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Abstract

The contaminated Gaussian distribution represents a simple heavy-tailed elliptical
generalization of the Gaussian distribution; unlike the often-considered t-distribution,
it also allows for automatic detection of mild outlying or “bad” points in the same
way that observations are typically assigned to the groups in the finite mixture model
context. Starting from this distribution, we propose the contaminated factor anal-
ysis model as a method for dimensionality reduction and detection of bad points in
higher dimensions. A mixture of contaminated Gaussian factor analyzers (MCGFA)
model follows therefrom, and extends the recently proposed mixture of contaminated
Gaussian distributions to high-dimensional data. We introduce a family of 32 parsimo-
nious models formed by introducing constraints on the covariance and contamination
structures of the general MCGFA model. We outline a variant of the expectation-
maximization algorithm for parameter estimation. Various implementation issues are
discussed, and the novel family of models is compared to well-established approaches
on both simulated and real data.

Keywords: EM algorithm; factor analysis; mixture models; model-based clustering;
heavy-tailed distributions.

1 Introduction

Unsupervised classification — also called cluster analysis or clustering — is an important
subfield of pattern recognition, where the objective is to find homogeneous subpopulations
within data (Theodoridis and Koutroumbas, 2008). For p-dimensional data assumed to arise
from a continuous random vector, clustering is commonly focused on elliptical distributions
(Cambanis et al., 1981) and the Gaussian distribution is the most widely considered ellip-
tical distribution because of its computational and theoretical convenience. However, for
many practical clustering problems, the tails of the Gaussian distribution are lighter than
required to effectively identify homogeneous subpopulations (Nguyen et al., 2014). This is
often due to the presence of mild outlying or “bad” points (see Aitkin and Wilson, 1980
and Ritter, 2015, pp. 79–80), here defined clusterwise (Punzo and McNicholas, 2016) as
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points that do not really deviate from the Gaussian distribution and are not strongly out-
lying, but rather they produce an overall within-cluster distribution that is too heavy-tailed
to be modeled by the Gaussian (Mazza and Punzo, 2017). These points are distributed
elliptically around the regular clusters and can be dealt with by using heavy-tailed ellipti-
cal distributions. Endowed with heavy tails, they offer the flexibility needed for achieving
robustness to bad points, whereas the Gaussian distribution, used as the reference distribu-
tion for the typical observations, lacks sufficient fit. Examples in this direction are the t-
distribution, thanks to its concentration parameter, i.e., the degrees of freedom (Lange et al.,
1989, Kotz and Nadarajah, 2004 and Gao et al., 2017), and the contaminated Gaussian dis-
tribution (Tukey, 1960), a two-component Gaussian mixture in which one of the components,
with a large prior probability, represents the “good” observations, and the other, with a small
prior probability, the same mean, and an inflated covariance matrix, represents the bad
observations (Aitkin and Wilson, 1980); in the univariate case, see also Mazza and Punzo
(2019).

Punzo and McNicholas (2016) have recently proposed mixtures of G contaminated Gaus-
sian distributions as a robust generalization of mixtures of Gaussian distributions, and as an
alternative to mixtures of t distributions (McLachlan and Peel, 1998, Peel and McLachlan,
2000, Shoham, 2002, Sfikas et al., 2007, and Gao et al., 2017) and, more in general, to mix-
tures of elliptical heavy-tailed distributions such as those proposed by Sun et al. (2010) and
Bagnato et al. (2017). However, the mixture of G contaminated Gaussian distributions, with
unrestricted component-covariance matrices of the good observations, say Σ1, . . . ,ΣG, is a
highly parametrized model with p (p+ 1) /2 parameters for each Σg, g = 1, . . . , G. To intro-
duce parsimony, Punzo and McNicholas (2016) also define fourteen variants of the general
model obtained, as in Celeux and Govaert (1995), via eigen-decomposition of Σ1, . . . ,ΣG.
This family of models can be fitted in the R software environment for statistical comput-
ing and graphics (R Core Team, 2019) via the ContaminatedMixt package (Punzo et al.,
2018). But if p is large relative to the sample size n, it may not be possible to use this de-
composition to infer an appropriate model for Σ1, . . . ,ΣG. Even if it is possible, the results
may not be reliable due to potential problems with near-singular estimates of Σg when p is
large relative to n.

To address this problem, following the literature on the adoption of factor analyzers
within mixture models (see, among many others, McLachlan and Peel, 2000, Chapter 8,
McLachlan et al., 2003, McNicholas and Murphy, 2008, Zhao and Yu, 2008, Montanari and Viroli,
2011, Wei and Yang, 2012, Subedi et al., 2013, 2015, and McNicholas, 2016, Chapter 3), we
propose mixtures of contaminated Gaussian factor analyzers, where a contaminated Gaussian
factor analysis model is used for each mixture component. The result is a means of fitting
mixtures of contaminated Gaussian distributions in situations where p would be sufficiently
large (perhaps relative to the sample size n) to cause potential problems with singular or
near-singular estimates of Σ1, . . . ,ΣG. The number of free parameters is controlled through
the dimension of the latent factor space. Additionally, we propose a family of 32 variants
of this model obtained by applying different constraints to the factor loading, error variance
matrices (in analogy with McNicholas and Murphy, 2008) and contamination parameters
of each mixture component. These variants further reduce the number of model parame-
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ters, and allow more accurate parameter estimation when mixture components share similar
characteristics.

The paper is organized as follows. Section 2 briefly recalls the contaminated Gaussian dis-
tribution (Section 2.1). It then introduces the contaminated Gaussian factor analysis model
(Section 2.2), the mixture of contaminated Gaussian factor analyzers (MCGFA) model, and
the family of 32 parsimonious variants of the MCGFA model (Section 2.3). This family
represents the core of the paper. Section 3 details the alternating expectation-conditional
maximization algorithm used for fitting the MCGFA model. Some computational details are
provided in Section 4. In Section 5, the performance of our family of models is evaluated with
respect to two alternative parsimonious family of models through several simulated and real
data analyses. Computationally, the heavy lifting is done in the C programming language,
with an R interface, and an R package will shortly be released. The paper concludes with a
discussion in Section 6.

2 Mixtures of Contaminated Gaussian Factor Analyz-

ers

2.1 The contaminated Gaussian distribution

The p-variate random vector X is said to have a contaminated Gaussian distribution (Tukey,
1960) with mean µ, scale matrix Σ, proportion of good points α ∈ (0, 1), and degree of
contamination η > 1, if its probability density function (pdf) is given by

pCN (x;µ,Σ, α, η) = αpN (x;µ,Σ) + (1− α) pN (x;µ, ηΣ) , (1)

where pN (·;µ,Σ) denotes the pdf of a p-variate normal distribution with mean µ and co-
variance matrix Σ. If X has the pdf in (1), then we write X ∼ CN p (µ,Σ, α, η). As we
can see in (1), a contaminated Gaussian distribution is a two-component Gaussian mixture
in which one of the components, typically with a large prior probability α, represents the
“good” observations, and the other, with a small prior probability, the same mean, and an
inflated covariance matrix ηΣ, represents the “bad” observations (Aitkin and Wilson, 1980).
As a special case of (1), if α and η tend to one, we obtain the Gaussian distribution with
mean µ and covariance matrix Σ, i.e., X ∼ Np (µ,Σ).

As for the popular t distribution, the contaminated Gaussian distribution can be also
seen as a special case of the Gaussian scale mixture

∫

Sh

pN (x;µ,Σ/w)h (w; θ) dw, (2)

where h (w; θ) is the mixing probability density (or mass) function, with support Sh ⊆
IR>0, depending on the parameter(s) θ. The pdf in (2) is unimodal, elliptically symmet-
ric, and heavier tailed than the Gaussian distribution (see, e.g., Barndorff-Nielsen et al.,
1982, Watanabe and Yamaguchi, 2003 Fang et al., 2013, Section 2.6, Yamaguchi, 2004 and
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McLachlan and Peel, 2000, Section 7.4). The tail weight of the Gaussian scale mixture dis-
tribution is governed by θ. In detail, the contaminated Gaussian distribution is a special
case of (2) if we consider the dichotomous random variable

W =

{

1 with probability α,
1/η with probability 1− α,

(3)

with probability mass function

h (w; θ) = α
w−1/η
1−1/η (1− α)

1−w
1−1/η , (4)

where θ = (α, η). Advantageously, the Gaussian scale mixture representation of X ∼
CN p (µ,Σ, α, η) can be expressed hierarchically as

W ∼ C (α, η) , (5)

X|w ∼ Np (µ,Σ/w) , (6)

where C (α, η) denotes the dichotomous contamination variable defined by (3) and (4).
An advantage of model (1) with respect to the existing Gaussian scale mixtures is that,

once the parameters in ϑ = {µ,Σ, α, η} are estimated, say ϑ̂ = {µ̂, Σ̂, α̂, η̂}, we can establish
whether a generic point x is either good or bad via its a posteriori probability. That is,
compute

P (x is good|ϑ̂) =
α̂pN(x; µ̂, Σ̂)

pCN(x; ϑ̂)
, (7)

and consider x as good if P (x is good|ϑ̂) > 1/2.

2.2 The contaminated Gaussian factor analysis model

The (Gaussian) factor analysis model (Spearman, 1904; Bartlett, 1953; Lawley and Maxwell,
1962, 1971) is a well-known, and widely used, data reduction tool aiming to find latent factors
that explain the variability in the data. Suppose we have X1, . . . ,Xn from a factor analysis
model. The model (see Bartholomew et al., 2011, Chapter 3) assumes that the p-variate
random vector X i is modelled using a q-variate vector of factors U i ∼ Nq (0q, Iq), where
q < p and the U i are independently distributed. The model is

X i = µ+ΛU i + ei, (8)

where Λ is a p × q matrix of factor loadings, ei ∼ Np (0p,Ψ) is the error term, with Ψ =
diag (ψ1, . . . , ψp), and the ei are independently distributed and independent of the U i. It
follows from (8) that X i ∼ Np (µ,ΛΛ′ +Ψ).

The factor analysis model is, however, sensitive to bad points as it adopts the Gaussian
distribution for errors and latent factors. To improve its robustness, for data having longer
than Gaussian tails or bad points, McLachlan et al. (2007) introduce the t-factor analysis
model which considers the multivariate t for the distributions of the errors and the latent
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factors (see also Andrews and McNicholas, 2011a). We extend this branch of literature by
introducing the contaminated Gaussian factor analysis model.

Based on (8), the contaminated Gaussian factor analysis model generalizes the corre-
sponding Gaussian factor analysis model by assuming

(

X i

U i

)

∼ CN p+q (µ
∗,Σ∗, α, η) , (9)

where

µ∗ =

(

µ

0q

)

and Σ∗ =

(

ΛΛ′ +Ψ Λ

Λ′ Iq

)

.

Using the Gaussian scale mixture representation of the contaminated Gaussian distribution
discussed in Section 2.1, the joint pdf of X i and U i, given Wi = wi, can be written

(

X i

U i

)

∣

∣

∣

∣

∣

wi ∼ Np+q (µ
∗,Σ∗/wi) , (10)

with Wi ∼ C (α, η). Thus,

X i|wi ∼ Np (µ, (ΛΛ′ +Ψ) /wi) ,

U i|wi ∼ Nq (0q, Iq/wi) ,

ei|wi ∼ Np (0p,Ψ/wi) ,

so that

X i ∼ CN p (µ,ΛΛ′ +Ψ, α, η) ,

U i ∼ CN q (0q, Iq, α, η) ,

ei ∼ CN p (0p,Ψ, α, η) .

The factors U i and error terms ei are no longer independently distributed as in the usual
Gaussian factor analysis model; however, they remain uncorrelated.

2.3 Parsimonious MCGFA models

To robustify the classical mixture of Gaussian distributions to the occurrence of bad points,
and also to allow for their automatic detection (see Zimek et al., 2012, Pimentel et al., 2014,
Domingues et al., 2018 for recent surveys about outlier detection methods), Punzo and McNicholas
(2016) propose the mixture of contaminated Gaussian distributions

p (x;ϑ) =

G
∑

g=1

πgpCN(x;µg,Σg, αg, ηg) (11)

where, for the gth mixture component, πg > 0 is its mixing proportion, with
∑G

g=1 πg =
1, and the density pCN(x;µg,Σg, αg, ηg) is defined as in (1). For recent extensions of
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model (11) to the hidden Markov model and regression setting, see Punzo and Maruotti
(2016), Maruotti and Punzo (2017), Punzo and McNicholas (2017) and Mazza and Punzo
(2017).

In (11), there are p (p+ 1) /2 parameters for each Σg, g = 1, . . . , G. This means that, as
the number of components G grows, the total number of free parameters can quickly become
very large leading to overfitting. To model high-dimensional data, and to add parsimony,
we consider the contaminated Gaussian factor analysis model of Section 2.2 in each mixture
component; this leads to the mixture of contaminated Gaussian factor analyzers given by
(11) but with the component scale matrices given by

Σg = ΛgΛ
′

g +Ψg. (12)

Following the work of McNicholas and Murphy (2008) on mixtures of Gaussian factor
analyzers, and of Andrews and McNicholas (2011a,b), Steane et al. (2012) and Lin et al.
(2014) on mixtures of t factor analyzers, we introduce a unified family of 32 mixtures of
contaminated Gaussian factor analyzers by imposing five different sets of constraints, three
on the covariance structure parameters {Λg}Gg=1 and {Ψg}Gg=1, and the remaining two on the
contamination parameters {αg}Gg=1 and {ηg}Gg=1. First, the factor loading matrices Λg may
be constrained to be equal across groups, i.e., Λg = Λ; this situation is sometimes referred to
as Λg being “tied” but we shall use the term “constrained” herein. This constraint prevents
local dimensionality reduction, but if the mixture components indeed share similar covariance
structures, provides a simpler model and greater stability for parameter estimation. Second,
the error variance matrices Ψg may be constrained across groups; this is consistent with
the interpretation of Ψ as sensor noise that affects all observations in the same way (see
Ghahramani and Hinton, 1997). Third, we may assume that error variances in each variable
are the same within each group, or that we have isotropic errors (see Tipping and Bishop,
1999). Finally, we may set equal across groups either the proportions of good observations
αg or the inflation parameters ηg. So all together, the possible constraints are:

1. loading matrices constrained across groups, i.e., Λ1 = · · · = ΛG = Λ;

2. error variance matrices constrained across groups, i.e., Ψ1 = · · · = ΨG = Ψ;

3. isotropic errors within groups, i.e., Ψg = ψgIp, ψg ∈ R
+;

4. proportions of good observations constrained across groups, i.e., α1 = · · · = αG = α;

5. inflation parameters constrained across groups, i.e., η1 = · · · = ηG = η.

Each constraint may be applied or not, independently of the others, yielding 32 models.
The models are for simplicity labeled by merging two groups of letter codes: the first group
having three letters referring to the constraints on the covariance structure, and the second
group with two letters referring to the constraints on the contamination parameters. Each
letter can be C and U, where U indicates unconstrained and C indicates constrained. Thus
the unconstrained, or most general, MCGFA model is denoted UUUUU. The full MCGFA
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family of models is presented in Table 1, along with their number of free parameters, de-
noted #parcov and #parcont, related to the scale matrices Σ1, . . . ,ΣG, and to contamination
parameters α1, . . . , αG and η1, . . . , ηG, respectively. Note that the overall number of free pa-
rameters, denoted #par, in any of the 32 model variants is (G− 1)+Gp+#parcov+#parcont.

2.4 Model selection

As usual in the literature about mixture models (Fraley and Raftery, 1998), we handle model
order selection (estimating the number of mixture components G), factorial dimension selec-
tion (determining the number of latent factors q), and model structure selection (determining
the best parsimonious structure among those in Table 1), simultaneously by the Bayesian
information criterion (BIC; Schwarz, 1978):

BIC = −2l(ϑ̂) + #par× lnn, (13)

where l(ϑ̂) is the maximized (observed-data) log-likelihood and n is the sample size; for
more recent alternatives to the BIC see, e.g., Mehrjou et al. (2016). Note that, when
formulated as in (13), models with smaller BIC values are preferred. Leroux (1992) and
Roeder and Wasserman (1997) established the consistency of the BIC for mixture models.

However, when the number of variables p is very large, the BIC may grossly underes-
timate the order G (see, e.g., Bhattacharya and McNicholas, 2014). As well-documented
in Graham and Miller (2006), this failure is not mainly attributable to the criterion, but
rather to the lack of “structure”. This problem roughly amounts to inadequate number of
members, for each fixed value of G, in the considered family of models. We try to mitigate
this problem by searching over a rich family of 32 parsimonious models and by applying
dimensionality reduction simultaneously to clustering.

3 Maximum likelihood estimation via the AECM al-

gorithm

To find ML estimates for the parameters ϑ =
{

πg,µg,Λg,Ψg, αg, ηg
}G

g=1
of the MCGFA

model, we consider the application of the alternating expectation-conditional maximizations
(AECM) algorithm of Meng and van Dyk (1997). The AECM algorithm is an extension of
the expectation-conditional maximization (ECM) algorithm (Meng and Rubin, 1993), where
the specification of the complete data is allowed to be different on each CM-step. The
ECM algorithm is itself a variant of the classical expectation-maximization (EM) algorithm
(Dempster et al., 1977), which is a natural approach for ML estimation when there are
sources of latent or hidden data. In our case, we have two sources of latent data: the
component membership of each observation, and the classification of each observation as
good or bad within each component. To denote the first source, we use z1, . . . , zn, where
zi = (zi1, . . . , ziG)

′ so that zig = 1 if observation i is in component g, and zig = 0 otherwise.
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Table 1: Nomenclature and parsimonious structures for members of the MCGFA family,
where the number of free covariance parameters is denoted by #parcov and the number of
contamination parameters is denoted by #parcont.

Λg = Λ Ψg = Ψ Ψg = ψgI αg = α ηg = η #parcov #parcont

C C C C C pq − q(q − 1)/2 + 1 2

C C C C U pq − q(q − 1)/2 + 1 G+ 1
C C C U C pq − q(q − 1)/2 + 1 G+ 1
C C U C C pq − q(q − 1)/2 + p 2
C U C C C pq − q(q − 1)/2 +G 2
U C C C C G[pq − q(q − 1)/2] + 1 2

C C C U U pq − q(q − 1)/2 + 1 2G
C C U C U pq − q(q − 1)/2 + p G+ 1
C U C C U pq − q(q − 1)/2 +G G+ 1
U C C C U G[pq − q(q − 1)/2] + 1 G+ 1
C C U U C pq − q(q − 1)/2 + p G+ 1
C U C U C pq − q(q − 1)/2 +G G+ 1
U C C U C G[pq − q(q − 1)/2] + 1 G+ 1
C U U C C pq − q(q − 1)/2 +Gp 2
U C U C C G[pq − q(q − 1)/2] + p 2
U U C C C G[pq − q(q − 1)/2] +G 2

C C U U U pq − q(q − 1)/2 + p 2G
C U C U U pq − q(q − 1)/2 +G 2G
C U U C U pq − q(q − 1)/2 +Gp G+ 1
C U U U C pq − q(q − 1)/2 +Gp G+ 1
U C C U U G[pq − q(q − 1)/2] + 1 2G
U C U C U G[pq − q(q − 1)/2] + p G+ 1
U C U U C G[pq − q(q − 1)/2] + p G+ 1
U U C C U G[pq − q(q − 1)/2] +G G+ 1
U U C U C G[pq − q(q − 1)/2] +G G+ 1
U U U C C G[pq − q(q − 1)/2] +Gp 2

C U U U U pq − q(q − 1)/2 +Gp 2G
U C U U U G[pq − q(q − 1)/2] + p 2G
U U C U U G[pq − q(q − 1)/2] +G 2G
U U U C U G[pq − q(q − 1)/2] +Gp G+ 1
U U U U C G[pq − q(q − 1)/2] +Gp G+ 1

U U U U U G[pq − q(q − 1)/2] +Gp 2G

For the second source, we use the indicator variable

V =
W − 1/η

1− 1/η
,
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which is a linear transformation ofW in (3). This yields v1, . . . , vn, where vi = (vi1, . . . , viG)
′

so that vig = 1 if observation i in group g is good and vig = 0 if observation i in group g is
bad.

To apply the AECM algorithm, we partition ϑ = {ϑ1,ϑ2}, where ϑ1 =
{

πg,µg, αg, ηg
}G

g=1

and ϑ2 = {Λg,Ψg}
G
g=1, so that the complete-data likelihood is easy to maximize for ϑ1 given

ϑ2 and vice versa. Therefore, the (k + 1)th iteration of our AECM algorithm consists of
two cycles: there is one E-step and two CM-steps for the first cycle and one E-step and one
CM-step for the second cycle. The two cycles correspond to the partition of ϑ into ϑ1 and
ϑ2. The two CM-steps of the first cycle correspond to the partition of ϑ1 as ϑ1 = {ϑ11,ϑ12},

where ϑ11 =
{

πg,µg, αg

}G

g=1
and ϑ12 = {ηg}

G
g=1.

All maximization steps in the algorithm are solvable analytically. Thus all parameter
updates are available in closed form, avoiding any use of numerical optimization. This
stands in contrast to the lack of a closed form update for the degrees of freedom in the case
of the t distribution.

3.1 First cycle

For the first cycle of the AECM algorithm, we specify the missing data to be z1, . . . , zn

and v1, . . . , vn. Thus, the complete data are (x′

1, . . . ,x
′

n, z
′

1, . . . , z
′

n, v
′

1, . . . , v
′

n) and the
complete-data log-likelihood can be written as

l1c(ϑ1) = l1c1({πg}
G
g=1) + l1c2({αg}

G
g=1) + l1c3({µg, ηg}

G
g=1),

where

l1c1({πg}
G
g=1) =

n
∑

i=1

G
∑

g=1

zig log πg

l1c2({αg}
G
g=1) =

n
∑

i=1

G
∑

g=1

zig [vig logαg + (1− vig) log(1− αg)]

l1c3({µg, ηg}
G
g=1) =−

1

2

n
∑

i=1

G
∑

g=1

[

zig log |Σ
(k)
g |+ pzig(1− vig) log ηg

+ zig

(

vig +
1− vig
ηg

)

(xi − µg)
′(Σ(k)

g )−1(xi − µg)

]

, (14)

where Σ(k)
g = Λ(k)

g Λ(k)′

g +Ψ(k)
g . In (14), constants with respect to the parameters are omitted

for the sake of brevity.

3.1.1 E-step

The E-step on the first cycle of the (k + 1)th iteration requires the calculation of the ex-
pectation of l1c given the observed data x1, . . . ,xn and ϑ(k). To do this, we replace zig
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with

z
(k)
ig = E[Zig | xi,ϑ

(k)] =
π
(k)
g pCN(xi;µ

(k)
g ,Σ(k)

g , α
(k)
g , η

(k)
g )

G
∑

j=1

π
(k)
j pCN(xi;µ

(k)
j ,Σ

(k)
j , α

(k)
j , η

(k)
j )

,

and vig with

v
(k)
ig = E[Vig | Zig = 1,xi,ϑ

(k)] =
α
(k)
g pN(xi;µ

(k)
g ,Σ(k)

g )

pCN(xi;µ
(k)
g ,Σ(k)

g , α
(k)
g , η

(k)
g )

,

where Zig and Vig are the random variables related to zig and vig, respectively.

3.1.2 CM-step 1

At the first CM-step on the first cycle of the (k+1)th iteration, we maximize the expectation

of the complete-data log-likelihood with respect to ϑ11, fixing ϑ12 = ϑ
(k)
12 . Some algebra

yields the following updates for πg and µg:

π(k+1)
g = n(k)

g /n,

µ(k+1)
g =

n
∑

i=1

z
(k)
ig

(

v
(k)
ig +

1− v
(k)
ig

η
(k)
g

)

xi

n
∑

i=1

z
(k)
ig

(

v
(k)
ig +

1− v
(k)
ig

η
(k)
g

) , (15)

where n
(k)
g =

n
∑

i=1

z
(k)
ig .

As concerns the update of the proportion of good observations αg, we have to distinguish
the unconstrained case and the case of tied proportions across groups. Moreover, for the sake
of interpretation, we could require that these proportions should lie within the interval (α∗, 1),
where α∗ is the minimum proportion of good observations. For the analyses herein we use
α∗ = 0.5; this choice is justified by the fact that robust (clustering) techniques typically allow
for a contamination rate of at most 50% (Garćıa-Escudero et al., 2008; Ritter, 2015). The
motivation lies in the (sometimes implicit) assumption that the “good” population should
correspond to the majority of data. According to these considerations, in the unconstrained
case the update for αg is

α(k+1)
g = max

{

α∗,
1

n
(k)
g

n
∑

i=1

z
(k)
ig v

(k)
ig

}

,

while in the constrained case the update for the common proportion α is

α(k+1) = max

{

α∗,
1

n

G
∑

g=1

n
∑

i=1

z
(k)
ig v

(k)
ig

}

.
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3.1.3 CM-step 2

At the second CM-step on the first cycle of the (k + 1)th iteration, we maximize the expec-
tation of the complete-data log-likelihood with respect to ηg or η, depending on the model

being fitted, fixing ϑ11 = ϑ
(k+1)
11 . In the less parsimonious “ηg” case, this yields the update

η(k+1)
g = max

{

η∗,
b
(k)
g

pa
(k)
g

}

, (16)

where

a(k)g =

n
∑

i=1

z
(k)
ig (1− v

(k)
ig ),

b(k)g =
n
∑

i=1

z
(k)
ig (1− v

(k)
ig )(xi − µ(k+1)

g )′(Σ(k)
g )−1(xi − µ(k+1)

g ),

and η∗ is a number close to 1 from the right; for the analyses herein, we use η∗ = 1.001. In
the more parsimonious “η” case, the update becomes

η(k+1) = max

{

η∗,
b(k)

pa(k)

}

, (17)

where a(k) =
G
∑

g=1

a(k)g and b(k) =
G
∑

g=1

b(k)g .

3.2 Second cycle

For the second cycle of the AECM algorithm, we specify the missing data to be z1, . . . , zn,
v1, . . . , vn, and the latent factors u1, . . . ,un. Therefore, the complete-data log-likelihood
can be written as

l2c(ϑ2) =C +

G
∑

g=1

{

−
ng

2
log |Ψg| −

ng

2
tr(Ψ−1

g S(k+1)
g ) +

n
∑

i=1

zig

(

vig +
1− vig

η
(k+1)
g

)

(xi − µ(k+1)
g )′Ψ−1

g Λguig

−
1

2
tr

[

Λ′

gΨ
−1
g Λg

n
∑

i=1

zig

(

vig +
1− vig

η
(k+1)
g

)

uigu
′

ig

]}

, (18)

where ng =

n
∑

i=1

zig, C is a constant with respect to ϑ2, and

S(k+1)
g =

1

ng

n
∑

i=1

zig

(

vig +
1− vig

η
(k+1)
g

)

(xi − µ(k+1)
g )(xi − µ(k+1)

g )′. (19)
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3.2.1 E-step

The E-step on the second cycle of the (k + 1)th iteration requires the calculation of the

expectation of l2c given the observed data and ϑ(k+1/2) = {ϑ(k+1)
1 ,ϑ

(k)
2 }. Operationally, this

involves the substitution of zig and vig in (18) and (19) with z
(k+1/2)
ig and v

(k+1/2)
ig , respectively;

the notation changes, with respect to z
(k)
ig and v

(k)
ig in Section 3.1.1, because we now use the

updates π
(k+1)
g , α

(k+1)
g , µ

(k+1)
g , and η

(k+1)
g from the first cycle of the algorithm. The E-step

also involves the computation of the following conditional expectations

E
ϑ
(k+1/2)

[

Zig

(

Vig +
1− Vig

η
(k+1)
g

)

U ig

∣

∣

∣
xi

]

= z
(k+1/2)
ig

(

v
(k+1/2)
ig +

1− v
(k+1/2)
ig

η
(k+1)
g

)

β(k)
g (xi − µ(k+1)

g ),

E
ϑ
(k+1/2) [ZigVigU igU

′

ig | xi] = z
(k+1/2)
ig v

(k+1/2)
ig

[

Iq − β(k)
g Λ(k)

g + β(k)
g (xi − µ(k+1)

g )(xi − µ(k+1)
g )′β(k)′

g

]

,

E
ϑ
(k+1/2)

[

Zig

(

1− Vig

η
(k+1)
g

)

U igU
′

ig

∣

∣

∣
xi

]

= z
(k+1/2)
ig

(

1− v
(k+1/2)
ig

η
(k+1)
g

)

[

Iq − β(k)
g Λ(k)

g + β(k)
g (xi − µ(k+1)

g )(xi − µ(k+1)
g )′β(k)′

g

]

,

where β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g + Ψ(k)
g )−1. The precise formula for βg changes depending on

which constraints are imposed upon {Λg}
G
g=1 and {Ψg}

G
g=1. The formulae for each of the eight

parsimonious models regarding the covariance structure can be found in McNicholas and Murphy
(2008, Appendix A). It follows that the expected complete-data log-likelihood, omitting the
constant terms, is

Q2(ϑ2) =

G
∑

g=1

n(k+1/2)
g

{

1

2
log |Ψ−1

g |

−
1

2
tr
(

Ψ−1
g S(k+1)

g

)

+ tr
(

Ψ−1
g Λgβ

(k)
g S(k+1)

g

)

−
1

2
tr
(

Λ′

gΨ
−1
g ΛgΘ

(k+1/2)
g

)

}

,

(20)

where n
(k+1/2)
g =

n
∑

i=1

z
(k+1/2)
ig and Θ(k+1/2)

g = Iq − β(k)
g Λ(k)

g + β(k)
g S(k+1)

g β(k)′

g is a symmetric

q × q matrix.

3.2.2 CM-step

At the CM-step on the second cycle of the (k + 1)th iteration, we maximize Q2(ϑ2) with

respect to ϑ2, fixing ϑ1 = ϑ
(k+1)
1 . The resulting updates for ϑ2, when we impose the

covariance constraints of Table 1 on the Λg and Ψg matrices, can be derived from the
expression for Q2(ϑ2). Outline calculations required to compute the updates for all of the
eight parsimonious covariance structures are given below; further details can be found in
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McNicholas and Murphy (2008, Appendix A). More precisely, let us define

S(k+1) =
1

n

G
∑

g=1

n(k+1/2)
g S(k+1)

g and Θ(k+1/2) = Iq − β(k)Λ(k) + β(k)S(k+1)β(k)′ ,

with β(k) defined according to the imposed constraints. Then, we obtain the following update
equations for the eight different cases considered.

• For model CCC, Λg = Λ and Ψg = Ψ = ψIp, and the updates are

β(k) = Λ(k)′(Λ(k)Λ(k)′ + ψ(k)Ip)
−1, Λ(k+1) = S(k+1)β(k)(Θ(k+1/2))−1,

ψ(k+1) =
1

p
tr(S(k+1) −Λ(k+1)β(k)S(k+1)).

• For model CCU, Λg = Λ and Ψg = Ψ, and the updates are

β(k) = Λ(k)′(Λ(k)Λ(k)′ +Ψ(k))−1, Λ(k+1) = S(k+1)β(k)(Θ(k+1/2))−1,

Ψ(k+1) = diag(S(k+1) −Λ(k+1)β(k)S(k+1)).

• For model CUC, Λg = Λ and Ψg = ψgIp, and the updates are

β(k)
g = Λ(k)′(Λ(k)Λ(k)′ + ψ(k)

g Ip)
−1,

Λ(k+1) =

[

G
∑

g=1

n
(k+1/2)
g

ψ
(k)
g

S(k+1)
g β(k)′

g

][

G
∑

g=1

n
(k+1/2)
g

ψ
(k)
g

Θ(k+1/2)
g

]−1

,

ψ(k+1)
g =

1

p
tr(S(k+1)

g − 2Λ(k+1)β(k)
g S(k+1)

g +Λ(k+1)Θ(k+1/2)
g Λ(k+1)′).

• For model CUU, Λg = Λ, and the updates are

β(k)
g = Λ(k)′(Λ(k)Λ(k)′ +Ψ(k)

g )−1, λ
(k+1)
h = r

(k+1/2)
h

[

G
∑

g=1

n
(k+1/2)
g

ψ
(k)
gh

Θ(k+1/2)
g

]−1

,

Ψ(k+1)
g = diag(S(k+1)

g − 2Λ(k+1)β(k)
g S(k+1)

g +Λ(k+1)Θ(k+1/2)
g Λ(k+1)′),

where, for h = 1, . . . , p, λ
(k+1)
h is the pth row of the matrix Λ(k+1), ψ

(k)
gh denotes the hth

element along the diagonal of Ψ(k)
g , and r

(k+1/2)
h represents the hth row of the matrix

G
∑

g=1

n(k+1/2)
g (Ψ(k)

g )−1S(k+1)
g β(k)′

g .
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• For model UCC, Ψg = Ψ = ψIp, and the updates are

β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g + ψ(k)Ip)
−1, Λ(k+1)

g = S(k+1)
g β(k)′

g (Θ(k+1/2)
g )−1,

ψ(k+1) =
1

np

G
∑

g=1

n(k+1/2)
g tr(S(k+1)

g −Λ(k+1)
g β(k)

g S(k+1)
g ).

• For model UCU, Ψg = Ψ, and the updates are

β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g +Ψ(k))−1, Λ(k+1)
g = S(k+1)

g β(k)′

g (Θ(k+1/2)
g )−1,

Ψ(k+1) =
1

n

G
∑

g=1

n(k+1/2)
g diag(S(k+1)

g −Λ(k+1)
g β(k)

g S(k+1)
g ).

• For model UUC, Ψg = ψgIp, and the updates are

β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g + ψ(k)
g Ip)

−1, Λ(k+1)
g = S(k+1)

g β(k)′

g (Θ(k+1/2)
g )−1,

ψ(k+1)
g =

1

p
tr(S(k+1)

g −Λ(k+1)
g β(k)

g S(k+1)
g ).

• For model UUU, there are no constraints and the updates are

β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g +Ψ(k)
g )−1, Λ(k+1)

g = S(k+1)
g β(k)′

g (Θ(k+1/2)
g )−1,

Ψ(k+1)
g = diag(S(k+1)

g −Λ(k+1)
g β(k)

g S(k+1)
g ).

4 Further computational details

4.1 Initialization

The choice of the starting values for the AECM algorithm constitutes an important issue.
Instead of selecting ϑ(0) randomly, we suggest the following technique. The mixture of Gaus-
sian factor analyzers (MGFA) model, with a particular parsimonious covariance structure,
can be seen as nested in four MCGFA models, those having the same parsimonious covari-
ance structure. In particular, the former can be obtained from the latter when αg → 1− (or
α → 1−) and ηg → 1+ (or η → 1+), g = 1, . . . , G. Based on this idea, for all the four mem-
bers of the MCGFA family having the same parsimonious covariance structure, the AECM
algorithm is initialized with the estimates of {πg,µg,Λg,Ψg}Gg=1 provided by the correspond-
ing MGFA model, with same constraints set upon {Σg}Gg=1. The contamination parameters
are initialized with fixed values close to, but not exactly 1, to avoid singularities in the first
iteration of the algorithm. In our implementation we initialize with α

(0)
g = α(0) = 0.999 and

η
(0)
g = η(0) = 1.001, g = 1, . . . , G. The (preliminary) MGFA model is estimated using the
pgmmEM() function of the pgmm package for R (McNicholas et al., 2018). The pgmmEM()

function implements an AECM algorithm to obtain ML estimates, and fitting models with
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the same covariance constraints as the MCGFA models. In turn, to initialize this algorithm,
we use an emEM strategy, for each G and q, where 26 starts are run (25 random plus one
k-means) for 5 iterations each using the unconstrained model and the start that led to the
best BIC is pursued. See Biernacki et al. (2003) for further details on the emEM approach.
Initial parameter estimates are then computed componentwise via the EM updates.

From an operational point of view, thanks to the monotonicity property of the AECM
algorithm, this nested relation between MGFA and MCGFA models also guarantees that the
observed-data log-likelihood of the MCGFA model will be always greater than, or equal to,
the observed-data log-likelihood of the corresponding MGFA model. This is a fundamental
consideration for the use of likelihood-based criteria for selecting between these mixtures
(Punzo et al., 2016).

4.2 Convergence Criterion

The Aitken acceleration (Aitken, 1926) is used to estimate the asymptotic maximum of the
log-likelihood at each iteration of the AECM algorithm. Based on this estimate, we can
decide whether or not the algorithm has reached convergence; i.e., whether or not the log-
likelihood is sufficiently close to its estimated asymptotic value. The Aitken acceleration at
iteration k + 1 is given by

a(k+1) =
l(k+2) − l(k+1)

l(k+1) − l(k)
,

where l(k) is the observed-data log-likelihood value from iteration k. Then, the asymptotic
estimate of the log-likelihood at iteration k + 2 is given by

l(k+2)
∞

= l(k+1) +
1

1− a(k+1)
(l(k+2) − l(k+1));

see Böhning et al. (1994). The AECM algorithm can be considered to have converged when

l
(k+2)
∞ − l

(k+1)
∞ < ǫ, where ǫ is the desired tolerance.

4.3 Woodbury identity

The second cycle E-step of the AECM algorithm, in the computation of β(k)
g , requires the

inversion of the p× p matrix Λ(k)
g Λ(k)′

g +Ψ(k)
g , g = 1, . . . , G. This inversion can be slow for

large values of p. To ease it, we use the Woodbury identity (Woodbury, 1950)

(

Λ(k)
g Λ(k)′

g +Ψ(k)
g

)

−1

=
(

Ψ(k)
g

)

−1

−
(

Ψ(k)
g

)

−1

Λ(k)
g

[

Iq +Λ(k)′

g

(

Ψ(k)
g

)

−1

Λ(k)
g

]

−1

Λ(k)′

g

(

Ψ(k)
g

)

−1

,

(21)
which requires the simpler inversions of the diagonal p× p matrix Ψ(k)

g and the q× q matrix

Iq +Λ(k)′

g

(

Ψ(k)
g

)

−1

Λ(k)
g . This leads to a particularly significant speed-up when q ≪ p.
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5 Comparison with competing methods

In this section, we compare the clustering and classification performance of the MCGFA
model to two natural competitors.

EPGMM is the expanded parsimonious Gaussian mixture model family (EPGMM), intro-
duced by McNicholas and Murphy (2010). EPGMM is a 12-member family of MGFA
models, that extends the 8-member PGMM family of McNicholas and Murphy (2008).
Model fitting for EPGMM was implemented by the pgmmEM() function of the pgmm

package.

MMtFA is the family of mixtures of modified t-factor analyzers (MMtFA) models of Andrews and McNicholas
(2011b). MMtFA is a 24-member family of mixtures of factor analyzers models based
on the multivariate t-distribution as opposed to the Gaussian. The 24 models are anal-
ogous to the 12 models of the EPGMM family, with an additional possible constraint
on the degrees of freedom parameter doubling the number of possibilities. Model fit-
ting for MMtFA was implemented by the mmtfa() function of the mmtfa package for
R (Andrews et al., 2015).

Mixtures of modified t-factor analyzers are the closest competitor to MCGFA; both models
are factor analysis models based off of heavy-tailed elliptical distributions. The inherent ad-
vantage of the MCGFA model is that bad points are, if required, automatically and explicitly
identified. The MMtFA model instead assimilates bad points into clusters. An additional
advantage of the MCGFA is a simplified AECM algorithm. Numerical optimization is nec-
essary in the equivalent algorithm for MMtFA model because there is no closed-form update
available for the degrees-of-freedom parameter in each cluster. The MCGFA model was
applied using the emEM initialization strategy described in Section 4.1.

For completeness, it is worth noting that trimming approaches based on Gaussian fac-
tor analyzers have been developed for use in high-dimensional clustering problems (see
Garćıa-Escudero et al., 2016; Yang et al., 2017). While these approaches can be effective
if provided with the correct proportion of outlying points, the need to pre-specify the pro-
portion of outlying points greatly limits the extent to which they can be used in comparisons.
Specifically, while it is straightforward to make a good guess at the proportion of outlying
points in very low dimensions (e.g., p = 2 or p = 3), there is no reliable way to do so in
general. Therefore, we limited our comparisons to relevant approaches that do not require
pre-specification of the proportion of bad points.

For each application, every member of each family of models was fitted with a range of
values for G and q, and the best model for family was selected using BIC (cf. Section 2.4).
Thus each application of the MCGFA, MMtFA and EPGMM “methods” involved many
models with different covariance structures, numbers of components and numbers of latent
factors and choosing the best one. Thus the methods can be evaluated on both model fitting
and the success of the BIC model selection procedure.

To be precise, the methods were judged on their ability to:

i. separate known clusters;
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ii. recover known structure in the data (G and q) through model selection;

iii. produce parsimonious models with the best overall fit to the data.

The first criterion was measured using the adjusted Rand index (ARI; Hubert and Arabie,
1985), which is a measure of agreement between partitions that is applicable even to parti-
tions of differing sizes. An ARI value of 1 indicates perfect agreement, and the expected value
of the ARI under random classification is 0. When the methods were applied to data with
known labels, the results were evaluated against this reference. The second point is straight-
forward: when the true values of G or q were known, we saw whether they matched the
corresponding values in the selected models. The third criterion was measured by compar-
ing the BIC value directly. The BIC rewards models that closely fit the data, but penalizes
models that are highly parameterized and may suffer from overfitting (cf. Section 2.4). It
is worth noting that the MCGFA family of models is inherently less parsimonious than the
MMtFA family because the contaminated Gaussian distribution has an additional parameter
compared to the t-distribution. Thus the BIC values for the MCGFA may tend to be higher
than those of the MMtFA. On the other hand, the MCGFA model uses these parameters to
provide automatic classification of bad points. Therefore, in addition to the above criteria,
the MCGFA method was evaluated on its ability to detect such points, when appropriate.

In every case, the data were scaled to have mean 0 and standard deviation 1 on each
variate before the fitting methods were applied. This is the approach recommended by the
mmtfa package. Scaling is generally considered good practice, does not change cluster shape,
removes the impact of measurement unit, and also helps avoid numerical issues affecting the
convergence of the fitting algorithm.

5.1 Simulated data analysis

In this section, five types of simulated data sets were considered:

1. Gaussian clusters;

2. Contaminated Gaussian clusters;

3. t-distributed clusters;

4. Gaussian clusters with noise;

5. Example with p = 100.

In all cases, there were G = 2 components and each component had a latent factor structure
with q = 3 latent factors. In the first four cases, ten replications of p = 10 dimensional data
with equally sized components (π1 = π2 = 0.5) were generated with n = 200 as sample size.
Other settings varied per example and details are provided in the relevant section. In each
case, every parsimonious model in each of the MCGFA, MMtFA and EPGMM families was
fitted with G = 1, . . . , 5 components and q = 1, . . . , 5 latent factors, and the best model in
each family was selected by the BIC.
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5.1.1 Gaussian clusters

The first component had mean at the origin and the second had a mean vector drawn from
a Gaussian distribution centered at the origin with covariance matrix I10. Two loading
matrices, Λ1 and Λ2, were generated with components drawn from independent Gaussian
distributions centered at the origin with covariance matrix I10. The elements on the diag-
onals of the error variance matrices, Ψ1 and Ψ2, were randomly generated from a uniform
distribution on (0.5, 1). All three approaches (MCGFA, MMtFA and EPGMM) were run
on all ten datasets. The BIC selected G = 2 components for all models on all runs and
the classification performance for all methods was very good, with the MCGFA approach
having a slightly higher mean ARI (Table 2). For all MCGFA and MMtFA models, q = 3
latent factors were selected for all runs and, for the EPGMM family, q = 3 latent factors
were selected on 9 of the 10 runs (Table 3).

Table 2: Mean ARI and BIC values, with respective standard deviations in parentheses, for
the mixtures of factor analyzers models on Gaussian clusters (std. errors in parentheses).

MCGFA MMtFA EPGMM

Mean ARI 0.872 (0.04) 0.867 (0.05) 0.863 (0.04)
Mean BIC 4711.48 (66.1) 4698.43 (60.5) 4726.32 (68.4)

Table 3: Number of latent factors q selected by BIC on Gaussian clusters.

q MCGFA MMtFA EPGMM

1 0 0 0
2 0 0 0
3 10 10 9
4 0 0 1
5 0 0 0

5.1.2 Contaminated Gaussian clusters

The data were generated in the same way as in Section 5.1.1 but with a covariance inflation
factor ηg for each component drawn from an exponential distribution (truncated at 1) with
mean 10. Ten percent of observations in the first group and twenty percent of those in the
second group were designated as “bad”, i.e., α1 = 0.9 and α2 = 0.8. Each combination of
these randomly generated parameters yielded a pair of contaminated Gaussian clusters. All
three approaches (MCGFA, MMtFA and EPGMM) were run on all ten datasets. Unsur-
prisingly, the MCGFA approach gave the best performance in terms of both mean BIC and
mean ARI (Table 4). The classification performance of the MMtFA approach was similar
but the EPGMM approach did not perform as well, which illustrated the deleterious impact
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of the outliers (Table 4). In all cases, the MCGFA and MMtFA approaches selected a model
with G = 2 components but EPGMM needed additional components to help account for
the outliers (Table 5). This time, the number of latent factors selected in each case was the
same as for the previous simulation (see Table 3) and so is not repeated here.

Table 4: Mean ARI and BIC values, with respective standard deviations in parentheses, for
the mixtures of factor analyzers models on contaminated Gaussian clusters.

MCGFA MMtFA EPGMM

Mean ARI 0.957 (0.03) 0.945 (0.03) 0.756 (0.08)
Mean BIC 3175.11 (311) 3259.95 (305) 3480.40 (322)

Table 5: Model selection performance of BIC on contaminated Gaussian clusters.

G MCGFA MMtFA EPGMM

1 0 0 0
2 10 10 0
3 0 0 8
4 0 0 2
5 0 0 0

5.1.3 t-distributed clusters

The means and scale matrices were generated as in Section 5.1.1. The degrees of freedom
parameters were set to ν1 = 10 and ν2 = 60, respectively. In all cases, the BIC selected
G = 2 components, classification performance was very good (Table 6), and the number of
factors was usually q = 3 (Table 7).

Table 6: Clustering performance of factor analyzer models on t-distributed clusters.

MCGFA MMtFA EPGMM

Mean ARI 0.904 (0.03) 0.908 (0.03) 0.914 (0.02)
Mean BIC 4577.27 (94.4) 4566.86 (89.1) 4593.01 (87.1)

Unsurprisingly, the MMtFA model had the best mean BIC. However, the EPGMM had a
slightly higher average ARI value. This is not surprising when one considers that the second
component was effectively Gaussian (i.e., ν2 = 60) while the first was not particularly heavy
tailed (i.e., ν1 = 10).
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Table 7: Number of latent factors q selected by BIC on contaminated Gaussian clusters.

q MCGFA MMtFA EPGMM

1 0 0 0
2 0 0 1
3 9 10 9
4 1 0 0
5 0 0 0

5.1.4 Gaussian clusters with uniform noise

The means and covariance matrices were generated as in Section 5.1.1. Then, 20 noise points
were added to the data, drawn uniformly from (−5, 5)×· · ·×(−5, 5). The noise observations
were not considered in the evaluation of clustering performance. The BIC selected G = 2
components for all models. All three approaches gave very good classification performance
and the MCGFA approach was the best, albeit by a small margin (Table 8). The MMtFA
models were the only ones that consistently had q = 3 latent factors (Table 9).

Table 8: Clustering performance of factor analyzer models on Gaussian clusters with uniform
noise.

MCGFA MMtFA EPGMM

Mean ARI 0.936 (0.06) 0.926 (0.05) 0.902 (0.05)
Mean BIC 5342.07 (54.28) 5346.38 (43.86) 5464.56 (73.78)

Table 9: Number of latent factors (q) selected by BIC on Gaussian clusters with uniform
noise.

q MCGFA MMtFA EPGMM

1 0 0 0
2 0 0 3
3 6 10 7
4 4 0 1
5 0 0 0

In addition to clustering performance, the MCGFA model was judged on its ability to
detect “bad” points. Both sensitivity and specificity were considered. The sensitivity is the
proportion of bad points successfully detected, and the specificity is the proportion of good
points successfully labelled as such. The detection results for each initialization scheme of
our models are shown in Table 10. The specificity figures were impressive considering noise
points might easily lie within clusters.
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Table 10: Outlier detection results for the MCGFA method on Gaussian clusters with uni-
form noise.

Mean # Correctly Detected 19.3
Mean # Falsely Detected 6.9
Mean Sensitivity 96.5%
Mean Specificity 96.6%

5.1.5 Example with p = 100

Ten replications of p = 100 dimensional data with G = 2 equally sized (π1 = π2 = 0.5)
components were generated in each case. A total of n = 440 observations were generated in
each case: 400 regular plus 40 noise. In each dimension, the noise was uniform on (−15, 15).
We set µ1 at the origin, and µ2 at the origin in each dimension but the first 10 dimensions,
where it took a value 4. Note that, here, the true model was a CUU model from the PGMM
family. Elements of the factor loading matrix Λ were generated randomly from a standard
Gaussian distribution. The diagonal elements of Ψ1 and Ψ2 were randomly generated from
a uniform on (0.5, 10). This time, each model was fitted for G = 1, . . . , 5 and q = 1, . . . , 10.
Each model chose G = 3 and q = 5 for all 10 simulations, and gave perfect clustering results
(with noise appearing as a separate cluster for both MMtFA and PGMM). In all cases, the
chosen MCGFA model is CUUUC, the MMTFA model is CUUC, and the PGMM is CUU
— these all make sense considering that the data are generated form a PGMM CUU model.

While this turned out to be a relatively straightforward clustering problem, there are three
interesting takeaways: the MCGFA model work well in high dimensions; by BIC, MCGFA
outperformed mmtfa (Table 11); even with extra parameters, MCGFA outperformed PGMM
by BIC in half the replications.

Table 11: Average BIC, and number of times the BIC value is the smallest (No. min. BIC),
for mixtures of factor analyzers models for the p = 100 example.

MCGFA MMtFA EPGMM

Mean BIC 90472.22 90515.55 90468.04

No. min. BIC 5 5 0

5.2 Real data analyses

5.2.1 Wine data set

The wine data set (Forina et al., 1986) consists of p = 27 chemical properties of n = 178
bottles of wine, of three different types: Barolo, Grigolino and Barbera. The data set is
available in the pgmm package for R. Each method was fitted to the data with every set
of constraints, G = 1, . . . , 10 components and q = 1, . . . , 10 latent factors. The results (Ta-
bles 12 and 13) show that all three approaches gave very good classification performance with
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the MCGFA and MMtFA models slightly outperforming the EPGMM model. Interestingly,
the scale matrices had the same (CUU) structure in each case.

Table 12: Contingency tables for mixtures of factor analyzers models applied to the wine
data.

MCGFA MMtFA EPGMM
1 2 3 1 2 3 1 2 3

Barolo 59 0 0 59 0 0 59 0 0
Grignolino 2 69 0 2 69 0 3 67 1
Barbera 0 0 48 0 0 48 0 0 48

Table 13: Details of the chosen model for each mixtures of factor analyzers approach applied
to the wine data.

MCGFA MMtFA EPGMM

model CUUCC CUUC CUU
q 4 4 6
ARI 0.964 0.964 0.929
BIC 11347.82 11339.23 11479.09

The MMtFA model achieved the best BIC value. This is probably because the larger
MMtFA family includes some parsimonious models that have no analogue in the MCGFA
family. The best MMtFA model was CUUC; the final “C” indicates that the degrees of
freedom parameter was held equal across the groups so there is only one parameter in the
model that controls the shape of the tails of the component distributions. Meanwhile, the
best MCGFA model had 6 parameters (αg and ηg, g = 1, 2, 3) for the same task.

To explore the effect of outliers on model performance, a new version of the wine data
was created by adding two artificial observations. These observations were generated by
copying the first two observations from the Barolo group and giving them an alcohol level
of 25%. The results highlighted an interesting advantage of the MCGFA approach in this
situation (Tables 14 and 15). As one would expect, the EPGMM approach did not perform
well. The MCGFA and MMtFA might seem to give similar performance but it is important
to note that only the MCGFA selected the correct (i.e., same as before) covariance structure
despite the outliers.

5.2.2 AIS data set

The Australian Institute of Sport data set (Cook and Weisberg, 1994) consists of p = 11
numerical measurements of n = 202 athletes, along with their classification by gender and
sport. There are 9 women’s sports and 8 men’s sports, for a total of 17 nested classes. The
ratio of observations to classes is too low to hope to uncover the 17 component structure,
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Table 14: Contingency tables for mixtures of factor analyzers models applied to the contam-
inated wine data.

MCGFA MMtFA EPGMM
1 2 3 1 2 3 1 2 3 4 5 6 7 8 9 10

Barolo 59 0 0 59 0 0 15 12 22 7 1 4 0 0 0 0
Grignolino 2 69 0 3 68 0 0 0 15 3 14 0 34 5 0 0
Barbera 0 0 48 0 0 48 0 0 0 0 0 0 0 4 39 5

Table 15: Performance measures for each mixtures of factor analyzers models applied to the
contaminated wine data.

MCGFA MMtFA EPGMM

model CUUUU UCUC UUU
q 4 4 1
ARI 0.964 0.946 0.376
BIC 11405.55 11392.38 11392.42

so we evaluated the models primarily based on their ability to separate the athletes by
gender. However, we also investigated how each method partitions athletes with regards
to sport. Each method was fitted to the data with every set of constraints, G = 1, . . . , 10
components and q = 1, . . . , 5 latent factors. The classification results (Tables 16 and 17) show
that all approaches selected a G = 3 component model. The relatively poor classification
performance of all approaches was unsurprising when one considers that the clusters in these
data are well known to be asymmetric (see, e.g., McNicholas, 2016, Chp. 7).

Table 16: Contingency tables for mixtures of factor analyzers models applied to the AIS
data set, by gender.

MCGFA MMtFA EPGMM
1 2 3 1 2 3 1 2 3

female 64 36 0 65 35 0 80 20 0
male 3 15 84 3 16 83 1 17 84

To further investigate these results, we examined the contingency table of each clustering
by each athlete’s gender and sport (Figure 18). For both the MCGFA and MMtFA models,
the second cluster contained a similar mix of genders (36/15 and 35/16, respectively) and
so it was interesting to briefly consider these clusters. In both cases, the second cluster
contained: female athletes who did neither field nor gymnastics plus male athletes who
generally (but not exclusively) did swimming or 400m running.
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Table 17: Performance measures for mixtures of factor analyzers models applied to the AIS
data set.

MCGFA MMtFA EPGMM

Model UCUCU UCCC UUU
q 4 5 4
ARI 0.55 0.54 0.65

BIC 2219.921 2254.758 2312.379

Table 18: Contingency tables for mixtures of factor analyzers models applied to the AIS
data set, by gender and sport

MCGFA MMtFA EPGMM
1 2 3 1 2 3 1 2 3

Female Row 12 10 0 13 9 0 15 7 0
Netball 21 2 0 21 2 0 19 4 0
BBall 12 1 0 12 1 0 11 2 0
Field 7 0 0 7 0 0 7 0 0
Swim 6 3 0 6 3 0 4 5 0
Tennis 2 5 0 2 5 0 5 2 0
Gym 4 0 0 4 0 0 4 0 0
TSprnt 0 4 0 0 4 0 4 0 0
T400m 0 11 0 0 11 0 11 0 0

Male Row 0 0 15 0 0 15 0 1 14
WPolo 0 0 17 0 0 17 0 4 13
BBall 0 1 11 0 1 11 0 1 11
Field 0 1 11 0 1 11 1 1 10
Swim 0 5 8 0 5 8 0 2 11
TSprnt 0 0 4 0 0 4 0 0 4
Tennis 2 1 8 2 1 8 0 5 6
T400m 1 7 10 1 8 9 0 3 15

6 Discussion

In this paper, methodological contributions have been contextualized in the high-dimensional
setting and have mainly involved the definition of both the contaminated Gaussian factor
analysis (CGFA) model — as a generalization of the classical (Gaussian) factor analysis
model — and the mixture of contaminated Gaussian factor analyzers (MCGFA) model. In
the fashion of McNicholas and Murphy (2008) and Andrews et al. (2018), a family of 32
parsimonious MCGFA models has been also introduced that allow different constraints to
be placed on to the factor loading, error variance matrices, and contamination parameters
of different components in the mixture. These parsimonious variants provide smaller, more

24



easily interpretable models. In one sense, the CGFA model can be viewed as a generalization
of the (Gaussian) factor analysis model, while the MCGFA model is a generalization of the
mixture of (Gaussian) factor analyzers model. These generalizations aim to accommodate
mild outliers which we have collectively referred to as bad points. Although approaches for
high-dimensional data, such as the t-factor analysis model and the mixture of t-factor ana-
lyzers model, can be used for data comprising bad points, they do not give the opportunity
to automatically detect them.

Computational contributions have concerned the detailed illustration of AECM algo-
rithms for fitting the above family of parsimonious MCGFA models. A further advantage of
the proposed approach over the mixture of t-factor analyzers model, in computational terms,
is related to the fact that all of the parameters of the MCGFA model are available in a closed
form in the iterations of the AECM algorithm, while the same does not hold for the mixture
of t-factor analyzers model. This avoids the use of numerical optimization for model fitting.
Our MGCFA approach was compared to both the MMtFA and EPGMM approaches using
real and simulation data. In each case, it gave either comparable or superior performance.
While comparison to the MMtFA approach is interesting, it must be remembered that even
when the performance is comparable, the MCGFA method yields automatic and explicit
detection of bad points.

There are several avenues for future work. The models in our family assume that the bad
(Gaussian) density in each cluster has the same shape of the good (Gaussian) density, but
with an inflated covariance matrix. While this results in a parsimonious model, some applica-
tions could require a more complex paradigm where good and bad densities have still the same
mode, but are allowed to have a different shape. If each mixture component is associated with
a cluster, then the models in our family imply elliptically symmetric clusters, which may be
rather restrictive in some real data applications. To overcome this problem, still preserving
the possibility to reduce the dimensionality and to detect mild outliers, our 32 parsimonious
configurations may be easily applied to the component scale matrices of mixtures of con-
taminated skewed distributions, such as mixtures of multivariate skew-contaminated normal
distributions (Cabral et al., 2012) and mixtures of contaminated shifted asymmetric Laplace
distributions (Morris et al., 2019); for the use of skewed component distributions, see also,
e.g., Franczak et al. (2014) and Punzo et al. (2018). An analogous approach could be taken
in other cases, such as the hypercube approach of Franczak et al. (2015). Furthermore, anal-
ogous approaches to those we have used to develop the MCGFA family could be taken in the
matrix variate case (see Viroli, 2011 and Gallaugher and McNicholas, 2018). Finally, ideas
borrowed from high-dimensional work in the document domain (e.g., Markley and Miller,
2010 and Soleimani and Miller, 2016) could be applied to the mixture of factor analyzers
model to produce an alternative approach — it would be interesting to compare such an
approach to the MCGFAs.
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