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The determination of cluster centers generally depends on the scale that we use to analyze the 

data to be clustered. Inappropriate scale usually leads to unreasonable cluster centers and thus 

unreasonable results. In this study, we first consider the similarity of elements in the data as the 

connectivity of nodes in an undirected graph, then present the concept of a connection center and 

regard it as the cluster center of the data. Based on this definition, the determination of cluster 

centers and the assignment of class are very simple, natural and effective. One more crucial 

finding is that the cluster centers of different scales can be obtained easily by the different powers 

of a similarity matrix and the change of power from small to large leads to the dynamic evolution 

of cluster centers from local (microscopic) to global (microscopic). Further, in this process of 

evolution, the number of categories changes discontinuously, which means that the presented 

method can automatically skip the unreasonable number of clusters, suggest appropriate 

observation scales and provide corresponding cluster results.  

 

Determining cluster centers plays a critical role in cluster analysis. The K-means algorithm
1 

iteratively calculates cluster centers by minimizing the within-cluster sum of squares. The 

distribution-based Gaussian mixture model
2
 finds cluster centers through maximum likelihood 

estimation. The mean-shift algorithm
3,4

 and the approach in ref.5 select the density peaks as cluster 

centers. Here we present a new and original viewpoint of cluster center determination. We consider that 

the cluster centers are evolving and dynamic rather than fixed and static, and whether a point is a 

cluster center depends on the scale we use to observe the data sets. For instance, the Sun can be 

considered as the center of the solar system, but it is obviously not the center of the galaxy system. 

By mapping the data points to be clustered into the nodes of an undirected graph, we extend the 

concept of connectivity and employ it to dynamically determine the cluster centers. First of all, 

connectivity between nodes based on a pairwise similarity matrix is defined as follows. 

The presented connectivity concept is informed by the definition of the number of walks
6
. Given a 

set of points             in   . We use the element     of the pairwise similarity matrix   

(         to represent the connectivity between nodes    and   , which can be considered as an 

extension of the number of walks with length 1 between    and    (see ref.7). Further, we use the 
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entry    
   

 of the k-th power (  ) of the similarity matrix to define the k-order connectivity between    

and    (denoted by              ), which can be approximately regarded as the number of walks with 

length   between    and   . Especially, the diagonal entry    
   

 is defined as k-order connectivity of 

node   , which is denoted by           . For any node   , we consider    to be a connection center 

of the graph and thus a cluster center of the data, if the number of walks with length   between    

and    is greater than that between    and   . For instance, if each node can be considered as a 

station in a transportation network, it is natural that we use the connectivity of a node to represent how 

busy the station is. Obviously, the greater the connectivity, the more likely the station is to be a traffic 

center or a pivot. Specifically, the definition of cluster center can be strictly given by: 

Definition (cluster center): for one node   ，if it satisfies the following inequality, it will be a 

connection center of the graph and is defined as a k-order cluster center. 

                                                   (1) 

For a pairwise similarity matrix   formed from a collection of nodes           , if a node 

satisfies inequality (1), we refer to it as a diagonally maximal element. If all the nodes satisfy inequality 

(1),   is named the diagonally maximal matrix. 

After acquiring all the cluster centers, we next classify the remaining points to the corresponding 

cluster centers by the rules below. We assume that we have m cluster centers    , where     

                    . For any non-cluster-center point   , in order to determine its assignment, we 

present the concept of the k-order relative connectivity between     and   , defined as the ratio of 

               and                        
                                       .  The resulting 

classification rule is given by: 

                                 
   

            ，     (2) 

This means that    will be assigned to the cluster center      that has the greatest relative 

connectivity with   . This assignment is natural and reasonable, and makes the classification process 

simple and elegant. 

In summary, for each  , cluster centers can be found by inequality (1), and then each of the 

remaining points is assigned to one cluster center according to equation (2). When    , all points are 

cluster centers because the similarity matrix is generally a diagonal maximal matrix. Therefore, the 

initial number of categories is equivalent to the number of points, which is the extreme situation for a 



clustering problem. As   increases, the acquired cluster centers and the corresponding cluster result 

gradually reflect the connectivity among the points from micro to macro. When   approaches infinity, 

for a connected graph, the number of ultimate cluster centers will be generally reduced to one so that 

all data belong to the same cluster. Therefore,   can be regarded as a scale-regulating factor which 

determines how we observe the data to be clustered, and the changing process of   from small to large 

corresponds to the evolving process of connection center of the data from local to global. Therefore, we 

refer to this new method as connection center evolution (CCE). 

Next, we use a simple 4-nodes example to illustrate the evolving process of connection centers as 

shown in Fig.1. First, a similarity matrix is constructed by a Gaussian kernel
3,4

. When    , the 

number of connection centers is four and thus all the four points are cluster centers because the 

similarity matrix is a diagonally maximal matrix. Then it decreases to two with    and    being the 

local cluster centers when    . Finally it is reduced to one when    , and    is found to be the 

global cluster center. Interestingly, CCE cannot classify these points into 3 categories, which means 

that 3 is an unreasonable or prohibited number of clusters for CCE. 

From the analysis mentioned above, given a collection of data points, CCE may provide various 

cluster results for different  . However, which one is reasonable? Next, we perform the CCE 

algorithm on the data points illustrated in Fig.2 and the corresponding number of clusters is recorded in 

Fig.2A. When       , the data points are grouped as 31 clusters (Fig.2A). In the next iteration 

interval (       ), the data points are grouped as 6 clusters (Fig.2B). Finally, all the points are 

merged into one cluster (Fig.2C). Apparently, the results (31 and 6 clusters) are  n l ne w  h people’s 

intuition, so both of them are reasonable. In fact, the reasonable number of clusters can be suggested by 

the platforms of the curves as shown in Fig.2A. 

Again, CCE jumps many states just as it does in the previous example. Especially, the number of 

clusters is reduced directly from 6 to 1 without any of the intermediate states (5, 4, 3, 2) . That is to say, 

CCE is able to intelligently knock out most unreasonable classification results. 



 

For comparison, we apply k-means
1
, mean-shift

3,4
 and spectral cluster methods

8-10
 to the data set 

mentioned above (Fig.S1-S4). A different number of clusters (6 and 31) should be specified to obtain 

different cluster results for the k-means and spectral cluster methods. Similarly, two different 

bandwidths are needed for means-shift in order to obtain two cluster results (6 clusters and 31 clusters) 

in different scales. From their cluster results, even though the correct parameters are provided, the 

results of 31 clusters for the k-means and spectral cluster methods are still unreasonable.  

We also apply CCE to some widely used data sets
11

. The cluster results (see Fig. S5) demonstrate 

that CCE can be applicable to a variety of data with different shapes and distributions.  
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1. All the points are connection centers when     

Figure 1 | a simple example for CCE. Here, a Gaussian kernel                  
 
            

is used. Connection centers are marked with bigger dots. Other points are marked with smaller ones and 

colored according to the cluster centers which they are assigned to. 

    

                        

                        
       
      

      
      

      
      

      
      

  

3. When    , the global cluster center (  ) is found 

because    
   

 is the only diagonally maximal element of 

  . The corresponding number of classifications is 1. 

    

                        
                        

       
      

      
      

      
      

      
      

  

2. When    ,    and    become the connection centers 

because both    
   

 and    
   

 are the diagonally maximal 

elements of    .    and    are both assigned to    

according to (2), and    remains isolated. 

 

    

   
 

     

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
 



 

One interesting finding is that there exists a wonderful relationship between the spectral clustering 

algorithm and CCE, which is presented in the following theorem [see proof in ref.12]. 

Theorem: Given a collection of data points to be clustered, the square root of the diagonal vector of the 

k–th power of its similarity matrix is proportional to the eigenvector (    with a maximal eigenvalue 

of   when   tends to positive infinity. i.e.                  . 

Since CCE can find the global connection center of the data when   is large enough, this theorem 

indicates that all the eigenvector-based clustering methods are inclined to focus on the global 

connectivity of a graph, which is not enough in many cases. Fortunately, the real data to be clustered 

usually corresponds to a multi-partite graph. When the similarity matrix is formed as a multi-block 

diagonal matrix, the connection center of each block can still be found based on the above theory. This 
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Figure 2 | Result for a synthetic data set, using a Gaussian kernel. When   increases, the points are 

grouped as different clusters. Connection centers are marked with black circles and other points are 

colored according to the cluster centers which they are assigned to. (A) The number of clusters versus 

iteration number. (B) Iteration #7~16, 31 clusters. (C) Iteration #25~95, 6 clusters. (D) Iteration #96~, 

one cluster. 
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may be the main reason why spectral clustering methods can succeed in many cases. 

Next, we apply CCE to Olivette Face Database in which there are 10 different images of 40 

distinct subjects
13

. Just like refs.1,14, the distance matrix is built by the method in ref.15. Here a 

Gaussian kernel with variance        is used to construct the similarity matrix, and the matrix is 

normalized according to ref.9. The clusters with only one or two elements are judged as noise and thus 

are removed. From the Fig.3A and Fig.3B, we can see that, after about the 340
th
 iteration, the number 

of clusters and several performance indices all tend to be stable and the corresponding results are 

encouraging. For instance, from the 481
st
 to 510

th
 iteration, CCE gets 128 clusters and 56 clusters 

before and after removing noise, respectively, among which not a single cluster encompasses images of 

two or more different subjects. Surprisingly, 8 subjects have been identified integrally (#2, 7, 11, 12, 14, 

27, 30, 38) and 15 subjects have been recognized with no less than 7 images. In addition, 301 images 

have been assigned and only 3 in 40 subjects are not identified (#1, 13, 39). From the 511
th

 to 530
th
 

iteration, the result is further improved. The 18
th

 subject which had previously split into two clusters 

have merged so that 9 subjects have been identified integrally (#2, 7, 11, 12, 14, 18, 27, 30, 38). 

However, with the increase of iterations, two or more different subjects may be merged into one cluster. 

For instance, in the 531
st
 iteration, the 10

th
 image of the 10

th
 subject is assigned to the integral class 

made of the 7
th

 subject. As expected, all images will finally be merged into one cluster after enough 

iterations. The result of the 516
th

 iteration is shown in Fig.3C. 

From the above results, we find that CCE can work well on clustering the Olivette faces. In the 

following, we discuss the effect of the variance in Gaussian kernel on the performance of CCE. 

Obviously, how the variance is set determines the speed of convergence of CCE. The smaller one 

implies that the evolution of connection centers will proceed at a lower speed. It makes the number of 

clusters decrease more slowly and therefore possibly results in more long-lasting platforms, which 

usually correspond to the desired cluster results. On the other hand, the larger variance may cause the 

number of clusters to decrease steeply and thus greatly save time, but it may leap over some valuable 

intermediate results. For a compromise between performance and speed, a moderating value of 0.05 is 

suggested here.  



 

The last example is about the high speed rail transport network in China. We hope to find out the 

importance of cities or whether they are transport hubs by analyzing the connectivity among all the 

stations. The data was downloaded from the website (ref.16) in May, 2016. Due to geological and 

geographical factors, the high speed railway stations are primarily distributed in the east of China. Here 

the similarity     is set to the number of direct routes between station   and   without any 

intermediate station.     is weighed according to following rules: If station   is the beginning or 

terminal station of one route,     is added by the number of stations on the route in order to reflect its 

importance; if station   is an intermediate station of one route,     is added by 2. Fig.4A shows the 

number of connection centers versus the iteration number. The curve descends sharply at the beginning, 

and then it begins to decrease slowly as the number of iterations increases. When    , eighteen 

cities are chosen as connection centers (Fig.4B), which are all important cities, including provincial 

capitals, busy seaports and area economy centers. After some iterations, a short-lasting platform 
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Figure 3 | Clustering Olivetti faces. (A) The number of clusters before (red) and after (blue) removing 

noises, versus iteration number. (B) The performance of CCE as a function of iterations for noise-removing 

data: the number of subjects identified integrally (black), the number of assigned images divided by 10 

(green), the number of subjects identified as individuals (brown), the number of subjects split in more than one 

cluster (cyan), the number of clusters with more than one subject (magenta). (C) The clustering results of the 

iteration #516 with 9 subjects identified integrally. Each color stands for a cluster and cluster centers are 

marked with white circles. 



(       ) emerges and the number of connection centers is reduced to 9 (Fig.4C). When 

       , a new locally stable result with four connection centers (Shanghai, Chengdu, Guangzhou 

and Beijing) is presented (Fig.4D). Interestingly, they just correspond to the four centers in the eastern, 

western, southern and northern part of China. In the following iterations, when        , a steady 

platform with a large interval appears in the curve. In this interval, the number of connection centers 

falls to 2 and the selected cities are, unsurprisingly, Beijing and Shanghai (Fig 4E), which are the 

biggest and most important cities in China. As the capital, Beijing is connected by widely distributed 

cities and its sphere of influence appears greater. By contrast, the number of stations assigned to 

Shanghai is significantly less than those assigned to Beijing. However, Shanghai finally defeats Beijing 

and is chosen as the ultimate connection center of all the stations. This can be attributed to the two 

following facts. First, Shanghai itself has a population of about 25 million, and it is the most 

economically developed city in China. Second, Shanghai is the center of the Yangtze River Delta which 

is the most prosperous and advanced region in China. The metropolitan area of the Yangtze River Delta 

contains some of the most economically dynamic cities such as Nanjing, Hangzhou, Suzhou, Wuxi, 

Ningbo, Wenzhou and Hefei, which makes the distribution of high speed railway routes in this region 

far more dense than those in other regions. It should be noted that one city may be assigned to a more 

remote center because the assignment of class in CCE is based on the actual high speed railway routes 

rather than the geographical adjacency of the cities. For instance, one city (Dandong) marked in blue is 

assigned to Beijing though it is geographically nearer to Dalian (Fig.4B), because the routes between 

Beijing and Dandong are twice as many as those between Dalian and Dandong.).  

For many clustering problems, the true number of clusters is actually ambiguous due to the 

difference in the cluster scale. In general, the larger the scale is, the smaller the number of categories is, 

and vice versa. Most clustering algorithms work only in those cases where the scale is specified in 

advance and ends with an unreasonable cluster result if the scale selection is not appropriate. CCE 

presents a natural strategy for clustering problems and it can intelligently provide all reasonable results 

from local to global scale. Additionally, when the pairwise similarity matrix of the data is given, the 

implementation of CCE involves only the power of the matrix and does not require any manual 

interference, and thus is very simple and efficient. We believe that CCE actually reveals the inherent 

mechanism of clustering problems and will have a far-reaching impact on the region of data processing. 
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Figure 4 | the high speed railway net in China. CCE is used to explore the connection centers of all the 

stations. (A) The number of clusters versus iteration number (  . (B) Eighteen connection centers and the 

corresponding cluster result when    . (C) Nine connection centers and the corresponding cluster result 

when        . (D) Four connection centers (Shanghai, Chengdu, Guangzhou and Beijing) and the 

corresponding cluster result when        . (E) Two connection centers (Shanghai and Beijing) and the 

corresponding cluster result when        . 
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          , making the following equations hold, 
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Figure | S2 

Comparison with mean-shift when processing the synthetic data set as shown in Figure 2. CCE can 

intelligently provide all reasonable results from local to global scale. Mean-shift only gives one 

result for one specified bandwidth which corresponds to one fixed scale. In order to obtain 6 

clusters and 31 clusters above, two different bandwidths must be elaborately given in advance. (A) 

A Gaussian kernel with twice variance of that in CCE. (B) A Gaussian kernel with the same 

variance as that in CCE. 

A B 

A B 

Figure | S1 

Comparison with k-means when processing the synthetic data set as shown in Figure 2. CCE can 

tell us all reasonable numbers of clusters (6 and 31). For k-means, however, the number of clusters 

must be specified in advance. Here we suppose that the exact number of clusters is known for 

k-means. (A) When the number of clusters is set to 6, k-means can group the points correctly. (B) 

When the number of clusters is set to 31, the solution with the lowest cost value among 1000 times 

running is shown. Unfortunately, the result is still unreasonable. 



 

 

Figure | S4 

Comparison with spectral cluster method in
6
 when processing the synthetic data set as shown in 

Figure 2. Like graph Laplacian spectral cluster method, this spectral method also needs the number 

of clusters to be set in advance. Likewise, its result of 31 clusters is still not perfect. (A) The 

number of clusters is set to 6. (B) The number of clusters is set to 31. 

A B 

Figure | S3 

Comparison with graph Laplacian spectral cluster method in refs.4,5 when processing the synthetic 

data set as shown in Figure 2. Different from CCE, this spectral method needs the number of 

clusters to be set in advance. Moreover, its result of 31 clusters is also not perfect. (A) The number 

of clusters is set to 6. (B) The number of clusters is set to 31. 

A B 
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Figure | S5 

Cluster results of CCE for some widely used synthetic data sets
1,2,3

. All the results can be indicated 

by the stable platforms appearing in the iteration process. 
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Figure | S6 

Cluster results of K-means for above synthetic data sets.  
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Figure | S7 

Cluster results of mean-shift for above synthetic data sets.  
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E F 



1 http://cs.joensuu.fi/sipu/datasets 

2 Chang, H., Yeung, D.Y. Robust path-based spectral clustering. Pattern Recognit. 41, 191–203 

(2008).   

3 Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 

1492-1496 (2014). 

4 Shi, J., Malik, J. Normalized Cuts and Image Segmentation, IEEE Trans. Pattern Anal. Mach. 

Intell. 22,888 (2000).  

5 Von Luxburg, U. A tutorial on spectral clustering. Statistics and computing 17, 395 (2007). 

6 Ng, A. Y., Jordan, M. I., Weiss, Y. On spectral clustering: analysis and an algorithm. in Proc. 14th 

Conf. NIPS (MIT Press,Cambridge,MA,2002), 849-856 (2002). 

 


