θ)a− c‖22
∂θ

(13)

∂d(c, θ)

∂c
=
∂mina ‖VM

M(θ)a− c‖22
∂c

,
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where θ represents the model parameters for generating the basis VM
M and c is a “virtual

center” in the classifier layer. To calculate these gradients, we can first expand the

distance as:

d(c, θ) = min
a
‖VM

M(θ)a− c‖22 (14)

= min
a

(
a>VM

M(θ)>VM
M(θ)a− 2a>VM

M(θ)>c + c>c
)

= min
a

(
a>v(c, θ)− 1

2
a>P(θ)a

)
+ c>c,

where v(c, θ) = −2VM
M(θ)c and P(θ) = −2{VM

M(θ)}>VM
M(θ). The derivative of

Eq. 14 has been studied in [45]. According to the Lemma 2 in [45], the gradient can

be calculated by first finding the optimal a and substituting the optimal solution to the

objective function to drop out the “min” operation, that is,

∂d(c, θ)

∂θ
=
∂mina ‖VM

M(θ)a− c‖22
∂θ

=
∂‖VM

M(θ)ā− c‖22
∂θ

(15)

∂d(c, θ)

∂c
=
∂mina ‖VM

M(θ)a− c‖22
∂c

=
∂‖VM

M(θ)ā− c‖22
∂c

,

where ā is the solution of mina ‖VM
M(θ)a − c‖22. In other words, we can obtain the

solution ā by solving the optimal function in forward calculation and then calculate the

derivation of class center c and parameter θ as Eq. 15 in backward calculation.

3.3.4 Training Phase and Testing Phase

Note that the classifier layer can be discarded after the training phase. It is only used295

in the training phase to help learning the representation. Later, a sketch or a 3D shape

will go through their respective feature extraction and subsequent modules to obtain the

representations during the testing phase. The distance between a sketch query and a 3D

shape will then be calculated by using Eq.4 .

4. Experimental Setups300

In order to demonstrate the effectiveness of the proposed method, we evaluate it

on three public benchmark datasets, i.e., the SHREC 2013 [12, 33], SHREC 2014

[32, 46] and SHREC 2016 [47]. We first introduce the experimental setups, including

the details of benchmark datasets and the used evaluation metrics. Next, we present

the implementation details of our framework. Then, we calculate all the metrics to305

investigate the performance and compare our results against the state-of-the-arts. Finally,
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we conduct more experiments to evaluate the effects of different modules as ablation

study.

4.1. Sketch-based 3D Shape Retrieval Datasets

SHREC 2013 dataset is a large-scale benchmark to evaluate the sketch-based 3D310

shape retrieval methods. It contains 7,200 2D sketches and 1,258 3D shapes belonging

to 90 classes, created by collecting from both the hand-drawing 2D sketch dataset [9]

and the Princeton Shape Benchmark (PSB) dataset [1]. There are 80 sketches per class,

where 50 sketches are used for training and the rest 30 sketches for testing. However,

the number of 3D shapes per class is not equal (about 14 in average).315

SHREC 2014 dataset is much larger than SHREC 2013. This dataset contains

13,680 sketches and 8,987 3D shapes from 171 classes, created by collecting from

various datasets, e.g., SHREC 2012 [48], Toyohashi Shape Benchmark (TSB) [49].

SHREC 2014 dataset is very challenging due to the diversity of its classes, the unequal

number of samples from different classes and large variations within class. For each320

class, there are 80 sketches, where 50 sketches are used for training and the rest for

testing. While the number of 3D shapes for each class is not equal, ranging from 2 to

384.

SHREC 2016 dataset is a new benchmark and different from both SHREC 2013

and 2014 datasets due to the use of hand-drawing 3D sketches (i.e., from the Kinect300325

dataset) as queries for 3D shape retrieval. The 3D sketches are collected by a Microsoft

Kinect device, which contain 300 samples and are divided into 30 classes. Each class has

10 sketches, while 7 sketches are used for training and the rest for testing. Specifically,

the 3D shapes come from SHREC 2013 dataset, which have 90 classes and 1,258

samples in total. Note that, only 21 classes of 3D sketches (i.e., 210 in total) have330

corresponding 3D shapes, while the remaining 9 classes are without corresponding 3D

shapes. Therefore, 147 sketches from the above mentioned 21 classes are used for deep

model training while the remaining 63 sketches used as testing set.

4.2. Evaluation Metrics

We follow the state-of-the-art to conduct experiments and with six widely-used335

metrics, e.g., Nearest Neighbor (NN), First Tier (FT), Second Tire (ST), E-Measure

(E), Discounted Cumulative Gain (DCG) and mean Average Precision (mAP). We
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also report the Precision-Recall Curve (PR curve) to visually demonstrate the retrieval

performance2.

4.3. Implementation Details340

The proposed method is implemented based on the open-source Pytorch 0.3.1

toolbox with the python 3.6 platform. The proposed deep model is trained and tested

on a workstation with 4 NVIDIA Tesla M40 GPUs (each with 24G memory) and two

E5-2650 CPU.

Data Prepossessing. The sketch images and the rendered views of a 3D shape from345

the SHREC 2013 and SHREC 2014 datasets are uniformly resized into a resolution

of 224× 224× 3 and subtracted the ImageNet mean [24]. Considering our method is

developed based on the 2D sketch, we simply use the front view of the 3D sketch as

input for evaluation.

Network Structures. For CNN sub-networks, we test different initialization from350

the pre-trained AlexNet [21], VGG19 [22] or ResNet34-50 [23]. Specifically, we use

the layers of AlexNet before “fc7” layer (inclusive), the layers of VGG19 before “fc7”

layer (inclusive) and the layers of ResNet34-50 before “pooling5” layer (inclusive).

The MLPs sub-networks fSM and fMM are consisted of 3 fully connected layers (i.e.,

4096-1000-300-100 for AlexNet/VGG19, 25088-1000-300-100 for ResNet34, and355

100352-1000-300-100 for ResNet50), in which the weights are initialized using the

“msra” method [50]. The “ReLU” activation function and batch normalization (BN) are

adopted for all layers, and the standard Adam [51] is utilized as an optimizer during the

training phase.

Parameter Settings. The maximum epoch number is set to 500. The initial learning360

rate is set to be 1 × 10−4 for the pre-trained CNN sub-networks, 1 × 10−3 for sub-

networks fSM, fMM and RVS, while 1× 10−2 for the DPSML sub-network. The learning

rate decays by 10% after every 25 epochs. The balance hyper-parameter for loss function

in Eq. 10 is set to λ = 0.01.

2An open-source code is used to calculate all these metrics is available at the website:

https://userweb.cs.txstate.edu/~yl12/SBR2016/index.html
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5. Experimental Results365

5.1. Evaluation on the SHREC 2013 dataset

Our proposed method is based on an efficient point-to-subspace learning. In order

to further improve the retrieval accuracy, a modified center learning method is used as

part of the loss function. In order to demonstrate the effectiveness of RVS module, we

compare the performance of the proposed method with different fusion operations, i.e.,370

average pooling and FC-layer based feature. We also report the results with and without

“center learning” method as described in the Subsection 3.3. Note that, “FC-layer based

feature fusion” method concatenates the output vectors of the MLPs sub-networks and

map to a final vectorized representation by using a fully connection layer aiming to

reduce the dimension to 100. The combination of the above two factors creates more375

baseline methods in the revised manuscript, including:

• baseline 1: “average pooling” without “center learning”

• baseline 2: “FC-layer based feature fusion” without “center learning”

• baseline 3: “average pooling” with “center learning”.

• baseline 4: “FC-layer based feature fusion” with “center learning”.380

A quantitative comparison is shown in Fig. 6 based on PR curves. It can be seen that the

mAP of DPSML is higher than that of all baseline methods on the SHREC 2013 dataset.

Note that, the same backbone of AlexNet is applied for both DPSML and baseline for

original feature extraction. The results have verified the effectiveness of the proposed

DPSML framework. Our DPSML method achieves a gain of 0.016 in terms of mAP385

than the best performance of baseline4 when AlexNet is applied as the CNN backbone.

Then, some examples of the retrieval results are shown in Fig. 7. The query sketches

are listed on the left side (e.g., airplane, chair, bee, face, couch, potted_plant, guitar and

car_sedan), and their retrieved top ten 3D shapes are listed on the right side according

to their ranking order. The correct retrieved shapes are in gray color and the incorrect390

ones are in blue color. As shown in Fig. 7, the proposed method obtained promising

retrieval results for the classes airplane, chair, bee, bicycle, couch, potted_plant, guitar

and space_shuttle. However, the proposed method gives some incorrect retrieval results

for the classes bee, space_shuttle due to only limited training samples are provided and

bicycle, couch due to the appearance similarity with other classes.395
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Figure 6: Comparison of baseline methods and DPSML of the sketch-based 3D shape retrieval performance

on the SHREC 2013 dataset in terms of PR curves.

Query 3D Shapes

Airplane

Chair

Bee

Bicycle

Couch

Potted_plant

Guitar

Space_shuttle

Figure 7: Some examples of retrieval results on the SHREC 2013 dataset. The query sketches are listed on the

left and the retrieved 3D shapes are on the right. Note that, the corrected retrieved results are in gray color and

the incorrect results are in blue color.
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Figure 8: The PR curves of the proposed method as well as the state-of-the-arts on the SHREC 2013.

An illustration of PR curves of the proposed method and the state-of-the-arts on

the SHREC 2013 dataset is presented in Fig. 8. It can be observed that the proposed

method outperforms all the existing methods. When compared with the most recently

published methods (e.g., [17, 40–42]), the proposed method achieves superior retrieval

performance based on the same CNN backbones for original feature extraction (e.g.,400

AlexNet, VGG19 and ResNet50).

Table. 1 provides a quantitative comparison of the proposed method with the state-of-

the-arts on the SHREC 2013 dataset using the standard evaluation metrics. It can be seen

that the proposed method achieves superior performance than the state-of-the-arts for all

the evaluation measures. More specifically, the proposed method outperforms the best405

reported state-of-the-art method [42] with a gain of 0.011 on the most important metric

NN when AlexNet is adopted. Furthermore, the proposed method also outperforms

another most recent work [40] in terms of the NN (i.e., 0.819 versus 0.783), when a

deeper neural network is applied (e.g., ResNet50). Experimental results on the SHREC

2013 dataset have clearly demonstrated the effectiveness of the proposed method.410
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Table 1: Quantitative comparison of the sketch-based 3D shape retrieval methods on the SHREC 2013 dataset.

The best results are in bold font.

Methods Backbones NN FT ST E DCG mAP

CDMR[11] - 0.279 0.203 0.296 0.166 0.458 0.250

SBR-VC[33] - 0.164 0.097 0.149 0.085 0.348 0.114

SP[52] - 0.017 0.016 0.031 0.018 0.240 0.026

FDC[33] - 0.110 0.069 0.107 0.061 0.307 0.086

Siamese[31] - 0.405 0.403 0.548 0.287 0.607 0.469

CAT-DTW[35] - 0.235 0.135 0.198 0.109 0.392 0.141

KECNN[53] AlexNet 0.320 0.319 0.397 0.236 0.489 -

DCML[41] AlexNet 0.650 0.634 0.719 0.348 0.766 0.674

LWBR[17] AlexNet 0.712 0.725 0.785 0.369 0.814 0.752

DCHML[42] AlexNet 0.730 0.715 0.773 0.368 0.816 0.744

DCA [40] ResNet50 0.783 0.796 0.829 0.376 0.856 0.813

baseline1 AlexNet 0.604 0.582 0.692 0.341 0.735 0.620

baseline2 AlexNet 0.663 0.681 0.743 0.351 0.767 0.729

baseline3 AlexNet 0.689 0.680 0.762 0.369 0.795 0.711

baseline4 AlexNet 0.725 0.749 0.805 0.376 0.814 0.769

Ours (DPSML) AlexNet 0.741 0.761 0.821 0.385 0.836 0.785

Ours (DPSML) VGG19 0.801 0.816 0.852 0.398 0.870 0.831

Ours (DPSML) ResNet34 0.813 0.826 0.864 0.406 0.883 0.846

Ours (DPSML) ResNet50 0.819 0.834 0.875 0.415 0.892 0.857

5.2. Evaluation on the SHREC 2014 dataset

Compared with the SHREC 2013 dataset, the SHREC 2014 is more challenging

since it contains more classes and larger variations within each class. The experimental

results on the SHREC 2014 dataset can further demonstrate the performance of the

proposed method. Following the same setups as on the SHREC 2013 dataset, we first415

evaluate the performance of our proposed method compared with four baseline methods,

as shown in Fig. 9 in terms of PR curves. The DPSML significantly outperforms all the

four baseline methods, and the mAP value has increased to 0.751 based on the AlexNet

backbone. Our DPSML method achieves a gain of 0.085 in terms of mAP than the best

performance of baseline4 when AlexNet is applied as the CNN backbone.420
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Figure 9: Comparison of baseline methods and DPSML of the sketch-based 3D shape retrieval performance

on the SHREC 2014 dataset in terms of PR curves.
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Figure 10: The PR curves of the proposed method as well as the state-of-the-arts on the SHREC 2014.

Fig. 10 demonstrates the PR curves of the proposed method and the comparison

with the state-of-the-arts. It can be seen that, the precision value of the proposed method

steadily exceeds the state-of-the-arts while the recall value increasing from 0 to 1. The

methods with the closest performance to the proposed method are published in the work

[40, 42], and the proposed method still exceeds the them with gains of 0.010 and 0.477425

in terms of mAP respectively. The PR curves have verified the superior performance

and robustness of the proposed method.

A comprehensive evaluation has been conducted for the proposed method and

compared with the state-of-the-arts on the SHREC 2014 dataset. The corresponding

quantitative comparison is provided in Table. 2, in terms of using the standard evaluation430
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Table 2: Quantitative comparison of the sketch-based 3D shape retrieval methods on the SHREC 2014 dataset.

The best results are in bold font.

Methods Backbones NN FT ST E DCG mAP

CDMR [11] - 0.109 0.057 0.089 0.041 0.328 0.054

SBR-VC [46] - 0.095 0.050 0.081 0.037 0.319 0.050

DB-VLAT [49] - 0.160 0.115 0.170 0.079 0.376 0.131

CAT-DTW [35] - 0.137 0.068 0.102 0.050 0.338 0.060

Siamese [31] - 0.239 0.212 0.316 0.140 0.496 0.228

DCML [41] AlexNet 0.272 0.275 0.345 0.171 0.498 0.286

LWBR [17] AlexNet 0.403 0.378 0.455 0.236 0.581 0.401

DCHML [42] AlexNet 0.403 0.329 0.394 0.201 0.544 0.336

DCA [40] ResNet50 0.770 0.789 0.823 0.398 0.859 0.803

baseline1 AlexNet 0.386 0.294 0.404 0.201 0.556 0.306

baseline2 AlexNet 0.548 0.419 0.538 0.255 0.666 0.449

baseline3 AlexNet 0.555 0.479 0.575 0.276 0.678 0.501

baseline4 AlexNet 0.655 0.647 0.709 0.342 0.775 0.666

Ours (DPSML) AlexNet 0.677 0.732 0.795 0.379 0.830 0.751

Ours (DPSML) VGG19 0.748 0.785 0.839 0.406 0.866 0.800

Ours (DPSML) ResNet34 0.757 0.789 0.832 0.402 0.863 0.800

Ours (DPSML) ResNet50 0.774 0.798 0.849 0.415 0.877 0.813

metrics. For a fair comparison, we report the experimental results based on different

CNN backbones (e.g., AlexNet, VGG19 and ResNet34-50) according to the published

methods [40–42]. The proposed method outperforms the state-of-the-arts in all evalua-

tion metrics. More specifically, the proposed method significantly exceeds the one of the

most recently published methods [42] for the most important measure NN with a gain435

of 0.274 when AlexNet is adopted. Furthermore, the proposed method also outperforms

another most recent work [40] in terms of the measure NN (i.e., 0.774 versus 0.770)

when ResNet50 is applied. Nevertheless, our method turns the retrieval problem into

the classification problem which can significantly reduce the training complexity. In

contrast, most existing methods use the triplet or pairwise losses which requires a more440

complicated and time-consuming training process.
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Figure 11: Some examples from the SHREC 2016 dataset. It can be observed that the 3D sketches are just

sparse point-clouds.

5.3. Evaluation on the SHREC 2016 dataset

The SHREC 2016 dataset is a new 3D shape retrieval benchmark dataset which

is different from both SHREC 2013 and 2014 datasets since it uses the 3D sketches

as queries to retrieve 3D shapes. In fact, the 3D sketches are drawn with some sparse445

point-clouds, which are even more abstract than the 2D ones, as shown in Fig. 11.

Only a few previous works [42, 47] tested the SHREC 2016 dataset in their ex-

periments. Therefore, with the consideration of a fair comparison of our method with

results reported in the work [42], we use the front view image of 3D sketch as the query

input. Table. 3 gives the quantitative comparison of the proposed method as well as450

the state-of-the-art 3D sketch to shape retrieval methods on the SHREC 2016 dataset

using the standard evaluation metrics. It can be observed that the proposed method

significantly outperforms the existing methods for all the metrics. Specifically, the value

of the important measure “NN” obtained by the proposed method significantly exceeds

the most recent work [42] with a gain of 0.312 based on the same CNN backbone of455

AlexNet. By using deeper CNN backbone (e.g., VGG19), the proposed method can

intuitively achieve better performance. The performance of the proposed method on

the SHREC 2016 dataset verified the superiority performance and generalization ability

of the proposed method when it is extended to the task of 3D sketch–based 3D shape

retrieval.460
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Table 3: Quantitative comparison of the 3D sketch to shape retrieval methods on the SHREC 2016 dataset.

The best results are in bold font.

Methods Backbones NN FT ST E DCG mAP

Siamese [31] - 0.000 0.031 0.108 0.048 0.293 0.072

CNN-SBR [47] - 0.222 0.251 0.320 0.286 0.471 0.314

DCHML [42] AlexNet 0.117 0.106 0.148 0.086 0.327 0.147

Ours (DPSML) AlexNet 0.429 0.478 0.563 0.279 0.609 0.499

Ours (DPSML) VGG19 0.476 0.510 0.572 0.290 0.640 0.533

5.4. Ablation Study

We conduct more experiments to evaluate the effects of different modules of our

method. For avoiding the over-fitting to the test dataset, we also randomly select 1/5

samples from the training set of the SHREC 2013 dataset as the validation (val) set for

the following series of contrast tests on hyper-parameters. Note that, we only report465

the results using the AlexNet as backbone for original feature extraction and use the

same hyper-parameters as described in Subsection 4.3 due to the space limitation. It is

believed that, the other CNN backbones share similar performance trend.

Effects of number of rendered views of 3D shapes. In this experiment, we set

different numbers of rendered views of 3D shapes in order to figure out the its effects470

on the performance. Specifically, the view numbers are set to 3, 4, 6 ,12, 18 and 36

by placing the “virtual cameras” every 120, 90, 60, 30, 20 and 10 degrees. Tab. 4 and

Tab. 5show the corresponding quantitative comparison using the standard evaluation

metrics. We notice that 12 rendered views perform best on the val set and the test set

from SHREC 2013 dataset even the performance is decrease for the reduction of training475

samples. It is demonstrated that the retrieval results have improved while the number

of rendered views increasing within a certain amount. However, slight decrease of the

retrieval accuracy when the number is over 12 rendered views of a 3D shape are used.

More rendered views lead to more representative power but less discriminative power for

different categories while they are projected to high dimension space. In addition, more480

“representative views” are needed to combine more original views jointly. Besides, the

increase of the view number will inevitably bring more computational burden, which can

significantly affect the efficiency of a method. From the quantitative comparison, one

can see that the number of 12 achieves the highest retrieval performance and reasonable
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Table 4: Quantitative comparison of different numbers of rendered view on the testing set of SHREC 2013

dataset. The best results are in bold font.

Numbers NN FT ST E DCG mAP

3 0.688 0.679 0.316 0.140 0.496 0.228

4 0.712 0.729 0.392 0.341 0.802 0.751

6 0.731 0.755 0.810 0.375 0.822 0.772

12 0.741 0.761 0.821 0.385 0.836 0.785

18 0.734 0.753 0.818 0.377 0.831 0.782

36 0.722 0.753 0.820 0.382 0.830 0.781

Table 5: Quantitative comparison of different numbers of rendered view on the val set of SHREC 2013 dataset.

The best results are in bold font.

Numbers NN FT ST E DCG mAP

3 0.438 0.380 0.441 0.214 0.553 0.394

4 0.451 0.413 0.459 0.223 0.561 0.428

6 0.487 0.413 0.463 0.255 0.593 0.446

12 0.534 0.456 0.509 0.261 0.614 0.475

18 0.523 0.443 0.493 0.254 0.606 0.468

36 0.511 0.431 0.487 0.251 0.604 0.464

computational efficiency. As a result, the number of 12 is chosen as the number of485

rendered views for 3D shapes in this work.

Effect of number of representative views selection. As described in Subsection

3.2, the number of selected most representative views by RVS module can affect the

retrieval performance of the proposed method. As mentioned above, each 3D shape is

represented by 12 rendered views, and some of the them can be considered as redundancy490

due to the their appearance similarity. Consequently, a RVS module is introduced to

reduce such redundancy and results in different number of representative views”.

Considering the input number is 12 views, we conduct an experiment on the on

the val set and testing set of SHREC 2013 dataset by varying different number of the

resulted “representative views” (e.g., 2, 5, 8 and 10) aiming to evaluate its effect on495

the performance caused by the redundancy reduction. Table 5 shows the quantitative

comparison using the common evaluation metrics. Note that, number of 12 means using
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Table 6: Quantitative comparison of different numbers of “representative views” on the test set of SHREC

2013 dataset. The best results are in bold font.

Numbers NN FT ST E DCG mAP

2 0.725 0.746 0.804 0.382 0.822 0.768

5 0.741 0.761 0.821 0.385 0.836 0.785

8 0.736 0.755 0.817 0.378 0.832 0.778

10 0.710 0.726 0.791 0.366 0.817 0.751

12 0.715 0.737 0.801 0.369 0.821 0.752

Table 7: Quantitative comparison of different numbers of “representative views” on the val set of SHREC

2013 dataset. The best results are in bold font.

Numbers NN FT ST E DCG mAP

2 0.496 0.412 0.477 0.246 0.588 0.443

5 0.534 0.456 0.509 0.261 0.614 0.475

8 0.512 0.430 0.474 0.254 0.598 0.456

10 0.440 0.379 0.443 0.229 0.552 0.396

12 0.488 0.402 0.461 0.237 0.576 0.428

all the 12 rendered views without RVS module. It can be observed that, 5 “representative

views” results in the best retrieval performance whether on the val set or the test set,

which verifies our hypothesis about “redundancy information”.500

Effect of hyper-parameter λ: As described in Subsection 3.3, the overall loss

function of the proposed method contains two terms, i.e., between-class term and within-

class term. The relative distance loss tends to maximize the between-class distance,

while the absolute distance loss tends to minimize within-class distance. Therefore,

there is a hyper-parameter λ to balance the total loss terms between such two terms.505

Note that, the order of magnitude of absolute distance loss is larger than relative distance

loss obviously. λ = 0 means that we only use relative distance loss function without

considering the absolute distance function. Specifically, we conduct an experiment

on the val set and the test set of SHREC 2013 dataset by varying different values of

hyper-parameter λ (e.g., 0, 0.0001, 0.001, 0.01, 0.1, 1) aiming to evaluate its effect on510

the retrieval performance caused by the different contributions of the two terms. Fig.12

shows the mAP versus λ when testing on the val set and the test set of SHREC 2013
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Figure 12: The mAP of proposed method versus λ when testing on the val set and the test set of SHREC 2013

dataset.

dataset based on AlexNet as the CNN backbone. We notice that the optimal trade-off

weight is same for both val set and test set. Therefore, setting hyper-parameter λ = 0.01

leads to the best performance.515

Effect of classes with similar appearance: Discriminating the 3D shapes with

similar appearance is a challenging task. To evaluate the distinctiveness of our proposed

method under visually similar categories, we generate a subset of 3D shapes from

the SHREC 2013 dataset called Sim_SHREC 2013 dataset, which includes 3,600

sketches and 706 3D shapes belonging to 45 classes. As illustrated in Fig. 13, the520

Sim_SHREC 2013 dataset contains pairs of 3D shapes with similar apperance, which is

more chanllenging than origininal SHREC 2013 dataset.

A quantitative comparison of the proposed method on the SHREC 2013 and

Sim_SHREC 2013 datasets is shown in Tab. 8. As a result,the performance of our

method on this challenging dataset is worse than that on its original counterpart, e.g.525

the NN measure is decreased by 0.037. However, this performance is still reasonable,

which demonstrates the discriminative power of the proposed representation. The main

reason for this deterioration is that the overlap may exist between similar shape feature

subspaces, especially those ones sharing similar key components. For example, both

bicycle and motorbike have one frame, one handle and two wheels. Therefore, such530

shared key elements may lead to similar feature encoding results in the feature sub-

spaces and different degree of incorrect recognition. However, our proposed method still
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Classes = (Airplane, Skateboard, Shark, Shovel, Hammer, Dolphin, Submarine, Axe, Barn, 

House, Bed, Truck, Bench, Table, Cabinet, Beer_mug, Door, Couch, Bicycle, Motorbike, 

Book, Bridge, Car_sedan, Suv, Race_car, Castle, Church, Computer_monitor, Laptop, TV, 

Fish, Floor_lamp, Tablelamp, Ladder, Helicopter, Sea_turtle, Palm_tree, Satellite, 

Satellite_dish, Ship, Sailboat, Space_shuttle, Skycraper, Tire, Wheel)
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Shark Submarine

Table Bed

Bicycle Motorbike

Figure 13: The complete list of class names and some examples from the Sim_SHREC 2013 dataset. Note

that, each row contains a pair of 3D shapes with similar appearance, e.g., shark/submarine, table/bed and

bicyvle and motorbike.

Table 8: Quantitative comparison the proposed method on the SHREC 2013 dataset with full 90 classes and

the Sim_SHREC 2013 dataset with 45 selected classes.

Dataset NN FT ST E DCG mAP

SHREC 2013 0.741 0.761 0.821 0.385 0.836 0.785

Sim_SHREC 2013 0.704 0.736 0.802 0.380 0.828 0.765

achieves a reasonable performance for all the evaluation measures, which validate the

robustness of the proposed method dealing with the 3D shapes with similar apperance.

535

6. Conclusions

In this paper, we propose a novel DPSML framework for sketch-based 3D shape

retrieval. First, the raw features for both sketches and 3D shapes (represented by 12

rendered views) are extracted via pre-trained deep models (AlexNet, VGG and ResNet).

Second, a RVS module is introduced to reduce the redundancy of the rendered views and540

results in a set of most representative views. Then, the sketch is projected into a feature

point and the 3D shape is projected into a subspace which is spanned by the obtained

basis feature vectors from the selected representative views. Finally, the similarity of the
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query sketch and a 3D shape is defined as the distance of the query sketch feature vector

and the closest point in the spanned space of the 3D shape, which reflects the viewpoint545

information determined by the input query sketch. More specifically, we formulate

the representation learning problem as the classification problem for the sketch side

and the multi-instance classification problem for the 3D shape side, which guarantees

the training efficiency. The overall loss function consists of two parts, i.e., the relative

distance part and an absolute distance part. The first part aims to learn a class center550

for minimize the between-class distance and the second part aims to maximize the

within-class distance. We demonstrated the effectiveness of the proposed method on

three publicly available large-scale datasets (i.e., SHREC 2013, 2014 and 2016), and a

superior retrieval performance over the state-of-the-arts was achieved.
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